
Bachelor’s Thesis

F E AT U R E I D E N T I F I C AT I O N W I T H F O R M A L
C O N C E P T A N A LY S I S : A C A S E S T U D Y

lukas selvaggio

July 14, 2022

Advisor:
Christof Tinnes Chair of Software Engineering

Examiners:
Prof. Dr. Sven Apel Chair of Software Engineering

Prof. Dr. Martina Maggio Department of Computer Science

Chair of Software Engineering
Saarland Informatics Campus

Saarland University

Lukas Selvaggio: Feature Identification with Formal Concept Analysis: A Case Study, © July 2022

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,______________________ _____________________________
 (Datum/Date) (Unterschrift/Signature)

ABSTRACT

Software product lines offer a way of combining the benefits of mass production

with the benefits of customization by providing a form of structured reuse that allows

software products to be composed of reusable components. This allows manufac-

turers to provide tailor-made products at a large scale, while leading to a reduction

in cost, with an increasing product portfolio, compared to developing the products

from scratch. However, the high upfront investment for the design and implementa-

tion deters companies from adopting a product line approach from the get-go. Only

in retrospect does the overhead of maintenance and increase in development costs

associated with their current approach lead companies to adopt a software product

line approach. This, however, is a manual, tedious, time and money-consuming task,

which is why many approaches have been proposed by researchers in order to at least

semi-automatically perform parts of it. We evaluated a lightweight implementation of

such a semi-automated approach to software product line engineering, based on formal

concept analysis. For this, we applied the approach to a real-world, production-scale

case study from the railway domain and developed a plugin for the modeling tool

MagicDraw that visualizes the results to the engineers in a familiar environment

and intuitive way. Using this visualization, we gained meaningful insights from a

focus group conducted with domain experts, into what can be expected from such an

approach, when applied to more than the usual illustrative examples.

TABLE OF CONTENTS

ABSTRACT I

LIST OF TABLES II

LIST OF FIGURES III

LIST OF ABBREVIATIONS IV

1 Introduction 1
1.1 Goal . 2
1.2 Contributions . 2
1.3 Overview . 3

2 Related Work 5
2.1 But4Reuse - Bottom-Up Technologies For Reuse 5
2.2 Formal Concept Analysis In Extractive SPLE 7
2.3 Other Approaches To Extractive SPLE 11

2.3.1 Family Model Mining . 11
2.3.2 Extraction And Composition For Clone-And-Own (ECCO) . . 12

2.4 SPLE Case Studies . 13

3 Background 15
3.1 Software Product Lines . 15

3.1.1 Benefits And Costs Of Software Product Lines 16
3.1.2 Feature Orientation . 18
3.1.3 Software Product Line Engineering (SPLE) 19
3.1.4 Feature Modeling . 20

3.1.4.1 Feature Diagrams . 20
3.1.5 Adoption Of Software Product Lines 21

3.1.5.1 Extractive Approach To SPLE 23
3.2 Formal Concept Analysis . 24

4 Methodology 29
4.1 Research Questions . 29
4.2 Experimental Setup . 30

4.2.1 Hardware Setup . 30
4.2.2 Feature Identification With Formal Concept Analysis 31

4.2.2.1 Feature Identification 31
4.2.2.2 Feature Constraint Discovery 32
4.2.2.3 Feature Model Synthesis 32

4.2.3 Case Study . 33
4.3 Operationalization . 35

II

4.3.1 RQ.1 Is the semi-automated approach based on FCA able to
assist as a starting point in the different tasks associated with
an extractive approach to SPLE? 35

4.3.2 RQ.2 Is the semi-automated approach based on FCA feasible,
when applied to a production scale, real-world set of product
variants? . 47

4.3.3 RQ.3 How can we represent the results of the semi-automated
approach in a way that maximizes their usefulness to the engi-
neers? . 48

5 Evaluation 51
5.1 Results . 51

5.1.1 RQ.1 Is the semi-automated approach based on FCA able to
assist as a starting point in the different tasks associated with
an extractive approach to SPLE? 51
5.1.1.1 Coherency . 53
5.1.1.2 Completeness . 54
5.1.1.3 Variant Specificity 56
5.1.1.4 Additional questions 56
5.1.1.5 Summary . 61

5.1.2 RQ.2 Is the semi-automated approach based on FCA feasible,
when applied to a production scale, real-world set of product
variants? . 63
5.1.2.1 Quantitive Measures 63
5.1.2.2 Qualitative Measures 65

5.1.3 RQ.3 How can we represent the results of the semi-automated
approach in a way that maximizes their usefulness to the engi-
neers? . 67

5.2 Threats To Validity . 72
5.2.1 Internal Validity . 72
5.2.2 External Validity . 72

6 Conclusion And Future Work 75
6.1 Conclusion . 75
6.2 Future Work . 77

A Apendix 79
A.1 Additional Independent Variables . 79
A.2 Tables With The Results Of The Focus Group 80
A.3 List Of Accompanying Files . 84

REFERENCES 85

I

LIST OF TABLES

3.2.1 Formal context for Domino’s traditional pizzas 26

4.2.1 Statistics for the AMEs of the five part systems we chose 34

4.3.1 Diagrams chosen for the focus group 43

4.3.2 Blocks chosen for the focus group . 46

5.1.1 Correlation matrix for means of questions 1.1, 1.2, 1.3 per block and

the independent variables . 51

5.1.2 Correlation matrix for means of question 1.1, 1.2, 1.3 per diagram and

the independent variables . 52

5.1.3 Means of questions 1.1, 1.2, 1.3 per diagram type 52

5.1.4 Results of Welch’s t-test for questions regarding individual blocks . . 56

5.1.5 Means of the questions 1.1, 1.2, 1.3 regarding individual blocks per

diagram . 58

5.1.6 Correlation matrix for overall means of question 2.1, 2.2, 2.3 and the

independent variables . 58

5.1.7 Means of questions 2.1, 2.2, 2.3 per diagram type 59

5.1.8 Timing for the individual steps (ms) 64

5.1.9 Results of the feature identification step 67

5.1.10 Total percentage of AME types per part system 67

5.1.11 Percentage of AME types for small features (≤ median) 68

5.1.12 Percentage of AME types for big features (> median) 68

5.1.13 Results of the questions regarding plugin features 70

A.2.1 Results for questions 1.1, 1.2, 1.3 regarding the individual blocks . . 82

A.2.2 Results for questions 2.1, 2.2, 2.3 regarding all blocks of a diagram . 83

II

LIST OF FIGURES

2.1.1 Process of SPL adoption with But4Reuse. Adopted from [18]. 8

2.2.1 Extraction of feature models from feature configurations. Adapted

from [22]. 10

3.1.1 Domino’s pizza configurator Pizza Chef 17

3.1.2 Feature diagram for Domino’s pizza line-up (only including traditional

toppings) . 22

3.2.1 Formal concept lattice for the formal context of Table 3.2.1 27

4.3.1 Exported feature elements from But4Reuse in JSON form 36

4.3.2 Screenshot of the MagicDraw Plugin 37

4.3.3 Model Highlighting and Tool-Tip . 38

4.3.4 Diagram Info as JSON . 39

4.3.5 Exported block of diagram as JSON 40

4.3.6 Histogram for diagrams binned by number of blocks 42

4.3.7 Computed variant similarities for part system 1 49

5.1.1 Violin plot for the means of question 1.1 54

5.1.2 Violin plot for the means of question 1.2 55

5.1.3 Violin plot for the means of question 1.3 57

5.1.4 Violin plot for the averages of questions 2.1, 2.2, 2.3 for all blocks . . 60

5.1.5 Concept lattice for part system 1 scaled logarithmically by the size of

each feature . 69

III

LIST OF ABBREVIATIONS

AME Atomic Model Element

EMF Eclipse Modeling Framework

FCA Formal Concept Analysis

MOF Meta Object Facility

PDE Plugin Development Environment

SPL Software Product Line

SPLE Software Product Line Engineering

ST Structured Text

IV

CHAPTER 1

Introduction

Starting with software being written from scratch for individual use cases and very

specific hardware, it soon became apparent that this would be too difficult to main-

tain, with the steady increase in its complexity and variety of its use case scenarios.

Similar to the process of mass producing physical goods the production of software

was streamlined to the point that the industry resided to the use of standardized

software based on standard platforms. But while this standardization allowed for

software to be made readily available to the general public it also came at the cost

of being able to target smaller market groups or the requirements of individual cus-

tomers. Similar to their physical counterparts, software product lines offer a way of

reaping the benefits of mass production, while maintaining the possibility of catering

to different customer requirements. They achieve this by letting customers combine

and configure predefined software components or chose between different alternatives,

with the goal of sharing as many components as possible between products. All while

leaving leeway for potentially newly created components based on an individual cus-

tomer’s needs. While in an ideal world software engineers would stick to the guidelines

given by researches and alike for the development of product portfolios, unfortunately,

due to time and money constraints, it is almost common practise to cut corners in

favor of short term benefits in exchange for quality and the lack of maintainability

in the long run. One of such approaches is appropriately called the ‘clown and own’

approach where in its most literal sense, source code is copy and pasted from one

product to another and from there on developed independently from its original host.

In order to overcome the resulting, inevitable overhead of maintenance and increasing

1

costs of development for an increasing product portfolio, many companies reside to

retroactively adopting a software product line approach. This, however, is a tedious,

time and money consuming task, which is why many approaches have been proposed

by researchers in order to at least semi-automatically perform parts of it.

1.1 Goal

Countless approaches to extractive software product line engineering have been pro-

posed for different domains of software artefacts, ranging from source code to different

formats of models. Many of them, however, are only evaluated on, at best, synthetic

industry examples, where the specifically created controlled environment fails to in-

clude artifacts that arise from the natural development of product line-ups. New

approaches are being actively developed, without making sure that even the most

basic approaches are even feasible if applied in practise. This is why our goal is to

evaluate a lightweight, semi-automatic approach to extractive software product line

engineering, on a real-world, production-scale case study and to gain some insights

on what can be expected from applying such an approach to it.

1.2 Contributions

We evaluate a lightweight, semi-automatic approach to extractive software product

line engineering, on a real-world, production-scale case study. The approach is based

on formal concept analysis and implemented in an open source framework called

But4Reuse. As far as we can tell, at the time of writing, we are one of the first, if

not the first, to evaluate such an approach on an industry case study of this size based

in the modeling domain. For this we implement a first iteration of a visualization

plugin for the modeling tool MagicDraw, which visualizes the results directly in

the tool and will be used to evaluate our findings. Future iterations of this plugin,

as we will discuss in this thesis, might end up in the hands of the engineers behind

our case study. Additionally we implemented some extensions and improvements to

1. INTRODUCTION

the But4Reuse framework, but, as of the time of writing, these changes have not

been incorporated into the official version, mainly due to time constraints. This will

be left as future work.

1.3 Overview

In Chapter 2 we present related work to this thesis. First we take a look at the work

related to the main tool But4Reuse that we will be using. After that we will present

a state-of-the-art approach to extractive software product line engineering (SPLE),

also based on formal concept analysis (FCA) like the approach used in this thesis.

Next we give a quick overview of two other approaches to extractive SPLE. Finally,

we compile a list of case studies used to evaluate SPLE approaches. In Chapter 3

we give the necessary background for the subjects discussed in this thesis. First we

introduce the concept of software product lines, the field of software product line

engineering, and related terminology. After that, we present the most basic mathe-

matical background on FCA. In Chapter 4 we introduce the methodology used for

this thesis. First we present our research questions. Next we discuss our experimental

setup, where we first talk about our hardware setups, then about the different im-

plementations of But4Reuse that we will be using, and finally we present the case

study that is the subject of this thesis. Then we discuss how we plan on answering

our research questions. In Chapter 5 we first evaluate our findings and give an answer

to our research questions. Afterwards we discuss the threats to the validity of our

experiments. Finally, in Chapter 6 we draw final conclusions for this thesis and give

an outlook into possible future work.

3

CHAPTER 2

Related Work

In this chapter we will introduce some of the work related to this thesis. First, we

will take a look at the work related to the framework But4Reuse, which will be

used as the main tool for this thesis. Next, we present a state-of-the-art approach

to extractive SPLE that is also based on FCA. After that, we present a selection of

other approaches to extractive SPLE. Finally, we compile a list of SPLE case studies

that are used by others to evaluate all kinds of different approaches to SPLE.

2.1 But4Reuse - Bottom-Up Technologies For Reuse

The paper ‘Bottom-Up Adoption of Software Product Lines - A Generic and Extensi-

ble Approach’ by Martinez et al. [17] proposes a unifying framework for the extractive

adoption of software product lines from existing artefact variants and it provides an

implementation But4Reuse1 of said framework based on the Eclipse Plugin De-

velopment Environment (PDE)2, which will be used as the tool of choice for the

experiments conducted in this thesis. The authors identify three problems with the

already existing approaches to bottom-up adoption of software product lines. Firstly,

the lack of abstraction in the sense that existing approaches are often targeted at very

specific software artifacts. Secondly, the three main objectives of bottom-up software

product line adoption, namely feature identification and analysis, feature location,

and re-engineering are subject to different requirements regarding their individual

approaches making it hard to consolidate them into a single workflow. Lastly, the

1https://github.com/but4reuse/but4reuse
2https://www.eclipse.org/pde/

5

lack of benchmarking, which is partly due to the inherent nature of the individual

approaches and their focus on one specific type of software artifact, but also due

the lack of availability of implementations to the public. The authors try to tackle

these problems by providing a unified, extensible framework, that relies on an in-

termediate model for the provided artifacts in order to reuse or integrate existing

specific approaches for the three aforementioned main objectives of bottom-up soft-

ware product line adoption. Figure 2.1.1 illustrates the process of said SPL adoption

using the provided framework, where the steps with black background indicate the

given extension points. The framework itself is built on top of three main principles

[17]:

1. A typical software artefact can be decomposed into distinct elements

2. Given a pair of a elements of the same type of artefact, they can be compared

using a similarity metric

3. Given a set of elements extracted from existing artefacts, a new artefact can at

least be partially constructed from them

In order to accommodate different types of artefacts, adapters are used to decompose

provided artefacts into atomic elements. These are wrapped by an intermediate model

that is later also used to reconstruct a new artefact of that type using said elements.

