
12/05/14 12:01

Page 1 of 1file:///Users/cosh/Uni_Passau-Logo.svg

Bachelor Thesis in Computer Science

A Comparison of Optimization and
Craig Interpolation for Generating

Minimal and Maximal Configurations

Elisabeth Griebl

2017-10-30

Supervisor: Prof. Dr.-Ing. Sven Apel

Tutor: Andreas Stahlbauer, M.Sc

Griebl, Elisabeth:
A Comparison of Optimization and Craig Interpolation for Generating Minimal
and Maximal Configurations
Bachelor Thesis, University of Passau, 2017.

We all need people who will give us feedback.
That’s how we improve.

— Bill Gates

Dedicated to my family, my boyfriend,
and all the wonderful people

who have supported me and my work.

Abstract

This work provides a comparison of two instantiation algorithms, one based
on Craig interpolation, the other on optimization. They are used to produce
configurations for a software product line with the minimal or maximal num-
ber of features enabled using a SMT solver. To evaluate both approaches, we
implemented the algorithms using the Z3 solver and tested their performance
for different problems. We use the algorithms, inter alia, in combination
with different preceding sampling algorithms or different complexities of
variability models. Overall, Craig interpolation performs better on some edge
cases, but using optimization is most suitable for most test cases.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions of this Thesis . 1
1.3 Structure of this Thesis . 2

2 Background 3
2.1 Product Lines and Variability Models 3
2.1.1 Representation of Variability Models 4
2.2 Satisfiability Modulo Theories 5
2.3 Craig Interpolation . 5
2.4 Optimization . 6
2.5 Sampling Strategies . 6
2.5.1 T-Wise Samping . 7
2.5.2 Random Sampling . 7
2.6 The Framework Simtopia . 7
2.6.1 Architecture of Simtopia . 8

3 Instantiation Algorithms 13
3.1 The Framework . 13
3.2 Optimization Instantiation Algorithm 14
3.3 Craig Interpolation Instantiation Algorithm 17

4 Study 21
4.1 Research Questions . 21
4.2 Operationalization . 21
4.3 Evaluation Environment . 23
4.4 Performance Evaluation . 24

5 Discussion 29
5.1 Valuation of the Results . 29
5.2 Validity . 30
5.2.1 Threats to Validity . 30
5.3 Future Work . 30

6 Conclusion 33

Appendices 35

7 Bibliography 37

vii

List of Figures

2.1 An example DIMACS document 4
2.2 Architecture of the framework Simtopia 8

3.1 Schematic representation of Craig interpolation 17

4.1 RQ1 . 24
4.2 RQ2.1 . 25
4.3 RQ2.2 . 26
4.4 RQ3 . 27

ix

List of Tables

4.1 List of independent, dependent, and controlled variables . . 23

xi

1
Introduction

Software Engineering is a challenging problem in times of rapid technological
development and constantly changing demands. Using software product lines
has proven as an applicable strategy to respond flexibly to the user’s needs.
In simple terms, software product lines are configurable products, which
share a base of common functions and differ in other parts [Ape+13]. As a
software product line often produces thousands of finely graduated different
products, testing, inter alia, holds numerous difficulties. One of them is the
sheer number of tests, which is needed to prove reliability and correctness of
the whole product line. To deal with this problem, we need to continuously
improve established testing techniques and try to find new solutions.

1.1 Motivation

Constantly testing all executable tasks of highly configurable software often
exceeds time or calculating resources. Therefore, current research concen-
trates on more efficient ideas with fewer test cases, which still provide a high
code coverage. One common approach in software testing is selecting some
specific products (instances of the product line), which are tested to find bugs
in the whole product line. Medeiros et al. found that some of those so-called
“sampling strategies” are very efficient in selecting instances of the product
line, which bring up multiple faults [Med+16].

Finding suitable instances of the product line for testing purposes becomes
increasingly difficult depending on the number of “configuration options”
and their dependencies. Considering all the constraints by constructing a
suitable instance of a product line becomes a logical problem. Hence, SMT
solvers are more and more important in this field.

1.2 Contributions of this Thesis

The main contribution of our work is to examine the connection between
the time, which is needed by the solver to find suitable instantiations of the
product line and the formulation of the problem, which needs to be solved.
For this purpose, we use two concepts, optimization and Craig interpolation,
which formulate, for example, the dependencies between the configuration
options and further constraints. In theory, one of the concepts could ease it
for the solver to help finding a suitable instantiation of the product line. To
review this idea, the concepts are implemented in the framework Simtopia.

1

In detail, we will identify the performance differences for different com-
plexities of variability models by answering research question 1 (RQ1). Fur-
thermore, we will review if there are any performance differences for the
algorithms in combination with 𝑇-wise and random sampling (RQ2.1 and
RQ2.2), and finally look for performance differences for different configura-
tion modes (RQ3)1. In our work, we provide and discuss the results of the
different time measurements.

1.3 Structure of this Thesis

This thesis is structured as follows: Chapter 2 on the facing page gives some
background information about software verification, explains some logical
concepts, and describes the framework Simtopia. In Chapter 3 on page 13,
we describe how we use optimization and Craig interpolation as instantiation
algorithms. This includes a detailed explanation of the implementation of both
algorithms. Then, we evaluate our implementation and present our results
in Chapter 4 on page 21. After that, we discuss the results in Chapter 5 on
page 29, answer the research questions, present some possible improvements,
and give an outlook to future research. We conclude with a summary of our
work in Chapter 6 on page 33.

1Please find a detailed explanation of the terms, which are used in the research questions in
the background chapter.

2 Chapter 1 Introduction

2
Background

In this chapter we present the background of this thesis. First, we will give
some basic information about product lines and variability models. Then we
will present the basics of satisfiability modulo theories briefly. Furthermore,
we will explain some basic concepts like Craig interpolation, optimization,
and sampling algorithms, which are relevant to understand the components of
the framework we use for our work. Finally, we will introduce the framework
Simtopia, which is used for our studies.

2.1 Product Lines and Variability Models

In general, product lines are groups of products, which have similar charac-
teristics. Relating to computer science that means we have a software, which
can perform several similar tasks and therefore use a base of shared code
[Ape+13]. The particular task, which the software performs depends on its
feature selection or configuration1„ which is a set of enabled or disabled fea-
tures. Their assignment (id est, if the features are dis- or enabled) determines
the task, which the product performs. Apel et al. defined a feature as follows
[Ape+13]:

Definition 1. “A feature is a characteristic or end-user-visible behaviour of
a software system. Features are used in product-line engineering to specify
and communicate commonalities and differences of the products between
stakeholders, and to guide structure, reuse, and variation across all phases of
the software life cycle.”

A popular example for a product line is the Linux kernel, which operates
on many different hardware platforms and offers a consistent API to user
programs across these platforms. To provide this functionality, it dis- or
enables different features, depending on the platform, it is running on.

The features of the software are connected by feature dependencies, id est,
they can influence each other. One simple example for features influencing
each other is (𝑎 → 𝑏). That means we have two features, 𝑎 and 𝑏. If 𝑎 is
enabled, 𝑏 needs to be enabled as well. Those relationships of the features
are collected in a variability model, which gives meta information about
valid assignments of features in the program. A valid configuration of a
program needs to satisfy the variability model, that means the assignment of

1We will use the term configuration in our work.

3

c This is an example for the dimacs format.

p cnf 3 2

2 -3 0

2 3 -1 0

Fig. 2.1 An example DIMACS document

the features may not contradict the variability model [Ape+13]. Assuming
(𝑎 → 𝑏) is a complete variability model and there are only two features 𝑎 and
𝑏, for example (𝑎, 𝑏) or (¬𝑎, ¬𝑏) would be valid configurations.

2.1.1 Representation of Variability Models

Logical problems can be expressed in conjunctive normal form (CNF)[Pre09].
Since any propositional formula can be converted into an equivalent expres-
sion in CNF, the syntax is both simple and powerful.

A CNF formula consists of literals 𝑙𝑗, which can be either a Boolean variable
or it’s negation and represent a single feature in our case. We can connect
two literals by logical “OR”, which is represented by “∨”. Two literals, which
are connected by ∨ are called disjunct. We can group several disjunct literals
and get a clause 𝑐𝑖. CNF formulas are expressed as a conjunction of several
clauses, id est, they are connected by logical “AND” (∧).

Summing up, we can formalize logical expressions 𝐸 in CNF syntax as
follows:

𝐸 = ⋀
𝑖

⋁
𝑗

𝑙𝑖,𝑗

The computational complexity of problems in CNF is depending on the
minimal number of variables 𝑘 per clause. For instance, expressions with 𝑘 =
2 for all clauses or 2-SAT problems, can be solved in polynomial time [Kro67].
Expressions with 𝑘 = 3 for all clauses are called 3-SAT problems. In 1971,
Stephen Cook stated that computing 3-SAT problems is NP-complete [Coo71].
One year later, Richard Karp published a proof for the NP-completeness of 21
computational problems, including 3-SAT problems [Kar72]. 𝑘-SAT problems
are also called Boolean satisfiability problems.

