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Abstract

The syntactic merge tool for Java programs JDime provides a matching algorithm based
on Flexible Tree Matching, which allows to successfully match even complex changes with
far less conflicts than an unstructured merge would produce.

This thesis studies the influence of numerous parameters in this matching algorithm, such
as weightings in a cost model or an argument for a probability distribution. The research
could not only identify a relation better merging results and the individual weightings but
also confirm that another parameter has been chosen reasonably.

Furthermore, a filtering mechanism for AST nodes based on syntactic categories is added
to the algorithm’s implementation. This allows the matchings to be computed up to four
times faster than before.
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CHAPTER 1

Introduction

1.1 Motivation

In projects of reasonable size, there are always multiple different contexts where work
happens. Each feature, experiment, or alternative of a product is actually a context of its
own: it can be seen as its own “topic”, clearly separated from other topics. Most likely,
there is at least one context for the “main” or “production” state, and another context for
each feature, experiment, etc. In real-world projects, work always happens in multiple of
these contexts in parallel. Keeping the work in those separate contexts is a huge help,
but there will come a time when the changes from one context have to be integrated
into another one. For example, when a feature has been completed, you usually want to
integrate it into the “production” context [Gün14].
In terms of Version Control Systems, such a workflow is called Feature-Branch-Workflow
with its branches referring to the individual contexts. When merging multiple changes
together, almost every Version Control System performs a simple line-based merge, i.e., it
monotonously compares files line by line without ever knowing what the content of those
files means. If there are lines where the merge tool gets stuck, the user has to manually
resolve the conflicts, even in situations that appear obvious to the user.
An alternative approach is a so-called structured merge. This technique tries to get a deep
knowledge of the data it is merging, which means it can more easily resolve conflicts than
a line-based approach can. Structured merging appears to be a good fit for preventing
conflicts when source code is involved because its nature is based on structured abstract
syntax trees (AST) [Sei16, Section 1.1].
The merging tool JDime1 implements — among others — such a merging strategy, based
on the Flexible Tree Matching algorithm, which contains many parameters that influence

1Sven Apel and Olaf Leßenich. JDime: Structured Merge with Auto-Tuning. url: http://www.
infosun.fim.uni-passau.de/se/JDime/ (visited on 10/03/2017).

http://www.infosun.fim.uni-passau.de/se/JDime/
http://www.infosun.fim.uni-passau.de/se/JDime/
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the quality of the merging outcome. The goal of this thesis is to investigate these influence
factors on the effectiveness and efficiency of the merging process.

1.2 Structure of the Thesis

This thesis is organized as follows: The first chapter gives a brief overview over the
concepts like Version Control Systems and their various merging strategies. Afterwards,
the theoretical foundation of Flexible Tree Matching is outlined in Chapter 3. The next
chapter proposes a change to JDime’s implementation and presents its stochastical parts.
Each investigation in this paper is based on numerous test scenarios, which are described
in Chapter 5, followed by the discussion of the results in Chapter 6. Some conclusions
and the outline for future work are drawn in the final chapter.



CHAPTER 2

Background

2.1 Version Control System

A Version Control System (VCS) is a software that helps developers work together and
maintain a complete history of their source code over time. Developers can easily go back
in time and compare earlier versions of their code while minimizing disruption to all team
members because the VCS keeps track of every modification to the code in a special kind
of database.
Today, version control is an essential instrument for working on a project with several
developers, since every member is continually writing new and changing existing source
code. Team members working concurrently and even individuals who work on their own
can benefit from the ability to work on independent streams of changes. Creating a so-
called “branch” keeps multiple streams of work independent from each other while also
providing the facility to merge that work back together. In some cases, the merge can be
performed automatically, because there is sufficient history information to reconstruct the
changes and more importantly the changes do not conflict. In other cases, the changes
made in one branch are incompatible with those currently present in the merge destination.
A VCS should discover this problem and solve it in an orderly manner. Needless to say,
overwriting is no option, as work is lost when using this strategy. That’s why most modern
version control systems accept a commit of a modified file to the repository only if its
original local copy matches the latest revision available in the repository. If someone else
has committed a newer version of the file to the repository in the meantime, the developer
has to merge this newer file with the locally changed one before a commit [Atl].
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2.2 Merging Techniques

When merging multiple artifacts of source code, their differences have to be identified.
This separate process is crucial for the quality of the merge. A wrongly detected change
of a program element by the compare process — although it is actually unchanged in both
versions — might lead to an unnecessary conflict while assembling the unified output in
a later step of the merge. Nowadays, Version Control Systems usually perform a textual,
line-based merge with a popular example being GNU merge. If no conflict occurred
during the merge process, the output equals the successfully merged file. In case a conflict
was detected, the output is enriched in the relevant places as shown in Figure 2.1 [Inc08].

content of merged file
<<<<<<< file1
conflicting lines in file1
=======
conflicting files in file2
>>>>>>> file2
content of merged file

Figure 2.1. GNU merge conflict.