There already is a fairly large set of implemented adapters for various artefact types:

an adapter for graphs given in the GraphML or GML format, one for Java source

code and one for C source code, to mention a few. But the one that will be used

in this thesis is the one for the Eclipse Modeling Framework3 (EMF) introduced in

detail by Martinez et. al. in [16, 19]. Here a Meta Object Facility4 (MOF) compliant

model is decomposed into three types of atomic model elements (AMEs) [19]

• a class, which is constituted of an ‘owner’ class and the class ‘object’ itself

• an attribute, which is constituted of an ‘owner’ class, an ‘attribute identifier’,

and the ‘value’ of the attribute
3https://www.eclipse.org/modeling/emf/
4https://www.omg.org/mof/

2. RELATED WORK

• a reference, which is constituted of an ‘owner’ class, a ‘reference identifier’, and

a set of ‘referenced’ classes

and similarity of these AMEs is computed by comparison methods provided via the

EMF DiffMerge5 API.

2.2 Formal Concept Analysis In Extractive SPLE

The paper ‘Extraction of Feature Models from Formal Contexts’ by Ryssel et al. [23]

proposes an approach of automatically creating feature models that exactly represent

a set of given input model variants using formal concept analysis on the incidence

matrices describing the different components present on each variant. The approach is

exemplified on function-block-based models. Function block models represent systems

in the form of blocks that only expose input and output pins and where the underlying

algorithms can be further configured using parameters provided to the respective

blocks. In order to obtain the aforementioned incidence matrices for a set of product

variants, one has to compare all the product variants to find the similar and different

components that the individual products are made of. Ryssel et al. developed an

approach that is specialized to functional-block-based models [25], where individual

models are represented as a hierarchy of subsystems, and where the subsystems are

then compared using a similarity metric that uses the type, name, structural and

behavioral parameters of blocks and recursive similarity for non-primitive blocks as

local criteria and the distance between blocks, the connected ports and graphical

direction as neighborhood criteria, in order to produce a similarity value s between 0.0

and 1.0. This similarity value is then used as the distance (1.0 - s) for an agglomerative

clustering method, which is restricted by a threshold, in order to avoid clustering

all similar subsystems into one cluster. This finally results in the desired incidence

matrix of clustered subsystems on their respective product variants. In chapter 4 of

his PhD thesis [22], Ryssel gives a more elaborate overview on different clustering and

model matching techniques. He concludes that for clustering, hierarchical or density

5https://wiki.eclipse.org/EMF DiffMerge

7

select artefact
variants

artefact model

artefact types
are supported?

complete
knowledge of

features?

contact integrators

feature identification

create feature list

feature location

feature constraint
discovery

feature model
synthesis

reusbale asset
construction

feature list

feature traceability

feature constraints

feature model

start

end

adapterNo

yes

no yes

reusable assets

Fig. 2.1.1: Process of SPL adoption with But4Reuse. Adopted from [18].

2. RELATED WORK

based techniques are the most suitable for this use-case, and for model matching a

custom solution similar to the one described by Ryssel et al. [25] is needed, due to

the lack of out-of-the-box suitability or availability of existing approaches. Following

the structure of Figure 2.2.1, which summarizes the workflow of chapter 5 of Ryssel’s

PhD thesis [22], as a first step towards creating a feature model, with the identified

clustered subsystems as feature candidates, Ryssel obtains all feature implications

from the incidence matrices. For this, the context (incidence matrix) is extended

by the negations of all attributes, in order to obtain implications with negations.

Then, the (extended) attribute concept graph of the (extended) context is calculated,

where the attribute concepts are the nodes and the edges represent the subset relations

between them. This way calculating the complete set of concepts, for the size of which

Ryssel gives an upperbound as |B(O,A, I)| ≤ 3
2
∗2

√
|I|+1−1 (see Section 3.2 for notes

on notation) [22] opposed to the linear increase in attribute concepts with the amount

of clarified (mutually distinct in their incidence) attributes [23], is avoided. Using the

extended attribute concept graph, redundant features are identified by equivalent or

reducible attributes and with the help of an implication base, that is calculated in

terms of proper premises, these redundant features (or a subset of them depending

on mutual redundancy as defined by Ryssel in Section 5.4.4 of his PhD thesis [22])

are removed from the attribute concept graph and replacement terms for them are

calculated. Using this reduced attribute concept graph, the set of previously obtained

mandatory and optional relationships between features is extended by additionally

calculating inclusive and exclusive or-relationships between them, based on all the

subconcepts of a specific concept in the concept graph and then a feature tree is

derived from these relations. With a minimized version of the previously calculated

implication base, this feature tree is then extended by additional cross-tree constraints

which forms the final feature model.

9

feature configurations
(valid variants)

attribute concept
graph

extended attribute
concept graph

redundant features non-minimal
implication base

replacement terms for
redundant features

feature relations

feature mapping feature tree feature constraints

minimal implication
base

reduced attribute
concept graph

Fig. 2.2.1: Extraction of feature models from feature configurations. Adapted from
[22].

2. RELATED WORK

2.3 Other Approaches To Extractive SPLE

2.3.1 Family Model Mining

The paper ‘Family Model Mining for Function Block Diagrams in Automation Soft-

ware’ [10] by Wille et al. proposes an improved version of the authors previous work

regarding family mining, on the example of function block models. The approach is

divided into three phases. The first phase, called the comparing phase, performs a

data flow-oriented comparison between a manually selected base model, and all re-

maining models, referred to as compare models. Starting from the start block of the

base model and the current compare model, blocks are compared using a weighted

similarity metric. The pair of blocks is stored together with its similarity in so called

compare elements and the next pair is obtained by following the flow of the model

exhaustively. Termination is ensured by only creating new compare elements if they

do not already exist. In the case of unequal model sizes, the remaining blocks are

compared with null, in order to include potential optional elements. In the second

phase, called matching phase, the list of compared elements for each compare model

is iterated to find the best match for each block of the base model. If multiple com-

pare elements with the same block of either the base model or compare model exist,

the similarity value is used to decide which match is best. If two or more compare

elements have the same similarity value, their matching is deferred until the end, in

hope that the algorithm solves the issue automatically by finding matches for the

problematic blocks first. If the problems that occurred can not be solved automat-

ically, a user is involved to manually solve them. If a block of the base model is

unmatched at the end, it is again compared against null. In the third and final phase,

called the merging phase, the obtained matching is used to create a 150% model,

where different thresholds are used on the best matching compare elements in order

to define mandatory, alternative or optional blocks. In order to show the feasibility of

the approach, the authors apply the approach to the pick-and-place unit case study

[29, 28].

11

2.3.2 Extraction And Composition For Clone-And-Own (ECCO)

The paper ‘Enhancing clone-and-own with systematic reuse for developing software

variant’ [4] by Fisher et. al. proposes an approach for semi-automatically aiding

the clone-and-own practice of creating new product variants. The authors identify

three underlying steps of a clown-and-own approach, which form the basis of the

proposed conceptual framework. An implementation based on the conceptual frame-

work is presented by the authors in [5]. The first step, called the extraction step,

is concerned with locating and extracting reusable artefacts from the existing set of

variants. This step is automated and requires full knowledge of the features and the

implementation artefacts that implement them for each variant. The result of this

step is an initial version of a database that contains feature traces, an ordering of

artifacts and dependencies between traces. In next step, called the composition step,

engineers semi-automatically create a new product by selecting desired features from

the database. The resulting products may or may not be complete, based on the

previous occurrence of the selected feature combination in the input variants. In the

final step, called completion, the incomplete products, created in the second step, are

completed manually with the help of hints generated in the second step, indicating

potentially missing features or feature interactions, or implementation artefacts that

the automated approach was not able to separate into features and their interactions.

The newly created product variants can be fed back into the first step to incremen-

tally enhance the initial version of the database. The authors evaluated their tool

based on five SPL case studies, with a range of 12 to 256 variants each. A random

subset of these variants was fed into the tooling and and the remaining variants were

automatically created based on their feature selection. The output variants were then

compared with the original variants for similarity. For the evaluated case studies the

tool was able to almost perfectly re-engineer the remaining variants with around 20

percent of the original variants as input [5].

2. RELATED WORK

2.4 SPLE Case Studies

In the paper ‘ESPLA: A Catalog of Extractive SPL Adoption Case Studies’ [15]

Martinez et. al. compiled a catalog of case studies on the extractive approach to

software product line adoption, that can be accessed online6. As of the time of writing,

the catalog contains 135 different case studies, with mainly 4 different origins, namely

‘Academic’, ‘Illustrative’, ‘Industry’, and ‘Open Source’. For the type of artefacts we

only focus on the case studies working on models of some format, because our case

study is also located in the modeling realm, but there are many case studies regarding

different kinds of artefacts, e.g. code or requirements, with a part of them already

being listed in the catalog. The illustrative case studies include the ‘Banking System’,

which was used by Martinez et el. to illustrate the proposed EMF model adapter for

the But4Reuse framework [16]. The size of this case study is rather small, with

only 3 variants and an average size of 57 classes, 56 attributes and 25 references

(atomic model elements, as defined in Section 2.1). Also used as an example on

the But4Reuse framework [16], but originally published by Couto et. al. [3], is

the ArgoUML SPL7, obtained from source code of the open source modeling tool

ArgoUML. A total of 9 UML models were extracted from the source code of the Argo

UML variants and it is a bigger-sized case study, with an average of 51087 classes,

77519 attributes, and 28885 references. For a case study with academic background,

the work of Schulze et. al. [26] evaluates introducing variability into functional safety

models, by manually identifying features on an automotive airbag case study. For

case studies with industrial background, we have to differentiate between case studies

that were synthetically generated, based on industry use-cases or in cooperation with

industry partners, and case studies that actually concern real-world, production data.

For synthetic, industrial case studies, there are two prominent examples. The first of

which is the body comfort system case-study [13, 20], a small-sized case study, set in

the automotive domain, with state charts created in IBM Rational Rhapsody8 and an

6https://but4reuse.github.io/espla catalog/ESPLACatalog.html
7https://github.com/but4reuse/argouml-spl-benchmark
8https://www.ibm.com/products/uml-tools

13

average size of 187 elements per model and 18 variants in total. The second prominent

example is the pick-and-place unit and its extended version [29, 28], both of which

are not listed in the catalog. The original case study consists of 15 evolution scenarios

of a pick-and-place unit, with SysML models available for each scenario and with a

physical counterpart on site, to test the different scenarios. It is a small-sized case

study, with an average of 435 classes, 643 attributes, and 327 references. Its extended

version consists of 27 evolution scenarios, also with available SysML models. With

an average of 1755 classes, 1770 attributes, and 1285 references for each model, it

is a medium-sized case study. For real-world, industrial case studies, the authors of

[7, 6] evaluate locating features on models obtained from BSH induction hobs. The

models reside in a proprietary DSL called IHDSL, with the first study dealing with

46 variants and the second with 112 variants in total. From the average size given in

the catalog, this seems to be a small-sized case study with somewhere between 100

and 500 elements for a given model.

CHAPTER 3

Background

In this chapter, we will take a look at the knowledge prerequisites for the remain-

ing chapters of this thesis. First the concept of a software product line (short SPL)

is introduced, alongside some key terminology in the field of software product line

engineering (short SPLE), such as the definition of a product, features and the de-

pendencies between them, the different areas of SPL-engineering, namely domain and

application engineering, which are further split into two subdomains, domain anal-

ysis and domain implementation, and requirements analysis and product derivation,

respectively. Afterwards, the notions of formal context and their formal concepts are

introduced in addition to some of the basic terminology of formal concept analysis

(short FCA).

3.1 Software Product Lines

The mass production of physical goods is often stated to have first been introduced

with the advent of the industrial revolution and the introduction of automated ma-

chines into the manufacturing process and was driven even further with the introduc-

tion of standardized parts into the construction process and by moving production to

an assembly line process. It allowed manufacturers to cover broad ranges of consumer

markets and make physical goods available to the general public at an affordable price.

But while a peak in efficiency was reached, it became apparent that with the ever

decreasing possibility for customization, smaller market segments, with more special-

ized requirements, and the general crave of individual consumers for more individual

15

choices were lost potential at best. It was this exact insight that spawned the idea

of a product line, a way of reaping the benefits of mass production while maintaining

the possibility of catering to different customer requirements by letting customers

combine and configure predefined components and chose between different alterna-

tive components, with the goal of sharing as many components as possible between

products. All while leaving leeway for potentially newly created components based

on an individual customer’s needs.

Figure 3.1.1 illustrates such a product line on an unusual yet intuitive example of

Domino’s pizza configurator ‘Pizza Chef’ that allows you to chose between different

predefined sizes, crusts, sauces, and toppings. These ingredients are prepared and

ready to be assembled easily once an order comes through, which allows for the use

of employees with little to no culinary background to prepare and serve pizzas in a

cost effective way, all while giving the customer an incredibly large yet manageable

amount of choices.

A very similar development as for physical goods can be observed for software

products as well, leading to the development of software product lines. Adapting the

definition of a product line given Apel et al. [1] to software, we define a software prod-

uct line as a collection of software products from a manufacturer’s software product

lineup that share major similarities between them and are, in the best case scenario,

constructed from a collection of reusable parts.

3.1.1 Benefits And Costs Of Software Product Lines

Software product lines offer various benefits over other approaches to software engi-

neering but also come at some costs. A list of the most important benefits is given

by Apel et al. [1] as:

• The ability to tailor products to individual customers instead of providing, at

best, a few different product variants to a wide range of customers

• The reduction of costs that results out of the long run of using reusable com-

ponents over the development of components or entire products from scratch

3. BACKGROUND

Fig. 3.1.1: Domino’s pizza configurator Pizza Chef

17

• The improvements in quality that arises from the ability to test individual

components on their own and in integration in multiple different products

• The improved time to market that is the result of assembling a set of compo-

nents that, in the best case scenario, is covered by the reusable components

already in existence or is otherwise extended by new components depending on

an individual customer’s needs instead of developing from scratch

The approach of a software product line, however, comes at the cost of a high

upfront investment to identify, design, and develop the reusable components and the

parallel development of products, as well as the scale of the configuration space, may

come at a further cost of management. In chapter 2.3 of their book ‘Software Product

Lines: Practices and Patterns’ [2] Clements and Northrop give a more comprehensive

overview of the costs and benefits of software product lines in general as well as their

individual assets.

