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A B S T R A C T

The software development process contains both social and technical factors. The social
factors involve the people who develop the software, while the technical factors involve the
artifacts (e.g., code and documentation) that are produced. A socio-technical perspective can
demonstrate valuable insights into the characteristics of a software project. This perspective
is particularly important for Open-Source Software (OSS) projects due to their peer-review-
based development process, globally dispersed teams across different time zones, ad-
hoc development procedures, and other factors. Thus, we analyze the Socio-Technical
Congruence (STC) to investigate any impact it may have on the code review process across
ten OSS projects.

We measure the STC by using the Socio-Technical Motif Congruence (STMC) framework
proposed by Mauerer et al. [21]. The STMC utilizes socio-technical networks to measure
the alignment between the social and technical aspects of the development process, by
quantifying the level of communication among developers contributing to the same file or
related files. To evaluate the code review process, we measure the acceptance rate, review
rate, and first review interval for each pull request in the chosen OSS projects. We then
examine the correlation between the STMC and these code review measures to determine if
the STMC has any influence on them.

According to our results, the STMC has no statistically significant influence on the review
rate for almost all OSS projects we analyze (8/10). Nevertheless, we cannot conclude whether
the STMC has any influence on the acceptance rate and first review interval since the results
are mixed; some projects show statistically significant correlations while others do not.
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L I S T O F F I G U R E S

Figure 2.1 In this figure, we illustrate the peer code review workflow that we
consider in this thesis. Initially (1) the pull request author creates a
pull request by committing the code changes to GitHub. Afterward
(2), the code review process starts. The reviewer conducts the code
review (3) by using the GitHub functionality or by commenting on
the pull request; the author of the pull request commits the code
changes and interacts with the reviewer through the communication
tab; other developers might join the communication in this PR (3).
The reviewer approves or rejects the pull request (4). If the pull
request is approved, it is merged into the project’s code base (4.1);
otherwise, it is abandoned or closed (4.2). . . . . . . . . . . . . . . . . 5

Figure 2.2 The blue square icons are artifacts and the purple circles are devel-
opers. The dotted edge between two artifacts shows a dependency
between two artifacts. The dashed edge between a developer and an
artifact shows a change that the developer did to the artifact. The
bold edge between the two developers shows that these developers
are communicating with each other. . . . . . . . . . . . . . . . . . . . 7

Figure 2.3 We adapt this Figure from [21] Figure 3, which illustrates motifs
and anti-motifs. Figures (a) and (c) show a triangle and a square
motif respectively, or direct and indirect collaboration. Meanwhile,
figures (b) and (d) show a triangle and a square anti-motif respec-
tively or direct and indirect non-collaboration. The circle vertices are
developers. The square vertices are artifacts. The solid edge between
the two developers indicates there is communication between these
developers. The dashed edge between a developer and the artifact
indicates that the developer is modifying the artifact. The dotted
edge between the two artifacts indicates that these artifacts depend
on each other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 2.4 We highlight one example for each motif and anti-motif. The green
triangle and square show a triangle and square motif respectively.
On the other hand, the red triangle and square show a triangle
and square anti-motif respectively. They are anti-motifs because the
communication edge between the developers is missing in this case. 8
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1
I N T R O D U C T I O N

Open-Source Software (OSS) systems, such as web browsers1, operating systems2, and
many others, are a large part of the Information Technology (IT) field. Nowadays, OSS

systems are the spine of technology because they are decentralized, open to everyone,
and often distributed freely. However, developing such software has its own challenges.
Open-Source Software Development (OSSD) is based on peer-review [19] and the team
is distributed worldwide in different time zones. Additionally, the risky development
practices in OSSD, such as the ad-hoc development process, the little attention paid to
documentation, and poor project management can pose risks to the OSSD process. These
factors increase the difficulty of achieving effective communication, coordination, and
collaboration among developers working on interdependent modules of the same project [34].
Despite these challenges of developing OSS systems, developers can produce successful
software systems [1]. Developing successful software systems requires not only technical
expertise but also effective collaboration, communication, and coordination among team
members [15]. Thus, communication, coordination, and collaboration play a critical role in
software development.

The STC approach measures the alignment between social and technical aspects of the
development process in OSSD, highlighting potential issues and areas for improvement. By
providing insights into how well the social and technical aspects fit together, STC can help
developers work more effectively together, likely resulting in better OSS systems. Therefore,
STC can be a valuable tool for enhancing collaboration and communication in OSSD and
improving the quality of OSS systems.

In this thesis, we perform a socio-technical analysis on ten OSS projects. For each OSS

project we measure the STC to asses whether STC has an influence on code review measures,
namely acceptance rate, review rate, and first review interval. These code review measures are
commonly used indicators of the effectiveness and efficiency of the code review process
in software development [28, 29]. The acceptance rate reflects the percentage of accepted
contributions, indicating the contributions’ quality and appropriateness. The review rate
shows the percentage of contributions that are reviewed, indicating the thoroughness of the
review process. Finally, the first review interval measures the time between the initiation of
a contribution and its first review, indicating the efficiency and responsiveness of the review
process. By examining the influence of STC on these code review measures, we can gain
insights into how the alignment between social and technical aspects of the development
process affects the effectiveness and efficiency of the code review process. The obtained
information can be utilized to identify potential issues that may improve collaboration and
communication among developers.

There exist several methodologies how to measure STC [5, 10, 12, 21, 25, 32]; in this thesis,
we use the concept presented by Mauerer et al. [21]. They propose the STMC framework, a

1 Mozilla Firefox - https://www.mozilla.org/en-US/firefox/new/, last accessed on 24/02/2023

2 Linux - https://www.linux.org/, last accessed on 24/02/2023

1

https://www.mozilla.org/en-US/firefox/new/
https://www.linux.org/


2 introduction

quantitative and operational notion of STC that is used in the research community [6, 24,
30]. STMC is a comprehensive and flexible framework that measures the alignment between
social and technical aspects of the development process.

In concrete terms, STMC measures the degree to which developers contributing to the
same file or to two related files, need to communicate. The bases of STMC are heterogeneous
socio-technical graphs. A socio-technical graph is a graph that shows the interactions and
dependencies between people and technical components in a software development project.
The configuration of socio-technical graphs can vary and different methods have been
proposed in literature [12, 30, 32].

Mauerer et al. use a heterogeneous socio-technical graph that has nodes representing
either developers or files, and edges representing the relationship between two developers,
two files, or between a developer and a file. Mauerer et al. extract two types of sub-graphs
from this graph, which they call motifs - triangle and square motifs. The triangle motifs
capture the direct collaboration, while the square motifs capture the indirect collaboration
in an OSS project. Furthermore, Mauerer et al. use triangle and square anti-motifs to capture
the direct non-collaboration or indirect non-collaboration, hence the term anti-motif. To
quantify the STMC, Mauerer et al. propose the degree of Socio-Technical Motif Congruence
(dSTMC) which is composed of the triangle and square congruence.

Additionally, we propose a refined version of the STMC that we call refined Socio-Technical
Motif Congruence (STMCr). STMCr filters out the false positive motifs that the STMC detects.

We employ the STMC and STMCr framework and calculate the acceptance rate, review rate,
and first review interval for ten OSS projects, including Deno, Vs Code, Tensorflow, Moby,
Bootstrap, Atom, TypeScript, React, Electron, and Next.js chosen for their varying
sizes, project ages, and domains. We obtain the necessary data for each project, by mining
the version control systems of these projects. Additionally, to capture the ever-changing
structures of the chosen OSS projects, we split them into six-month windows.

Next, we assess if the STMC or STMCr affect the acceptance rate, review rate, and first
review interval. We accomplish this by correlating the STMC or STMCr with each of these
metrics, using Kendall rank correlation coefficient (Kendall’s Tau)3. We choose Kendall’s
Tau because it is suitable for non-normalized data and small data sets, which are both
characteristics of the data produced by our STC analysis.

Our findings reveal that we are unable to determine if the STMC or STMCr impact the
acceptance rate since some projects demonstrate statistically significant correlations while
others do not. Similarly, we cannot conclude if the STMC or STMCr impact the first review
interval, as the results are inconclusive, with some projects showing statistically significant
correlations and some not. On the other hand, we can conclude that the STMC or STMCr

does not affect the review rate, as nearly all projects indicate no statistically significant
correlations. This outcome suggests that other factors likely influence the review rate.