The reason for the success of textual merge operations in modern Version Control Systems
is its universal applicability and speed. Such a merge can be applied to all non-binary
files regardless in size and content. This means, that developers do not need different
tools for each programming language to merge their work, but one — the textual merge
tool.
However, the downside is, that textual merge is rather weak when it comes to handling
merge conflicts. In Java, for example, a very simple change like reordering methods, which
has no impact on the semantic behavior, can lead to a lot of conflicts. Those have to be
manually resolved in order to complete the merge. Furthermore, (re)formatting of code
often produces conflicts, because the position of brackets and the indentation style might
be different according to the settings of the developers’ editor [Leß12, Section 3.4].
Consider for example the simple Java class in its base version in Listing 2.2. Now, imagine
two developers are working independently on this class. The first developer changes the
content of the two methods foo and bar. The second developer doesn’t like the order of
the methods and swaps them, leaving their content unchanged. What happens, if both
commit and merge their work using a textual merge tool? Although the changes are
quite simple and reproducible, the merge results in a conflict, which has to be resolved
manually.
To overcome the disadvantages of a textual merge, especially to reduce the number of con-
flicts a user has to resolve by hand, one could use syntactic merge. This structured merge
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Base
class MyClass {

void foo() {
System.out.println("Hello");

}
int bar() {

return 42;
}

}

Left (Developer 1)

class MyClass {
void foo() {

System.out.println("World");
}
int bar() {

return 43;
}

}

Right (Developer 2)

class MyClass {
int bar() {

return 42;
}
void foo() {

System.out.println("Hello");
}

}

MERGE

Conflict
class MyClass {

int bar() {
return 42;

}
void foo() {

System.out.println("Hello");
}

<<<<<<< Version of Developer 1
int bar() {

return 43;
}

=======
>>>>>>> Version of Developer 2
}

Figure 2.2. Two developers are modifying a file at the same time. Once they have
finished their work, they try to merge their changes back together, which in this case
results in a conflict.
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exploits language-specific knowledge and can, therefore, compare and merge software ar-
tifacts better than textual merges. The underlying data structure for a syntactic merge
is usually an abstract syntax tree, which requires the merge tool to parse the programs
in advance and generate the corresponding tree.
Figure 2.3 shows simplified abstract syntax trees for the modified versions of MyClass
from Listing 2.2 (Left and Right).
In order to compare two programs for this type of merge, both trees are traversed and the
differing nodes are identified. Since the merge is applied to the trees, code formatting is
no longer relevant. The previously mentioned ordering conflicts can also be detected as
such, and in case of Java programs, simply ignored. Now, the output file can be generated
by simply pretty-printing the abstract syntax tree.
This approach, however, has disadvantages as well: Syntactic merges are much slower than
textual merges, mostly due to the complexity of their compare algorithms. A syntactic
merge requires the input files to be syntactically correct, otherwise, the parser is not
able to build the AST. Furthermore, it is restricted to certain file types since it uses
syntactic knowledge of the programming languages in which the programs to be merged
are written [Leß12, Section 3.5].

2.3 JDime

JDime is a structured merge tool that can perform a syntactic three-way merge on Java
programs. It focuses on providing a structured merge that can resolve more conflicts
than an unstructured merge, but still retains a similar runtime. As Leßenich, Apel, and
Lengauer [LAL15] proved, JDime is a viable alternative to traditional line-based merging.
An auto-tuning approach that first attempts a line-based merge and then a structured
merge if there are conflicts, allows JDime to be up to 92 times faster than purely structured
tools, 10 times on average.
In an earlier version, JDime did not have the ability to solve conflicts that involved nodes
on different levels in the AST. While this had no effect on merging of reordered or refor-
matted code, it lacked the capability to merge situations like code being surrounded by
constructs such as loops or conditional statements. The master’s thesis of Seibt [Sei16],
therefore, added an implementation of Flexible Tree Matching [Kum+11] to JDime, which
relaxes the rigid requirements of the tree matching algorithm in favor of a tunable formu-
lation in which the role of hierarchy can be controlled.
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(0) Class MyClass

(1) Method foo

(2) void (3) Block

(4) MethodCall

(5) System.out (6) println (7) World(7) World

(8) Method bar

(10) Block(9) int

(11) return

(12) 43(12) 43

(a) A simplified AST of the left class in Figure 2.2.

(0) Class MyClass

(1) Method bar(1) Method bar

(2) int (3) Block

(4) return

(5) 42

(6) Method foo(6) Method foo

(7) void (8) Block

(9) MethodCall

(10) System.out (11) println (12) Hello

(b) A simplified AST of the right class in Figure 2.2.

Figure 2.3. Simplified ASTs of Listing 2.2. Notice that the reordering of the methods
resulted in a simple swap in the root node’s children. The change in the value of the
method parameters introduced two new nodes 7 and 12, that replace their predecessors.
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2.4 Decision Tree

A Decision Trees is a non-parametric supervised learning method used for classification
and regression. The goal is to create a model that predicts the value of a target variable
by learning simple decision rules inferred from data features [dev17]. It breaks down a
dataset into smaller and smaller subsets while at the same time an associated decision
tree is incrementally created. The final result is a tree with decision nodes and leaf nodes.
The deeper the tree, the more complex the decision rules, and the fitter the model [Say].
Consider the following example inspired by Hawks [Haw]: You are making your weekend
plans, but there are a few unknown factors that will determine what you can and can’t do.
Depending on the weather and your current financial situation you come up the following
table.

Table 2.1. Weekend activities based on weather and money.

Weather Money Activity

sunny rich play tennis
sunny poor play tennis
rainy poor stay in
windy poor cinema
windy rich shopping

The advantage of the decision tree is its graphical representation of possible solutions to
a decision based on certain conditions. Rather studying a table with possibly thousands
of entries the decision tree helps you “see” the (potential) structure behind the data.
Figure 2.4 gives an example of a decision tree based on the data from Table 2.1. The
decision nodes are represented by squares and leafs by ellipses.

weather

stay
in

rainy

money

shoppingrich

cinemapoor
windy

play
tennis

sunny

Figure 2.4. A decision tree based on the data from Table 2.1.