3.1.2 Feature Orientation

The notion of a feature is a key concept in software product line engineering. They

are used as a kind of an intermediary between customers and their individual require-

ments and the functionalities a software product offers. The orientation towards them

means to build the whole infrastructure of your software product line around them

and to make them explicit in every process along the line, when possible. With the

main goal being feature traceability, basically meaning to be able to follow a golden

thread all the way from a customer’s needs and wishes down to individual software

artefacts. Because of this important role, it is hard to find a general definition of

a feature that captures the views and knowledge level of different stakeholders of a

product line at different stages of engineering. A list of prominent definitions or-

dered by degree of technicality is given by Apel et al. [1] and a new intermediary

definition is given as ‘A feature is a characteristic or end-user-visible behaviour of a

software system. Features are used in product-line engineering to specify and commu-

nicate commonalities and differences of products between stakeholders, and to guide

3. BACKGROUND

structure, reuse, and variation across all phases of the software life-cycle’.

For the sake of this thesis, however, we will use yet another, more technical def-

inition of a feature, which we will introduce in more detail in section 4.2.2. Our

definition is based on formal concepts, which are introduced in more detail in Section

3.2. With the definition of a feature established, we define a product of a product line

like Apel et al. [1], simply as a valid selection of features (more on that in Section

3.1.4).

3.1.3 Software Product Line Engineering (SPLE)

According to Apel et al. [1], the process of software product line engineering is

split into two phases, namely domain engineering and application engineering. On

the one hand, the first phase is concerned with scoping the domain (‘a specialized

body of functionality, an area of expertise, or a collection of related functionality’

[2]). Basically, reasoning about which features should or should not be included and

documenting it in a feature model. On the other hand, the phase is concerned with

the creation of the reusable assets, according to those features, that the products of

product line are finally constituted of. These two tasks are named domain analysis

and implementation respectively and the goal of them is the ‘development for reuse’

[1]. The second phase is concerned with analyzing the requirements of customers,

ideally mapping them to the reusable assets constructed in the domain analysis or

feeding them back into it if not. And finally, the creation of products using the

reusable assets mapped to the identified required features. These two tasks are named

requirements analysis and product derivation and the overall target of them is ‘the

development with reuse’ [1]. More detail on the individual tasks is given by Apel et

al. in chapter 2 of [1], by Ryssel in chapter 2 of his PhD thesis [22], and by Clements

and Northrop in chapter 4 of [2].

19

3.1.4 Feature Modeling

As mentioned earlier, in order to capture the variability of the product line identified

during domain analysis, it has to be documented in some shape or form. We will

be using a common approach called feature modeling, where the variability of the

product line is defined in terms of common and optional features and the relationship

and constraints between them are presented in a graphical manner called feature

diagrams [1].

3.1.4.1 Feature Diagrams

In a feature diagram, features are presented as nodes of a tree, where in the most

basic terms the parent-child relationship expresses the notion that the child feature

can only be selected if the corresponding parent feature is selected as well. In order to

convey mandatory or optional relationships between parents and their children, small

circles on the children end of an edge are used, where an empty circle indicates an

optional relationship and conversely, a filled circle indicates a mandatory relationship.

Further, in a case where a parent has multiple children, but they can not be chosen

freely, additional notation clarifies the relationship. A common case is a disjunctive

relationship, where a filled half-circle on the parent end of an edge is used to convey

an (inclusive) or-relationship and conversely, an empty half-circle conveys a exclusive

or-relationship (alternative). In the case where there are additional constraints be-

tween features in different branches of the feature tree, edges across the tree (named

accordingly as cross-tree constraints) may be introduced or the constraints are visual-

ized in a textual manner somewhere in the diagram using, for example, propositional

logic.

Figure 3.1.2 illustrates a feature diagram again on the example of Domino’s pizza

line-up that was created using FeatureIDE1. Note that for the sake of readability

we only included the toppings that are used on the traditional pizzas. Also some

constraints were left out for the same reason, notably, each topping can be added

1https://featureide.github.io/

3. BACKGROUND

up to three times (which could be implemented by splitting each topping into an

OR-subtree with the topping as the abstract root and with three children named

topping1, topping2, topping3 respectively), and there can be only be a total of 11

toppings, including multiples of the same one (which could be implemented as a big

disjunction over conjunctions of all sets of 11 toppings). One could also implement

an extension of the notation for the above mentioned (a notation similar to the UML

multiplicity notation would suffice in this case [21]).

Feature diagrams graphically represent logical relationships between features and

can therefore be expressed in terms of propositional logic. Formally, given a set of

propositional variables F defined as the set of all feature names, a parent feature

p ∈ F , and child features f, f1, . . . , fn ∈ F , the following relationships are defined by

the notation introduced earlier [1]

mandatory(p, f) 7→ p ⇔ f

optional(p, f) 7→ f ⇒ p

xor(p, {f1, . . . , fn}) 7→ ((f1 ∨ · · · ∨ fn) ⇔ p) ∧
∧
i<j

¬(fi ∧ fj)

or(p, {f1, . . . , fn}) 7→ (f1 ∨ · · · ∨ fn) ⇔ p

3.1.5 Adoption Of Software Product Lines

The specifics of adopting a software product line approach heavily depend on the

current status-quo for an individual company regarding the products they offer and

therefore there are many different approaches that might fit your specific use-case.

Despite their individual differences the different approaches can generally be grouped

into three main categories [1, 14]. The first and probably most straight-forward cat-

egory is the proactive approach to SPLE, meaning to proactively develop the entire

product line from scratch, following the steps introduced earlier. While this path

will most likely result in the highest quality and most maintainable end-result [1], it

also has some potentially insuperable drawbacks as mentioned in section 3.1.1. The

21

Fig. 3.1.2: Feature diagram for Domino’s pizza line-up (only including traditional
toppings)

3. BACKGROUND

second group of approaches is concerned with dynamically developing the product

line by iteratively building upon an initial version, adapting it to products that were

originally envisioned, but are not yet implemented, or entirely new products that

meet additional customer requirements that have sprung up along the line. It is

this adaptive behaviour that leads them to be categorized as reactive approaches.

While the reactive approach can be used to develop a product line for the first time,

it can also be used to increment upon an already existing product line created us-

ing another approach. The third and final category is concerned with extracting a

product line out of an already existing set of products that share commonalities but

were developed more or less independently and inconsistently and these approaches

are therefore called extractive (or bottom-up) approaches. As it is the goal of this

thesis to investigate the use of formal concept analysis for the tasks involved in these

approaches we will give more detail on this type of adoption path.

3.1.5.1 Extractive Approach To SPLE

While in an ideal world software engineers would stick to the guidelines given by

researches and alike in literature, unfortunately due to time and money constraints it

is almost common practise to cut corners in favor of short term benefits in exchange

for quality and the lack of maintainability in the long run. One of such approaches

is appropriately called the ‘clown and own’ approach where in its most literal sense,

source code is copy and pasted from one product to another and from there on devel-

oped independently from its original host. This approach makes sense at first, if the

generated variants are supposed to be developed independently in the future. But

practise has shown that even in these cases, implementation artefacts are shared and

development effort is repeated needlessly in all variants. For a small product portfolio

the approach is still feasible, but with an increase in product variants comes a point

where the overhead of maintenance and increasing development costs outweigh the

benefits of continuing unabated. The different tasks associated with an extractive

approach to SPLE are outlined by Martinez in Section 2.2.2 of [14] and the ones we

will focus on are defined as follows. As a first step into the direction of a product line,

23

to which we will refer to as feature identification, the commonalities and variability

between all the product variants of the current product portfolio - if undocumented -

have to be found or if there is already some documentation for them, the implementa-

tion artefacts associated with them have to be located in the product variants (which

is referred to as feature location). Note that the typical definition for feature identifi-

cation only refers to, as the name suggests, the act of identifying the features present

in the product port-folio overall. The feature identification step of But4Reuse as

described in Section 4.2.2, however, is a mixture between feature identification and

feature location, in the sense that it finds and locates the features in the variants at the

same time. Somewhat confusingly there is also a separate extension point in the tool

for feature location, which is used only if the features are already known in advance,

as mentioned above. After the identification step, in order to ensure the validity and

to restrain the configuration space, the constraints between the features have to be

identified, in a task we will refer to as constraints discovery. Finally, together with the

features, these constraints have to be documented in a feature model, as mentioned

in section 3.1.4, which can be done manually or automatically, to which we will refer

to as feature model synthesis. The specific implementation of these individual tasks

is subject of section 4.2.2.

3.2 Formal Concept Analysis

Formal concept analysis (FCA) is a field of applied mathematics that originated from

the attempt to restructure order and lattice theory. Only later the connections to

concepts of human thought were discovered with the aim of the field today being

‘[...] to support the rational communication of humans by mathematically developing

appropriate conceptual structures which can be logically activated.’ [8]. The field deals

with two basic notions, formal concepts and formal contexts. The adjective ‘formal’

is supposed to help to make the mathematical notions stand out from their meaning

in every day language [9].

3. BACKGROUND

A formal context is a triplet defined as (O,A, I) consisting of two sets O, called

the (formal) object set, and A, called the (formal) attribute set, and a binary relation

I ⊆ O × A between them, called the incidence relation. In order to define a formal

concept of a formal context (O,A, I) we define the following two derivation operators

for any X ⊆ O, Y ⊆ A:

X 7→ XI := {a ∈ A | (o, a) ∈ I ∀o ∈ X}

Y 7→ Y I := {o ∈ O | (o, a) ∈ I ∀a ∈ Y }

Now a formal concept of formal context (O,A, I) is defined as a pair (X, Y) with

X ⊆ O, Y ⊆ A, X = Y I , and Y = XI . The sets X and Y are called the extent and

intent of the formal concept (X, Y), respectively. Given a formal context (O,A, I),

and X,X1, X2 ⊆ O, and Y, Y1, Y2 ⊆ A the following propositions hold

X1 ⊆ X2 ⇒ XI
2 ⊆ XI

1 Y1 ⊆ Y2 ⇒ Y I
2 ⊆ Y I

1

X ⊆ XII Y ⊆ Y II

XI = XIII Y I = Y III

for which the proof is trivial and is given by Ganter et al. [9]. Further given two

concepts C1 := (X1, Y1), C2 := (X2, Y2), we call C1 a subconcept of C2 if X1 ⊆ X2

(note that this is equivalent to Y2 ⊆ Y1 which follows from X1 ⊆ X2 ⇒ XI
2 ⊆ XI

1

where XI
2 = Y2 and XI

1 = Y1). Subsequently C2 is a superconcept of C1 which we

denote as C1 ≤ C2, the hierarchical order of concepts. The partially ordered set of

all formal concepts of (O,A, I) is denoted as B(O,A, I) and is called the (formal)

concept lattice of the context. For any object o ∈ O the smallest concept inB(O,A, I)

whose extent contains o is called the object concept γo := ({o}II , {o}I) of o and for

any attribute a ∈ A the largest concept in B(O,A, I) whose intent contains a is

called the attribute concept µa := ({a}I , {a}II) of a. According to the basic theorem

on concept lattices, for which the definiton and a proof is given by Wille and Ganter

[9], the concept lattice B(O,A, I) is a complete lattice for which the infimum and

25

pizza m
oz
za
re
ll
a

m
u
sh
ro
om

s

b
as
il
p
es
to

p
ro
sc
iu
tt
o
co
tt
o

sa
la
m
i

m
oz
za
re
ll
a
b
al
ls

to
m
at
o
es

tu
n
a

re
d
on

io
n
s

p
in
ea
p
p
le

Salami X X

Margherita X

Funghi X X X

Caprese X X X X

Prosciutto e Funghi X X X

Tuna X X X

Waikiki X X X

Table 3.2.1: Formal context for Domino’s traditional pizzas

supremum are given by

inf =
∧
t∈T

(Xt, Yt) = (
⋂
t∈T

Xt, (
⋃
t∈T

Yt)
II)

sup =
∨
t∈T

(Xt, Yt) = ((
⋃
t∈T

Xt)
II ,

⋂
t∈T

Yt)

for an index set T where ∀t ∈ T,Xt ⊆ O (Yt ⊆ A). The best way to understand the

notions of a formal context and its formal concepts is to visualize them. The most

intuitive way to depict a formal context on the one hand is to use a cross table.

Table 3.2.1 illustrates a formal context for Domino’s traditional pizza line-up,

where the object set O := {Salami, Margherita, Funghi, Caprese, Prosciutto e Funghi,

Tuna, Waikiki} is represented as the rows, and the attribute set A := {mozzarella,

mushrooms, basil pesto, prosciutto cotto, salami, mozzarella balls, tomatoes, tuna,

red onions} (only considering toppings) is represented by the columns, and where

each ‘X’ indicates that (o, a) ∈ I, o ∈ O, a ∈ A.

On the other hand for visualizing formal concept lattices it is common practice

3. BACKGROUND

Salami

salami

FunghiCaprese

tomatoes; mozzarella balls

Prosciutto e Funghi

Tuna

tuna; red onions

Waikiki

pineapple

basil pesto mushrooms prosciutto cotto

Margherita

mozzarella

Fig. 3.2.1: Formal concept lattice for the formal context of Table 3.2.1

to use a labeled line graph. The one for the formal concept lattice of Table 3.2.1

can be found in Figure 3.2.1. Here each circle represents a formal concept of the

formal context, each object is written below its object concept and each attribute is

written above its attribute concept. The intents of each concept can be read from

the diagram and consist of all attributes whose attribute concept is reachable by

ascending a path from the circle corresponding to the concept. The same applies

to the extent, consisting of all the objects whose object concept can be reached by

descending a path from the corresponding circle.