A wideley accepted format for expressing Boolean satisfyability problems
in CNF is the DIMACS format, which simplifies automated solving [93]. As we
can see in Figure 2.1, a file in the DIMACS format has three parts:

1. several lines of comments at the beginning of the file, indicated by the
letter “c”

2. one line of meta data (defining the format, the number of variables,
and the number of logical statements), indicated by the letter “p”

3. several lines of logical statements, which are presented in the rest of
the document.

4 Chapter 2 Background

The syntax of those logical statements is quite similar to CNF: each line,
delimited by the digit “0”, represents one clause, each digit represents one
literal. A minus (“-”) before a digit is equivalent to a literal with a nega-
tion (“¬”). Like in CNF, the clauses are connected with logical “AND”, the
literals within the line with “OR”.

As we now understand the syntax of DIMACS, we can explain the meaning
of the file in Figure 2.1: The document starts with one comment line. The
second line tell us that the file in CNF syntax has three different literals
and two clauses. The rest shows us some examples for logical statements in
the DIMACS format. Represented in CNF, their equivalent (representing each
feature 1, 2, 3 by a literal 𝑙1, 𝑙2, 𝑙3) is:

(𝑙2 ∨ ¬ 𝑙3) ∧ (𝑙2 ∨ 𝑙3 ∨ ¬𝑙1)

This simple document is an example for a “small” variability model. Con-
cerning the complexity of variability models, we considered two parameters
relevant for our work: the amount of features that appear in the variability
model and the number of clauses.

2.2 Satisfiability Modulo Theories

First-order formulas consist of a set of variables, which are connected by
∧ (AND), ∨ (OR), ⟹ (implies), quantifiers (∀ which means for all and
∃ which means there exists), the equality symbol (=), negations (¬) and
parenthes [Bar77]. The field of Satisfiability Modulo Theories (SMT) deals
with the satisfiability of those first-order formulas with respect to a first-
order background theory [Seb07] [Bar+09]. SMT first occured in the late
1970s and is used for software verification purposes for many years [Bar+09]
[CHN12]. SMT is a generalization of Boolean satisfiability problems, which
is produced by “adding equality reasoning, arithmetic, fixed-size bit-vectors,
arrays, quantifiers, and other useful first-order theories” [MB08].

SMT solvers are tools to decide if the given formula is satisfiable with
respect to the given theory [MB08] [Bar+09]. Some examples for SMT solvers
are MathSAT5, SMTInterpol or Z3[Cim+13] [CHN12] [MB08]. The framework
Simtopia (2.6) uses SMT solvers to find valid assignments for features in
configurations.

2.3 Craig Interpolation

Craig interpolation is a technique from logical mathematics, which has been
established as a approximation tool in software verification. It is defined by
the following theorem, which was proved by Wiliam Craig in 1957 [Cra57]:

Theorem 1. (Craig’s interpolation theorem [Cra57]): Let 𝜑−, 𝜑+ be a pair
of formulae, such that 𝜑− ∧ 𝜑+ is unsatisfiable. Then there exists a formula
𝜓 (called Craig interpolant) that fulfills:

2.3 Satisfiability Modulo Theories 5

(i) the implication 𝜑− ⇒ 𝜓 holds,
(ii) the conjunction 𝜓 ∧ 𝜑+ is unsatisfiable, and
(iii) 𝜓 only contains symbols that occur in both 𝜑− and 𝜑+.

If we choose 𝜑− and 𝜑+ wisely, the Craig interpolant can be used in
many domains. For example, Craig interpolation plays an important role in
model checking [McM05]. Furthermore, many verification tools like SMT
solvers use some ideas of Craig interpolation to create abstractions from state
spaces or derive loop invariants, for example [CHN12]. In 2012, Christ et al.
introduced SMTInterpol, an interpolating SMT solver, which works on the
basis of Craig interpolation [CHN12].

2.4 Optimization

In general, optimization in mathematics is the process of finding the best
assignment for one or more values with respect to an optimization criterion.
A simple use case for optimization is finding an input value 𝑣 for a function 𝑓,
such that 𝑓 (𝑣) is the total minimum of the function, if such 𝑣 exists. Another
use case for optimization is solving constraint satisfaction problems (CSPs).
CSPs are optimization problems where we need to select the best assignment
from a finite set of possible assignments for several variables [BPS99].

As the cost for solving CSPs is exponential in the number of variables
there are special heuristical CSP-solvers [BPS99].

2.5 Sampling Strategies

Testing product lines is a challenging problem. If we have no further con-
straints we can generate 2𝑥 different configurations for binary features, with
𝑥 being the number of features of the product line. In theory, we should test
all those configurations to verify that the software works faultlessly and has
no configuration related faults. Since the number of configurations, which
need to be tested tends to explode in practice, we need to select particular
configurations. For this purpose, we use sampling strategies in software
verification [Med+16]. A good sampling algorithm can help to find suitable
configuration candidates to test at least big parts of the software. To meet
this target, sampling algorithms generate configurations according to the
following pattern:

1. At first, sampling algorithms generate configurations with an equal dis-
tribution of the enabled features. At best, all features are dis-/enabled
with equal frequency. To reach this target, sampling algorithms have
several differing strategies. Two of those strategies are described in
the next section.

2. Additionally, sampling algorithms can involve covering arrays. Assum-
ing that a feature is tested adequately by being tested once, the idea
behind covering arrays is to enable each feature in only one produced

6 Chapter 2 Background

configuration at best. The covering arrays are used to record, which
features are already enabled in a previously produced configuration.
Depending on those records, the algorithm will try not to enable al-
ready covered features again. This leads to the least possible number
of configurations, which covers all features at least once.

3. As not all combinations of dis- and enabled features are valid due to
feature dependencies, sampling algorithms can involve the variability
model in addition. This results in generating only valid configurations
according to the variability model.

The usage of the term “sampling” is slightly different in literature. For
our work, we use the term to name the strategy, which is used to achieve
an equal distribution of enabled features (id est only the first point of the
previous list). We decided this based on two points: first, we think that the
sampling strategy is the “core part” of the sampling algorithm. Second, the
term sampling names at least the core sampling strategy in literature. That
means, using sampling to denominate the strategy is the lowest common
denominator. The sampling algorithm, which is implemented in Simtopia

also provides this functionality only.
There are several strategies, which have proven useful. In the following

sections we want to introduce two common sampling strategies briefly.

2.5.1 T-Wise Samping

The first strategy we want to explain is called 𝑇-wise sampling. Technically,
𝑇 is a variable, which defines how many features are enabled/disabled at
once. For instance, pair-wise strategies (id est 𝑇 = 2) group the features in
equally assigned pairs. As we increase 𝑇, the sizes of the sample sets also
increase [Med+16]. That means 𝑇 is often assigned with small values (like 1,
2 or 3) in practice.

2.5.2 Random Sampling

In contrast to 𝑇-wise strategies, random sampling strategies do not select
configurations systematically. The configurations are generated randomly,
all features are enabled or disabled by chance.

2.6 The Framework Simtopia

Simtopia is a Java tool for deriving program variants from a product-line
simulator. It gets a C program and a variability model in DIMACS format as
input. It computes and returns valid product variants and their corresponding
configurations, which satisfy the variability model. Therefore, it implements
several algorithms to generate initial configurations and uses SMT solvers
to find valid assignments for the features according to the variability model
and prove the configurations’ validity. Furthermore, one can select several

2.6 The Framework Simtopia 7

Source Code

Variability Model

Set of valid
product variants

Parser Configuration
Production Slicing

T-Wise

Java SMT
interface

SMTInterpol Z3 PrincessMathSAT5

Random

Craig
InterpolationOptimization

Instantiation
Algorithm

2-Wise1-Wise 3-Wise

Sampling

Fig. 2.2 Architecture of the framework Simtopia

options for the output configurations, for example considering only features
in the output configuration, which are referenced by the C input program or
delivering configurations with the minimal or maximal number of features
enabled in the output configurations.

2.6.1 Architecture of Simtopia

Like we can see in Figure 2.2, Simtopia has three basic processing compo-
nents, namely a parser, a configuration-production module, and a slicing
module. Furthermore, Simtopia is configurable with respect to the following
configuration options:

• mode: Simtopia produces suitable configurations for the input pro-
gram. Medeiros et al. found, that testing software by using two config-
urations (one with most features enabled, the other with most features
disabled) is most efficient with respect to the number of configura-
tions, which need to be tested, and the number of faults, which are
detected [Med+16]. For that reason, Simtopia enables the minimal or
maximal number of features, which is possible based on the current
initial configuration (which is produced by the sampling algorithm and
does not consider the variability model, like explained in Section 2.5)
and the constraints of the variability model. The configuration option
of Simtopia, which expands the constraints for building output con-
figurations, is called mode and can be assigned with the values max
enabled or max disabled.