CHAPTER 3

Weighting Edge Costs in Flexible Tree Matching

In the structural merging domain, one has to find an injective binary relation M between
two labeled trees L and R. That means M is a strict subset of the cartesian product of
the trees’ nodes because no node from L or R occurs in more than one element of M .
The matching M is then interpreted as a bipartite graph between the nodes of the trees
(Figure 3.1).

L

A B

C D

R

A B D

C’

Figure 3.1. A bipartite graph constructed from two trees.

The edges represent operations transforming L into R. A matching between nodes with a
different label corresponds to a renaming; nodes that are not mapped represent deletion
and insertion depending on the tree, they are missing in.
The Flexible Tree Matching algorithm is based on a cost model which uses weighted costs
to describe properties of a matching. Given a function c(l, r) calculating the cost of a
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matching (l, r) ∈ M , i.e., the cost of an edge in the graph, the problem of tree matching
is finding a set of matchings M that minimizes the sum of the costs defined as

c(M) =
1

|L|+ |R|
∑
l,r∈M

c(l, r).

The cost calculation for a single matching (l, r) is split up into multiple parts:

c(l, r) =

wn if l =
⊗

L or r =
⊗

R,

cr(l, r) + ca(l, r) + cs(l, r) otherwise.⊗
L and

⊗
R denote auxiliary no-match nodes and allow weighting the cost with wn when

a node could not be matched. If (l, r) represents an actual match, its cost equals the sum
of all three cr, ca and cs.
The relabeling term cr represents the cost of matching two nodes that have different labels.

cr(l, r) =

0 if l and r match,

wr otherwise.

The ancestry cost ca describes violating ancestry relationships between the tree nodes in
L and R. This cost function examines the children of L and R to count the ones not
being matched to children of the opposite node.
The sibling cost cs penalizes edges that fail to preserve sibling relationships between trees.
The two costs ca and cs are internally weighted by wa and ws respectively. Since the
actual cost calculation is not germane in this thesis, it is omitted here and simply denoted
by ĉa and ĉs. See [Kum+11, section 3] for the mathematical details.

ca(l, r) = wa · ĉa(l, r,M)

cs(l, r) = ws · ĉs(l, r,M)

Furthermore, in an AST, the order of a node’s children may be relevant, which lead to
the addition of a new ordering cost by Seibt [Sei16]. The function co and its weight wo

penalize matchings that introduce an ordering which is being violated by other matchings.
See [Sei16, section 3.5.2].

co(l, r) = wo · ĉo(l, r,M)

Thus, the cost of a matching (l, r) can be expressed as

c(l, r) =

wn if l =
⊗

L or r =
⊗

R,

cr(l, r) + ca(l, r) + cs(l, r) + co(l, r) otherwise.

To generate optimal matchings, the Flexible Tree Matching algorithm requires a domain-
specific configuration via its parameters. The aim of this thesis is to analyze the influence
of those weightings wn, wr, wa, ws and wo on the matchings the algorithm produces.



CHAPTER 4

Altering the Metropolis Algorithm

In JDime, the Metropolis algorithm [CG95] is responsible for approximating the set of
matchings with the lowest cost. The algorithm starts by assembling the complete bipartite
graph G and calculates the cost bounds1 for all matchings. These matchings M are then
sorted by increasing bound. Every iteration of the Metropolis algorithm proposes a new
set of matchings by choosing an index j ∈ [1, |M |] and fixing the first j matchings in M .
Those fixed matchings are then completed to a set that satisfies the constraint that for
every node in the left and right tree there is exactly one matching containing that node.

4.1 Syntactic Categories

When JDime builds the bipartite graph, it will try to match every node from the left
AST with every node from the right AST, even though in many cases, this is unnecessary.
For instance, a node representing a class declaration does not need to be matched to
variable declaration nodes. Therefore, a filtering mechanism is proposed such that JDime
considers only matchings with the same syntactic category.
At the heart of the JDime architecture is the Artifact class, which — in the current
version — represents either a file in a directory tree or a node in an AST. The matching
algorithm operates on any kind of Artifact, which means that in order to support
syntactic categories, each artifact has to be assigned a category. This is implemented via
a new abstract method categoryMatches(Artifact) in the abstract base class Artifact
(Figure 4.1) that is implemented by concrete artifacts with regards to their needs.
ASTNodeArtifact uses the Java class of the AST nodes created by ExtendJ2 as its syn-
tactic category. This leads to a high granularity in categories because those classes boil
down to expression level (e.g. MethodDecl, ThrowStmt, AndBitwiseExpr, etc.).

1Sei16, Section 3.2.
2http://jastadd.org/web/extendj/
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Artifact

+ categoryMatches(A) : bool
+ matches(A) : bool

A extends Artifact<A>

FileArtifact

+ categoryMatches(FileArtifact) : bool
+ matches(FileArtifact) : bool

ASTNodeArtifact

+ categoryMatches(ASTNodeArtifact) : bool
+ matches(ASTNodeArtifact) : bool

Figure 4.1. The Artifact class structure.

The FileArtifact’s categories are based on the type of the file, i.e., directories and
regular files.
Since every node in the bipartite graph is an Artifact, the CostModelMatcher can iden-
tify compatible nodes and only add a matching to the bipartite graph, if the categories
of those two nodes match or one of them is a no-match node, i.e., the edge represents an
addition or deletion. Algorithm 1 shows the procedure for the assembling of the graph.