3 https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient, last accessed on 12/03/2023

https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient


2
B A C K G R O U N D

In this chapter, we present the necessary information for comprehending this thesis. We
describe OSS development contribution tools and the often-used workflows. Additionally,
we explain and formalize socio-technical networks, focusing on those used in this thesis.
Lastly, we operationalize STMC and quantify it by providing the formulas for how STMC is
calculated.

2.1 open-source software development (ossd)

Developers use various tools for contributing to OSS projects, including mailing lists, version
control systems like Git

1, code review tools such as Gerrit
2, issue trackers like JIRA3,

and communication channels such as Gitter
4 or Discord

5. While the use of mailing
lists to contribute to OSS projects is declining, more and more projects are opting to use
GitHub

6 [13], a hosting service for software development and version control systems
using Git. In this thesis, we focus on analyzing projects that, to the best of our knowledge,
primarily utilize GitHub as a tool for contributing to OSS. Our decision is based not only
on the increasing number of projects utilizing GitHub but mainly due to the simplicity of
applying our STC analysis methodology to the data extracted from GitHub.

Each OSS project in GitHub has its repository where the developers manage and store their
contributions, such as code and documentation, as well as collaborate and communicate
with each other. To fulfill these goals, GitHub offers two options for OSS projects, namely
issues and pull requests. Issues are used to track bugs, feature requests, and other important
information about the project.

On the other hand, developers use pull requests to suggest modifications to the project’s
code or other associated files, like the README.md file. Usually, a developer changes the code
in a branch7 or a fork8 and then submits a pull request to merge those changes into another
branch. Afterward, a different developer reviews the pull request and subsequently decides
to either accept it, reject it, or request additional changes. Furthermore, a pull request can
be linked to an issue to show that a fix or implementation is in progress.

However, note that the workflow of a pull request and issue may vary between OSS

projects, as it depends on the rules and guidelines set by project maintainers. Some OSS

projects allow a pull request to be merged after receiving a specific number of approvals

1 https://git-scm.com/, last accessed on 30/03/2023

2 https://gerritcodereview.com/, last accessed on 12/03/2023

3 https://atlassian.com/software/jira, last accessed on 12/03/2023

4 https://gitter.im/, last accessed on 12/03/2023

5 https://discord.com/, last accessed on 12/03/2023

6 https://github.com/, last accessed on 30/03/2023

7 https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-t

o-your-work-with-pull-requests/about-branches, last accessed on 30/03/2023

8 https://docs.github.com/en/get-started/quickstart/fork-a-repo, last accessed on 30/03/2023
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https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-branches
https://docs.github.com/en/get-started/quickstart/fork-a-repo


4 background

from other developers while in others, a project maintainer must review and approve the
pull request before it can be merged.

2.1.1 Pull Requests

A developer creates a pull request when they make code changes to a project and want to
merge those changes into another branch. The author of the pull request is the developer
who initiates it and provides the initial commit with their changes. In some cases, several
developers contribute to the same pull request, resulting in several co-authors. We refer to
both authors and co-authors simply as ’author’, without distinguishing between them.

The pull request contains a list of all the files that the author changed or added, which can
be viewed via the Files Changed tab in GitHub. These changed files are important because
they demonstrate the specific changes made to the code base by the included commits. For
simplicity, we use the term file to refer to any changed file in a pull request, regardless of the
change type or author. Moreover, the pull request contains all the initial commits that are
part of the pull request or commits that are added subsequently to the same pull request.

Once a pull request is opened, a review is initiated. A review also referred to as a code
review, is a quality assurance process used to improve code quality, ensure that the code
complies with the project standards, and find potential issues or bugs before they are
merged into the project’s code base. The developer who conducts the code review is called
the reviewer.

To conduct a code review, the author may explicitly request a review from another
developer by utilizing GitHub’s review functionality9. Nevertheless, the reviewer can conduct
a code review using the same review functionality without any explicit request from the
author. Alternatively, reviewers can conduct a code review by leaving comments on the
pull request’s Conversation tab10. In all these cases, a developer conducts a code review of
the changes made by another developer. This process is known as peer code review. Once
the initial peer code review is complete, the reviewer can approve the pull request, request
changes, or reject it.

If changes are requested, authors and reviewers can communicate through comments on
the conversation tab. The conversation tab serves not only for communication between the
author and the reviewer but also enables communication among other developers involved
in the project. Developers, regardless of their role in the pull request, can use this tab to
leave general comments, ask questions or provide props, that everyone can read and react
to.

After the pull request changes are approved, they can be merged into the code base.
Typically, communication and collaboration between developers regarding this pull request
end once it has been merged. The pull request is now considered closed and part of the
project’s code base. However, there may be cases where the pull request is reopened or
referenced in other pull requests (although these cases are not within the scope of this
thesis).

9 https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-t

o-your-work-with-pull-requests/requesting-a-pull-request-review, last accessed on 15/03/2023

10 https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/reviewing-changes-i

n-pull-requests/commenting-on-a-pull-request, last accessed on 15/03/2023

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/requesting-a-pull-request-review
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/requesting-a-pull-request-review
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/reviewing-changes-in-pull-requests/commenting-on-a-pull-request
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/reviewing-changes-in-pull-requests/commenting-on-a-pull-request


2.2 socio-technical congruence (stc) 5

No

(5)
Close / Abandon PR

(1)
Commit Initial Code Changes

(2)
Initiate Code Review

Pull Request

(3)
Peer Code

Review Process

Conversation
Tab

GitHub's
review

functionality

(3.1)
Conduct Code Review

(3.1)
Conduct Code Review /

Read / Comment

(3.1)
Read / Comment

(3.1)
Commit Changes

Other developer(s)

Reviewer

Author

(4)
Peer Code Review Finished

PR == Approved
Yes

(5.1)
Close PR

(5)
Merge Pull
Request

START

Code
changes

(3.1)
Read / Comment

Pull Request
Rejected

END

Pull Request
Accepted

Figure 2.1: In this figure, we illustrate the peer code review workflow that we consider in this
thesis. Initially (1) the pull request author creates a pull request by committing the code
changes to GitHub. Afterward (2), the code review process starts. The reviewer conducts
the code review (3) by using the GitHub functionality or by commenting on the pull
request; the author of the pull request commits the code changes and interacts with the
reviewer through the communication tab; other developers might join the communication
in this PR (3). The reviewer approves or rejects the pull request (4). If the pull request is
approved, it is merged into the project’s code base (4.1); otherwise, it is abandoned or
closed (4.2).

If the reviewer refuses the changes of the pull request, the pull request is not merged into
the code base, and no further changes are added to it. We illustrate this workflow in Figure
2.1.

2.2 socio-technical congruence (stc)

The concept of STC has been formalized many times throughout the years [30]. Melvin
Conway first formally defines it in 1968 [8], suggesting that "Organizations which design
systems are constrained to produce designs which are copies of the communication structures of
these organizations" - this is known as "Conway’s Law". Cataldo et al. [7] propose another
STC formalization based on this law, namely "A technique for measuring task dependencies
among people, and the ‘fit’ between these task dependencies and the coordination activities performed
by individuals". Kwan, Schröter, and Damian [17] define STC as "An approach that measures
coordination by examining the alignment between the technical dependencies and the social coordi-
nation in the project". As seen above, researchers often provide a new STC definition when
analyzing it. In contrast, we do not formalize the concept of STC but we focus on conducting
a quantifiable analysis of STC using the STMC concept presented by Mauerer et al. [21].

Besides the various formalizations of STC, researchers use numerous techniques to mea-
sure it. Matrices [6, 7, 16] and socio-technical networks [5, 21, 33] are two widely used
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techniques to analyze STC. Socio-technical networks are a standard tool used to represent
how people communicate and collaborate with each other and have been deployed in
many analysis scenarios [4, 14, 20]. Furthermore, socio-technical networks are also used to
implement the STMC [21] approach employed in this thesis.

2.2.1 Socio-Technical Networks

Socio-technical networks refer to the interdependent relationships between people and
technology within a system or organization. They are constructed by the combination
of social networks and technical networks. Social networks represent the relationship or
communication between people that are part of a system or an organization. Meanwhile,
technical networks represent the physical and digital components that enable the activities
of the system or organization. Together, social and technical networks create a network
that is often used in organizational behavior, human-computer interaction, and IT to better
understand the communication and collaboration between people and technology. Never-
theless, in this thesis, we focus only on socio-technical networks in IT specifically in software
engineering.