• feature mapping: Simtopia can consider the input program for pro-
ducing the output configuration. If that option is activated, features,

8 Chapter 2 Background

which are not referenced by the C input program are not considered for
building the output configuration. This includes to discard all clauses
of the variability model, which do not include referenced features. In
practice, this option is very useful if we have a valid pair of an input
program and a corresponding variability model, for which we want a
set of valid product variants as fast as possible. As we are not interested
in complete and valid product instances in this thesis but only in the
time, which is needed for the producing configurations, we deactivate
this configuration option for our work.

• feature selection: Simtopia provides the possibility of selecting ran-
domly a certain number of the features, which are mentioned in the
variability model. Feature selection is an artificial simulation of the fea-
ture mapping option. Technically, it produces a list of features, which
need to be considered for building an output configuration, similar to
the list of features, which are referenced in the input program. Like
in the feature mapping option, clauses of the variability model, which
do not contain any features of that list are discarded. In contrast to
the feature mapping option, we can control the number of features,
which are part of the list. That makes feature selection more useful for
scientific purposes, as we can use it to “norm the problem size”. This
configuration option is not useful in practice since it considers cer-
tain parts of the software randomly, without checking if this selection
makes sense.

• seeds: Simtopia uses seeds for every (semi-)random computation for
repeatability reasons. This configuration option can be used to set a
specific seed. Please note, that Simtopia uses its standard seed, if the
seed option is not set manually. That means “random” computations
of Simtopia are always “semi-random” in practice.

These are not all, but all relevant configuration options for our work.
Considering Simtopia’s configuration, the input (C input program, cor-

responding variability model) passes through the consecutively arranged
components (parser, configuration-production with solvers and slicing). In
the following, we will explain those components more detailed.

The Parser

We use the Eclipse CDT parser in our framework. The parser converts the
input in an abstract syntax tree and prepares some meta data, which is useful
later. For example, it finds the corresponding features of the variability model
and the C input program or collects data about the numbers of clauses in the
variability model.

2.6 The Framework Simtopia 9

The Configuration-Production

The production of configurations is the core part of Simtopia. Starting with
a sampling algorithm, which generates first configurations without consid-
ering the variability model, it passes through an instantiation algorithm
afterwards. Simtopia provides two variants of sampling: 𝑇-wise and random
sampling. They differ in the way they generate initial configurations. Initial
configurations are the configurations with an equal distribution of dis- and en-
abled features, which do not consider the variability model2. Both strategies
were introduced in Section 2.5. The initial configuration is transmitted to an
instantiation algorithm afterwards.

Finding valid configurations, which satisfy the variability model is a highly
complex Boolean satisfiability problem in many cases, so we use specialized
solvers, which use some heuristics. The instantiation algorithm is responsible
for phrasing the initial configuration (given by the sampling algorithm), the
constraints of the variability model, and further constraints of the configu-
ration of Simtopia (like the mode, which is described in Section 2.6.1) in a
solver-processable way 3.

Solvers

Simtopia provides several SMT solvers. They are connected to the framework
via JavaSMT, an “unified interface for SMT solvers in java” [KFB16]. Currently,
Simtopia supports MathSAT5, SMTInterpol, Z3, and Princess [Cim+13; CHN12;
MB08; Rüm17]. Please find more information about the concept of SMT
solvers in Section 2.2.

For our work, we use Z3, which is freely available SMT Solver, developed
by Microsoft Research[MB08]. It is written in C++ and supports several input
formats like SMT-LIB [RT06]. Unlike many other SMT solvers, Z3 accepts
CSPs as an input, which means it can perform optimization.

Slicing

The slicing module analyses the C input program and searches for conditions,
which contain feature variables. If the module detects such an appropriate
condition, it evaluates its current assignment using the specific configuration,
which was produced by the configuration-production module. If the assign-
ment of the condition is “false” due to the assignment of the variables, the
affected code of the C program is removed. Overall, the slicing module cre-
ates one corresponding version of the input program for every configuration,
which was computed previously.

Finally, Simtopia derives full and valid product variants, which include the
variability model, one or more configurations (created by the configuration

2Please find a detailed explanation about the configurations, which are produced by the
sampling algorithm, which is used in Simtopia in Section 2.5.

3Chapter 3 explains how the instantiation algorithms of Simtopia work in detail, the ideas
behind the instantiation algorithms are explained in the Sections 2.4 and 2.3, respectively.

10 Chapter 2 Background

productionmodule), and their corresponding processed C program (generated
by the slicing module).

2.6 The Framework Simtopia 11

3
Instantiation Algorithms

In this chapter, we explain howwe use optimization and Craig interpolation as
instantiation algorithms. As we have introduced in Section 2.6, instantiation
algorithms are used for expressing an initial configuration (which is produced
by the sampling algorithm), the variability model, and all further constraints
of Simtopia in a solver processable way1.

The instantiation algorithm is part of the configuration-production module
of Simtopia, so its goal is the generation of product configurations, which
are valid with respect to the variability model and satisfy all further con-
straints. Informally spoken, the instantiation algorithm is the link between
sampling and solving. From the sampling algorithm, we get a set of initial
configurations, which do not consider the variability model. The instantiation
algorithm combines the initial configurations, adds all further constraints
(like the variability model), and gives it to the solver. The main difference
of the different implementations is the embedding of the solver. This leads
us directly to the core idea of our work: since the specific task, which the
solver performs depends on the formulation of the problem, the solver might
be able to compute a solution faster with one of the implementations.

In this chapter we want to introduce the different implementations of
the instantiation algorithm, which are based on optimization and Craig
interpolation. At first, we will introduce the identical in- and output of both
algorithms (called “frame” in the following) and afterwards present the “core
algorithm”, which is different for optimization and Craig interpolation.

3.1 The Framework

In the following, we see the framework of both instantiation strategies.
As we can see in Interface 1, the instantiation algorithm has four input

arguments, which we will explain in the following: the first argument is
VM. VM is the variability model which is part of the input of Simtopia. As
explained in the background section, it contains information about valid
feature assignments and all dependencies between them.

The second argument is referenced in Interface 1 as a “bipartite (enabled,
undefined) set” of predefined features. IC is one specific initial configuration
of a set of configurations, which is produced by the preceding sampling
algorithm. Spread over the whole set of initial configurations, all features

1The interactions between the components of Simtopia are introduced in Section 2.6

13

Interface 1 : Frame of Instantiation Algorithm (VM, IC, R, min)
input : VM : variability model

IC : initial configuration, bipartite (enabled, undefined) set
R: set of relevant features
min: Boolean, true iff #enabled features should be
minimized in the output config, maximized otherwise

output : OC : tripartite (enabled, disabled, irrelevant) set of features,
which satisfies VM and has the minimal (or maximal,
depending on min) #enabled features

are enabled with an equal distribution by the sampling algorithm without
considering the variability model or any further constraints. That means, IC
is a temporary pre-stage of one result configuration. “Bipartite” means, that
the features are partitioned in disabled and enabled ones.

The third argument (R) is described as a set of relevant features. Initially,
all features, which are referenced in the variability model are relevant fea-
tures, so the set includes all features in the first instance. The argument
refers to the configuration options featureMapping and featureSelection of
Simtopia2). Both configuration options restrict the number of relevant fea-
tures in the variability model. By using at least one of those configuration
options, some features become irrelevant. As they are not considered for the
result configuration anymore, those features are removed from the list of
relevant features.

The last argument is the Boolean parameter min. It refers to Simtopia’s
configuration option mode. We have seen in the background that Simtopia
generates configurations with the minimal or maximal number of features
enabled. This depends on the configuration of Simtopia, which is defined by
the user before program start. If Simtopia is configured in max disabled

mode the parameter min is true, if we choose the max enabled mode min is
false.

As a result, the instantiation algorithm produces a full and valid configura-
tion with respect to all given constraints. Since the features can be enabled,
disabled or irrelevant, the output configuration OC is tripartite. The follow-
ing sections describe how the different implementations of the instantiation
algorithm generate this output configuration in detail.