An important aspect of the concept lattice is that we can obtain all attribute

implications from it, where A1 ⇒ A2 for two sets of attributes A1, A2 ⊆ A if A2 ⊆ AII
1

or rather (AI
1, A

II
1) ≤ (AI

2, A
II
2). Visually we can read this off the diagram by checking

whether or not for all a2 ∈ A2 the attribute concept µa2 is above the infimum of all

attribute concepts µa1 for a1 ∈ A1.

27

CHAPTER 4

Methodology

In this chapter we will present the methodology used for our thesis. First, we present

our research questions. Next, we discuss our experimental setup, where we first talk

about our hardware setups, then about the different implementations of But4Reuse

that we will be using, and finally we present the case study that is the subject of this

thesis. Finally, we discuss how we plan on answering our research questions.

4.1 Research Questions

Our research questions are aimed at evaluating the usability of a lightweight, semi-

automated approach to extractive software product line engineering on a production-

scale, real-world set of product variants, in our case specifically, an approach based on

formal concept analysis as discussed in Chapter 4.2.2. Contrary to tailor-made case

studies that are often used to evaluate similar approaches such as the (extended) pick

and place unit [29] (see Chapter 2.4). The first research question RQ.1 is concerned

with reasoning about the overall usability of the FCA based approach as an out-of-

the-box first step in the incremental extractive adoption of a software product line. As

noted by Apel et al. [1] ‘the quality of the extracted product line relies on the quality

of the tools supporting the extraction’ and it is the goal of this research question to at

least partially evaluate said quality. The second research question RQ.2 is concerned

with reasoning about the feasibility of an automated approach applied to a set of

real-world products that grow beyond the scale of usual toy examples as mentioned

above. The third and final research question RQ.3 is concerned with finding ways to

29

optimally present the results of such an semi-automated approach to the engineers,

in order to evaluate similar approaches or maximize the usefulness of the results,

when user decisions are wanted in field application. Summarizing, our list of research

questions is as follows

RQ.1 Is the semi-automated approach based on FCA able to assist as a starting point

in the different tasks associated with an extractive approach to SPLE?

RQ.2 Is the semi-automated approach based on FCA feasible, when applied to a

production scale, real-world set of product variants?

RQ.3 How can we represent the results of the semi-automated approach in a way that

maximizes their usefulness to the engineers?

4.2 Experimental Setup

4.2.1 Hardware Setup

For our experiments we ran two different hardware setups, the first one was used to

run the But4Reuse tool on the data obtained from our case study and the second

one carries the license for the modeling tool MagicDraw1 in which the case study

resides and was used to evaluate the results. The first hardware setup consists of

a MSI B550-A Pro motherboard equipped with an AMD Ryzen 5600X processor, a

six-core processor capable of handling up to 12 threads and that runs at a base clock

of 3,7 GHz with its peak clock at 4,65GHz. The setup also runs 32 GB of DDR4-3600

RAM with 16-18-18-38 timings and a Samsung 970 Evo Plus 1 TB SSD connected

via NVMe (PCIe 4x 8.0 GT/s). The second hardware setup is a HP Pro X2 equipped

with an Intel Core i5-7Y57, a dual-core processor with a base clock of 1.10 GHz and

peak clock at 1,61 GHz, 8 GB of LPDDR3-1866 RAM and a 512 GB Toshiba XG5

connected via NVMe.

1https://www.3ds.com/products-services/catia/products/no-magic/magicdraw/

4. METHODOLOGY

4.2.2 Feature Identification With Formal Concept Analysis

In this subsection we will take a look at the specific implementations of three ex-

tension points of But4Reuse as given in Figure 2.1.1, namely feature identification,

feature constraint discovery, and feature mode synthesis respectively, that were used

in this thesis. We used the latest available version of the tool at the time (commit

b39799271ca562b400118b45883088c84ac689c5) for our work.

4.2.2.1 Feature Identification

The input for feature identification are the AMEs produced by the chosen artefact

adapter as mentioned in Section 2.1. For our case we chose the EMF model adapter,

which produces three different kinds of atomic model elements, namely class, attribute

and reference elements, also as described in Section 2.1. For the specific feature iden-

tification implementation we chose the one using formal concept analysis. Here, all

atomic model elements of the adapted input variant models are iterated and grouped

according to a chosen hashing algorithm, for which we chose the one based on XML

identifiers. Here, class elements are hashed based on their own XML identifier and

attribute and reference elements are hashed based on their owners XML identifier.

If two elements end up with the same XML identifier, they are further compared

for similarity using a comparison function provided via the EMF DiffMerge2 API. In

our case we use the default boolean similarity metric provided by the framework as

described by Martinez in section 5.3.3 of [14]. Now a formal context using a rudi-

mentary external FCA implementation3 is created, where each group of elements is

considered as an attribute, the objects are the input artefact variants, and the inci-

dence relation is created using the union of the source artefacts of each element in a

respective group. Then a pruned version of the formal concept lattice is computed

using the Ceres algorithm [12], that only contains the attribute and object concepts

(also called AOC-poset). Now our features are defined as the union of the groups of

elements that ended up in the same attribute concept. (As noted by Martinez [14]

2https://wiki.eclipse.org/EMF DiffMerge
3https://github.com/jrfaller/galatea

31

this seems to be equivalent to the definition of a feature based on the interdependence

relation on the atomic model elements given by Martinez et al. [19]).

4.2.2.2 Feature Constraint Discovery

The input to the feature constraint discovery are the features identified in the step

introduced earlier. For this step we will again chose the implementation based on

formal concept analysis. As of now the framework does not rely on the specifics of

implementations of prior steps, so another formal context is created using the features

identified earlier as attributes, the input variants as objects, and the incidence relation

is created using the location information of features on the different variants calculated

earlier. As previously a pruned version of the concept lattice is calculated from which

parent-child feature implications of the form F1 ⇒ F2 are obtained as described in

Section 3.2. Additionally mutual exclusion relations between features are found using

a brute-force approach that checks for every pair of attributes, if they are both part

of the intent of a common attribute/object concept or not.

4.2.2.3 Feature Model Synthesis

The input to the feature model synthesis step are the identified features alongside

the constraints identified the previously described step. For this step we chose the

implementation called ‘Alternatives before Hierarchy’ which implements the feature

models as feature diagrams in FeatureIDE and is described in the source code as

‘First we identify alternative groups, then we create the hierarchy. From the pos-

sible parent candidates, we discard those that are already containing other parent

candidates. The parent candidates of an alternative group are the intersection of the

parent candidates of the features integrating the group. In case of several parent can-

didates, we select parent candidates belonging to alternative groups and in the case

of any, we select the parent candidate with the higher number of reasons in the re-

quires constraint description. Finally, the features without parent are added to the

root. The common features are set as mandatory and redundant constraints are re-

moved.’, where parent candidates are defined from the requires constraints by the

4. METHODOLOGY

mapping optional(p, f) 7→ f ⇒ p introduced in Section 3.1.4.1 and alternative groups

are calculated by brute-force from the mutual exclusion constraints by the mapping

xor(p, {f1, . . . , fn}) 7→ ((f1∨ · · · ∨ fn) ⇔ p)∧
∧

i<j ¬(fi∧ fj). Note that because from

the previous FCA-based constraint discovery step there is only ever one reason for a

parent-child relationship, the first suitable parent candidate is used as a parent for

a child feature. Additionally, the given implementation did not terminate within a

feasible time frame (after three hours we aborted the run), therefore we optimized

the implementation by pre-calculating look-up tables for calculations that were need-

lessly performed with every iteration of the previous implementation. We validated

our edits against the results obtained from the pick-and-place case study [29] and

achieved a substantial increase in performance.

4.2.3 Case Study

In this subsection we will describe the case study that was used for our experiments.

Our case study is a real-world, industrial, clone-and-own product line, located in

the railway domain. The product line-up includes a variety of different trains for

different application scenarios, including trams, high-speed trains, locomotives, and

commuter rails. The different kind of trains are composed of many different software

artefacts, which mainly consist of Structured Text (ST) code. The engineering team

decided to migrate to a model-driven engineering approach, in order to overcome the

increasing size and complexity of the code bases and to aid in automating parts of

the documentation for the highly regulated train domain. As the modeling tool of

choice, they use MagicDraw. Using MagicDraw, large parts of the code base

are generated out of the SysML models. For this, a custom plugin is used to export

the models into a custom EMF meta model, in order to make use of the existing

EMF ecosystem. From there the models are transformed into ST code. The software

components are grouped into common part systems and kept as projects in a version

control system, where there is one branch for each trainset, for example., there is

one project for components related to interior lighting, with a total of 12 variants

33

part system # variants min max mean median std. deviation

0 10 422039 619521 545825 579658 63752.31

1 11 441285 630962 552769.64 594327 63451.78

2 11 431647 627891 546709.27 579569 67479.49

3 12 389469 608655 541736 582720 68476.49

4 11 461525 649136 567489.36 604272 64004.62

Table 4.2.1: Statistics for the AMEs of the five part systems we chose

in separate branches. One of the variants for each part system, referred to as the

‘common’ or ‘trunk’ variant, is an in-development software product line, following a

manual, extractive SPLE approach, where features are identified in the other vari-

ants and merged into the common variant on a regular basis. There is a total of 59

part systems, from which we randomly chose five for our study. Table 4.2.1 shows

the amount of variants (including the trunk variant) and statistics for the amount

of atomic model elements found in the part systems we chose. To keep consistency

between part systems, variants belonging to the same trainset will be referred to with

the same number (starting with 0), in particular, the trunk variant will be referred

to as the 11th variant (even though, e.g., part system 0 only has 10 variants).

The part systems comprise the following functionalities. The 0th part system

comprises functionality related to the sanitary facilities (Note that we chose the index

as 0, because we did not have time to incorporate this part system fully into our study,

in particular RQ.1). The part system 1 comprises the functionality of the drive and

brake controller. The part system 2 contains the functionality of the fire alarm system.

The part system 3 comprises functionality regarding the interior lighting and the final

part system 4 includes the functionality regarding the HVAC unit. As mentioned

above, a custom EMF meta model is used to extract the code from the SysML.

Unfortunately, trying to use the exporter for the part systems we chose resulted in

model errors that caused unresolvable problems when trying to import the models

into But4Reuse. We assume that these error do not pose a problem for the engineers

4. METHODOLOGY

at this point in time, or that they are resolved manually. For this reason we chose the

UML exporter of MagicDraw, exporting into the Eclipse UML 2.5 meta model4.

4.3 Operationalization

In this section we will go into more detail on each individual research question and

show how we plan to answer each of them respectively.

4.3.1 RQ.1 Is the semi-automated approach based on FCA

able to assist as a starting point in the different tasks

associated with an extractive approach to SPLE?

In order to assess the quality of the features identified by the approach as described in

Section 4.2.2 we conducted a focus group together with domain experts in the domain

of our case study. The focus group consisted of us, two lead architects, with 10 years

of job experience and 6 years of experience within the projects, and the head of tool

development, with 15 years of job experience and 6 years of experience within the

projects. For assessment we first needed a way of visualizing the enormous amounts of

data obtained from applying the approach to our case study. Therefore we extended

But4Reuse with a way of serializing the identified features into JSON files. Figure

4.3.1 illustrates such a JSON file, where for each type of AME there is a separate

JSON object representation constituted of the properties as described in Section 2.1.

Using this external representation for the AME we created a plugin for MagicDraw

that loads this representation in form of a tree table as illustrated in Figure 4.3.2.

If a class element has a representation in a diagram, the respective element is also

highlighted in the diagram with a pre-selected color that can be changed at will as

shown in Figure 4.3.3. Hovering over a highlighted element also shows the variants

the element can be found in and which feature it is part of. The functionality of the

different UI elements are as follows. The buttons ‘Load Features’ and ‘Remove All

4https://wiki.eclipse.org/MDT/UML2

35

1 {

2 "elements": [

3 {

4 "class": {

5 "owner": "_18_0beta_903028d_1388650190935_398212_121847",

6 "eObject": "_18_0beta_903028d_1388650183729_356902_85834"

7 }

8 },

9 {

10 "attribute": {

11 "owner": "_18_5_1_a560294_1504789141594_489453_279391",

12 "name": "aggregation",

13 "value": "composite"

14 }

15 },

16 {

17 "reference": {

18 "owner": "_18_0beta_903028d_1388650189740_615232_115906",

19 "name": "instance",

20 "referenced": [

21 "_18_0beta_903028d_1388650183133_769902_82280"

22]

23 }

24 }

25]

26 }

Fig. 4.3.1: Exported feature elements from But4Reuse in JSON form

4. METHODOLOGY

Fig. 4.3.2: Screenshot of the MagicDraw Plugin

37

Fig. 4.3.3: Model Highlighting and Tool-Tip

4. METHODOLOGY

1 {

2 "diagrams": [{

3 "name": "State Machine",

4 "id": "_18_0_4_a560294_1473410836967_542901_131716",

5 "blocks": [352, 0, 35, 71, 137, 76],

6 "type": "SysML Internal Block Diagram"

7 }]

8 }

Fig. 4.3.4: Diagram Info as JSON

Features’ are used to load and remove the JSON file representations of the features

outputted from But4Reuse. Loading a set of files creates a tree table representation

of them. Here the root node displays the color of the highlighting in the diagrams

and is labeled by default with the file name it belongs to, but the name can be

changed by double clicking the node in case an appropriate name for a feature can

already be found. The columns ‘owner’, ‘element’, ‘name’, ‘value’, and ‘referenced’

contain the properties of the AMEs as mentioned above, where ‘owner’, ‘element’,

and ‘referenced’ additionally act as a hyperlink into the internal containment browser

of MagicDraw. The column ‘has diagram’ indicates if an element is contained in

a diagram, calculated by checking each diagram of a project for whether or not the

respective element is contained in it. The check boxes ‘Filter No Diagram’, ‘Filter

Null’, and ‘Filter Class’ enable different filter option when loading features. The first

one only loads all elements that are contained in a diagram (note that attributes and

references are never part of a diagram). The second one only loads elements for which

the MagicDraw API returns an actual element when queried with the id. The API

might return null in the case you load a feature that is not part of the current product

variant or for noise and/or garbage introduced by the UML exporter. The third and

final filter enables only loading class elements. The button ‘Save Blocks On Diagrams’

creates a JSON representation of each diagram of the current project that contains

the name, id, type, and list of all blocks (parts of features) present in the diagram

from the features previously loaded as shown in Figure 4.3.4. The buttons ‘Save

Blocks On Diagram’ is used to create a separate JSON representation of each block

39

1 {

2 "projectName": "Important Project",

3 "projectId": "_19_0_4_aaa027b_1653918633032_178354_263888",

4 "diagramName": "State Machine",

5 "diagramId": "_18_5_1_a560294_1523271634782_481899_531745",

6 "feature": 26,

7 "elements": [

8 "_18_5_1_a560294_1511970033163_774696_319757",

9 "_18_0_4_a560294_1487851924818_839411_220151"

10]

11 }

Fig. 4.3.5: Exported block of diagram as JSON

on the currently active diagram where the ids of each element are exported alongside

the project name and id, the diagram name and id, and the feature id as depicted in

Figure 4.3.5. Finally the buttons ‘Load Blocks on Diagram’ and ‘Remove Blocks On

Diagram’ are used to load and remove the previously exported blocks per diagram

using the project and diagram info to check if the correct diagram is opened.