2.2.1.1 Formalization

In this chapter, we formalize a socio-technical network mathematically in the context that it
is used in this thesis. A socio-technical network can be defined as a tuple G = (V, E), where
G is the graph (or the network), V is the set of vertices, and E is the set of edges between the
vertices. The vertices represent people with different roles (e.g., author, reviewer, developer)
or technical artifacts (e.g., files, issues, pull requests). The edges represent the dependencies
or relationships between the vertices (e.g., communication, collaboration). A socio-technical
network is a heterogeneous graph because it has two or more types of vertices and/or two
or more types of edges.

An edge can also have weights that show the strength of the relationship dependent on
the context. For instance, the weight of an edge that shows the communication between
two people can refer to the number of communication messages between these two people.
Moreover, an edge can be directed or undirected, depending on whether the relationships
they represent are one-way or bidirectional. Additionally, multiple edges can exist between
the same vertices.

An example of operationalization of a socio-technical network is the one used by Mauerer
et al. [21] when defining STMC. See Figure 2.2. Mauerer et al. [21] use a heterogeneous,
unweighted, undirected graph to show the communication between the developers, the
artifact dependencies, and the contribution of the developers to the artifacts.

2.3 socio-technical motif congruence (stmc)

STMC is a concept introduced by Mauerer et al. [21] and it is essential in this thesis.
Therefore, in this chapter, we explain in detail the operationalization of STMC and the results
of correlating STMC with software quality measurements that Mauerer et al. conclude in
their study.
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Figure 2.2: The blue square icons are artifacts and the purple circles are developers. The dotted
edge between two artifacts shows a dependency between two artifacts. The dashed
edge between a developer and an artifact shows a change that the developer did to the
artifact. The bold edge between the two developers shows that these developers are
communicating with each other.

Mauerer et al. use socio-technical networks to explore whether alignment or misalignment
of social communication structures and technical dependencies in large software projects
influence software quality. To do that, they focus on motifs in socio-technical networks.
Motifs are social and technical relationship patterns embedded as subgraphs in a larger
socio-technical network. Motifs found in networks are commonly used in other scientific
fields [2, 11] but were never used in software engineering organizational research prior to
the study of Mauerer et al. In addition, motifs are also useful to understand the evolution
of socio-technical networks over time, like open-source software communities and their
software architectures [27].

2.3.1 Operationalizing STMC

Mauerer et al. focus on two basic types of socio-technical collaboration, such as: direct
and indirect collaboration because based on previous research [6], they assume that simple
patterns are the "basis" that can capture socio-technical interactions.

Direct collaboration arises when two developers modify the same artifact and they also
communicate with each other. To concretize direct collaboration, Mauerer et al. introduce a
"triangle motif " which is a subgraph that shows two developers modifying the same artifact
and communicating with each other. Figure 2.3 (a) illustrates this scenario. Nevertheless,
in some cases, developers make changes to the same artifact without any communication,
which is the opposite of a motif and referred to as a "triangle anti-motif ". This is depicted in
Figure 2.3 (b).

On the other hand, indirect collaboration emerges when two developers communicate with
each other and modify two artifacts that are interconnected. Similarly to direct collaboration,
Mauerer et al. introduce a square motif which is a subgraph that captures the indirect
collaboration, namely two developers communicating with each other and modifying two
artifacts that depend on each other. Refer to Figure 2.3 (c). Analogously to the above, there
are cases where developers change the interconnected artifacts but do not communicate
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with each other. These are called square anti-motifs. Figure 2.3 (d) shows a formalization of a
square anti-motif.

(a) Motif

Direct collaboration

(b) Anti-Motif

Direct non-collaboration

(c) Motif

Indirect collaboration

(d) Anti-Motif

Indirect non-collaboration

Figure 2.3: We adapt this Figure from [21] Figure 3, which illustrates motifs and anti-motifs. Fig-
ures (a) and (c) show a triangle and a square motif respectively, or direct and indirect
collaboration. Meanwhile, figures (b) and (d) show a triangle and a square anti-motif
respectively or direct and indirect non-collaboration. The circle vertices are developers.
The square vertices are artifacts. The solid edge between the two developers indicates
there is communication between these developers. The dashed edge between a developer
and the artifact indicates that the developer is modifying the artifact. The dotted edge
between the two artifacts indicates that these artifacts depend on each other.

To show how motif subgraphs are embedded in a bigger socio-technical network, in
Figure 2.4, we highlight examples of motifs and anti-motifs in the socio-technical network
illustrated above in Figure 2.2.

Figure 2.4: We highlight one example for each motif and anti-motif. The green triangle and square
show a triangle and square motif respectively. On the other hand, the red triangle and
square show a triangle and square anti-motif respectively. They are anti-motifs because
the communication edge between the developers is missing in this case.

In summary, the STMC measures the socio-technical collaboration (direct or indirect) and
communication between developers and artifacts.

2.3.1.1 Degree of STMC

Mauerer et al. propose that it is possible to assess the alignment between social and
technical dependencies by measuring the degree of congruence between motifs and anti-
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motifs. Consequently, they introduce a quantitative measure of STMC, namely the dSTMC.
The dSTMC is calculated for both types of motifs - triangle and square motifs. It is calculated
as the number of motifs divided by the number of anti-motifs. The result is called triangle
congruence (2.1) or square congruence (2.2) based on the motif type.

triangle congruence =
number o f triangle moti f s

number o f triangle anti-moti f s
(2.1)

square congruence =
number o f square moti f s

number o f square anti-moti f s
(2.2)

A low triangle or square congruence (generally called congruence) suggests that the
developers are not communicating or collaborating effectively. Consequently, it indicates
that the patterns of social dependencies (e.g., communication and collaboration) and tech-
nical dependencies (e.g., files, issues, and pull requests) do not match which can lead to
delays, misunderstandings, and errors. For example, team members may not be aware of
the technical dependencies required to complete their tasks, or they may not be able to
coordinate effectively.

In contrast, a high congruence suggests that the developers are communicating and
collaborating effectively. This means that there is an alignment between social and technical
dependencies in an OSS project. A high congruence can lead to better outcomes such as
improved productivity [6]. For instance, team members can work more efficiently and avoid
unnecessary delays or conflicts.





3
A P P R O A C H

In this chapter, we present the ten OSS projects that we use in this thesis as case studies and
explain how we extract their data. Additionally, we explain how we split these OSS projects
into time frames to analyze them.

3.1 case studies

In this thesis, we analyze ten OSS projects which are: Deno
1, VS Code

2, TensorFlow
3,

Moby
4, Bootstrap

5, Atom
6, TypeScript

7, React
8, Electron

9, and Next.js10. We choose
these OSS projects because they differ in their domain, contribution size (measured by the
number of issues), and project age (the time since release). These projects operate in diverse
domains, including code editors, front-end frameworks, runtimes, libraries, and others. In
addition, we categorize the projects based on the number of issues they have. Large projects,
such as VS Code, TensorFlow, and Moby, have a higher number of issues compared to
medium-sized projects such as Bootstrap, Electron, Atom, React, and Next.js. The
remaining projects are considered small projects. In Table 3.1, we present the number of
issues, for each project. In terms of project age, we consider the time passed since the release
date, also displayed in Table 3.1.

3.1.1 Data Extraction

We extract data from ten OSS projects using codeface
15, a tool developed by Siemens. First,

we collect the required data by mining the Git repositories of the ten projects. Next, we feed
this data into codeface, which processes the data and later stores it in a database. We also
fetch GitHub issues and pull requests using another tool called GitHubWrapper

16. Then,
another tool called codeface-extraction

17 fetches the data from codeface, the database,
and the GitHubWrapper and saves them in several .csv files.

The .csv files include authors.list, bots.list, commits.list, commitMessages.list, issues-github.list,
and others. The term "author" in the filename authors.list refers to all the developers in the

1 https://deno.land/, last accessed on 31/03/2023

2 https://code.visualstudio.com/, last accessed on 31/03/2023

3 https://tensorflow.org/, last accessed on 31/03/2023

4 https://mobyproject.org/, last accessed on 31/03/2023

5 https://getbootstrap.com/, last accessed on 31/03/2023

6 https://github.com/atom, last accessed on 31/03/2023

7 https://typescriptlang.org/, last accessed on 31/03/2023

8 https://react.dev/, last accessed on 31/03/2023

9 https://electronjs.org/, last accessed on 31/03/2023

10 https://nextjs.org/, last accessed on 31/03/2023

15 https://github.com/siemens/codeface, last accessed on 31/03/2023

16 https://github.com/se-sic/GitHubWrapper, last accessed on 23/04/2023

17 https://github.com/se-sic/codeface-extraction, last accessed on 31/03/2023

11
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Table 3.1: In this Table, we illustrate the OSS projects analyzed in this thesis with their number of
issues. Additionally, it shows the project release date which we call project age. Finally, we
provide a short description of each project.