Algorithm 1: The assembling of the bipartite graph.
Input: left AST, right AST
Output: bipartite graph

1 bipartiteGraph ← empty graph;
2 foreach lNode in left AST including no-match node do
3 foreach rNode in right AST including no-match node do
4 edge ← (lNode, rNode);
5 if isAddition(edge) or isDeletion(edge) or categoryMatches(lNode, rNode)

then
6 add(bipartiteGraph, edge);
7 end
8 end
9 end

4.2 Proposing Optimal Matchings

Once the bipartite graph is created, JDime can fix a portion of the matchings, which is
defined by an index in the list of possible matchings. Instead of always fixing the matching
with the lowest cost (index 0), a random index is chosen. This method ensures that less
costly matchings are more likely to be fixed as they have a lower index in the sorted list,
but still allows other matchings with a higher cost to be fixed. The randomness in JDime
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is implemented using a negative binomial distribution where r = 1. The probability
function is defined as

P ({X = k}) = p(1− p)k.

This thesis investigates the choice of p = 0.7 to see, whether the correctness of the
algorithm can be improved by using different values.
In addition to the probability of success, the implementation of Flexible Tree Matching
uses a seed to initialize a pseudorandom number generator for the negative binomial
distribution, which is hard-coded as 42. Again, the influence of different values on the
correctness of the matchings is inspected.



CHAPTER 5

Merge Tasks

In order to evaluate a particular matching, multiple test scenarios — hereinafter referred
to as merge tasks — have been created. Each merge task is associated with a “perfect”
matching (reference matching), that is constructed by hand. To quantify the quality of
computed matchings against their reference, the Jaccard similarity coefficient is used.
For two sets A and B it is defined as

J(A,B) =

1 A = B = ∅,
|A∩B|
|A∪B| otherwise.

The following listings each show two versions of a class, which then have to be matched
by the Flexible Tree Matching algorithm. Seibt [Sei16] used an evolutionary algorithm
to find an optimal weighting configuration based on several test scenarios. In addition to
the six merge tasks, which have been part of the learning process, several new ones are
added, essentially to test the algorithm on ASTs with more nodes. Table 5.1 gives an idea
of the bipartite graphs’ size corresponding to the merge tasks.

Table 5.1. Size of the bipartite graph in the test scenarios.

Merge Task Left AST Right AST #Nodes #Edges

MovedMethod 43 43 86 1,849
Multiple 55 55 110 3,025
RenamedMethod 23 23 46 529
ShiftedCode 62 52 114 3,224
SurroundWithLoop 72 51 123 3,672
SurroundWithTry 64 47 111 3,008
ExtractMethod 109 107 216 11,663
ExtractMethod2 165 141 306 23,265
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The merge task MovedMethod rearranges two methods. Despite the semantic equiva-
lence of the two files, traditional unstructured tools would produce a conflict when faced
with the reordering of methods in a class. In the AST, this change is represented by the
reordering of the children of the nodes representing the class declaration.

1 public class MovedMethod {
2 private void foo() {
3 System.out.println("Hello");
4 }
5

6 public int bar() {
7 return 42;
8 }
9 }

1 public class MovedMethod {
2 public int bar() {
3 return 42;
4 }
5

6 private void foo() {
7 System.out.println("Hello");
8 }
9 }

Listing 1. Merge task MovedMethod.

The merge task Multiple is a self-test, representing the easiest possible matching sce-
nario. The class contains multiple declarations and should be matched against itself.

1 class Multiple {
2 void foo() {
3 int i = 0;
4 int j = 1;
5 String s = "";
6 i = 0;
7 j = 1;
8 }
9 }

Listing 2. Merge task Multiple.

In RenamedMethod the method cannot be matched by unstructured merging since
the method declaration nodes have different labels. JDime should match the method
declaration nodes and all their children.

1 class Foo {
2 int getAnswer() {
3 return 42;
4 }
5 }

1 class Foo {
2 int getResult() {
3 return 42;
4 }
5 }

Listing 3. Merge task RenamedMethod.
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In the ShiftedCode task, the lines 9 and 10 are surrounded by an if block. The nodes
previously representing the body of the bar method are now children of an if statement
block. In addition to this conditional statement, another return point has been added.

1 import java.util.List;
2

3 class Bar {
4 List<String> l;
5

6 int bar() {
7 String s = l.get(0);
8 return s.length();
9 }

10 }

1 import java.util.List;
2

3 class Bar {
4 List<String> l;
5

6 int bar() {
7 if (l != null) {
8 String s = l.get(0);
9 return s.length();

10 }
11 return 0;
12 }
13 }

Listing 4. Merge task ShiftedCode.

In the SurroundWithLoop task, a code fragment is embedded in a for-loop construct.
In the AST, this means removing several layers of nodes representing the loop before the
subtree of the surrounded fragment.

1 public class SWLoop {
2 public boolean isOnline() {
3 boolean online;
4 online = check();
5 return online;
6 }
7

8 public boolean check() {
9 return true;

10 }
11 }

1 public class SWLoop {
2 public boolean isOnline() {
3 boolean online;
4 for (int i = 0; i < 10; i++) {
5 online = check();
6 }
7 return online;
8 }
9

10 public boolean check() {
11 return true;
12 }
13 }

Listing 5. Merge task SurroundWithLoop.
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SurroundWithTry represents a similar problem as Listing 5 does, however with the
added complexity of a catch block. JDime is expected to match the surrounded code but
not the additional nodes of the catch block.

1 public class SurroundWithTry {
2 public void doSmth() {
3 String s = ex();
4 }
5

6 private String ex() {
7 throw new RuntimeException();
8 }
9 }

1 public class SurroundWithTry {
2 public void doSmth() {
3 try {
4 String s = ex();
5 } catch (RuntimeException e) {
6 e.printStackTrace();
7 }
8 }
9

10 private String ex() {
11 throw new RuntimeException();
12 }
13 }

Listing 6. Merge task SurroundWithTry.

In the ExtractMethod task two identical if statements are extracted into a new
method. JDime has to match exactly one of the left AST subtrees against the same
AST subtree in the right file, which is several layers deeper. The other AST subtree
should not be matched.