The tree table representation of the AMEs does not allow for a feasible navigation

for a large amount of data and because we could not come up with another way of

visualizing elements that are not part of a diagram, we decided to only focus on ele-

ments that are part of diagrams for the sake of this thesis, which completely excludes

all attributes and references. We conceived three primary dependent variables that

will be used to evaluate three different aspects of a block (part of a feature present)

on a diagram

1.1 Coherency - With this variable we want to test how coherent the block in

question is in terms of functionality from the point of view of a domain expert.

That is, does the block only contain functionality that should be considered as

one or does it contain elements that belong to different functionalities.

1.2 Completeness - With this variable we want to test how complete the block

in question is in terms of functionality from the point of view of a domain

expert. That is, does the block contain all the elements that belong to the

4. METHODOLOGY

functionality(ies) it represents or are there elements missing.

1.3 Variant Specificity - With this variable we want to test how specific the block

in question, or rather the functionality it represents, is to the variants it was

identified to belong to. That is, does the block only belong to the the identified

variants or are there too many or too few variants.

With the list of dependent variables in mind we created a list of independent variables

that can be checked against the dependent variables as follows

1. The size of a block in terms of elements

2. The number of blocks in a single diagram

3. The number of variants the blocks of a diagram appear in

4. The size of the diagram in terms of elements

5. The type of diagram

6. The sparsity of the formal context

Unfortunately, due to the strict time limitation of the focus group and the hardware

limitations of the second hardware setup (it takes around five to ten minutes to

load a single MagicDraw project of that size and only around five projects can be

open at a time with the limited amount of RAM), we had to chose the diagrams

first, in a way that limits the amount of different projects we need to have open

at a time and the amount of diagrams we can incorporate. Therefore our control

over the different attributes of individual blocks was fairly limited. We compiled a

list of additional independent variables that we did not find the time to incorporate

and that rely more on the attributes of individual blocks in Section A.1. In order

to chose the diagrams that were presented to the domain experts, we first used the

block information obtained from the diagrams, as shown in Figure 4.3.4, to group the

diagrams of each part systems into fifteen bins, according to the number of blocks it

is constituted of, as shown in Figure 4.3.6. Afterwards, we manually tried to pick the

41

Fig. 4.3.6: Histogram for diagrams binned by number of blocks

4. METHODOLOGY

diagram # blocks # elements type part system # variants

1 14 254 SysML Internal Block 1 11

2 8 95 SysML Internal Block 1 11

3 13 317 SysML Internal Block 1 10

4 14 109 SysML Block Definition 1 11

5 3 146 SysML Activity 1 6

6 15 303 SysML Internal Block 1 11

7 4 179 SysML Activity 2 7

8 15 128 SysML Internal Block 2 11

9 8 127 SysML Internal Block 2 9

10 4 94 SysML Block Definition 3 10

11 5 45 SysML Use Case 3 12

12 11 136 SysML Internal Block 4 11

13 5 67 SysML Activity 4 9

14 20 232 SysML Internal Block 4 11

15 4 64 SysML State Machine 4 9

Table 4.3.1: Diagrams chosen for the focus group

diagrams from each part system and bin respectively, so that the spectrum of possible

diagrams is sufficiently covered. With this approach we ended up with fifteen different

diagrams as shown in Table 4.3.1.

With the diagrams set, we continued picking the blocks that were presented to the

domain experts. For this we decided to chose blocks in three different ways. Firstly,

manually selecting a block based on our gut feeling with no domain knowledge. Sec-

ondly, randomly selecting block from the set of available blocks. And lastly, making

up a block, that consists of one or more merged blocks, where elements were randomly

added or removed, purely based on the ids of the elements of a block gathered, as

shown in Figure 4.3.5. The idea here was that the latter two act as a control group

43

each, where ideally in the end the manually and randomly selected blocks perform

statistically equally well and the made-up blocks perform significantly worse than the

other two types. We ended up with the assortment of blocks visible in Table 4.3.2.

block type # elements diagram variants

1 manual 105 1 0, 3, 4, 5, 6, 7, 8

2 made-up 36 1 0, 1, 2, 3, 4, 5

3 random 4 1 0, 1, 3, 4, 5, 6, 7, 9

4 manual 35 1 0, 1, 3, 4, 5, 6, 7, 8, 9

5 manual 28 2 0, 2, 3, 4, 5, 6, 7, 8

6 manual 32 2 0, 3, 4, 5, 6, 7, 8

7 random 6 2 3, 4, 5, 6, 7, 8

8 made-up 11 2 4, 5, 6, 7

9 manual 28 3 0, 2, 3, 4, 5, 6, 7, 8

10 manual 133 3 0, 2, 3, 4, 5, 6, 7

11 random 92 3 0, 2, 3, 4, 5

12 made-up 22 3 3, 4, 5, 6, 7, 8, 9

13 manual 45 4 0, 2, 3, 4, 5, 6, 7, 8

14 random 27 4 0, 3, 4, 5, 6, 7, 8

4. METHODOLOGY

15 made-up 9 4 0, 2, 3, 4, 5, 6, 7

16 random 90 5 0, 4, 5, 6, 7

17 manual 50 5 0, 4, 5

18 manual 26 6 0, 1, 3, 4, 5, 6, 7, 8, 9

19 manual 88 6 0, 2, 3, 4, 5, 6, 7, 8

20 random 63 6 0, 3, 4, 5, 6, 7, 8

21 made-up 7 6 0, 2, 3, 6, 7, 8, 9

22 manual 48 7 0, 3, 4, 5, 6, 7

23 random 84 7 0, 3, 4, 5

24 manual 35 8 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

25 made-up 13 8 0, 1, 9

26 manual 74 8 0

27 random 3 8 1, 2, 3, 4, 5, 8, 9

28 random 12 9 0, 2, 3, 4, 5, 6, 7, 8

29 manual 50 9 2, 3, 4, 5

30 made-up 21 9 0, 1, 2, 3, 4, 5

31 random 2 10 0, 2, 3, 4, 5, 6, 7, 8, 10

45

32 manual 81 10 8

33 random 5 11 3, 4, 8, 10

34 manual 35 11 8

35 manual 32 12 0, 3, 4, 5, 6, 7, 8

36 random 13 12 3, 4, 5, 6, 7, 8

37 made-up 45 12 0, 2, 3, 4, 5, 6, 7, 8

38 manual 35 13 0, 2, 3, 4, 5, 6, 7, 8

39 random 6 13 0, 3, 4, 5, 6, 7, 8

40 made-up 19 14 0, 1, 2, 3, 4, 5, 8, 9

41 manual 60 14 0, 2, 3, 4, 5, 6, 7, 8

42 random 32 14 2, 3, 4, 5, 6, 7, 8

43 manual 54 15 0, 2, 3, 4, 5, 6, 7, 8

44 random 6 15 0, 2, 3, 4, 5, 6, 7

Table 4.3.2: Blocks chosen for the focus group

For each block we asked the participants of the focus group to rate the three

different dependent variables on a Likert scale from one to five. Additionally, after

concluding the presentation of the individual blocks for each diagram, we asked three

additional questions related to tasks other than feature identification. While present-

ing all blocks of a diagram we asked the participants to rate the following questions

4. METHODOLOGY

on a Likert scale from one to five:

How helpful is the partitioning of elements . . .

2.1 . . . as a first insight into the current state of variability management?

2.2 . . . as an indicator for issues regarding the current state of variability manage-

ment?

2.3 . . . as an indicator for the current state of the modeling quality?

4.3.2 RQ.2 Is the semi-automated approach based on FCA

feasible, when applied to a production scale, real-world

set of product variants?

Because the first research question is the main focus of this thesis, we allocated

all the time we had to spent with the domain experts to the first and partly third

question. Therefore this research question is focused on quantitative and qualitative

measures that do not overly rely on domain knowledge. For a quantitative measure

we investigated the overall time it took to run the tooling. For a qualitative measure

we evaluated the overall distribution of elements over the concept lattice and tried

to categorize the identified features into groups, similar to [Tinnes and Martinez].

Here Tinnes et al. differentiate between two types of results. Firstly, the ideal clean

cases one might expect when designing a product line top-down, mainly variant cores,

feature cores, feature interactions and shared elements between features. Secondly,

the results expected from an analysis perspective, such as merged features and noise

introduced during the independent development of variants.

47

4.3.3 RQ.3 How can we represent the results of the semi-

automated approach in a way that maximizes their use-

fulness to the engineers?

To answer the third and final research question, we first asked the participants to eval-

uate the already implemented features of our MagicDraw plugin, that were showcased

during the evaluation of our first research question. For this, we had the participants

evaluate the following questions on a Likert scale from one to five:

How helpful is the functionality . . .

3.1 . . . to see in which variant an element is present via a tool-tip?

3.2 . . . to highlight groups of elements in one color?

3.3 . . . to navigate imported elements via hyperlink into the internal containment

browser?

After that, we asked the participants to come up with potential missing features

they would like to see implemented and would deem useful from their own perspective.

Because the trunk variants are an already work-in-progress adoption of a product line,

we presented the formal context table to the focus group and mentioned the ability

to use it as a sort of progress report on how far the adoption of the product line

has come along. For this we computed the five biggest identified features, that are

already reused in some variants, but are not part of the trunk variant, and asked the

participants if this would be a useful information to them. Finally, we computed a

dendrogram from the formal context of each part system, as show in Figure 4.3.7,

with the distance value 1.0− s, where s is the Jaccard index computed from the sets

of features from two variants. We presented these diagrams to the participants and

asked if the shown similarities coincide with their understanding of the development

history of the variants.

4. METHODOLOGY

Fig. 4.3.7: Computed variant similarities for part system 1

49

CHAPTER 5

Evaluation

5.1 Results

5.1.1 RQ.1 Is the semi-automated approach based on FCA

able to assist as a starting point in the different tasks

associated with an extractive approach to SPLE?

For the questions 1.1, 1.2, and 1.3 regarding the individual blocks, that we presented

to the participants of the focus group, Table A.2.1 shows the results. Note that we

did not have time to fit all the prepared blocks into the time frame of two hours.

We were not able to present the diagrams 7, 8, 9, and 10. Therefore the prepared

blocks 22 - 32 are not part of the results. Figures 5.1.1, 5.1.2, and 5.1.3 illustrate

the Likert scores for questions 1.1, 1.2, 1.3 from Table A.2.1 as violin plots, where

variable mean 1.1/block mean 1.2/block mean 1.3/block

1 0,50 0,22 0,41

2 -0,27 -0,51 -0,40

3 -0,30 -0,46 -0,34

4 -0,11 -0,43 -0,27

6 0,11 0,45 0,35

Table 5.1.1: Correlation matrix for means of questions 1.1, 1.2, 1.3 per block and the
independent variables

51

variable mean 1.1/diagram mean 1.2/diagram mean 1.3/diagram

2 -0,40 -0,63 -0,61

3 -0,63 -0,64 -0,60

4 -0,03 -0,51 -0,36

6 -0,04 0,48 0,45

Table 5.1.2: Correlation matrix for means of question 1.1, 1.2, 1.3 per diagram and
the independent variables

diagram type mean 1.1 mean 1.2 mean 1.3

SysML Internal Block Diagram 2,75 1,95 2,75

SysML Block Definition Diagram 2,33 1,83 2

SysML Activity Diagram 3,416 3 4,25

SysML Use Case Diagram 2,5 2,33 3,16

SysML State Machine Diagram 3,16 4,33 3

Table 5.1.3: Means of questions 1.1, 1.2, 1.3 per diagram type

5. EVALUATION

the median, mean and extrema are represented as vertical lines. Performing Welch’s

t-test for the manual selected blocks paired with the randomly selected and made-up

blocks of questions 1.1, 1.2, 1.3 respectively, we got the p scores as listed in Table

5.1.4. For evaluating the correlation between dependent and independent variables,

we will consider coefficients smaller than 0.3 as no correlation, coefficients between 0.3

and 0.5 as small correlation, coefficients between 0.5 and 0.6 as medium correlation

and anything above 0.6 will be considered as big correlation. Table 5.1.1 shows the

correlation coefficients calculated between the means of the Likert scores per block for

question 1.1, 1.2, and 1.3 and our independent variables (excluding the diagram type).

Table 5.1.3 shows the means of question 1.1, 1.2, and 1.3 per diagram type. Table

5.1.2 shows the correlation coefficients calculated between the means of the Likert

scores per diagram for question 1.1, 1.2, and 1.3 and our independent variables.

5.1.1.1 Coherency

Taking the standard threshold for p-scores of 0.05, we see from Table 5.1.4, that in

terms of coherency, the manual blocks performed statistically better than the random

and made-up blocks, but there is no significant difference between the random and

made-up blocks. With a coefficient of 0.50 we observe a medium positive correlation

between the coherency of a block and the size of it in terms of elements, where the

coherency of a block seems to increase with its size. We also see a small negative

correlation between the number of variants the blocks of a diagram appear in and

the coherency of the blocks, where the coherency slighty decreases with an increase

in variants. From Table 5.1.2 we observe that there is a small negative correlation

between the overall coherency of the blocks of a diagram and the amount of blocks

in total, where the coherency seems to slightly decrease with an increase in blocks.