3.2 Optimization Instantiation Algorithm

In the background chapter, we have learned that optimization can be used
for solving constraint satisfaction problems (CSPs), where we need to select

2Reminder: featureMapping means, that only features, which are referenced by the input
program are considered relevant for creating output configurations, featureSelection
“imitates” featureMapping by selecting randomly 𝑛 features, which are considered relevant.
The configuration options are introduced in Sections 2.6.1 and 2.6.1

14 Chapter 3 Instantiation Algorithms

the best assignment from a finite set of possible assignments for many vari-
ables [BPS99]. The idea of using optimization for configuration-production
purposes is as follows: wewant to formulate the “feature-assignment-problem”
as a CSP.The “variables” are features, which can be disabled or enabled, so the
“finite set of possible assignments” for the variables is {0, 1}, the optimization
criterion is finding the configuration with the minimal/maximal number of
enabled features, which satisfies the variability model. We will model the
CSP as a constraint system with a weighted objective function, which is
minimized by the solver in the end.

Since we have explained the in- and output parameters of the algorithm in
the last section, we only need to introduce some naming conventions here:
𝑠𝑒𝑡𝑁𝑎𝑚𝑒𝑒 be the subset of features, which are enabled, 𝑠𝑒𝑡𝑁𝑎𝑚𝑒𝑑 be the
subset of features, which are disabled and 𝑠𝑒𝑡𝑁𝑎𝑚𝑒𝑖 be the subset of features,
which are irrelevant. Furthermore features can be undefined. 𝑠𝑒𝑡𝑁𝑎𝑚𝑒𝑢 be
the subset of features, which are undefined.

Now, we will go through the optimization instantiation, which can be seen
in Algorithm 2:

The algorithm starts with some declarations. U defines all undefined
features, which are not enabled in IC but still relevant, I names the rest of
the disabled features in IC, which are irrelevant according to the list R. A
“delta valuation” is a data type for a temporary assignment of the features.
In partitions the features in three groups (enabled, disabled, and irrelevant).
DV defines the initial assignment of all features with respect to the result of
the sampling algorithm, which is neither optimal nor correct with respect to
the variability model or further constraints.

In the following steps, we formulate a constraint satisfaction problem:
First, we convert VM in its Boolean formula representation bVm and model it
as constraints in the constraint system cs. The relations between the features
in the variability model define the constraints in cs. Then, generate the
integer representation of every feature f in 𝐷𝑉𝑒 ∪ 𝐷𝑉𝑑 and determine that
all features can only be assigned with 0 or 1. We add this as a constraint in
cs. Thus, we create the finite set of possible assignments for the variables,
which is needed for solving CSPs. Line 8 shows the core of the algorithm: at
this point, we create an objective function 𝑡 consisting of weighted features
(more specific, the feature’s integer representation), which are part of 𝐷𝑉𝑒
or 𝐷𝑉𝑑. The weights are depending on the optimization goal. The solver
always performs minimization. So if we want to maximize the number of
enabled features we weight all of them with an equal negative integer (−1),
so that enabling them improves the situation according to the optimization
goal. If we want to minimize the number of enabled features we distinguish
two cases:

1. the feature is disabled in the initial configuration DV. As we want to
disable most of the features, we want the feature to stay disabled in the
result configuration, except it needs to be enabled due to any further
constraints (like the variability model). Hence, we weight it with an

3.2 Optimization Instantiation Algorithm 15

Algorithm 2 : OptimizationInstantiationAlgorithm(VM, IC, R, min)
input : VM : variability model

IC : initial configuration, bipartite (enabled, undefined) set
R: set of relevant features
min: Boolean, true iff #enabled features should be
minimized in the output config, maximized otherwise

output : OC : tripartite (enabled, disabled, irrelevant) set of features,
which satisfies VM and has the minimal (or maximal,
depending on min) #enabled features

begin

// Initializations:

1 U ←(𝐼𝐶𝑢∩ R), I ←(𝐼𝐶𝑢\ R)

2 𝐷𝑉 ←

⎧{{{
⎨{{{⎩

𝐷𝑉𝑒 ← 𝐼𝐶𝑒

𝐷𝑉𝑑 ← U

𝐷𝑉𝑖 ← I

// Construct CSP:

3 bVM ←generateBooleanRep(VM)

4 cs ←generateConstraintSys(bVm)

5 for ∀ features 𝑓 ∈ 𝐷𝑉𝑒 ∪ 𝐷𝑉𝑑 do

6 𝑓 ←generateIntegerRep(f)

7 𝑐𝑠.addConstraint(𝑓 ∈ {0, 1})

8 Create an objective function t for cs as:

t = ∑
𝑓 ∈ 𝐷𝑉𝑒 ∪ 𝐷𝑉𝑑

𝑓 ∗ 𝑤𝑓 where 𝑤𝑓 =

⎧{{{
⎨{{{⎩

−1 if ¬min

𝑀𝐴𝑋_𝐼𝑁𝑇 if 𝑓 ∈ 𝐷𝑉𝑑

1 otherwise

// Create output configuration

9 solver.minimize(t, cs)

10 𝑂𝐶 ←

⎧{{{
⎨{{{⎩

𝑂𝐶𝑒 ← 𝑚.𝑓𝑒

𝑂𝐶𝑑 ← 𝑚.𝑓𝑑

𝑂𝐶𝑖 ← 𝐼

11 Return 𝑂𝐶.

16 Chapter 3 Instantiation Algorithms

 ψφ− φ+

Fig. 3.1 Schematic representation of Craig Interpolation

solver checks if the initial assignment of the features in 𝜑+ contradicts the
constraints in 𝜑−. If the assignment does not contradict the constraints we
found the output configuration already.

If we did not find a solution the solver creates the Interpolant 𝜓 which tells
us all features in 𝜑+ whose assignment is invalid according to the constraints
in 𝜑−. So we change the assignment of those features in 𝜑+. Thus, 𝜑+ “moves
closer” to 𝜑−. Then we start again checking if the “new” 𝜑+ and 𝜑− are now
satisfiable. We stop this process, when we found an assignment which is
satisfiable.

As we understand the core idea of Craig Interpolation as an instantiation
algorithm now, we will take a look at the algorithm’s steps.

Analog to the naming conventions for the Optimization instantiation
algorithm, 𝑠𝑒𝑡𝑁𝑎𝑚𝑒𝑒 be the subset of features which are enabled, 𝑠𝑒𝑡𝑁𝑎𝑚𝑒𝑑
be the subset of features which are disabled and 𝑠𝑒𝑡𝑁𝑎𝑚𝑒𝑖 be the subset of
features which are irrelevant. 𝑠𝑒𝑡𝑁𝑎𝑚𝑒𝑢 be the subset of features which are
undefined.

Again, the algorithm starts with some some declarations. dontCareButRel-
evant again defines all features which are not enabled in partConfig but still
relevant, dontCareAndIrrelevant represents the rest of the disabled features
in partConfig which are not relevant according to the list relevant. initialDV
defines the initial assignment of all features depending on the minimize. If
the number of enabled features should be minimized all features are disabled
initially and vice versa. We add initialDV to a worklist w.

The following part is repeated until w is empty. We start with constructing
a Craig Interpolation problem with 𝜑− being the conjunction of the boolean
representation of fm and partConfig. 𝜑+ is the boolean formula representation
of the first entry of w called prevDV, which is the delta valuation with
the current feature assignment. Now the solver checks if 𝜑+ and 𝜑− is
satisfiable, viz. the assignment of the features in prevDV does not contradict
fm or partConfig. If it is satisfiable we found the a solution for the feature
assignment already and can construct the output configuration fullVariant
according to lines 12 and 14 of the algorithm 3. We delete prevDV from w to
end the loop.

3.3 Craig Interpolation Instantiation Algorithm 15

[2017-10-04 at 18:48 – classicthesis]

Fig. 3.1 Schematic representation of Craig interpolation

equal high positive integer (MAX_INT, id est, 2 147 483 647 in Java) in
order to benefit if it stays switched off.

2. the feature is enabled in the initial configuration DV. Those features
should stay enabled since otherwise we would discard the result of the
sampling algorithm. Since we do not want that they are switched off,
we give them a small weight, namely 1.

In the next step, the solver performs the optimization. Let 𝑚.𝑓 be one
specific feature 𝑓 in a satisfiable model 𝑚 for 𝑐𝑠 with respect to the solver. 𝑓𝑒
is a feature, which is enabled, 𝑓𝑑 is a disabled feature. We convert the solver’s
model, which satisfies all constraints and has the minimal solution for 𝑡 into
the result configuration OC. OC is returned and the algorithm terminates.

3.3 Craig Interpolation Instantiation Algorithm

Craig interpolation is a highly versatile technique, which has proven useful for
many different purposes [Cra57; McM05; CHN12]. We use Craig interpolation
as an approximation tool in the instantiation algorithm. In Figure 3.1, we see
a schematic representation of Craig’s interpolation theorem.

In our work, 𝜑− represents the constraints (the variability model) and 𝜑+

represents the initial assignment of the features, which is depending on the
mode of Simtopia, and the partial configuration from the sampling algorithm.
The initial assignment is not considering the variability model and therefore,
is not necessarily valid. Hence, the solver checks if the assignment of the
features in 𝜑+ contradicts the constraints in 𝜑−. If the assignment does not
contradict the constraints we found the output configuration already, namely
the assignment in 𝜑+.