1 import java.util.List;
2 import java.util.LinkedList;
3

4 class Stack {
5 List<Integer> stack = new LinkedList<>();
6

7 public Integer pop() {
8 if (stack.size() > 1) {
9 System.out.println("output");

10 }
11 return stack.remove(stack.size()-1);
12 }
13

14 public void push(Integer elem) {
15 if (stack.size() > 1) {
16 System.out.println("output");
17 }
18 stack.add(elem);
19 }
20 }

1 import java.util.List;
2 import java.util.LinkedList;
3

4 class Stack {
5 List<Integer> stack = new LinkedList<>();
6

7 public Integer pop() {
8 helperMethod();
9 return stack.remove(stack.size()-1);

10 }
11

12 public void push(Integer elem) {
13 helperMethod();
14 stack.add(elem);
15 }
16

17 private void helperMethod() {
18 if (stack.size() > 1) {
19 System.out.println("output");
20 }
21 }
22 }

Listing 7. Merge task ExtractMethod.
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The ExtractMethod2 task is similar to the previous merge task, except that the if
statement is a lot bigger and a method parameter is added to the extracted method. This
merge task serves as an example for ASTs with many nodes.

1 import java.util.List;
2 import java.util.LinkedList;
3

4 class Stack {
5 List<Integer> stack = new LinkedList<>();
6

7 public Integer pop() {
8 if (stack.size() > 1) {
9 System.out.println("output");

10 } else if (stack.size() > 10) {
11 System.out.println("output2");
12 } else {
13 System.out.println("pop");
14 }
15 return stack.remove(stack.size()-1);
16 }
17

18 public void push(Integer elem) {
19 if (stack.size() > 1) {
20 System.out.println("output");
21 } else if (stack.size() > 10) {
22 System.out.println("output2");
23 } else {
24 System.out.println("push");
25 }
26 stack.add(elem);
27 }
28 }

1 import java.util.List;
2 import java.util.LinkedList;
3

4 class Stack {
5 List<Integer> stack = new LinkedList<>();
6

7 public Integer pop() {
8 helper("pop");
9 return stack.remove(stack.size()-1);

10 }
11

12 public void push(Integer elem) {
13 helper("push");
14 stack.add(elem);
15 }
16

17 private void helper(String msg) {
18 if (stack.size() > 1) {
19 System.out.println("output");
20 } else if (stack.size() > 10) {
21 System.out.println("output2");
22 } else {
23 System.out.println(msg);
24 }
25 }
26 }

Listing 8. Merge task ExtractMethod2.



CHAPTER 6

Results

6.1 Weighted Edge Costs

In total 3750 weighting configurations have been evaluated. Each parameter value for wr,
wn, wa, ws and wo was taken from a uniform distribution between 0 and 1. Then every
configuration was evaluated with the merge tasks described in Chapter 5. The resulting
data is presented in Figure 6.1. Since the weight values and the corresponding scores are
in the range of 0 to 1, both can be shown in the same axis range.

0

0.2

0.4

0.6

0.8

1

wr wn wa ws wo

Ext
rac

tM
eth

od

Ext
rac

tM
eth

od
2

Mov
edM

eth
od

Mult
ipl

e

Rena
medM

eth
od

Sh
ift

edC
od

e

Su
rro

un
dW

ith
Loo

p

Su
rro

un
dW

ith
Try

Figure 6.1. Distribution of weights and scores.

The first five boxes — the weight values — show indeed that every parameter value is
uniformly distributed over [0, 1]. This guarantees that no accumulation in the space of
the weights is investigated, but a representative subset of the entire five-dimensional one.
When looking at the scores’ boxes, you’ll notice that RenamedMethod is correctly
matched for almost every configuration. The actual box is hard to see, because it is so
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small, but it is located at the top of the upper whisker. In fact, this merge task is correctly
matched in 91.8% of the configurations. In this context, “correctly” means every single
node of the ASTs is matched exactly as the reference matching specifies. MovedMethod
also performs relatively well: in around 71.1% of the cases, the rearranging has been
fully detected and matched. The self test Multiple is matched at least to 50% for
every configuration. The other merge tasks show, that 50% of the cases result in similar
scores, but the other half is almost unpredictable. Especially SurroundWithLoop and
SurroundWithTry take nearly every value between 0 and 1, meaning the matching
can be good or completely useless, depending on the weighting parameters.
The most important statement from this figure, however, is taken from the boxes of
ExtractMethod and ExtractMethod2. Despite that almost 4000 different weights
have been tested, not a single one reached a score of 0.835 or above. ExtractMethod2
performs even worse: not even scores better than 0.659 are reached, regardless of the
weighting parameters.
Since in reality, a merge tool like JDime needs to perform adequately in all these situations,
the mean score matters as well. If we raise the bar and look only at the best1 15% of the
configurations, the distribution of the parameter values shifts (Figure 6.2).
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Figure 6.2. Distribution of weights and scores (top 15%).

The fact that both ExtractMethod tasks perform worse than all other merge tasks
manifests here even more. All other merge tasks lead to average scores better than
0.8%, while ExtractMethod2 doesn’t even get near that with 75% of its scores worse
than 0.5. MovedMethod could improve to match correctly in 92.3% of the cases.
RenamedMethod even fully matched for all the configurations. However, the range of
the resulting scores is still relatively large, e.g., about 0.424 for SurroundWithTry.