Project Name Number of
Issues

Release Date Short Project Description

Deno 8,764 13/05/2018 A runtime for JavaScript
11, TypeScript,

and WebAssembly
12.

VS Code 111,282 29/04/2015 A source-code editor made by Mi-
crosoft

13.

TensorFlow 45,694 09/09/2015 A software library for machine learning
and artificial intelligence.

Moby 41,740 13/03/2013 A framework created by Docker
14 to

assemble specialized container systems.

Bootstrap 31,844 19/08/2011 A front-end development framework
for the creation of websites and web
apps.

Atom 21,190 25/06/2015 A text and source code editor devel-
oped by GitHub.

TypeScript 4,1267 01/10/2012 A high-level programming language de-
veloped and maintained by Microsoft.

React 20,258 29/05/2013 A front-end JavaScript library for
building user interfaces based on com-
ponents.

Electron 26,739 15/07/2013 A framework for building desktop GUI
applications using web technologies.

Next.js 15,628 25/10/2016 A React framework that enables sev-
eral extra features, including server-
side rendering and generating static
websites.
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project regardless of their role, and not just to the authors of pull requests, as defined in
Section 2.1.1. Therefore, the file authors.list contains information about all developers in an
open-source project.

The other files contain data such as commit hashes, commit messages, event types (e.g.,
commented, reviewed, merged, closed), timestamps, and more. However, we do not provide
an example of the exact data required for our analysis, as the specific data needed depends
on the research question.

We extract data from OSS projects starting from the very beginning when the repository
was initiated until approximately 2020. The exact dates for each project are listed in Table
3.2.

Table 3.2: In this Table, we show the repositories of each project that we clone to extract the data.
Additionally, it shows the covered years of data that we get by mining Git repositories.

Project Name Project Repository Time Frame

Deno https://github.com/denoland/deno 2018 - 2020

VS Code https://github.com/microsoft/vscode 2015 - 2020

TensorFlow https://github.com/tensorflow/tensorflow 2015 - 2020

Moby https://github.com/moby/moby 2013 - 2020

Bootstrap https://github.com/twbs/bootstrap 2011 - 2020

Atom https://github.com/atom/atom 2012 - 2020

TypeScript https://github.com/microsoft/TypeScript 2014 - 2020

React https://github.com/facebook/react 2013 - 2020

Electron https://github.com/electron/electron 2013 - 2020

Next.js https://github.com/vercel/next.js/ 2016 - 2020

3.2 time-split analysis

The development of OSS is a dynamic process that changes over time. New team members
join, priorities shift, and technical dependencies evolve. To capture these changes, we use
an approach called time-split analysis to analyze how the project’s communication and
collaboration patterns change over time. A time-split analysis is an approach that evaluates
the performance of a system over time. This approach involves dividing a data set into two
or more subsets based on time. Additionally, by employing a time-split analysis approach
we can analyze the STMC for each pull request (since we focus on pull requests) and draw
conclusions for the entire project timeline. Furthermore, as the data at the beginning of a
project may not be directly comparable to data at a later point in the project, a time-split
analysis allows for a more localized analysis, mitigating this risk.

We split each project’s data set into six-month windows to perform the time-split analysis.
We chose this time range because tests have shown that pull requests in OSS projects typically
take six months from when they are created until they are merged, closed, or abandoned.

https://github.com/denoland/deno
https://github.com/microsoft/vscode
https://github.com/tensorflow/tensorflow
https://github.com/moby/moby
https://github.com/twbs/bootstrap
https://github.com/atom/atom
https://github.com/microsoft/TypeScript
https://github.com/facebook/react
https://github.com/electron/electron
https://github.com/vercel/next.js/
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1 2 3

Pull Request #1

Pull Request #13

Pull Request #122

6 months 12 months 12 + n months

Start End

Figure 3.1: In this figure, we present an example of a time-split analysis using a six-month window
size. The first two windows (in green) are complete six-month periods, while the last
window (in blue) represents the remaining time until the end of our data set. We also
illustrate different scenarios where pull requests start at various points in time, such
as Pull Request #13, which starts in the first window but is completed (merged, closed,
or abandoned) in the second window. To simplify the visualization, we depict all pull
requests as having the same duration of six months

1 3 5 7 9

2 4 6 8 10
Start End

2018-05-29 2018-11-27

2019-02-272018-08-28 2019-08-28 2020-02-27 2020-08-28

2019-05-29 2019-11-28 2020-05-28 2020-11-27

2020-12-23

Figure 3.2: By applying a time-split analysis with a sliding window to Deno’s data set, we obtain
ten windows in total. The green windows with odd numbers are the result of applying a
time-split approach without a sliding window, while the even-numbered windows are
added by the sliding window approach. Together, they form the complete time series that
we analyze for Deno.

We leave it to future work to perform a sanity check to verify that this holds true for the
pull requests of the ten OSS projects that we analyze.

As we show in Figure 3.1, pull requests can start or finish every day and not only after
exactly six months. Therefore, to capture these scenarios, we apply a fixed-size sliding window
of three months. This means that the analysis is performed on a series of overlapping
six-month periods that overlap with each other by three months.

In Figure 3.2, we present the results of applying a time-split analysis using a sliding
window approach for the Deno project. This approach results in a different number of time
windows for each project because projects have different ages. Note that while we always
utilize a time-split analysis, we do not necessarily use a sliding window approach in all of
our research questions. We will explain the reasoning behind this in chapter 4.
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We use coronet
18 to apply the time-split analysis with or without a sliding window. Coro-

net constructs analyzable networks based on data extracted from codeface-extraction.
This network library reads the written or extracted data from disk and constructs interme-
diate data structures for convenient data handling, such as data containers and developer
networks. We use coronet to split, access, and filter the data sets. Additionally, we utilize
coronet’s ability to build networks, detect triangle or square motifs, and many other
functionalities later in the thesis.

To split the data, we use the coronet function called split.data.time.based. Below is a
code snippet that shows how to split the data into six-month time windows with a sliding
window of three months. We do not explicitly specify the size of the sliding window, namely
three months, because it is implemented in the function by default.

1 source("coronet/util-split.R")

2

3 split.data.time.based(project.data, # Project data which is fetched previously.

4 time.period = "6 months", # The size of the time window.

5 split.basis = c("issues"), # The data name to use as split basis.

6 sliding.window = TRUE # Using a sliding window approach. We set it

7 ) # to FALSE if we do not want to use the

8 # sliding window approach.

18 https://github.com/se-sic/coronet, last accessed 02/04/2023

https://github.com/se-sic/coronet
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O P E R AT I O N A L I Z AT I O N

In this chapter, we describe the networks that we can build with coronet and show what
kind of network we use. Furthermore, we configure and refine the STMC by utilizing the
available data set and focusing on the socio-technical value that the chosen configuration
adds to our analysis. Finally, we operationalize the research questions of this thesis.

4.1 configuring stmc

As mentioned previously, STMC utilizes socio-technical networks to detect square and
triangle motifs and anti-motifs within these networks. However, configuring a triangle
or square motif offers several possibilities due to the varying types of nodes, edges, and
types of networks. For our STMC analysis, we use coronet to construct the socio-technical
networks and only consider the types of nodes, edges (also called relations in coronet), and
networks that coronet offers. We also take into account the available data from codeface-
extraction. By combining these constraints, we select one STMC configuration that aligns
best with the goal of this thesis, which is to correlate STMC with code review measures such
as acceptance rate, review rate, and first review interval.

4.1.1 Coronet Networks

We can construct four types of networks using coronet: author networks, artifact networks,
bipartite networks, and multi-networks, which combine author, artifact, and bipartite networks.
In the following, we provide more details on each type of network and illustrate a simple
example for each.

• Author networks

In an author network, each node represents a unique author that can be identified
by their name. The edges in this network are unipartite, meaning they only connect
authors within the same group or category. In Figure 4.1, we illustrate an example of
an author network with a unipartite edge connecting two authors.

Author 1 Author 2

Figure 4.1: The nodes in the network represent authors, depicted as circles. The edges between
these nodes are unipartite, connecting authors within the same category. This network is
considered a social network as it solely consists of information related to authors.