If the assignment contradicts 𝜑− the solver creates the interpolant 𝜓, which
tells us all features in 𝜑+ whose assignment is invalid with respect to the
constraints in 𝜑−. So we change the assignment of those features in 𝜑+.
Thus, 𝜑+ “moves closer” to 𝜑−. Then we start again checking if the “new” 𝜑+

and 𝜑− are satisfiable. We stop this process, when we find an assignment,
which is satisfiable.

3.3 Craig Interpolation Instantiation Algorithm 17

Algorithm 3 : CraigInterpolationInstantiationAlgorithm(VM, IC, R, min)

input : VM : variability model
IC : initial configuration, bipartite (enabled, undefined) set
R: set of relevant features
min: Boolean, true iff #enabled features should be
minimized in the output config, maximized otherwise

output : OC : tripartite (enabled, disabled, irrelevant) set of features,
which satisfies VM and has the minimal (or maximal,
depending on min) #enabled features

begin

// Initializations:

1 U ←(𝐼𝐶𝑢 ∩ R), I ←(𝐼𝐶𝑢\ R)

2 𝐼𝐷𝑉 ←

⎧{{{{{{{
⎨{{{{{{{⎩

𝐼𝐷𝑉𝑒 ←
⎧{{
⎨{{⎩

∅ if 𝑚𝑖𝑛

U else

𝐼𝐷𝑉𝑑 ←
⎧{{
⎨{{⎩

U ; if 𝑚𝑖𝑛

∅ else

𝐼𝐷𝑉𝑖 ← I

3 𝑊.𝑝𝑢𝑠ℎ(IDV)
4 while 𝑊 is not empty do

// Conversions:

5 BVM←generateBooleanFormulaRep(VM)

6 BIC ←generateBooleanFormulaRep(IC)

7 prevDV ←𝑊.𝑔𝑒𝑡𝐹𝑖𝑟𝑠𝑡()

8 𝑂𝐶 ←

⎧{{{
⎨{{{⎩

𝑂𝐶𝑒 ← (𝑝𝑟𝑒𝑣𝐷𝑉𝑒 ∪ (IC𝑒\𝑝𝑟𝑒𝑣𝐷𝑉𝑑))\ (𝑝𝑟𝑒𝑣𝐷𝑉𝑖 ∪ 𝐼)

𝑂𝐶𝑑 ← 𝑝𝑟𝑒𝑣𝐷𝑉𝑑\(𝑝𝑟𝑒𝑣𝐷𝑉𝑖 ∪ 𝐼)

𝑂𝐶𝑖 ← (𝑝𝑟𝑒𝑣𝐷𝑉𝑖 ∪ 𝐼)

// Construct a Craig interpolation problem:

9 𝜑− ←BVM, 𝜑+ ←setPhi+(prevDV, OC)

10 SAT ←solver.isSAT(𝜑−, 𝜑+)

11 if ¬ SAT then

12 itp ←solver.getITP(), itpConfig ←generateFeatureSet(itp)

- Please note that the algorithm continues on the next page -

18 Chapter 3 Instantiation Algorithms

14 𝑛𝑒𝑥𝑡𝐷𝑉 ←
⎧{{
⎨{{⎩

𝑛𝑒𝑥𝑡𝐷𝑉𝑒 ← (𝑝𝑟𝑒𝑣𝐷𝑉𝑒 ∪ itpConfig𝑒)\itpConfig𝑑
𝑛𝑒𝑥𝑡𝐷𝑉𝑑 ← (𝑝𝑟𝑒𝑣𝐷𝑉𝑑 ∪ itpConfig𝑑)\itpConfig𝑒
𝑛𝑒𝑥𝑡𝐷𝑉𝑖 ← 𝐼

15 checked ←isAlreadyChecked(nextDV)
16 if checked then

17 𝑛𝑒𝑥𝑡𝐷𝑉 ←
⎧{{
⎨{{⎩

𝑛𝑒𝑥𝑡𝐷𝑉𝑒 ← 𝑝𝑟𝑒𝑣𝐷𝑉𝑒\itpConfig
𝑛𝑒𝑥𝑡𝐷𝑉𝑑 ← 𝑝𝑟𝑒𝑣𝐷𝑉𝑑\itpConfig
𝑛𝑒𝑥𝑡𝐷𝑉𝑖 ← 𝑝𝑟𝑒𝑣𝐷𝑉𝑖 ∪ itpConfig

18 𝑊.𝑑𝑒𝑙𝑒𝑡𝑒(𝑝𝑟𝑒𝑣𝐷𝑉)
19 𝑊.𝑝𝑢𝑠ℎ(𝑛𝑒𝑥𝑡𝐷𝑉)
20 else
21 if 𝑂𝐶𝑖 ≠ ∅ then
22 BOC←generateBooleanFormulaRep(OC)
23 𝑚 = solver.getModel(BOC, BVM)

24 𝑂𝐶 ←
⎧{{
⎨{{⎩

𝑂𝐶𝑒 ← 𝑚𝑒\𝐼
𝑂𝐶𝑑 ← 𝑚𝑑\𝐼
𝑂𝐶𝑖 ← 𝐼

25 𝑊.𝑑𝑒𝑙𝑒𝑡𝑒(𝑝𝑟𝑒𝑣𝐷𝑉)
26 Return OC

3.3 Craig Interpolation Instantiation Algorithm 19

As we now understand how to use Craig interpolation in our instantiation
algorithm, we will take a closer look at the steps of the Craig interpolation
instantiation in Algorithm 3.

Analogously to the naming conventions for the optimization instantiation
algorithm, let 𝑠𝑒𝑡𝑁𝑎𝑚𝑒𝑒 be the subset of features, which are enabled, let
𝑠𝑒𝑡𝑁𝑎𝑚𝑒𝑑 be the subset of features, which are disabled, 𝑠𝑒𝑡𝑁𝑎𝑚𝑒𝑖 the subset
of features, which are irrelevant, and 𝑠𝑒𝑡𝑁𝑎𝑚𝑒𝑢 the subset of features, which
are undefined.

Again, the algorithm starts with some declarations. U defines all undefined
features, which are not enabled in IC but still relevant, I represents the rest
of the disabled features in IC, which are irrelevant according to the list R.
IDV is the initial delta valuation, which defines the initial assignment of all
features depending on the min. If the number of enabled features should be
minimized all features are disabled initially and vice versa. We add IDV to a
worklist W.

The following part is repeated until W is empty. We start with some
conversions and initializations: BVM be the Boolean formula representation
of VM and BIC for IC. prevDV is the first entry of W. Then we construct a
provisional output configuration OC, which would be optimal with respect
to IC and IDV.

Then we construct a Craig interpolation problem with 𝜑− being the
Boolean representation of VM (BVM). 𝜑+ is generated from the delta valua-
tion with the current feature assignment prevDV and OC (which additionally
includes parts of IC for example). Now the solver checks if 𝜑+ ∧ 𝜑− is
satisfiable (SAT), namely if the assignment of the features in 𝜑+ does not
contradict the variability model. If it is satisfiable we found a solution for
the problem. In line 23, we get the assignment for the features of the solver’s
model 𝑚 and can distribute the features in OC according to 𝑚. Then, we
delete prevDV from W to end the loop and the return OC.

If 𝜑+ and 𝜑− is not satisfiable (¬ SAT) the solver creates an interpolant
itp and its binary feature representation itpConfig. According to Craig’s
interpolation theorem itp consists of all features, which occur in both, 𝜑+ and
𝜑− (statement (iii) of theorem), but with different assignments (statement
(ii) of theorem). So we build a new data valuation nextDV according to
itpConfig in line 10. In line 11 we check if we already tested the same
data valuation before to avoid infinite loops. If we did have the same delta
valuation before, we create another delta valuation nextDV, which ignores all
values in itpConfig, which lead to the contradiction of 𝜑+ and 𝜑−. In both
cases, we now delete prevDV and push nextDV to W. As W is not empty
here, we start again at line 4 of the algorithm.

20 Chapter 3 Instantiation Algorithms

4
Study

4.1 ResearchQuestions

Our goal is the comparison of optimization and Craig interpolation for gen-
erating minimal and maximal configurations. As we have explained each
algorithm in the previous chapter, we now want to compare both algorithms
on several aspects to answer the following research questions:

• RQ1. Which instantiation algorithm is more efficient for different
complexities (measured in number of features per variability model)
of variability models?

• RQ2.1 Which instantiation algorithm is more efficient for 1- or 2-wise
sampling?

• RQ2.2 Which instantiation algorithm is more efficient for random
sampling?

• RQ3. Which instantiation algorithm is more efficient for different
configuration modes (max disabled/max enabled)?