1based on the mean score over all 8 merge tasks
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Sources of Error When studying these matchings specifically, one can observe differ-
ent types of wrong matchings. Apart from simple incorrect matchings, e.g., a method
declaration matching with a variable declaration, the troublemakers are to a large extent
List nodes. For instance, a node representing a method declaration has a child node for
its modifiers. As there can be several for one method, this node has multiple children,
each representing one modifier. Of course, the same applies for class declarations, field
declarations, etc. These List nodes are often matched among each other, leading to a
decreased score. The figures 6.3 and 6.4 show an excerpt from the bipartite graph for the
merge task SurroundWithLoop in plaintext, separated into the left and right ASTs.
The highlighted lines mark nodes which are matched incorrectly.

Program (L0) ↔ (R0)
List (L1) ↔ (R1)

CompilationUnit PackageDecl="" (L2) ↔ (R2)
List (L3) ↔ (R3)
List (L4) ↔ (R4)

ClassDecl ID="SWLoop" (L5) ↔ (R5)
...

List (L11) ↔ (R11)
MethodDecl ID="isOnline" (L12) ↔ (R12)

...
...

Opt (L19) ↔ (R19)
Block (L20) ↔ (R20)

List (L21) ↔ (R21)
VarDeclStmt (L22) ↔ (R22)

Modifiers (L23) ↔ (R23)
List (L24) ↔ (R55) // should be (R24)

PrimitiveTypeAccess ID="boolean" (L25) ↔ (R25)
List (L26) ↔ (R26)

VariableDeclarator ID="online" (L27) ↔ (R27)
List (L28) ↔ (R28)
Opt (L29) ↔ (R29)

ExprStmt (L30) ↔ (R51)
AssignSimpleExpr (L31) ↔ (R52)

VarAccess ID="online" (L32) ↔ (R53)
MethodAccess ID="check" (L33) ↔ (R54)

List (L34) ↔ (R34) // should be (R55)
ReturnStmt (L35) ↔ (R56)

Opt (L36) ↔ (R57)
VarAccess ID="online" (L37) ↔ (R58)

MethodDecl ID="check" (L38) ↔ (R59)
...

Figure 6.3. The left AST in a bipartite graph after the matching.

Node (L24) holds the modifiers of the method isOnline and is not changed when a
statement inside this method is surrounded by a loop. Despite that, it is matched with
(R55) — a List node holding the parameters for a check method call. Meanwhile, node
(R24) is assigned to the no-match node.
Due to the injective relation of the graph, node (R55) cannot be used anymore for its
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Program (R0) ↔ (L0)
List (R1) ↔ (L1)

CompilationUnit PackageDecl="" (R2) ↔ (L2)
List (R3) ↔ (L3)
List (R4) ↔ (L4)

ClassDecl ID="SWLoop" (R5) ↔ (L5)
...

List (R11) ↔ (L11)
MethodDecl ID="isOnline" (R12) ↔ (L12)

...
Opt (R19) ↔ (L19)

Block (R20) ↔ (L20)
List (R21) ↔ (L21)

VarDeclStmt (R22) ↔ (L22)
Modifiers (R23) ↔ (L23)

(R24) List // should be matched with (L24)
PrimitiveTypeAccess ID="boolean" (R25) ↔ (L25)
List (R26) ↔ (L26)

VariableDeclarator ID="online" (R27) ↔ (L27)
List (R28) ↔ (L28)
Opt (R29) ↔ (L29)

(R30) ForStmt
(R31) List

(R32) VarDeclStmt
(R33) Modifiers

List (R34) ↔ (L34)
(R35) PrimitiveTypeAccess ID="int"
(R36) List

(R37) VariableDeclarator ID="i"
(R38) List
(R39) Opt

(R40) IntegerLiteral LITERAL="0"
(R41) Opt

(R42) LTExpr
(R43) VarAccess ID="i"
(R44) IntegerLiteral LITERAL="10"

(R45) List
(R46) ExprStmt

(R47) PostIncExpr
(R48) VarAccess ID="i"

(R49) Block
(R50) List

ExprStmt (R51) ↔ (L30)
AssignSimpleExpr (R52) ↔ (L31)

VarAccess ID="online" (R53) ↔ (L32)
MethodAccess ID="check" (R54) ↔ (L33)

List (R55) ↔ (L24) // should be (L34)
ReturnStmt (R56) ↔ (L35)

Opt (R57) ↔ (L36)
VarAccess ID="online" (R58) ↔ (L37)

MethodDecl ID="check" (R59) ↔ (L38)
...

Figure 6.4. The right AST in a bipartite graph after the matching.
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intrinsic value: to be the counterpart for node (L34). There are two options left for
this node: either matching with the no-match node or matching with another node from
the right AST. As it appears, the algorithm chose the later and matched (L34) with
the exact same position on the right — also a List node, but with a different meaning.
Unfortunately, the nodes (R30) to (R50) belong to the added for-loop and therefore
should not be matched at all.

Weighting Tendency When looking at the weightings themselves, one can see a ten-
dency of increasing or decreasing. The following figures show the shifting of each weight,
with the light blue area representing 50% of the weightings and the dark blue line the
average. The bottom axis shows, that the mean score over all merge tasks reaches from
0.535 to 0.859. Note that this axis has no standard scale (linear, logarithmic, etc.). The
top axis displays the appropriate size of the dataset in linear scale. The peeks at the
right-hand side of each plot are due to the smaller dataset and therefore lead to a bigger
variance in the scores.

0

0.2

0.4

0.6

0.8

1

0.790.750.720.65

500150025003500

w
r
va
lu
e

Mean Score

Configurations

0

0.2

0.4

0.6

0.8

1

0.790.750.720.65

500150025003500

w
n
va
lu
e

Mean Score

Configurations

0

0.2

0.4

0.6

0.8

1

0.790.750.720.65

500150025003500

w
o
va
lu
e

Mean Score

Configurations

Figure 6.5. Better matchings are produced by higher wr, wn and wo values.