17
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• Artifact networks

In an artifact network, nodes represent various types of artifacts, including source-
code artifacts such as features, files, or functions, as well as communication artifacts
such as mail threads or issues. Each artifact node is uniquely identifiable by its name.
The edges in this network are unipartite, connecting only artifacts within the same
category. In Figure 4.2, we provide an illustration of this network.

Artifact 1 Artifact 2

Figure 4.2: The nodes in the network represent artifacts, depicted as squares. The edges between
these nodes are unipartite, connecting artifacts within the same category. This network is
considered a technical network as it only contains information related to artifacts.

• Bipartite networks

In a bipartite network, nodes represent both authors and artifacts. The edges
in this network are bipartite, connecting only authors to artifacts and vice-versa. A
bipartite edge connects an author node to an artifact node. In Figure 4.3, we provide a
visualization of this network structure.

Author 1 Author 2

Artifact 1 Artifact 2

Figure 4.3: Circles are authors. Squares are artifacts. The edges are bipartite because they connect
two nodes of different types, namely an author with an artifact. This is a socio-technical
network because it contains information about authors and artifacts.

• Multi-networks

The nodes in a multi-network denote both authors and artifacts. There are both
unipartite and bipartite edges among the nodes in this type of network. Essentially, a
multi-network is the combination of all other types of networks. We depict an example
of a multi-network in Figure 4.4.
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Author 1 Author 2

Artifact 1 Artifact 2

Figure 4.4: This multi-network comprises nodes representing both authors and artifacts. The nodes
representing authors are denoted by circles while the nodes representing artifacts are
denoted by squares. The edges in this network are unipartite - connecting two authors or
two artifacts - and bipartite - connecting an author node to an artifact node. This network
is classified as socio-technical as it contains information about both authors and artifacts.

To obtain a comprehensive view of socio-technical aspects in an OSS project, we utilize
multi-networks in this thesis. With a multi-network, we can obtain information on the
relationships between two authors, two artifacts, and an author and an artifact. Consequently,
it provides us with a complete view of the socio-technical aspects of an OSS project.

4.1.1.1 Nodes

We classify the nodes in coronet into two main categories: author nodes and artifact nodes.
An author node represents a developer who makes changes to the project files. On the
other hand, an artifact node can take different forms, such as features, files, functions, mail
threads, and issues. In this thesis, we use developers as author nodes and files as artifact nodes.
We use a file as an artifact in our configuration because it aligns with the relational structure
of the overall graph, as depicted in Figure 4.5. More importantly, selecting files supports our
STMC goal because they are technical artifacts in OSS projects. Files can represent a variety of
artifact types, including source code, documents, configuration files, and data files, among
others, and can effectively track the evolution of these artifacts over time.

4.1.1.2 Edges

coronet supports four types of edges, or relations, namely cochange, mail, issue, and
callgraph. The meaning of each type of relation varies depending on the type of network
being analyzed. For instance, in an author network, the edges represent a relationship
between two developers. In an artifact network, the edges represent a relation between two
artifacts. Conversely, in a bipartite network, the edges indicate the type of contribution made
by a developer. In Table A.1, we outline the meaning of cochange, mail, issue, and callgraph
relations in author, artifact, and bipartite networks. We do not include multi-networks
because multi-network is the result of all other networks together.
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In this thesis, we use cochange as a relation type between two files and issue as a relation
type between two developers. The cochange relation is appropriate for files because it connects
two files that are changed in the same commit, which is a common occurrence in OSS
projects. Additionally, it detects technical dependencies between the artifacts and it is the
most suitable relation to connect two files. Regarding the issue relation, it is suitable for two
developers because they can communicate using the comment section on an issue. Hence,
we can extract the communication between two developers from an issue. Together, the
cochange and issue relation provide us with information about the technical dependencies
and communication that occur around them. Therefore, this configuration is best aligned
with our goal, and we select it for our square motif in the STMC analysis.

4.1.2 Configuring Triangle & Square Motifs

Our chosen configuration for the STMC analysis consists of using file as the artifact, cochange
as the artifact relation, developer as an author, and issue as the author relation. We depict this
configuration in Figure 4.5 for all types of motifs and anti-motifs. This configuration allows
us to identify the following patterns: (a) the triangle motif, which detects two developers
who have collaborated on the same issue while contributing to the same file; (b) the triangle
anti-motif, which identifies two developers who have contributed to the same file but have
not collaborated on any issue; (c) the square motif, which reveals two developers who
have contributed to two files that were changed in the same commit and have collaborated
on an issue; and (d) the square anti-motif, which highlights two developers who have
contributed to two files that were changed in the same commit but have not collaborated
on any issue. In our analysis, we consider developers to have collaborated if they have
communicated with each other through commenting, reviewing, reacting to comments, or
any other type of communication in an Issue or Pull Request. Therefore, going forward, we
refer to collaboration as communication.

4.2 refining stmc

The STMC approach, as proposed by Mauerer et al. [21] and configured by us, has a limitation.
The limitation is that the files involved in a motif or anti-motif may not be related to the issue
in the same motif or anti-motif. In other words, an issue is used to extract the communication
between the developers in a motif, but the communication in an issue may also be about
other files that are not part of the motif under analysis. To address this matter, we propose
a new concept called STMCr, which is essentially the same as STMC, but with an additional
filter.

For each triangle motif, we begin by extracting all the issues that involve a modified file
forming a triangle motif in their list of changed files. Then, we compare the extracted issues
with the issue involved in the same motif, where the file is included. If we find at least one
issue that matches the issue involved in the motif, the motif remains a motif. However, if
none of the modified issues match the motif’s issue, the motif becomes an anti-motif.

For square motifs, since they involve two files, we first obtain a list of issues that modified
each file included in the motif. Using this list, we apply the same filtering approach as we
did for the triangle motifs, filtering out any issues that did not change at least one of the
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Figure 4.5: D1 and D2 are Developer 1 and Developer 2 respectively. F1 and F2 are File 1 and File 2

respectively. The solid line between the two developers means that these two developers
have collaborated on the same issue. The dashed line between a developer and a file
means that a developer has changed the file in a commit. The dotted line between two
artifacts means that these artifacts are both changed in the same commit.
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files in the motif. If there is at least one issue that changed one of the two files that form the
motif, then it remains a motif. Otherwise, it becomes an anti-motif.

Furthermore, we use the same formula to calculate the degree of STMCr, which we refer to
as degree of refined Socio-Technical Motif Congruence (dSTMCr), as the one used for dSTMC

in equations 2.1 and 2.2. We use the same approach for STMCr as for STMC to get the number
of motifs or anti-motifs in any OSS project that we analyze.

4.2.1 Sanity Check

To validate the effectiveness of our STMCr filtering approach, we conduct a qualitative study.
We randomly select three triangle motifs and three square motifs from each project that are
identified by STMC but not by STMCr. Next, we gather all the pull request IDs that modified
the files in these motifs and manually inspect each issue in GitHub to verify if the modified
files are included in any of the issues. If none of the issues include the modified files, then
our STMCr approach is validated as it filters out false positive motifs that the STMC approach
generates.

4.3 research questions

In this section, we explain the research questions of this thesis. We use the dSTMC and dSTMCr

concepts to measure the socio-technical congruence in our subject projects and correlate
it with the acceptance rate, review rate, and first review interval. In the configuration of
the STMC mentioned above, we extract the communication between developers from issues.
However, it is not feasible to measure the acceptance rate, review rate, and first review
interval for issues because they typically do not undergo the merging and review process.
Therefore, we only measure these metrics for pull requests.

We analyze the correlation between the dSTMC or dSTMCr and the acceptance rate, review
rate, and first review interval using the Kendall rank correlation coefficient (Kendall’s Tau)1.
Kendall’s Tau is a non-parametric test that examines the similarities in the ordering of data
when ranked by quantities. Instead of using the observations as the basis of the correlation,
Kendall’s Tau uses pairs of observations and determines the strength of association based
on the pattern of concordance and discordance between the pairs2. We chose Kendall’s Tau
since our data is not normally distributed and we have a small dataset.