4.2 Operationalization

The basic structure of the study is as follows: for all experiments we have
two corresponding runs, which use different instantiation algorithms but
the same configuration of Simtopia apart from this. We measure the time of
both runs and compare them. For designing our experiments in detail, we
need to specify the values of the following terms (id est for the experiment
variables), which are used in our research questions:

• For RQ1.: Which numbers of features do we use for testing different
complexities?

• For RQ2.: How many configurations do we generate?

In the following paragraph, we shall answer these questions.
The first question concerns the complexity of the variability models. For

our experiments we choose the values 10 and 100 for the number of features
𝑛 to show the runtime differences for very small and bigger (parts of) vari-
ability models, which need to be considered by instantiation algorithm and

21

solver. There are multiple options how we can generate suitable test sets with
exactly 𝑛 features. We use the “featureSelection” option of Simtopia, which
is discussed in Section 2.6.1 of the background chapter. In the following,
we will reference this parameter by “# features” or “𝑛 considered features.”
We use the limited number of features as an indicator for the complexity of
the problem, which has to be solved. A second indicator for complexity of
variability models could be the number of clauses of a variability model. We
decided not to run some extra experiments for different numbers of clauses,
as we see that those two dimensions are not independent. Variability models
with many features usually have many clauses and vice versa. That means
we do not expect strongly differing results for both criteria. Still, we will
mark the amount of clauses of the variability model per each experiment.

The second question concerns the number of generated configurations. For
our studies we will use Random and 𝑇-wise sampling. Medeiros et al. found
that “simple algorithms with small sample sets […] are the most efficient in
most contexts” [Med+16]. As the sample sets of 𝑇-wise-sampling are getting
bigger for higher values of 𝑇, we have decided to use one- and pair-wise-
sampling, id est 𝑇 = {1, 2}. This assignment gives us a fixed number of
returned configurations defined by the binomial coefficient (𝑛

𝑘), for example
(3

2) = 3 configurations for three features (defining 𝑛) with pairwise sampling
(defining 𝑘), if we have no further constraints.

If we use random sampling (and do not have further constraints) our natural
upper limit of configurations, which can be produced would be 2𝑛 with 𝑛
being the number of binary features. That means we can get eight different
configurations for three features. As the number of possible configurations
is exploding for bigger values of 𝑛 we need an expedient upper bound 𝑏 for
the number of returned configurations. We make three experiments with
𝑏 = {10, 100, 1000}.

Now, we have specified all variables and values, which we need for an-
swering the research questions. Summing up, we get the following list of
variables and values (where each line begins with the name of the variable
and is followed by the values):

• the instantiation algorithm: {optimization, Craig interpolation}

• the sampling algorithm: {random, one-wise, pair-wise}

• the complexity of the variability model in features: {10, 100}

• the mode: {max enabled, max disabled}

• the variability model: {busybox, linux, …} (80 models in total)

One test case consists of a combination of specific values, whereby every
variable needs to be assigned with exactly one value. To answer RQ3, for
example, we generate two experiments: one is including all test cases with
max enabledmode, 100 features, and 𝑇-wise sampling with 𝑇 = 1, the other

22 Chapter 4 Study

Experiment Variables

RQ Independent
Variables

Dependent
Variables

Controlled
Variables

RQ 1
complexity of VM
(# features = {10, 100}),
instantiation algorithm

CPU-time
sampling algorithm
(𝑇-wise, 𝑇=1),
mode (max disabled)

RQ 2.1
sampling algorithm
(𝑇-wise, 𝑇={1, 2}),
instantiation algorithm

CPU-time
mode (max disabled),
complexity of VM
(# features = 100)

RQ 2.2

sampling algorithm
(random, # configs =
{10, 100, 1 000}),
instantiation algorithm

CPU-time
mode (max disabled),
complexity of VM
(# features = 100)

RQ 3

mode (mode =
{max enabled,
max disabled }),
instantiation algorithm

CPU-time

sampling algorithm
(𝑇-wise, 𝑇=1),
complexity of VM
(# features = 100)

Tab. 4.1 List of independent, dependent, and controlled variables

includes all test cases with max disabled mode, 100 features, and 1-wise
sampling.

To ensure the validity of the result values, we categorized the variables
in independent, dependent, and controlled variables as defined in Table 4.1.
We use VM as a short term for variability model in the table. The first
category (independent variables) includes the variables, whichwe deliberately
determine in our experiments, the second category (dependent variables)
determines the variables, which are depending on the changes in variables
of the first category (this is the variable we use for measuring), and the
third category (controlled variables) are the variables, which are fixed to not
influence the result (id est the CPU time) in uncontrollable ways.

Our experiments are designed on the basis of this table.

4.3 Evaluation Environment

For our study we use the framework Simtopia and the Z3 SMT Solver.
Although Simtopia can use several SMT solvers, we use the Z3 Solver for

our study because of the plurality of its features. As we have explained in
the background chapter, Z3 can both solve CSPs and problems in CNF syntax
and therefore solve the problems created by both instantiation algorithms.
That means we have only one solver for two types of problems, which makes
our results more comparable.

The evaluation is performed on a cluster consisting of eight machines with
an i7-4770 processor with 4 CPU cores and 32 GB RAM each. The operating

4.3 Evaluation Environment 23

system is Ubuntu. We use only 2 CPU cores, limit the memory usage per run
to 5 000 MB and the execution time to 80 000 s.

To make our results more reliable we use two sorts of time measurement:
The first one is used for the actual results of the study, the second one
to review the actual results. The first time measurement is generated by
the internal time stamp of Java, where we measure from the start of the
instantiation algorithm until the delivery of the full valid configurations. The
second one produced by the software BenchExec, which describes itself as “a
framework for reliable benchmarking and resource measurement” [BLW15].
As BenchExec can only measure the time for a whole run, we run Simtopia

twice: the first time we stop before the configuration production, the second
time we stop after. Thus, we get two separate measurements, which we
subtract. Hence, we measure the same time period as we measure using the
first method.

4.4 Performance Evaluation

In the following, we analyze the performance of the algorithms for the
different experiments. For our evaluation, we dropped all runs, which did
not pass without faults. These are all runs, which stopped with a timeout
(which was a marginal number) or a segmentation fault (which are caused
by internal errors of the Z3 solver).

0.1 100 101 102
time for optimization (s)

0.1

100

101

102

tim
e

fo
r

cr
ai

g
(s

)

Max Disabled, 10 f.

(a) CPU-time for little complexities
of variability models (10 considered
features)

0.1 100 101 102 103 104

time for optimization (s)

0.1

100

101

102

103

104

tim
e

fo
r

cr
ai

g
(s

)

Max Disabled, 100 f.

(b) CPU-time for higher complexities
of variability models (100 considered
features)

Fig. 4.1 RQ1

In general, we use plots with logarithmic time axes. The 𝑦-axis represents
the CPU-time in seconds which was needed for the same input of Simtopia
by the Craig interpolation instantiation algorithm, the 𝑥-axis shows the CPU-
time in seconds of the optimization instantiation algorithm. That means,
one point is defined by the time that both instantiation algorithms needed

24 Chapter 4 Study

0.1 100 101 102 103 104

time for optimization (s)

0.1

100

101

102

103

104
tim

e
fo

r
cr

ai
g

(s
)

Max Disabled, 100 f.

(a) CPU-time for 1-wise sampling

0.1 100 101 102 103 104

time for optimization (s)

0.1

100

101

102

103

104

tim
e

fo
r

cr
ai

g
(s

)

Max Disabled, 100 f.

(b) CPU-time for 2-wise sampling

Fig. 4.2 RQ2.1

for a certain problem. The grey line in the middle helps us to identify the
distribution of the problems, for which the Craig interpolation/the optimiza-
tion instantiation algorithm is faster. The color of the points is defined by
the number of clauses of the processed variability models. We can see the
allocation of colors and the ranges of the number of clauses, for example, in
Figure 4.1b.

In order to answer RQ1, we filter our test cases according to Table 4.1,
id est we include all runs with max disabled mode, sampling algorithm is
1-wise, and # selected features is 10 in Figure 4.1a and 100 in 4.1b in our
evaluation figure (Figure 4.1).

As we can see easily, the performance of optimization instantiation is better
in most cases. It is faster for ca. 66% of all successful runs for 10 considered
features. It performs even better for 100 features where it is faster in about
75% of the test cases. In general, all points are close together and ordered
by the number of clauses (more ore less). But yet, the distribution of the
red points is conspicuous: almost every run with a very complex variability
model (with more than 5 000 clauses to consider) can be done faster with
the Craig interpolation instantiation algorithm. Overall, we note that the
complexity of variability models (measured in the number of considered
features) has less influence on the runtime than the total number of clauses
of the variability model.