Additionally, we observe a strong negative correlation between the overall coherency

of the blocks of a diagram and the total amount of variants the blocks appear in, where

the coherency seems to strongly decrease with an increase in variants. In terms of

overall coherency, we see from Table 5.1.3 that the blocks of the diagrams of type

‘SysML Acticity Diagram’ performed the best and the blocks of the diagrams of type

53

Fig. 5.1.1: Violin plot for the means of question 1.1

‘SysML Block Definition Diagram’ performed the worst.

5.1.1.2 Completeness

In terms of completeness we see from Table 5.1.4 that there is no statistically sig-

nificant difference for the three categories of blocks when applying a threshold for

p of 0.05. From Table 5.1.1 we observe that there is a medium negative correlation

between the completeness of a block and the number of blocks in a single diagram,

where the completeness of a block seems to decrease with an increase in total blocks.

Additionally we observe that there is a small negative correlation between both the

number of variants the blocks of a diagram appear and the size of a diagram in terms

of elements and the completeness per block. There is also a small positive correlation

between the completeness of a block and the sparsity of the formal context of the

corresponding part system, where the completeness seems to slightly increase with an

5. EVALUATION

Fig. 5.1.2: Violin plot for the means of question 1.2

increase in sparsity. From Table 5.1.2 we see that there is a big negative correlation

between both the number of blocks in a single a diagram and the number of variants

these blocks appear in and the overall completeness of the blocks per diagram. Ad-

ditionally there is a medium correlation between the size of a diagram in terms of

elements and the overall completeness of the blocks. Also there is a small positive

correlation between the overall completeness of blocks in a diagram and sparsity of

the formal context, where the overall completeness seems to slightly increase with an

increase in sparsity. In terms of overall completeness, we see from Table 5.1.3 that

the blocks of the diagrams of type ‘SysML State Machine Diagram’ are the most

complete and the blocks of the diagrams of type ‘SysML Block Definition Diagram’

are the least complete.

55

question 1.1 1.2 1.3

manual ↔ random 0.047 0.594 0.107

manual ↔ made-up 0.019 0.127 0.023

random ↔ made-up 0.426 0.285 0.31

Table 5.1.4: Results of Welch’s t-test for questions regarding individual blocks

5.1.1.3 Variant Specificity

For the third and final question 1.3, regarding the individual blocks, we see that,

in terms of variant specificity, there is a significant difference between the made-up

blocks and the manually selected blocks, but no significant difference for the remaining

pairs, when selecting a threshold for p of 0.05. From Table 5.1.1 we observe that there

is a small positive correlation between both the size of a block in terms of elements

and the sparsity of the corresponding formal context and the variant specificity per

block. Additionally there is a small negative correlation between both the total

number of blocks in a diagram and the number of variants these blocks appear in

and the variant specificity per block. From Table 5.1.2 we see that there is a big

negative correlation between both the size of a block in terms of and the sparsity

of the corresponding formal context and the overall variant specificity per diagram.

Additionally there is a small negative correlation between the size of the diagram

in terms of elements and the overall variant specificity per diagram. Also there is a

small positive correlation between the overall variant specificity per diagram and the

sparsity of the corresponding formal context. In terms of overall variant specificity,

we see from Table 5.1.3 that the blocks of the diagrams of type ‘SysML Activity

Diagram’ performed the best and the blocks of the diagrams of type ‘SysML Block

Definition Diagram’ performed the worst.

5.1.1.4 Additional questions

For the questions 2.1, 2.2, and 2.3 regarding all the blocks of a respective diagram

we obtained the results as shown in Table A.2.2. Figure 5.1.4 illustrates the Likert

5. EVALUATION

Fig. 5.1.3: Violin plot for the means of question 1.3

57

diagram mean 1.1 mean 1.2 mean 1.3

1 1, 88 1, 22 1, 77

2 3, 22 2, 11 2, 77

3 4 1, 88 3, 22

4 2, 33 1, 83 2

5 3, 66 3,5 4

6 2, 22 1, 66 2,5

11 2,5 2, 33 3, 16

12 2, 33 2, 33 3, 416

13 3, 16 2,5 4,5

14 2, 83 2,5 2, 83

15 3, 16 4, 33 3

Table 5.1.5: Means of the questions 1.1, 1.2, 1.3 regarding individual blocks per
diagram

variable mean 2.1 mean 2.2 mean 2.3

2 -0,76 -0,59 -0,21

3 -0,65 -0,53 -0,26

4 -0,64 -0,53 -0,13

6 0,43 0,55 -0,37

Table 5.1.6: Correlation matrix for overall means of question 2.1, 2.2, 2.3 and the
independent variables

5. EVALUATION

diagram type mean 2.1 mean 2.2 mean 2.3

SysML Internal Block Diagram 1,33 1,83 3,55

SysML Block Definition Diagram 2 2 4,66

SysML Activity Diagram 3,66 3,16 4,5

SysML Use Case Diagram 2,33 2,33 2,33

SysML State Machine Diagram 5 5 3

Table 5.1.7: Means of questions 2.1, 2.2, 2.3 per diagram type

scores from Table A.2.2 as a violin plot, where the median, mean and extrema are

represented as vertical lines. Table 5.1.6 shows the correlation matrix for the overall

means of question 2.1, 2.2, and 2.3 and the independent variables.

From Table 5.1.6 we observe that there is a strong negative correlation for the

first question regarding variability management and the number of blocks in a single

diagram, the number of variants these blocks appear in, and the size of the diagram

in terms of elements. There is also a small positive correlation with the sparsity

of the corresponding formal context. From Table 5.1.7 we see that for question 2.1

diagrams of the type ‘SysML State Machine’ performed the best and diagrams of

type ‘SysML Internal Block Diagram’ performed the worst. For the second question

regarding variability management we observe from Table 5.1.6 that there is a medium

negative correlation with the number of blocks in a single diagram, the number of

variants these blocks appear in, and the size of the diagram in terms of elements.

There is also a medium positive correlation for question 2.1 and the sparsity of the

corresponding formal context. From Table 5.1.7 we see that for question 2.2 diagrams

of the type ‘SysML State Machine’ performed the best and diagrams of type ‘SysML

Internal Block Diagram’ performed the worst. For the third question 2.3, regarding

modeling quality, we see from Table 5.1.6 that there is a small negative correlation

with the sparsity of the corresponding formal context. From Table 5.1.7 we see that

for question 2.3 diagrams of the type ‘SysML Block Definition Diagram’ performed

the best and diagrams of type ‘SysML Use Case Diagram’ performed the worst.

59

Fig. 5.1.4: Violin plot for the averages of questions 2.1, 2.2, 2.3 for all blocks

5. EVALUATION

5.1.1.5 Summary

Taking the overall mean for question 1.1 of 2, 848 into account, we infer that the

approach was able to identify coherent blocks in a diagram with a mediocre result,

where a user had to be involved in order to pick the most promising ones. Although

the margin of error for the rejection of the assumption that there is no difference

between manual and random blocks is higher than the one for manual and made-up

blocks, we infer that the tooling was not able to consistently identify complete blocks

on a diagram, given that the mean for all diagrams is only 2, 38. With a mean of

3, 0176 for all manually and randomly selected blocks for all diagrams, we infer that

the tooling is able to assign functionality to the correct variants with a reasonable

accuracy. With a mean of 2, 24 for the first question 2.1 and a mean of 2, 42 for

the second question 2.2, we see, that the partitioning of elements as presented on a

diagram basis did not allow for proper judgement for the current state of variability

management. As a whole, we see that the number of blocks in a single diagram and

the number of variants these blocks appear in seem to have a great negative effect on

our results, with the participants of the focus group openly voicing their concerns over

the diagrams with more blocks, summarized by a quote ‘[...] one cannot see the forest

for the trees [...]’. This consensus is reflected in the third and final question regarding

the state of modeling quality in the current set of variants. With a mean of 3, 66 for

all diagrams, we can see that the partitioning helped, instead, to evaluate the state

of modeling quality for an existing set of variants. Here the biggest problem with our

case study seems to lie in the fact that, while the internal id of the ‘bigger building

blocks’ of the block diagrams seem to have been preserved with the development of

new variants, their ports and connectors seem to have been re-implemented for almost

every variant. This would also explains why the diagrams ‘SysML Internal Block

Diagram’ and ‘SysML Block Definition Diagram’ perform generally less favorably

compared to the other types of diagrams and performed the best in question 2.3

regarding modeling quality. In the focus group this let to the following conclusion.

Either the variants of our case study have to cleaned up, especially in terms of the

61

mentioned ports and their connectors, before applying a semi-automated approach

like the one in this thesis. Or that the comparison and similarity metric have to

be made more sensitive to these issues, which led to more open problems regarding

the implementation of such a comparison method, which can no longer rely on the

internal id for initial binning of the elements and needs a new way of finding ports

and connectors that have to be compared. The only consensus, given the very limited

time, was that the comparison for ports would have to rely on the name and type of

the port instead of the internal id. Potentially a similarity metric akin to the one used

by Ryssel et al. that we introduced in Chapter 2.2 could be applied, using a mix of

weighted local and neighborhood criteria. Additionally the participants voiced their

concerns over the fact, that we included every variant of the part systems we chose.

Two of the variants, 4 and 5, are no longer maintained and three variants, 2 and 8

and 9, are intentionally treated as clone and own, with no intent of re-integrating

them into the envisioned product line. This seems to be reflected with the correlation

coefficients obtained from the third independent variable, regarding the number of

variants the blocks of a diagram appear. The more variants were present in a diagram,

the worse the results were. Together with the issues regarding the modeling quality

this led to the conclusion that the tooling did what it was supposed to do, but given

the quality of the input data the result is mediocre at best, summarized by a quote

‘[...] shit in, shit out [...]’. The dendrograms computed from the formal contexts,

seem to reflect the history of the development of the variants, with the participants

scoring their resemblance with the actual development history unanimously as five,

on a scale of one to five.

In summary we see that the semi-automated approach based on FCA is not suffi-

ciently able to support as a starting point in the task of feature identification, given

the state of the input data. The approach is able to locate some coherent functional-

ity and assign said functionality to the correct variants and provides some meaningful

insights. But in terms of completeness the approach is not properly able to identify

full sets of functionality, which is particularly noticeable in diagrams with more devel-

opment artefacts and noise, such as the re-implementation of ports and connectors.

5. EVALUATION

Additionally it has to be noted that we only investigated blocks of features from a

diagram perspective, which excludes the fact, that the blocks in a diagram poten-

tially belong to a big, merged feature with a lot of other functionality, as we will

discuss in RQ.2. For judging the state of variability management the results were

not good enough to be useful, but instead they helped visualize the problems with

the quality of the models. Inferring from the results, the amount of blocks identified

on a diagram can be used as an indicator for judging the modeling quality of the

respective diagram, with a rule of thumb for our data-set being, that the number of

blocks identified should be lower than the variants the elements of diagram appear in.

The approach is also able to automatically infer the development history and there-

fore broadly identify the similarities between the variants. Although the results were

less favorably than we hoped for, we and the participants of the focus group seem

optimistic about the results from a diagram perspective, after the issues regarding

the input data as mentioned above have been resolved.

5.1.2 RQ.2 Is the semi-automated approach based on FCA

feasible, when applied to a production scale, real-world

set of product variants?

5.1.2.1 Quantitive Measures

The Table 5.1.8 shows the timings for the individual steps of the approach that we

applied to the variants of the respective part systems, in milliseconds. Note that for

exporting the models out of MagicDraw, we did not measure exact timings, but it took

around five to ten minutes for each variant of each part system, and given the hardware

limitations, we chose the lower end of that range for the sake of this argument. Taking

the mean time it took for the five part systems, around 126,84 minutes or roughly two

hours, and the amount of part systems in our case study overall, 59, we can extrapolate

that a full initial run of the approach would take around 118 hours, nearly five days.

Note that we did not take into consideration the time it would take to import the

results back into MagicDraw, iterate on the adoption of the product line and run

63

part system 0 1 2 3 4

exporting 3000000 3300000 3300000 3600000 3300000

adapting (importing) 50210 65367 40220 43874 58383

feature identification 2105681 4598157 3698170 5331343 4265369

constraints discovery 734 1527 1840 1766 1659

feature model synthesis 226423 266010 256959 283456 253813

total(ms) 2683048 5231061 4297189 5960439 4879224

total(min) 89,72 137,18 121,62 154,34 131,32

Table 5.1.8: Timing for the individual steps (ms)

the approach again. The time for importing/exporting out of MagicDraw could be

eliminated by implementing the framework directly into a plugin, but this would go

against the idea of a generally applicable framework, the idea behind But4Reuse. The

individual runs could also be run in parallel, although depending on the amount of

variants in an individual part system, each run needed between 19 and 27 gigabytes

of RAM, over the course of the different steps. A major boost in speed can probably

be obtained by optimizing the current implementations of the different steps. None

of them make use of multi-threading, which is why the main limiting factor for our

hardware is the peak single-core clock speed of our CPU and the speed of our different

kind memories. Also the tool relies on a very rudimentary implementation of FCA,

as mentioned in Section 4.2.2. Although trying to replace said implementation with

an implementation1 offering alternative algorithms for calculating the pruned concept

lattice, resulted in an immediate termination of the tool caused by a lack of memory,

even with the provided RAM maxed out to the 32 gigabytes that we had available,

suggesting that the other implementation does not scale well for the size of our case

study. Additionally if we were to implement the solutions for the issues identified

in the previous research question, the time for the feature identification step would

probably explode, because now we can no longer rely on only the internal ids of

1https://www.lirmm.fr/aoc-poset-builder/

5. EVALUATION

elements, arguably the fastest way to group and compare elements (by hashing their

ids). The constraints and feature model synthesis steps are also very rudimentary, a

state-of-the-art approach like the one described in Section 2.2 would be more desirable,

which would probably manifold the, as of now, rather little amount of time spent in

those steps. On an up note - if we were to incorporate the information about which

variants the participants of the focus group would like us to exclude, we could gain

a significant amount of speed up, because the tooling runs an order of magnitude

faster, for each variant that we can exclude, partly illustrated by part system 0 in

Table 5.1.8, which only has 10 variants.