Moreover, we differentiate between statistically significant correlations and those that
are not statistically significant, which is determined through the calculation of the p-value.
In statistics, the p-values vary from 0 to 1, with lower values indicating higher statistical
significance. A p-value of 0 suggests that the probability of obtaining the observed result by
chance is extremely low and provides very strong evidence to reject the null hypothesis.
The null hypothesis typically assumes that there is no correlation between the variables
being analyzed. Therefore, a p-value of 0 would suggest strong evidence that there is indeed
a correlation between the variables being analyzed. On the other hand, a p-value of 1

1 https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient, last accessed on 24/04/2023

2 https://towardsdatascience.com/kendall-rank-correlation-explained-dee01d99c535, last accessed
04/05/2023

https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient
https://towardsdatascience.com/kendall-rank-correlation-explained-dee01d99c535
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suggests that there is no statistical significance and that the observed result could easily
have occurred by chance, assuming no correlation between the variables.

In this thesis, we choose a significance level of 0.05, which is commonly used and
represents a 5% chance of obtaining the observed result by chance, assuming a correlation
between the variables. It is important to note that the p-value alone does not indicate the
strength of the correlation, only the statistical significance of the correlation coefficient.
Therefore, it is important to analyze both the correlation coefficient and the p-value together
to draw meaningful conclusions.

4.3.1 Research Question 1

research question 1 : Is there a correlation between the dSTMC or dSTMCr with the accep-
tance rate of pull requests?

In the first research question, we examine the potential correlation between the dSTMC

and dSTMCr and the acceptance rate of pull requests. Specifically, we aim to investigate
whether the degree of socio-technical congruence measured by both, dSTMC and dSTMCr, has
an impact on the acceptance rate of pull requests on GitHub. As we have already defined
the measurement of dSTMC and dSTMCr, we will now define the acceptance rate.

We begin by defining acceptance of a pull request as its merge into the code base of a
project, based on previous research [9, 18, 31]. To analyze the correlation between socio-
technical congruence and acceptance rate, we use a time-split analysis with a sliding window
approach, using six-month windows with a three-month overlap. This allows us to capture
more pull requests within one time frame.

To count the number of merged pull requests for each time frame, we need to address the
problem of overlapping time frames. If a merge event occurs in the three-month overlap
period, we may end up counting it twice. To avoid this, we count the number of issue events
(such as comments, reviews, references, and others) for each time frame that a pull request
spans. Since we assume a pull request typically does not last longer than six months, it may
span three consecutive time frames at most. As an example of how pull request events can
span across different time frames, we provide a visualization in Figure 4.6.

We consider the time frame with the most events as the time frame of the merge, because
we want to capture the communication that contributed to the acceptance of the pull request.
We illustrate this in Figure 4.6. In case of a tie, where two or three time frames have the
same number of events, we choose the time frame closest to the merge event in terms of
time, as we believe that communication closer to the merge event has a greater influence on
the acceptance of the pull request.

After counting the number of merged pull requests for each time frame, we calculate the
total number of pull requests for each time frame. To determine the acceptance rate, we
divide the number of merged pull requests by the total number of pull requests for each
time frame, as shown in Equation 4.1. We provide an example of how the acceptance rate
looks for the Deno project in Figure A.1 in the Appendix.
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Figure 4.6: In this Figure, we depict the lifetime of a pull request spanning three consecutive time
frames labeled as 1, 2, and 3. Each time frame is six months. During time frame 1, the
pull request has three events: created, commented, and reviewed. During time frame 2,
there are five events: commented, reviewed, commented1 (labeled as 1 to differentiate it
from the previous comment), reviewed1 (labeled as 1 to differentiate it from the previous
review), and merged. Finally, during time frame 3, there are three events: commented1,
reviewed1, and merged. We consider time frame 2 as the time frame where the pull
request was merged, as it has the highest number of events.

Acceptance Rate =
number o f merged pull requests

number o f pull requests
(4.1)

Next, to analyze the correlation between the Acceptance Rate and dSTMC, we use Kendall’s
Tau to assess the:

• Acceptance Rate as one variable and the triangle congruence defined in Formula 2.1 as
the other variable.

• Acceptance Rate as one variable and the square congruence defined in Formula 2.2 as the
other variable.

We follow the same approach for analyzing the correlation between Acceptance Rate and
dSTMCr.
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4.3.2 Research Question 2

research question 2 : Is there a correlation between the dSTMC or dSTMCr with the review
rate of pull requests?

In the second research question, we investigate if there is a correlation between the dSTMC

or dSTMCr and the review rate to explore possible relationships between these variables.
To measure the review rate, we first need to define what we consider a review. By review,

we refer to peer code reviews conducted on GitHub. Since every OSS project has a different
workflow, this also affects the methodology that the project communities choose to review
a pull request. Some projects may use the "review" option on Github, while others may
just leave a comment in the conversation tab in a pull request. We refer to the former
methodology as a "reviewed" event and the latter as "commented" (based on the event
names extracted from GitHub), but both mean that a developer who is not the author of the
pull request conducted a peer code review for a pull request3.

To determine which event(s) should be considered a review, we analyze the events
"commented", "reviewed", and "merged", either alone or in combination. We present the
various use cases we consider in Table 4.1, along with the implications of a high number of
pull requests for each use case in every project.

The analysis of the projects’ events showed a mixed result, with some projects using
"commented," some using "reviewed," some using both, and some being inconclusive.
Therefore, to be inclusive of all possible peer code review methodologies, we decide to
consider both "commented" and "reviewed" events. This means that if a pull request has at least
one "commented" or "reviewed" event, it indicates that the pull request is probably reviewed
by someone other than the author of the pull request.

As depicted in Figure 4.7, we opt for a time-split analysis approach, utilizing a six-month
window to track the evolution of socio-technical congruence over time. This method allows
us to observe the general trend of peer code review activities in each project while avoiding
double counting of reviewed pull requests. Additionally, since "reviewed" and "commented"
events may take place numerous times throughout the lifespan of a pull request, we consider
them only once per time frame for each pull request.

To calculate the rate of reviewed pull requests, we count the number of pull requests that
have been reviewed and divide it by the total number of pull requests within each time
frame. This approach is represented in Equation 4.2. Finally, to check if there is or is not a
correlation between the Review Rate and dSTMC or dSTMCr we use Kendall’s Tau.

Review Rate =
number o f reviewed pull requests

number o f pull requests
(4.2)

3 Typically, the author of a pull request also comments on their own submission. However, we exclude these
comments and focus solely on those made by other developers.
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Table 4.1: In the second column of this Table, we depict the GitHub events we consider, which
include "reviewed" (referring to pull requests reviewed using the GitHub review option),
"commented" (about pull requests that have comments), and "merged" (about pull requests
that have been merged into the project’s code base). Meanwhile, the third column indicates
the significance of a high number of pull requests having any of the events mentioned in
the second column.

Events Implication

reviewed
A high number of pull requests may indicate that the
project utilizes the "reviewed" event for conducting peer
code reviews.

commented
A high number of pull requests may suggest that the
project employs the "commented" event for performing
peer code reviews.

Number of
Pull Requests
that have the
event:

reviewed
and
commented

A high number of pull requests may imply that the
project utilizes both the "reviewed" and "commented"
events for conducting peer code reviews.

merged
and
commented
and
not reviewed

A high number of pull requests may indicate that the
pull requests being merged are being reviewed using
"commented" rather than "reviewed". This suggests that
the project relies on comments to conduct peer code
reviews.

merged
and
reviewed

A high number of pull requests may indicate that the
pull requests being merged are being reviewed using
the "reviewed" options from GitHub. This suggests
that the project uses the review option from GitHub to
conduct peer code reviews.

1 2

created

commented

reviewed

commented1

reviewed1

merged

Start
lifetime

End
lifetime

Figure 4.7: In this Figure, we illustrate the lifetime of a pull request spanning 2 consecutive time
frames labeled as 1, and 2. Each time frame is six months. The "commented" and
"reviewed" events are present multiple times in two different time frames.
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To analyze the correlation between the Review Rate and dSTMC, we use Kendall’s Tau
with the:

• Review Rate as one variable and the triangle congruence defined in Formula 2.1 as the
other variable.

• Review Rate as one variable and the square congruence defined in Formula 2.2 as the
other variable.

We follow the same approach to analyze the correlation between the Review Rate and the
dSTMCr.
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4.3.3 Research Question 3

research question 3 : Is there a correlation between the dSTMC or dSTMCr with the first
review interval?

The aim of this research question is to investigate whether there is a correlation between
the dSTMC or dSTMCr and the first review interval. The first review interval is defined as the
time elapsed between the creation of a pull request and its initial review. Although a pull
request may undergo multiple reviews, we focus only on the first review.