As shown in Table 4.1, the second performance evaluation includes all
runs with max disabled mode, 100 considered features, and 1- or 2-wise
sampling. Using Figure 4.2 we can determine if one instantiation algorithm is
faster in combination with 𝑇-wise sampling algorithms (RQ2.1). Figure 4.2a
shows the results for the runs using 1-wise sampling, Figure 4.2b shows the
results for runs with 2-wise sampling. Again, we can see that optimization
performs better in most cases.

4.4 Performance Evaluation 25

0.1 100 101 102 103
time for optimization (s)

0.1

100

101

102

103

tim
e

fo
r

cr
ai

g
(s

)

Max Enabled, 10 c.

(a) CPU-time using
Random Sampling (10
Candidates)

0.1 100 101 102 103 104

time for optimization (s)

0.1

100

101

102

103

104

tim
e

fo
r

cr
ai

g
(s

)

Max Enabled, 100 c.

(b) CPU-time using
Random Sampling (100
Candidates)

0.1 100 101 102 103 104 105

time for optimization (s)

0.1

100

101

102

103

104

105

tim
e

fo
r

cr
ai

g
(s

)

Max Enabled, 1000 c.

(c) CPU-time using Ran-
dom Sampling (1 000
Candidates)

Fig. 4.3 RQ2.2

Unsurprisingly, the figure on the left looks very similar to Figure 4.1b. If
we compare the experiments we will notice that the input values are the
same both times.

The main difference between both experiments is the growing number of
configurations, which is produced by the sampling algorithm for growing
𝑇. The problems, which have to be expressed by the instantiation algorithm
are very similar for different 𝑇. By comparing both plots, we can see that
Craig interpolation instantiation scales poorly for 𝑇-wise sampling. That
means, if Craig interpolation instantiation is slower for 1-wise sampling, the
performance difference will be even higher for 2-wise sampling. We can see
this phenomenon in Figure 4.2b, as the “time-gap” between the instantiation
algorithms is raising.

The results for the instantiation algorithms in combination with random
sampling are really similar for each experiment. We use the experiments
to answer RQ2.2. The main difference between the three experiments is
the number of configurations, which are created by random sampling: in
Figure 4.3a we see the time measurements for 10 configurations, Figure 4.3b
shows the results for 100 configurations, Figure 4.3c shows the results for
1 000 initial configurations. We consider 100 features to create those config-
urations. The mode for the experiments is max disabled.

As a result of the growing numbers of configurations the total time, which
is needed by the instantiation algorithms, is growing. However, unlike in
Figure 4.2, the time differences between the different instantiation algorithms
are not growing for different experiments. That means, that the Craig inter-
polation instantiation algorithm scales better for the configurations, which
are produced by random sampling (compared to the experiments with 𝑇-wise
sampling). One more difference is, that Craig interpolation instantiation can
not perform better for a special type of variability models with respect to
their number of clauses.

In Figure 4.4 we can see a comparison of the modes max disabled (Fig-
ure 4.4a) and max enabled (Figure 4.4b), which we use to answer RQ3. The

26 Chapter 4 Study

0.1 100 101 102 103 104

time for optimization (s)

0.1

100

101

102

103

104
tim

e
fo

r
cr

ai
g

(s
)

Max Disabled, 100 f.

(a) CPU-time for max disabled mode

0.1 100 101 102 103 104

time for optimization (s)

0.1

100

101

102

103

104

tim
e

fo
r

cr
ai

g
(s

)

Max Enabled, 100 f.

(b) CPU-time for max enabled mode

Fig. 4.4 RQ3

number of considered features is 100. We use 1-wise sampling. The first
experiment (shown in Figure 4.4a) is equivalent to the one in Figure 4.1b.

Like in all the other experiments, optimization instantiation performs
better for most test cases. Furthermore, we see that the max enabled mode
“tightens” the time values. The main part of the runs needed a similar time
for the same instantiation algorithm, with the exception of the red points.
Those red points represent very complex variability models with more than
5 000 clauses. We can not really explain this distribution without looking at
the heuristics of the Z3 solver. As an analysis of the heuristics of Z3 is not in
the scope of this work, we can just provide our observations here.

4.4 Performance Evaluation 27

5
Discussion

In this chapter we want to discuss the results of our performance evaluation.

5.1 Valuation of the Results

In our work, we compared the performance of two different algorithms
(based on Craig interpolation and optimization) for generating minimal and
maximal configurations with respect to the variability model. In the last
chapter we have presented several experiments, which test the algorithms in
combination with different preceding sampling algorithms or under specific
conditions, like different complexities of variability models.

In general, we have seen that both instantiation algorithms can solve the
problem of generating minimal or maximal configurations. On average, the
time is raising for both algorithms with growing numbers of configurations
to create. As we can see in Figure 4.1a, both algorithms are able to create
10 configurations in less than one second at best. Using pair-wise sampling,
the algorithms need to process about 4 950 initial configurations (given by
the binomial coefficient 𝑛 choose 𝑘 with 𝑛 = 100 and 𝑘 = 2). As shown
in Figure 4.2b, this took both instantiation algorithms about 0.25 h at least.
However, there are big differences for the upper time-bound, which is needed:
the Craig interpolation instantiation algorithm needs more than one day (as
105s ≈ 27.778 hours) to process all configurations while the optimization
instantiation algorithm needs about 2.8 h at most.

The answers for the research questions are as follows:

• A.RQ1. Optimization instantiation performs better for most of the test
cases. However, there is some indication that creating a Craig inter-
polant is efficient for a special type of problems: for test cases whose
variability model contains more than 5 000 clauses, in max disabled
mode, and with initial configurations generated by 𝑇-wise sampling,
Craig interpolation instantiation is at least as fast as optimization.

• A.RQ2.-3. Overall, we have seen that the optimization instantiation
algorithm performs better for most cases in all experiments. This
indicates that solving a CSP can be done more efficiently than creating
an interpolant by the Z3 solver.

The results, which we have summarized above depend on some more
environmental influences, which are discussed in the following section.

29

5.2 Validity

For our study, we strove general validity. For instance, to achieve better intern
and extern validity we eliminated random (and therefore incontrollable)
decisions by using a seed. By using the internal timemeasurement of Java and
the benchmarking tool BenchExec in addition, we enhance the significance
of the time measurements. Furthermore, we set the JVM flag “-Xcomp”. This
prevents the JIT compiler to perform different efficiency-optimizations on
different test cases and therefore makes the results more comparable. We
determined controlled variables (as we can see in Table 4.1), to ensure that
only the desired variables of Simtopia influence the CPU time. Using the
Z3 solver, which can solve both types of problems (CSPs and creating an
interpolant), helps to improve the comparability of the time measurements
even more.

Still, there are some threats to validity, which we discuss in the following
section.

5.2.1 Threats to Validity

As explained before, using the Z3 solver has the advantage of making the
time measurements more comparable. However, it has some disadvantages
concerning internal and external validity: first, Z3 causes many segmentation
faults due to some internal errors. As the number of test cases stopping
with segmentation faults constituted up to 20%, the number of segmentation
faults had a major influence on the number of successfully executed runs.
This has an negative influence on the internal validity of the experiments.
Second, using Z3 has a massive impact on the external validity: as all solvers
use different heuristics to compute their results, we can not really tell if the
time-distribution would be different if we would have used a different solver.
Maybe, there are other solvers where Craig interpolation instantiation would
have been faster for most test cases.

Another, but less serious threat on external validity is one detail of the
implementation of Simtopia: the framework does not use covering arrays
(which were introduced in this section of the background). That means, we
produce more configurations than may be useful in practice. If it takes one
instantiation algorithm a long time to produce a configuration, which is not
needed in the end, this may influence the total runtime for a test case. We can
not make any assumptions how the runtime would change if the sampling
algorithm would use covering arrays for creating initial configurations.

5.3 Future Work

To counteract some threats to validity on the one hand, and get more gener-
alizable results on the other hand, we discuss some possible improvements
in this section.

At first, we would suggest to make more experiments to explore the trend
that Craig interpolation instantiation is faster for especially complex variabil-

30 Chapter 5 Discussion

ity models with more than 5 000 clauses in some experiments. As we do not
have significant numbers of such complex variability models, we first need
to validate that there is any trend in fact. After that, making some specific
experiments to reproduce this effect using more test cases and maybe find
some more similarities between those problems can possibly even open up
new fields for using the Craig interpolant.

Second, using different SAT solvers (like MathSAT5) or integrating a spe-
cialized CSP solver can improve the external validity of our experiments and
generate interesting results concerning the runtime differences for the same
problem for different solvers.

Also, performing a detailed runtime analysis on the instantiation algo-
rithms can be useful in order to get a better performance for both algorithms.
Eliminating useless calls or operations can improve (id est shorten) the time,
which is needed and increase the correctness of the time measurement.