Summarizing, the current state of the tool could probably be applied to production

scale, real-world set of product variants in a reasonable time frame. When we want

to incorporate more elaborate algorithms for the different steps however, we can only

imagine the time span it would take to apply such an approach to drift into the

unreasonable. In the end the time it takes heavily depends on the amount of variants

a product line-up contains and the feasibility depends on what the definition of a

reasonable time frame for an individual company would be.

5.1.2.2 Qualitative Measures

Table 5.1.9 shows the results of the feature identification step for each individual

part system, where min, max, median, and standard deviation refer to the amount

of AMEs found in the respective part system. Taking the information about the

size of the individual part systems, found in Table 4.2.1, into account, we see that,

on the one side, the biggest block is made up of more than 50 percent of the total

elements. This is the base block for all part systems, the block, that is present in every

variant. It is made up of mostly reference documents, definitions for SI units, model

library elements, such as icons and other images and elements used in the different

types of diagrams. Here we can already see the drawback of an approach purely

based on co-occurrence. Figure 5.1.5 illustrates this on the example of the concept

lattice of part system 1 that we scaled (logarithmically to make it more visible on

paper) by the size of each identified feature. The attribute concepts are highlighted

65

in red and the object concepts are highlighted in blue, with the disproportions of the

features clearly visible. While the approach is able to identify groups of elements

that occur in the same variants, it cannot differentiate between elements that have

the same occurrence, for example, you can hardly define the individual reference

documents together as a feature, it would be more desirable to have them grouped

with the functionality that actually references them. On the other side, going off of the

median, we see that at least 50 percent of the identified features are tiny compared

to the rest, with the smallest being constituted of only one element. Again these

groups can hardly be classified as features in a standard fashion, such as mentioned

in Section 3.1.2. These are most likely implementation noise that accumulated over

the course of development (e.g., different languages for different variants), given that

they are mostly made of attribute elements, as shown in Table 5.1.11. Additionally,

the second group of bigger features, are the object concepts, visible in blue in Figure

5.1.5 for part system 1. These are the features that were only identified to belong to

a single variant. Again these are made up of multiple different groups, such as parts

of diagrams, that actually only belong to this variant, the re-implemented ports and

connectors as mentioned earlier, and entirely new diagrams, that are considered as

only part of this variant, but seem to applicable to more than one variant, seen from

a non-domain-expert perspective. Some of these groups could potentially be split up

into individual features each, but are not classifiable as a feature as a whole. As seen

in Table 5.1.12, for the bigger blocks, the distribution of AME types seems to be

more in line with the total distribution per part system, as shown in Table 5.1.10.

The reason we got at least mediocre results for our first research question, is that we

presented a very limited and localized view on the elements of a feature, by inspecting

only blocks of them part of a single diagram at once. For elements that are part of

diagrams, this seems to be a more reasonable fine-grained subdivision of the overall

feature, they were identified to belong to.

Summarizing, an approach purely based on co-occurrence, like our approach based

on FCA, is capable of identifying functionality that is part of the same variants. But

the biggest drawback of such an approach is that functionality that occurs in the same

5. EVALUATION

part system # features min max mean median std. deviation

0 333 1 335921 4298 51 25031.98

1 488 1 335445 3157.84 34 20923.54

2 477 1 335109 3275.22 29 21529.89

3 481 1 335116 3134.3 32 21161.83

4 497 1 335172 3343.22 36 21658.07

Table 5.1.9: Results of the feature identification step

part system class attribute reference

0 26.49% 47.91% 25.61%

1 26.30% 48.01% 25.69%

2 26.27% 47.96% 25.77%

3 26.07% 48.05% 25.89%

4 26.36% 47.88% 25.77%

Table 5.1.10: Total percentage of AME types per part system

variants, but has no relationship other than that, is identified as a single feature. For

elements that are part of diagrams, the diagram perspective yields a more localized

view on the identified features, and seems to be a feasible choice, to start dividing up

the big clumps of elements, if applicable. For elements that are not part of diagrams,

the approach needs to be extended, in order to yield more fine-grained results and is

not feasible.

5.1.3 RQ.3 How can we represent the results of the semi-

automated approach in a way that maximizes their use-

fulness to the engineers?

Table 5.1.13 shows the results for the questions 3.1, 3.2, and 3.3 regarding the indi-

vidual features of the plugin, that were showcased during the focus group. The two

67

part system
mean median

class attribute reference class attribute reference

0 12.26% 78.84% 8.90% 0.00% 88.76% 0.00%

1 11.39% 76.82% 11.79% 0.00% 100.00% 0.00%

2 10.96% 79.90% 9.14% 0.00% 100.00% 0.00%

3 11.39% 79.66% 8.95% 0.00% 100.00% 0.00%

4 10.92% 80.26% 8.83% 0.00% 100.00% 0.00%

Table 5.1.11: Percentage of AME types for small features (≤ median)

part system
mean median

class attribute reference class attribute reference

0 20.42% 62.25% 17.34% 22.35% 56.41% 17.98%

1 20.11% 63.83% 16.06% 22.92% 59.38% 16.35%

2 19.97% 63.92% 16.12% 22.90% 59.38% 17.01%

3 20.17% 63.54% 16.28% 23.08% 57.64% 17.11%

4 20.01% 62.37% 17.62% 22.53% 57.39% 18.16%

Table 5.1.12: Percentage of AME types for big features (> median)

5. EVALUATION

Fig. 5.1.5: Concept lattice for part system 1 scaled logarithmically by the size of each
feature

main features, namely the colored highlighting directly in a diagram and the tool-tip

that shows in which variants an element was identified to belong to, were received

very positively, with both scoring a mean of five on a scale of one to five. The ability

to navigate imported elements via a hyperlink into the internal containment browser

was received less favorably, with a mean score of 2, 33. The general consensus on this

question was, that the participants would much rather navigate the elements directly

from a diagram. Although it has to be noted, that this can only be done for elements,

that actually are contained in diagram. As mentioned in Section 4.3.1 there are also

class elements that are not contained in a diagram, and attribute and reference el-

ements are never contained in a diagram, they can only be accessed via a property

view for an individual element. The score for the third question re-ensures us in our

methodology of ignoring said elements for the focus group, as this way of navigating

elements is not suitable for large amounts of data. Although we did not have the time

to take a look into the biggest features, that are already reused in some variants, but

are not part of the trunk variant, the notion of using those as a sort of progress report

69

question mean median

3.1 5 5

3.2 5 5

3.3 2,333333333 2

Table 5.1.13: Results of the questions regarding plugin features

and an indicator, on what is still missing in the trunk variant, received very positive

feedback with a mean score of five, on a scale of one to five. Finally, the focus group

came up with the following features, that would be desirable for the next iteration of

our MagicDraw plugin.

1. The ability to navigate to other diagrams containing elements of the same fea-

ture on demand

2. The ability to navigate to the same feature in the same diagram, if existent, in

other variants

3. The ability to select one variant and highlight every element in a diagram that

is contained in said variant

4. A better automated way of choosing visually distinct colors for highlighting

5. The ability to dynamically merge (split) blocks on a diagram on demand and

matching (unmatching) the colors used for highlighting

The first feature request should be straight-forward to implement, with the in-

formation we already extracted from the variants, mainly the information as shown

in Figure 4.3.4. The second feature request could form a much greater challenge.

For this we would potentially have to open every variant of a part system in parallel

which would require a more elaborate hardware setup. Additionally it is unclear if

the internal ids of the diagrams are consistent throughout the different variants, so

another matching for diagrams might be necessary. The third feature request should

also pose no problem to implement. With the information from the formal context

5. EVALUATION

table for each part system and the information that was already gathered, as shown

in Figure 4.3.5, all that is left to implement, is an user interface for the picking of the

variants. For the fourth feature request we already incorporated an automatic way of

generating a list of visually distinct colors, based on the YUV color space, adapted

from an answer on Stack Overflow2. We generated a list of 100 colors and used the

feature number to index that list and this was used to load all features of a part

system at once in order to find appropriate diagrams for RQ.1. But we still ended

up with similar colors on the same diagram. The possibly best way to implement

this, would be a hand-picked, predefined list, that is as big as the largest amount of

blocks found on a diagram. The fifth and final feature request would require some

new internal format for features. At the moment the elements are just represented as

nodes in a feature tree, where there is no direct way of accessing the node to which an

element belongs to, without iterating the entire feature tree. Additionally there needs

to be a way to serialize the newly edited features, possibly overwriting the existing

files, that were loaded to begin with.

Summarizing, the biggest limiting factor for the engineers seems to be the lack of

dynamical navigation for the enormous amount of data present in the part system

variants. With the fact that you have to change projects in order to compare vari-

ants (e.g. on a diagram basis) having the biggest impact on productivity. A possible

solution for this would be the creation of a project with every variant merged into

it and filtering by variant, but there is no out-of-the-box support for this in Mag-

icDraw. The ability to highlight groups of elements in a diagram, combined with

the information to which variant these elements belong to, without having to swap

projects, sparked general excitement in the focus group, based on the impressions we

got. With the additional feature requests implemented, we conclude that the result-

ing tooling would be an appropriate representation to maximize the usefulness of the

results gathered from our approach to the engineers. A similar tooling might find

its way into the hands of engineers, although potentially with data obtained from a

different approach.

2https://stackoverflow.com/a/30881059/7508046

71

5.2 Threats To Validity

In this section, we will discuss the threats to internal and external validity.

5.2.1 Internal Validity

With regards to internal validity potential problems arise from the tooling itself. Al-

though we ourselves took care to validate the correctness of the implementations in

But4Reuse by manually inspecting the code of the extensions points we used, no

extensive testing was done and we did not inspect the code for the general framework

itself. As far as we can tell, the framework is also not in wide-spread use and has

therefore not been subject to the many-eyes-principle, potentially skewing the results

through implementation bugs. The same applies to the MagicDraw plugin we de-

veloped. While great care was taken in its development, a tight time schedule and

lack of testing might have resulted in bugs that might have affected the presentation

of the results and therefore the results obtained from them. Additionally the UML

exporter of MagicDraw might have introduced potential problems, for example,

comments in the models went missing during export. Also, when querying the Mag-

icDraw API for an element by id, it returns the first element with that id that it

can find, potentially leaving room for errors, if multiple elements have the same id.

But we only encountered a handful of elements that share the same id for the part

systems we evaluated .Finally, because we conducted an empirical field study, we did

not posses much control over experiment, making it hard to ensure internal validity

overall. While we tried to tackle this by choosing the blocks and diagrams we pre-

sented in a way that allowed us to investigate multiple independent variables, we can

not exclude the possibility of other confounding factors.

5.2.2 External Validity

Our study possesses a generally desirable amount of external validity. We applied

the approach to a production scale, real-world set of data, that we did not have

any control over. Potential threats may arise from only applying the approach to a

5. EVALUATION

single case study, but getting a hold of multiple real-world case studies of this size,

would be an infeasible, if not impossible, task. Nonetheless, we are confident that our

results are generalizable and hold true for other projects as well, particularly because

the evaluated approach mainly relied on the internal identifiers of the elements in

our models, which should be present and consistent in any modeling tool worth its

share. Additional problems may arise from the limited sampling sets regarding our

case study. While we tried to tackle this by trying to incorporate a large spectrum

into the sample sets, we only evaluated five randomly chosen part systems of a total

of 59. For those five part systems we only used fifteen diagrams out of hundreds

in total to evaluate the approach. Additionally the focus group only consisted of

three participants excluding us, which might have skewed the results in an unwanted

direction. For the time measurements in our second research question, we only ran

the tooling once for each part system, yielding five samples of measurements, and

in no controlled environment, meaning background tasks running on the CPU and

similar influences might have affected the results.

73

CHAPTER 6

Conclusion And Future Work

6.1 Conclusion

In this thesis, we evaluated a lightweight implementation of a semi-automated ap-

proach to feature identification/location, based on formal concept analysis. For this

we applied the approach to a real-world, production-scale case study from the railway

domain and developed a plugin for the modeling tool MagicDraw that visualizes

the results to the engineers in a familiar environment and intuitive way.

First we investigated to what extent the approach is able to aid the engineers

as a first step in the different tasks associated with the bottom-up adoption of a

product line. For this we conducted a focus group, where we presented parts of

identified features to the participants, by highlighting them in diagrams using the

plugin we developed. We asked the participants to evaluate three different aspects of

the features based on the highlighting they were shown. While we saw that for feature

identification/location the approach is able to identify coherent functionality and

locate it in the correct variants more or less consistently, it cannot identify complete

sets of functionalities. We concluded that this is mostly due quality state of the input

data, which was partly evidenced by our results and partly by the feedback given

vocally in the focus group. On the one hand, we identified that the most common

problem for our case study, seems to lie in the fact, that the ports and their connectors

in diagrams were mostly re-implemented in every variant. The id based matching was

therefore not able to match them accordingly. On the other hand, however, we also

saw that for remaining types for diagram elements, the ids seem to have been more

75

or less preserved during the development of the different variants. This lead us and

the participants of the focus group to the assumption that if the identified problems

are alleviated, either through a more sensitive matching algorithm or by cleaning up

the models manually beforehand, the approach would fare much better. Although

the drawbacks of an approach based purely on co-occurrence, would still persist, even

with quality input data. Drawing from this, the approach helped the participants of

the focus group to judge the current state of modeling quality, and could be directly

used as a quality metric by taking the amount of identified features present in a

single diagram into account. Because of the state of the input data and the resulting

convoluted diagrams, the approach was not able to help the participants get a deeper

look into the current state of variability management.