We define the "created" event from our data set as the beginning of a pull request. To
determine the time interval from the creation of a pull request until the first review, we use
the time stamp of the first review event which can either be the "reviewed" or "commented"
event as described in Section (4.3.2). If only one of these events is present, we calculate the
time from the creation of the pull request until the occurrence of the event. However, in the
case where both events "reviewed" and "commented" are present, we consider the time from
the creation of the pull request until the first event occurrence. We illustrate these cases in
Figure 4.8.

Similarly to research question 1, we employ a time-split analysis with a sliding window for
each OSS project. This approach involves creating six-month windows that overlap with three
months to mitigate abrupt changes between two windows and enables capturing more pull
requests within one window. The sliding window technique allows us to capture a higher
number of event tuples, such as ["created", "commented"] or ["created", "reviewed"],
in comparison to a time-split analysis without a sliding window. In Figure 4.9 we provide
an illustration of this approach.

To measure the first review interval for each time frame, and as a consequence for the
whole OSS project, we calculate the mean of all first review intervals encountered in one
window. The formula for each time frame is as shown in equation 4.3. Afterward, we use
Kendall’s Tau, a non-parametric statistical test, to assess if there is a correlation between the
First Review Interval and dSTMC or dSTMCr.

First Review Interval = mean( f irst review interval f or each pull request) (4.3)

To investigate the correlation between the First Review Interval and the dSTMC, we use
Kendall’s Tau with the following pairs of variables:

• First Review Interval as one variable and the triangle congruence defined in Formula 2.1
as the other variable.

• First Review Interval as one variable and the square congruence defined in Formula 2.2
as the other variable.

We follow the same approach to analyze the correlation between the First Review Interval
and the dSTMCr.
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first review interval

first review intervalfirst review interval

First Review Interval for One Pull Request

created commented created reviewed

created commented

reviewed

(a) (b)

first review interval

created reviewed

commented

(c) (d)

Figure 4.8: Since the pull request is reviewed only by comments in Figure (a), we consider it as the
review event and calculate the first review interval for this pull request starting from
the "created" event until the "commented" event. In Figure (b), since the pull request is
reviewed only by the review functionality in GitHub, we consider it as the review event
and calculate the first review interval for this pull request starting from the "created"
event until the "reviewed" event. In Figure (c), the pull request is reviewed by comments
first and then the review functionality in GitHub, hence we consider the "commented"
event as the review since it occurs first. Thereafter, we calculate the first review interval
for this pull request starting from the "created" event until the "commented" event. Finally,
in Figure (d), the pull request is reviewed using the review functionality in GitHub first
and then using comments, hence we consider the "reviewed" event as the review since
it occurs first. Subsequently, we calculate the first review interval for this pull request
starting from the "created" event until the "reviewed" event.
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Figure 4.9: The number labels 1, 2, and 3 correspond to the number of windows generated in a time
frame analysis with a sliding window. The yellow bar represents the "created" event,
which marks the beginning of a pull request. The purple and blue bars represent the
"commented" and "reviewed" events, respectively, which are the two events that indicate a
review. The first review interval (FRI) is the time between the "created" and "commented"
events.
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E VA L UAT I O N

In this chapter, we present the results of this thesis to answer the research questions
presented in Section 4.3. Furthermore, we discuss the results and what implications they
may have for a project. Lastly, we explain the threats to the validity of this thesis.

5.1 results

In this section, we present the results of our analyses to answer our research questions.
We utilize Kendall’s Tau correlation coefficients and the respective p-values to analyze
the results. The Kendall’s Tau correlation coefficient ranges from -1 to 1, with a value of
0 indicating no correlation. Values closer to -1 or 1 indicate stronger negative or positive
correlations, respectively. A negative correlation coefficient means that the two analyzed
variables develop in opposite directions, while a positive correlation coefficient means
that the two analyzed variables develop in the same direction. We interpret Kendall’s Tau
correlation coefficient based on the guidelines1, as illustrated in Figure 5.1.

0-0.1-0.2-0.3 0.1 0.2 0.3-1 1

very weakweak weakmoderate moderatestrong

.......

strong

.......

Figure 5.1: A correlation coefficient between -0.1 and 0.1, shown in red on the scale, is considered a
very weak correlation. When the correlation coefficient falls between -0.1 to -0.19 or 0.1 to
0.19, shown in orange, the correlation is considered weak. A correlation coefficient between
-0.2 to -0.29 and 0.2 to 0.29, shown in blue, is considered to have a moderate correlation.
Finally, a correlation coefficient smaller than -0.3 and greater than 0.3, depicted in green
on the scale, is considered to have a strong correlation.

In the following sections, we present the outcomes of our analyses for each of the OSS

projects that we examined in this thesis, addressing all three research questions outlined in
Section 4.3. We classify our answers to these research questions as affirmative, negative, or
inconclusive.

To simplify the presentation of our results, we use only the names of the congruences
when referring to the correlations between the acceptance rate, review rate, and first review
interval and the congruences, as follows:

• Triangle = correlating acceptance rate, review rate, or first review interval with triangle
congruence of dSTMC

• Square = correlating acceptance rate, review rate, or first review interval with square
congruence of dSTMC

1 https://polisci.usca.edu/apls301/Text/Chapter%2012.%20Significance%20and%20Measures%20of%20Ass

ociation.htm, last accessed on 04/05/2023
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• Refined Triangle = correlating acceptance rate, review rate, or first review interval
with triangle congruence of dSTMCr

• Refined Square = correlating acceptance rate, review rate, or first review interval with
square congruence of dSTMCr

5.1.1 Sanity Check Results

In Section 4.2.1, we presented the results of our sanity check for dSTMCr. Our results showed
that, except for the Moby project, none of the issues we examined involved communication
between authors or modifications to files included in the motifs for all three randomly
selected motifs. For Moby, none of the issues we examined involved communication between
authors or modifications to files included in the square motifs, but multiple issues belonging
to two different triangle motifs involved communication between authors or modifications
to files included in these two triangle motifs. Considering the results of the sanity check, we
can imply that the dSTMCr approach was successful in filtering out false positive motifs. The
implications of this finding on our results will be discussed in the next section, namely the
Discussion section 5.2.

5.1.2 Research Question 1

In Figure 5.2, we illustrate in the heatmap the results for Triangle, Square, Refined Triangle,
and Refined Square for all of our subject projects. In each cell of the heatmap, we represent
the correlation coefficient between two variables, and the color of each cell indicates whether
the correlation is statistically significant or not. The values in each cell provide information
about the strength and direction of the correlation. This visualization allows us to quickly
identify which projects have significant correlations and which ones do not, providing a
comprehensive overview of our analysis results.

5.1.2.1 Acceptance Rate and dSTMC

In Figure 5.2, we demonstrate in the Triangle column a range of correlation coefficients
between -0.55 to 0.7. However, only half of the projects analyzed (i.e., five out of ten) show
statistically significant results: TensorFlow, Moby, Bootstrap, Atom, and Typescript.
Among them, TensorFlow, Typescript, and Atom exhibit strong positive correlation coeffi-
cients of 0.7, 0.5, and 0.37, respectively. Bootstrap shows a moderate positive correlation
coefficient of 0.24. In contrast, Moby shows a strong negative correlation coefficient. Hence,
for these projects, we can accept the hypothesis that there is a statistically significant
correlation between acceptance rate and triangle congruence.

On the other hand, the other five projects do not demonstrate statistically significant
correlations for the triangle congruence. For instance, Vs Code exhibits a moderate positive
correlation coefficient of 0.28 and a p-value of 0.08, indicating a moderate positive correlation
between the acceptance rate and triangle congruence. However, this correlation is not
statistically significant at the 5% significance level. Therefore, for these projects where the
correlation coefficient is not statistically significant, we cannot accept the hypothesis that
there is a correlation between acceptance rate and triangle congruence. Consequently, we



5.1 results 33

-0.29-0.38-0.42-0.33

0-0.06-0.51-0.55

0.010.010.290.24

0.210.250.20.37

-0.030.240.630.5

-0.25-0.27-0.07-0.13

-0.2-0.270.160.09

0.06-0.07-0.09-0.01

0.070.050.230.28

0.620.680.740.7

atom

bootstrap

deno

electron

moby

nextjs

react

tensorflow

typescript

vscode

Triangle Square Refined Triangle Refined Square

Congruence

P
ro

je
ct

p-value

< 0.05

>= 0.05 

Acceptance Rate correlated with dSTMC and dSTMCr

Figure 5.2: In this heatmap, we represent the correlation coefficients for each project and congruence
analyzed, where the y-axis denotes the subject projects, and the x-axis shows the con-
gruences. Each cell in the heatmap corresponds to the correlation coefficient between
the review rate and congruence. The color of the cell indicates whether the correlation
coefficient is statistically significant or not. Green indicates that the p-value is less than
0.05, while white indicates that the p-value is greater than or equal to 0.05. For instance,
considering the first column (Triangle) and the first row (Atom), the first cell represents a
statistically significant correlation between the acceptance rate and the triangle congru-
ence (for dSTMC) for the Atom project, with a correlation coefficient of 0.37.
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cannot conclude that there is a statistically significant correlation between acceptance rate
and triangle congruence.