While wr, wn and wo slightly increase as the score get higher, wa and ws definitely produce
better results with lower values. Also, the range of the first and third quartile becomes
smaller and smaller.
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Figure 6.6. Better matchings are produced by lower wa and ws values.

Machine Learning To help identify a strategy most likely to reach a high score, a model
has been learned by scikit-learn [Ped+11]. The resulting decision tree is presented in
Figure 6.7.

wn ≤ 0.1543
samples = 3750
score = 0.7383

ws ≤ 0.5643
samples = 3133
score = 0.7517

wn ≤ 0.3207
samples = 1365

score = 0.73 samples = 1092
score = 0.7389

samples = 273
score = 0.6945

wa ≤ 0.4637
samples = 1768
score = 0.7685 samples = 929

score = 0.7553

samples = 839
score = 0.7831

false

ws ≤ 0.5393
samples = 617
score = 0.6701

wo ≤ 0.4374
samples = 298
score = 0.6146 samples = 174

score = 0.6406

samples = 124
score = 0.5781

wo ≤ 0.2956
samples = 319
score = 0.7219 samples = 223

score = 0.7395

samples = 96
score = 0.6809

tru
e

Figure 6.7. Decision tree based on the mean scores over all merge tasks.

This tree suggests that the highest score 0.7831 can be reached by choosing wn > 0.1543,
ws ≤ 0.5643 and wa ≤ 0.4637. Surprisingly not every weight participates in the decision
for a high score. Nevertheless, the decisions are in accordance with the observations, when
increasing the mean score, like in Figure 6.2.
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6.2 Selecting Matchings

The evaluation of different probability values is based on 10 random weighting configu-
rations. For every probability value, the ten configurations are evaluated with the merge
tasks from Chapter 5. The resulting scores are presented in Figure 6.8 and Figure 6.9.
The individual points in the plots represent the mean score over all merge tasks.
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Figure 6.8. Score against probability of success and configurations.
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Figure 6.9. Averaged score against probability of success and configurations.

As both figures show, increasing the probability values above about 0.4 has no influence on
the scores. However, when using lower values, the score rapidly decreases. The probability
of success controls, how many costly matchings are fixed in one iteration of the Metropolis
algorithm. The smaller the probability, the more times it is likely that non-ideal matchings
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are fixed. This leads to wrongly fixing edges in the bipartite graph that prevent other
correct edges to be set. Nevertheless, the figures also show that using 0.7 in JDime is a
good choice and leads to the best2 possible scores.

6.3 Seed Influence

The seed should neither impact the performance nor the outcome of the matchings re-
gardless of the particular weighting configuration. Each configuration has been evaluated
with 10 different seed values and the range (difference between minimum and maximum)
of the resulting scores is displayed in Figure 6.10.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or
e
R
an

ge

Configuration

ExtractMethod
ExtractMethod2

MovedMethod
Multiple

RenamedMethod
ShiftedCode

SurroundWithLoop
SurroundWithTry

Figure 6.10. Range of the scores when evaluated with different seed values.

If the seed had no or little influence on the computation, then for each merge task a range
of zero or at least close to zero has to be expected. As Figure 6.10 pinpoints, this is by no
means the case. The only two merge tasks that comply the expectation to some extent
are RenamedMethod and MovedMethod. Those two scenarios are the only ones
that are not influenced by the seed — at least for some configurations — and therefore
have a range of zero.
The following figures show the score of each configuration (light blue area) depending on
the seed and the averaged score (blue line) over all seed values.
The staircase-like behavior of some plots can be explained with relatively small ASTs.
RenamedMethod for example only has few nodes in its abstract syntax tree, which
means the algorithm can only compute few different scores. Consequently, the discrete
space of all the possible differences between minimum and maximum is small, too. Of
course, the same applies to the other scenarios, but due to their larger ASTs, there are

2at least with regards to the probability value
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Figure 6.11. Seed influence on every merge task.
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many, many more possible range values. In combination with a small dataset, the plots
do not have a staircase-like appearance.
Just like before, RenamedMethod and MovedMethod show, that the seed has no
influence on the score, if all nodes are matched like the reference matching specifies. In
all the other cases, however, the seed can manipulate the score values greatly, both in a
positive and in a negative way. Interestingly, even when the average score over all seed
values for one weighting configuration is about 0.6, a special seed allows the matching to
be perfect (SurroundWithLoop) with a score of 1.0.
The reason for this rather contradictory result is still not clear and definitely needs more
investigation. Causal could be the algorithm’s sensitivity to changed parameters or a
simple bug in its implementation. Either way, given the small sample size, future studies
are suggested in order to validate the results on a larger dataset.

6.4 Syntactic Categories

Without using categories, the size of the resulting bipartite graph only depends on the
size of both ASTs. When including the categories, another factor plays a great role: the
structure of the ASTs. Matching a simple class with hundreds of variable declarations will
not result in a reduced graph size because the syntactic category of those nodes is mostly
the same. In “standard” classes, however, there are many different types of statements,
e.g., method declarations, if statements, variable access, etc. This allows the filter to
eliminate a bunch of nodes which aren’t worth considering for matching.
Table 6.1 lists both the size of the bipartite graph before and after the introduction of the
categories. All merge tasks have a greatly reduced graph size, but the biggest difference
can be seen — as expected — in larger classes with many different categories.

Table 6.1. Size of the bipartite graph with and without syntactic categories.