Next we investigated if the approach would be feasible if applied in practise. As a

quantitative metric, we estimated the time it would take to apply the approach to the

entire case study and concluded that the current state of the tooling could probably

be applied within a reasonable time frame. However, if we were to incorporate the

fixes for the problems identified and would implement more elaborate algorithms, es-

pecially for the feature model synthesis step, the time investment would grow rapidly,

though heavily depending on the amount of variants fed into the tooling. We con-

cluded that the feasibility depends on the definition of a reasonable time frame for

an individual company and would have to be weighted against the resulting bene-

fits. As a qualitative measure we took a look at the overall distribution of elements

over the calculated concept lattices and tried to group the identified features into

different categories. Here we saw the main drawback of an approach based purely on

co-occurrence. On the one hand a big part of the features are in fact merged groups

of different categories, for example, parts of multiple diagrams that have no relation

to one another but the fact that they occurred in the same variants. These merged

groups can hardly be classified as features as a whole. On the other hand we identified

that a large part of the identified features are in fact implementation noise, which we

concluded from their overall size and the distribution of the atomic model elements

that they are constituted of. Finally, all elements of a variant that could not be

6. CONCLUSION AND FUTURE WORK

matched with any other element of another variant, were grouped together into one

feature. These groupings can again hardly be classified as a feature in the standard

fashion, which we concluded by broadly taking a look at what they are constituted

of. We concluded that they are again, a mixture of groups of different categories,

for example, parts of diagrams that actually belong to only this variant, but also the

before-mentioned re-implemented versions of ports and connectors and the like.

Finally we investigated how we can optimally present the results of our evaluated

approach to the engineers, in order to maximize their usability. For this we asked

the participants to evaluate the different functionalities of the plugin that we had

already implemented. Here we saw a genuine, positive feedback from the participants

in regards to the highlighting in the diagrams and the ability to directly see in which

variants an element is located without having to swap projects. Afterwards, we asked

the participants of the focus group to come-up with additional features for the plugin

that they would like to have. Together with our already implemented features, we

concluded that these features, which were mostly related to more dynamic ways of

interacting with both the models themselves and the data obtained from them, would

form an ideal representation for the results of not only our approach, but possibly

others as well.

6.2 Future Work

There is a variety of different areas that can be tackled as future work. First, we were

not able to fully evaluate all the independent variables for our case study that we

set out to. This work can be finished with the already existing data, although some

potentially some additional scripts would have to be added to the already fairly large

base of existing scripts created for this thesis, in order to access the data from the

concept lattice and feature models, without having to do it manually for dozens of

blocks. Next, while we added some extensions and improvements to the But4Reuse

framework, these are in no state to be merged into the official repository (mainly

due to time constraints) and will need to be cleaned-up before-hand. Finally, and

77

probably most importantly, as we have discussed, a second iteration of our case study

would probably yield promising results. For this we would have to implement the

requested features into our MagicDraw plugin. Additionally the identified issues

with the But4Reuse framework, mainly implementation optimizations and more

elaborate algorithms for the different extension points, and the issues with our input

data would have to be resolved.

APPENDIX A

Apendix

A.1 Additional Independent Variables

This section includes a list of independent variables that we were not able to evaluate

due to time constraints. They are left as future work.

1. The total number of diagrams a feature appears in

2. The hierarchy level of the feature in the concept lattice (starting from the top

or bottom)

3. The number of features on the same hierarchy level in the concept lattice

4. The distance between the features contained in a diagram in the concept lattice,

calculated as the average distance to the lowest common ancestor of the DAG

obtained by treating the edges of the lattice as directed into the intent direction

5. The number of children (parents) of a feature in the concept lattice

6. The overall similarity of the variants a feature appears in

7. The depth of the feature in the feature model

79

A.2 Tables With The Results Of The Focus Group

mean 1.1 mean 1.2 mean 1.3 median 1.1 median 1.2 median 1.3

block

1 2 1, 33 3, 33 2 1 3

2 2 1, 33 2 2 1 2

3 1 1 1 1 1 1

4 2, 66 1, 33 2 3 1 2

5 4, 33 2, 66 4, 66 4 3 4

6 4 2, 66 4, 66 4 3 4

7 1, 33 1 1 1 1 1

8 1 1 1 1 1 1

9 4, 33 2 3, 33 4 2 3

10 4 2 3, 33 4 2 3

11 4, 66 1, 66 3 4 2 3

12 1 1 1 1 1 1

13 2, 66 2 3, 33 3 2 2

14 2 1, 66 1, 66 2 2 2

A. APENDIX

15 1, 66 1, 33 1, 33 1 1 1

16 4, 33 4 4, 66 4 4 5

17 3 3 3, 33 3 3 3

18 1 1 1,5 1 1 1,5

19 3 2 3 3 2 3

20 2, 66 2 3 3 2 3

21 1, 33 1, 33 1 1 1 1

33 1, 33 1, 66 1, 66 1 1 1

34 4, 66 3 4, 66 4 3 5

35 1 1, 33 2,5 1 1 2,5

36 4, 66 3, 33 4, 33 4 3 4

37 4, 33 4 4, 66 4 4 5

38 4 2, 66 5 4 3 5

39 3, 33 3, 33 4 2 2 4

40 1, 33 1 1, 33 1 1 1

41 4, 33 4, 66 4 4 4 4

42 1, 33 1, 33 1, 66 1 1 2

81

43 5 5 5 5 5 5

44 1, 33 4, 66 1 1 3 1

Table A.2.1: Results for questions 1.1, 1.2, 1.3 regarding the individual blocks

A. APENDIX

diagram mean 2.1 mean 2.2 mean 2.3 median 2.1 median 2.2 median 2.3

1 1, 33 1, 33 4, 66 1 1 5

2 1, 33 1, 33 5 1 1 5

3 1 1 4, 66 1 1 5

4 2 2 4, 66 2 2 5

5 3, 66 3, 66 4 4 4 4

6 1, 33 2 1, 66 1 2 2

11 2, 33 2, 33 2, 33 2 2 2

12 1, 66 3, 33 3 2 4 3

13 3, 66 2, 66 5 4 3 5

14 1, 33 2 2, 33 1 2 3

15 5 5 3 5 5 3

Table A.2.2: Results for questions 2.1, 2.2, 2.3 regarding all blocks of a diagram

83

A.3 List Of Accompanying Files

In this section, we will give an overview of the files this thesis is accompanied by.

• thesis.pdf - This thesis as a PDF document.

• contexts/ - A folder containing the formal contexts obtained from our case study

as HTML tables

• concepts/ - A folder containing the formal concept lattices obtained from our

case study as DOT files

• feature models/ - A folder containing the feature models obtained from our case

study as XML files, viewable in FeatureIDE

• figures/ - A folder containing additional figures for the different part system

that we did not include in this thesis

• plugin/ - A folder containing the (redacted) code for the visualization plugin

• scripts/ - A folder containing various undocumented (redacted) python scripts

that were used for gathering the data and visualizations used in this thesis

REFERENCES

[1] Apel, S., Batory, D., Kstner, C., and Saake, G. (2013). Feature-Oriented Soft-

ware Product Lines: Concepts and Implementation. Springer Publishing Company,

Incorporated.

[2] Clements, P. C. and Northrop, L. (2001). Software Product Lines: Practices and

Patterns. SEI Series in Software Engineering. Addison-Wesley.

[3] Couto, M. V., Valente, M. T., and Figueiredo, E. (2011). Extracting software

product lines: A case study using conditional compilation. In 2011 15th European

Conference on Software Maintenance and Reengineering, pages 191–200.

[4] Fischer, S., Linsbauer, L., Lopez-Herrejon, R. E., and Egyed, A. (2014). Enhanc-

ing clone-and-own with systematic reuse for developing software variants. In 2014

IEEE International Conference on Software Maintenance and Evolution, pages

391–400.

[5] Fischer, S., Linsbauer, L., Lopez-Herrejon, R. E., and Egyed, A. (2015). The

ecco tool: Extraction and composition for clone-and-own. In 2015 IEEE/ACM

37th IEEE International Conference on Software Engineering, volume 2, pages

665–668.

[6] Font, J., Arcega, L., Haugen, Ø., and Cetina, C. (2016a). Feature location in

model-based software product lines through a genetic algorithm. In Kapitsaki,

G. M. and Santana de Almeida, E., editors, Software Reuse: Bridging with Social-

Awareness, pages 39–54, Cham. Springer International Publishing.

85

[7] Font, J., Arcega, L., Haugen, O., and Cetina, C. (2016b). Feature location in

models through a genetic algorithm driven by information retrieval techniques.

In Proceedings of the ACM/IEEE 19th International Conference on Model Driven

Engineering Languages and Systems, MODELS ’16, page 272–282, New York, NY,

USA. Association for Computing Machinery.

[8] Ganter, B. and Stumme, G. (2005). Formal Concept Analysis - Foundations and

Applications. Springer Science Business Media, Berlin Heidelberg.

[9] Ganter, B. and Wille, R. (1999). Formal concept analysis : mathematical founda-

tions. Springer, Berlin; New York.

[10] Holthusen, S., Wille, D., Legat, C., Beddig, S., Schaefer, I., and Vogel-Heuser,

B. (2014). Family model mining for function block diagrams in automation soft-

ware. In Proceedings of the 18th International Software Product Line Conference:

Companion Volume for Workshops, Demonstrations and Tools - Volume 2, SPLC

’14, page 36–43, New York, NY, USA. Association for Computing Machinery.

[11] Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A. (1990). Feature-

oriented domain analysis (foda) feasibility study. Technical Report CMU/SEI-90-

TR-021, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,

PA.

[12] Leblanc, H. (2000). Sous-hiérarchie de Galois : un modèle pour la construction

et l’évolution des hiérarchies d’objets. PhD thesis. Thèse de doctorat dirigée par

Ducournau, Roland Informatique Montpellier 2 2000.

[13] Lity, S., Lachmann, R., Lochau, M., and Schaefer, I. (2013). Delta-oriented

software product line test models - the body comfort system case study. Technical

report.

[14] Martinez, J. (2016). Mining software artefact variants for product line migration

and analysis. Theses, Université Pierre et Marie Curie - Paris VI ; Université du

Luxembourg.

REFERENCES

[15] Martinez, J., Assunção, W. K. G., and Ziadi, T. (2017a). Espla: A catalog

of extractive spl adoption case studies. In Proceedings of the 21st International

Systems and Software Product Line Conference - Volume B, SPLC ’17, page 38–41,

New York, NY, USA. Association for Computing Machinery.

[16] Martinez, J., Ziadi, T., Bissyandé, T. F., Klein, J., and Traon, Y. L. (2015a).

Automating the extraction of model-based software product lines from model vari-

ants (T). In Cohen, M. B., Grunske, L., and Whalen, M., editors, 30th IEEE/ACM

International Conference on Automated Software Engineering, ASE 2015, Lincoln,

NE, USA, November 9-13, 2015, pages 396–406. IEEE Computer Society.

[17] Martinez, J., Ziadi, T., Bissyandé, T. F., Klein, J., and Traon, Y. L. (2015b).

Bottom-up adoption of software product lines: a generic and extensible approach.

In Schmidt, D. C., editor, Proceedings of the 19th International Conference on

Software Product Line, SPLC 2015, Nashville, TN, USA, July 20-24, 2015, pages

101–110. ACM.

[18] Martinez, J., Ziadi, T., Bissyandé, T. F., Klein, J., and Traon, Y. L. (2017b).

Bottom-up technologies for reuse: automated extractive adoption of software prod-

uct lines. In Uchitel, S., Orso, A., and Robillard, M. P., editors, Proceedings of the

39th International Conference on Software Engineering, ICSE 2017, Buenos Aires,

Argentina, May 20-28, 2017 - Companion Volume, pages 67–70. IEEE Computer

Society.

[19] Martinez, J., Ziadi, T., Klein, J., and Traon, Y. L. (2014). Identifying and

visualising commonality and variability in model variants. In Cabot, J. and Rubin,

J., editors, Modelling Foundations and Applications - 10th European Conference,

ECMFA@STAF 2014, York, UK, July 21-25, 2014. Proceedings, volume 8569 of

Lecture Notes in Computer Science, pages 117–131. Springer.

[20] Müller, T., Lochau, M., Detering, S., F, S., Garbers, H., Märtin, L., Form, T.,

and Goltz, U. (2009). A comprehensive description of a model-based, continuous

87

development process for autosar systems with integrated quality assurance. Tech-

nical report.

[21] Riebisch, M., Böllert, K., Streitferdt, D., and Philippow, I. (2002). Extending

feature diagrams with uml multiplicities.

[22] Ryssel, U. (2014). Automatische Generierung von feature-orientierten Produk-

tlinien aus Varianten von funktionsblockorientierten Modellen. PhD thesis, Tech-

nische Universität Dresden.

[23] Ryssel, U., Ploennigs, J., and Kabitzsch, K. (2011a). Extraction of feature models

from formal contexts. page 4.

[24] Ryssel, U., Ploennigs, J., and Kabitzsch, K. (2011b). Extraction of feature

models from formal contexts. page 4.

[25] Ryssel, U., Ploennigs, J., and Kabitzsch, K. (2012). Automatic library migration

for the generation of hardware-in-the-loop models. Science of Computer Program-

ming, 77(2):83–95. Special Issue on Automatic Program Generation for Embedded

Systems.

[26] Schulze, M., Mauersberger, J., and Beuche, D. (2013). Functional safety and

variability: Can it be brought together? In Proceedings of the 17th International

Software Product Line Conference, SPLC ’13, page 236–243, New York, NY, USA.

Association for Computing Machinery.

[Tinnes and Martinez] Tinnes, C. and Martinez, J. Feature mining heuristics: Blocks

analysis for feature identification and localization.

[28] Vogel-Heuser, B., Bougouffa, S., and Sollfrank, M. (2018). Researching evolution

in industrial plant automation: Scenarios and documentation of the extended pick

and place unit. Technical report, Institute of Automation and Information Systems,

Technische Universität München.

REFERENCES

[29] Vogel-Heuser, B., Legat, C., Folmer, J., and Feldmann, S. (2014). Researching

evolution in industrial plant automation: Scenarios and documentation of the pick

and place unit. Technical report, Institute of Automation and Information Systems,

Technische Universität München.

89