5.3 Future Work 31

6
Conclusion

In this thesis, we introduced two algorithms for generating minimal and
maximal configurations, namely optimization instantiation and Craig inter-
polation instantiation. We implemented them in the framework Simtopia.
As both algorithms link the sampling algorithms and the SMT solver in dif-
ferent ways, the choice of the instantiation algorithm leads to differences in
the times, which is needed to create the same set of configurations.

The evaluation and discussion of these differences indicates that Craig
interpolation instantiation may have some specific strengths in processing
very complex variability models (measured in the number of clauses). How-
ever, we found that optimization instantiation is the preferable algorithm for
the purpose of generating minimal and maximal configurations using the Z3
solver.

33

Appendices

35

7
Bibliography

[Ape+13] Sven Apel, Don S. Batory, Christian Kästner, and Gunter Saake.
“Feature-Oriented Software Product Lines - Concepts and Im-
plementation”. Springer, 2013. isbn: 978-3-642-37520-0 (cited on
pp. 1, 3, 4).

[Bar+09] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Ce-
sare Tinelli. “Satisfiability Modulo Theories”. In: Handbook of
Satisfiability. 2009, pp. 825–885 (cited on p. 5).

[Bar77] Jon Barwise. “Handbook of Mathematical Logic”. North-Holland,
1977 (cited on p. 5).

[BLW15] Dirk Beyer, Stefan Löwe, and Philipp Wendler. “Benchmarking
and Resource Measurement”. In: Model Checking Software - 22nd
International Symposium, SPIN 2015, Stellenbosch, South Africa,
August 24-26, 2015, Proceedings. 2015, pp. 160–178 (cited on p. 24).

[BPS99] Sally C. Brailsford, Chris N. Potts, and Barbara M. Smith. “Con-
straint satisfaction problems: Algorithms and applications”. In:
European Journal of Operational Research 119.3 (1999), pp. 557–
581 (cited on pp. 6, 15).

[CHN12] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. “SMTInter-
pol: An Interpolating SMT Solver”. In: Model Checking Software -
19th International Workshop, SPIN 2012, Oxford, UK, July 23-24,
2012. Proceedings. 2012, pp. 248–254 (cited on pp. 5, 6, 10, 17).

[Cim+13] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma,
and Roberto Sebastiani. “The MathSAT5 SMT Solver”. In: Tools
and Algorithms for the Construction and Analysis of Systems -
19th International Conference, TACAS 2013, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings. 2013,
pp. 93–107 (cited on pp. 5, 10).

[Coo71] Stephen A. Cook. “The Complexity of Theorem-Proving Proce-
dures”. In: Proceedings of the 3rd Annual ACM Symposium on
Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA.
1971, pp. 151–158 (cited on p. 4).

[Cra57] William Craig. “Linear Reasoning. A New Form of the Herbrand-
Gentzen Theorem”. In: J. Symb. Log. 22.3 (1957), pp. 250–268
(cited on pp. 5, 17).

37

http://dx.doi.org/10.1007/978-3-642-37521-7
http://dx.doi.org/10.1007/978-3-642-37521-7
http://dx.doi.org/10.3233/978-1-58603-929-5-825
http://dx.doi.org/10.1007/978-3-319-23404-5_12
http://dx.doi.org/10.1007/978-3-319-23404-5_12
http://dx.doi.org/10.1016/S0377-2217(98)00364-6
http://dx.doi.org/10.1016/S0377-2217(98)00364-6
http://dx.doi.org/10.1007/978-3-642-31759-0_19
http://dx.doi.org/10.1007/978-3-642-31759-0_19
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://dx.doi.org/10.1145/800157.805047
http://dx.doi.org/10.1145/800157.805047
http://dx.doi.org/10.2307/2963593
http://dx.doi.org/10.2307/2963593

[Kar72] Richard M. Karp. “Reducibility Among Combinatorial Problems”.
In: Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Wat-
son Research Center, Yorktown Heights, New York. 1972, pp. 85–103
(cited on p. 4).

[KFB16] Egor George Karpenkov, Karlheinz Friedberger, and Dirk Beyer.
“JavaSMT: A Unified Interface for SMT Solvers in Java”. In: Veri-
fied Software. Theories, Tools, and Experiments - 8th International
Conference, VSTTE 2016, Toronto, ON, Canada, July 17-18, 2016,
Revised Selected Papers. 2016, pp. 139–148 (cited on p. 10).

[Kro67] M. R. Krom. “The Decision Problem for a Class of FirstOrder For-
mulas in Which All Disjunctions Are Binary”. In: Mathematical
Logic Quarterly 13.12 (1967), pp. 15–20 (cited on p. 4).

[McM05] Kenneth L. McMillan. “Applications of Craig Interpolants in
Model Checking”. In: Tools and Algorithms for the Construction
and Analysis of Systems, 11th International Conference, TACAS
2005, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8,
2005, Proceedings. 2005, pp. 1–12 (cited on pp. 6, 17).

[Med+16] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi,
and Sven Apel. “A comparison of 10 sampling algorithms for
configurable systems”. In: Proceedings of the 38th International
Conference on Software Engineering, ICSE 2016, Austin, TX, USA,
May 14-22, 2016. 2016, pp. 643–654 (cited on pp. 1, 6, 7, 8, 22).

[MB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Z3: An Effi-
cient SMT Solver”. In: Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference, TACAS
2008, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedings. 2008, pp. 337–340 (cited on pp. 5, 10).

[Pre09] Steven David Prestwich. “CNF Encodings”. In: Handbook of Sat-
isfiability. Ed. by Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh. Vol. 185. Frontiers in Artificial Intelligence and
Applications. IOS Press, 2009, pp. 75–97. isbn: 978-1-58603-929-5
(cited on p. 4).

[RT06] Silvio Ranise and Cesare Tinelli. “The smt-lib standard: Version
1.2”. Tech. rep. Technical report, Department of Computer Sci-
ence, The University of Iowa, 2006. Available at www. SMT-LIB.
org, 2006 (cited on p. 10).

[Rüm17] Philipp Rümmer. 2017. url: http://www.philipp.ruemmer.org/
princess.shtml (visited on 2017-09-26) (cited on p. 10).

[93] “Satisfiability Suggested Format”. Tech. rep. 1993 (cited on p. 4).

38 Chapter 7 Bibliography

http://www.cs.berkeley.edu/~luca/cs172/karp.pdf
http://dx.doi.org/10.1007/978-3-319-48869-1_11
http://dx.doi.org/10.1007/978-3-540-31980-1_1
http://dx.doi.org/10.1007/978-3-540-31980-1_1
http://dx.doi.org/10.1145/2884781.2884793
http://dx.doi.org/10.1145/2884781.2884793
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.3233/978-1-58603-929-5-75
http://smtlib.cs.uiowa.edu/
http://smtlib.cs.uiowa.edu/
http://www.philipp.ruemmer.org/princess.shtml
http://www.philipp.ruemmer.org/princess.shtml
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/

[Seb07] Roberto Sebastiani. “Lazy Satisability Modulo Theories”. In: JSAT
3.3-4 (2007), pp. 141–224 (cited on p. 5).

Chapter 7 39

http://jsat.ewi.tudelft.nl/content/volume3/JSAT3_9_Sebastiani.pdf

Eidesstattliche Erklärung:

Hiermit versichere ich an Eides statt, dass ich diese Bachelorarbeit selbststän-
dig und ohne Benutzung anderer als der angegebenenQuellen und Hilfsmittel
angefertigt habe und dass alle Ausführungen, die wörtlich oder sinngemäß
übernommen wurden, als solche gekennzeichnet sind, sowie dass ich die
Bachelorarbeit in gleicher oder ähnlicher Form noch keiner anderen Prü-
fungsbehörde vorgelegt habe.

Passau, 30. Oktober 2017
Elisabeth Griebl

	1 Introduction
	1.1 Motivation
	1.2 Contributions of this Thesis
	1.3 Structure of this Thesis

	2 Background
	2.1 Product Lines and Variability Models
	2.1.1 Representation of Variability Models

	2.2 Satisfiability Modulo Theories
	2.3 Craig Interpolation
	2.4 Optimization
	2.5 Sampling Strategies
	2.5.1 T-Wise Samping
	2.5.2 Random Sampling

	2.6 The Framework Simtopia
	2.6.1 Architecture of Simtopia

	3 Instantiation Algorithms
	3.1 The Framework
	3.2 Optimization Instantiation Algorithm
	3.3 Craig Interpolation Instantiation Algorithm

	4 Study
	4.1 Research Questions
	4.2 Operationalization
	4.3 Evaluation Environment
	4.4 Performance Evaluation

	5 Discussion
	5.1 Valuation of the Results
	5.2 Validity
	5.2.1 Threats to Validity

	5.3 Future Work

	6 Conclusion
	Appendices
	7 Bibliography