Valid Edges
Merge Task #Nodes without with Change

Categories

ExtractMethod 218 11879 1530 -87.1%
ExtractMethod2 308 23571 2710 -88.5%
MovedMethod 88 1935 371 -80.8%
Multiple 112 3135 583 -81.4%
RenamedMethod 48 575 167 -71.0%
ShiftedCode 116 3338 592 -82.3%
SurroundWithLoop 125 3795 678 -82.1%
SurroundWithTry 113 3119 660 -78.8%
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Weighting Configurations Every weighting configuration from Section 6.1 is evalu-
ated again, but this time the particular ASTs are filtered such that the bipartite graph only
contains edges connecting nodes with the same syntactic category or with the no-match
nodes. The scores of the merge tasks are displayed in Figure 6.12 and Figure 6.13.
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Figure 6.12. Distribution of weights and scores using syntactic categories.
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Figure 6.13. Distribution of weights and scores using syntactic categories (top 15%).

Compared to the previous results without syntactic categories (Figure 6.1) almost every
merge task produces slightly better results. Especially the scenarios with many AST
nodes (ExtractMethod and ExtractMethod2) reach significant higher scores. The
RenamedMethod task is matched correctly in 96.8% and MovedMethod in 97.4%

of the cases.
Table 6.2 outlines the relative change in the score values. One can see very clearly, that
tasks with many different syntactic categories (e.g. ExtractMethod2) benefit a lot
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from the filtering. Those with only a few categories (e.g. ShiftedCode) gain less to not
much. It should be noted, that the reason for the poor result of SurroundWithLoop
might be a stochastical anomaly.

Table 6.2. Mean score of the merge tasks with and without categories.

Mean Score
Merge Task without with Change

Categories

ExtractMethod 0.498 0.670 +34.4%

ExtractMethod2 0.365 0.559 +53.2%

MovedMethod 0.945 0.996 +5.4%

Multiple 0.834 0.903 +8.3%

RenamedMethod 0.989 0.999 +1.0%

ShiftedCode 0.713 0.717 +0.6%

SurroundWithLoop 0.868 0.808 −6.9%
SurroundWithTry 0.663 0.722 +8.6%

Nevertheless, as Figure 6.12 shows, the big picture does not change: there are still many
merge tasks that produce scores in almost the full range (e.g. SurroundWithTry) and
bigger tasks still perform worse than smaller ones (with unacceptable results).

Seed Influence The same configurations from Section 6.3 are tested with the new
implementation. As illustrated in Figure 6.14, no significant improvement was identified.
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Figure 6.14. Influence of different seed values on the score using syntactic categories.
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Runtime Improvement The most striking result to emerge from the data is the re-
duced runtime. The results were gathered on a machine with an Intel Core i7 Skylake
clocked at 2.6 GHz with 16 GiB of RAM available. Table 6.3 shows the runtime of the
different configurations for each merge task. As the application is running multithreaded
inside the Java Virtual Machine, the runtime values were averaged over 10 runs, each with
a random weighting configuration.

Table 6.3. Runtime of the merge tasks with and without categories.

Runtime
Merge Task without with Change

Categories

ExtractMethod 144.26 s 48.26 s −66.5%
ExtractMethod2 402.61 s 114.36 s −71.6%
MovedMethod 13.61 s 6.43 s −52.7%
Multiple 23.57 s 11.03 s −53.2%
RenamedMethod 2.77 s 1.58 s −42.9%
ShiftedCode 20.80 s 9.49 s −54.4%
SurroundWithLoop 26.54 s 11.86 s −55.3%
SurroundWithTry 19.72 s 9.12 s −53.7%

As expected, the experiments show that filtering nodes lead to reduced runtime. In fact,
the new implementation allows JDime to process the merge tasks about twice as fast than
before. Especially those tasks with more nodes in the ASTs take drastically less time.



CHAPTER 7

Conclusion and Future Work

This thesis gave an overview over common merging techniques in Version Control Systems
and examined the structured approach in particular. The de-facto standard in merging
today is a line-based, textual method, which is applicable to all kinds of plain text files,
because of its generality and speed. But on the other hand, by not using any information
about the structure of a document at all, such tools tend to produce a large number
of conflicts, which are in some cases hard to resolve manually. Structured algorithms
provide much more power to match elements and detect conflicts in order to assist users
while merging files, but they are slower and restricted to specific programming languages.
One example is the AST-based implementation in JDime, which performs a syntactic
merge on Java files. The fundamental part of this approach is the Flexible Tree Matching
algorithm with its cost model containing many parameters that control the effectiveness
and efficiency of the strategy.
This thesis investigated the influence of weightings on those costs using different merge
tasks and could show, that there is a relation between better merging results and the
individual weights. Nevertheless, bigger merge tasks with more nodes in the AST perform
always worse than their smaller counterparts and do not even get in the range of “good”
results. The research could possibly support the decision to use the Flexible Tree Matching
approach in JDime after a textual merge has resulted in conflicts.
The experiments could confirm that the parameter controlling the proposal of matchings,
which is hard-coded as p = 0.7 is indeed a good choice, considering that other values did
not improve the quality of the matchings. This research has also raised many questions
in need of further investigation regarding the influence of a seed on the correctness of the
algorithm. Future studies should target this topic in particular.
The introduction of syntactic categories to the AST’s nodes could improve the correctness
of the particular merge scenarios, although the big picture did not change. However, the
runtime of each scenario could be drastically reduced: a merge task runs up to four times
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and at least twice as fast as without categories, thanks to the filtering for suitable nodes.
These findings suggest the opportunities for future research to optimize filtering even
further. On a wider level, List nodes can be assigned different categories to differentiate
a modifier list from a parameter list. This could reduce the runtime of a matching even
more.
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