In the case of the Square column, we observe correlation coefficients ranging from -0.51

to 0.74. Among the ten analyzed projects, four of them exhibit statistically significant cor-
relation coefficients for the acceptance rate and square congruence: TensorFlow, Moby,
Bootstrap, and Typescript. Similarly to the Triangle column, TensorFlow, Typescript,
and Moby display strong correlation coefficients, while Bootstrap has a moderate correla-
tion coefficient. For these projects, we can conclude that there is strong enough evidence
to support the hypothesis that there is a statistically significant correlation between the
acceptance rate and the square congruence.

However, for the remaining six projects, we do not have sufficient evidence to establish a
statistically significant correlation between the acceptance rate and the square congruence.
For instance, the project Deno has a negative correlation coefficient (-0.42), indicating a
negative relationship between the acceptance rate and the square congruence measure, but
this correlation is not statistically significant at the 5% significance level (p-value: 0.09).

We cannot give a definitive answer to this part of the first research question due to the
mixed results obtained for both triangle and square congruence. While some projects
exhibit a statistically significant correlation, others do not. Therefore, we cannot conclude
whether there is a correlation between acceptance rate and the dSTMC.

5.1.2.2 Acceptance Rate and dSTMCr

We illustrate the correlation results between acceptance rate and dSTMCr, specifically the
triangle and square congruences, on the second pair of columns in the heatmap.

The correlation coefficients for the Refined Triangle range from -0.38 to 0.68 consider-
ing all projects. Only four out of ten projects show a statistically significant correlation:
TensorFlow, Atom, React, and Electron. TensorFlow shows the highest correlation
(0.68), followed by Atom (0.25). Meanwhile, Electron and React show the same negative
correlation coefficient, namely -0.27. The other five projects do not show any statistically
significant correlation between the acceptance rate and the triangle congruence.

Regarding the Refined Square column, in Figure 5.2, the range of the correlation coeffi-
cients is from -0.29 to 0.62. In this case only TensorFlow shows a statistically significant
correlation with a strong correlation coefficient of 0.62 and a p-value of 0 which suggests that
there is a very low probability that the observed correlation occurred by chance. The React

project shows a negative correlation with a correlation coefficient of -0.25 and a p-value of
0.05, indicating a weak negative association between acceptance rate and square congruence.
However, this correlation is not statistically significant as the p-value is greater than the
threshold of 0.05. Also, all the other projects show no statistically significant correlations in
this case.
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Our analysis of the correlation between the acceptance rate and the Refined Triangle
and Square congruence yields mixed results. While only one out of ten projects show a
statistically significant correlation with the refined square metric, four out of ten projects
show a statistically significant correlation with the refined triangle metric. As a result, we
cannot draw a conclusion regarding the correlation between the acceptance rate and the dSTMCr

metrics.

To summarize, our analysis of the first research question did not provide a conclusive
answer for either use case - when correlating acceptance rate with dSTMC or dSTMCr.

We answer the first research question inconclusively because we cannot determine
whether there is a correlation between the acceptance rate and the dSTMC or dSTMCr.

5.1.3 Research Question 2

We illustrate the correlation between the review rate and both dSTMC and dSTMCr for each
project in Figure 5.3.

5.1.3.1 Review Rate and dSTMC

The correlation coefficients for the Triangle column range from -0.6 to 0.42. Only one project,
Moby, shows a statistically significant negative correlation (-0.6) with a p-value of 0, indicat-
ing that the review rate and triangle congruence tend to develop in opposite directions for
this project. Although TypeScript and TensorFlow have the highest correlation coefficients
(0.31 and 0.42, respectively), their p-values are greater than 0.05, indicating no statistically
significant correlation. The remaining projects show very weak, weak, or moderate correla-
tion coefficients and none of them are statistically significant (p-values > 0.05). Therefore,
we cannot support the hypothesis that there is a correlation between these projects.

Similarly, in the Square column, the correlation coefficients range from -0.53 to 0.51. The
only projects with statistically significant correlations are Moby and TypeScript (with p-
values of 0 and 0.01, respectively) suggesting a strong and statistically significant correlation
between review rate and square congruence. The remaining projects show very weak, weak,
moderate, or strong correlation coefficients, but none of them are statistically significant.

To summarize, only Moby shows statistically significant correlations for both the triangle
and square congruences, while TypeScript displays a statistically significant result solely
for square congruence. For the remaining projects, there are no statistically significant
findings in either metric. With 9 out of 10 projects for Triangle and 8 out of 10 for Square
not showing statistically significant correlations, we conclude that there is no significant
correlation between review rate and the dSTMC.
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Figure 5.3: We represent the correlation coefficients for each project and congruence analyzed in the
heatmap. The y-axis denotes the subject projects, while the x-axis shows the congruences.
Each cell in the heatmap shows the correlation coefficient between the review rate and
congruence. The color of the cell indicates whether the correlation coefficient is statistically
significant or not. Green represents a p-value of less than 0.05, while white represents
a p-value of greater than or equal to 0.05. For example, in the first column (Triangle)
and the first row (Atom), the first cell represents a not statistically significant correlation
between the review rate and the triangle congruence (for dSTMC) for the Atom project,
with a correlation coefficient of -0.03.
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5.1.3.2 Review Rate and dSTMCr

In the Refined Triangle column of the heatmap, we observe that three projects, namely
Deno, Moby, and React, exhibit negative correlations with coefficients ranging from -0.41

to -0.08. Conversely, the rest of the projects, including TensorFlow, Atom, TypeScript,
Electron, Next.js, Vs Code and Bootstrap show positive correlations with coefficients
ranging from 0.7 to 0.47. However, only the correlation for React is statistically significant
with a p-value of 0.03, while the other projects show no statistically significant results.

Looking at the Refined Square column, six projects (Vs Code, TensorFlow, Bootstrap,
Atom, Electron, Next.js) have a positive correlation (coefficients ranging from 0.02 to
0.47), while two projects (TypeScript and React) have a negative correlation (coefficients
ranging from -0.43 to -0.18). Surprisingly, both Deno and Moby have a zero correlation
coefficient and a p-value of 1. This suggests that there is no linear relationship between the
review rate and square congruence, but the p-value of 1 indicates that this lack of correlation
is not statistically significant. In other words, the observed correlation coefficient of zero
could have easily happened by chance. Nevertheless, React is the only project that shows a
statistically significant correlation, whereas the correlation between the review rate and the
square congruence is not statistically significant for the remaining 9 projects.

Overall, the results suggest that the correlation between the review rate and the triangle
or square congruence varies among the analyzed OSS projects, with only one project
demonstrating a statistically significant correlation for triangle and square congruence.
Therefore, we conclude that there is no statistically significant correlation between the review
rate and the dSTMCr.

Based on the analysis of the correlation between the review rate and the four congruences,
we find that only a small number of projects exhibit statistically significant correlations.
Specifically, the Triangle, Refined Triangle, and Refined Square congruences show that only
one project has a statistically significant correlation, while the Square congruence shows
that two projects have statistically significant correlations.

Hence, we conclude that there is no correlation between review rate and either dSTMC or
dSTMCr, as only one or two projects out of 10 exhibit statistically significant correlations
for each of the four congruences analyzed.

5.1.4 Research Question 3

In Figure 5.4, we depict the correlation between the first review interval and both dSTMC

and dSTMCr for each OSS project that we analyzed.



38 evaluation

-0.070.110.33-0.02

-0.020.070.390.42

0.320.260.060.07

-0.2-0.14-0.13-0.16

-0.11-0.36-0.23-0.42

-0.44-0.45-0.17-0.27

-0.34-0.35-0.29-0.32

-0.63-0.82-0.63-0.59

-0.040-0.2-0.27

-0.65-0.55-0.58-0.53

atom

bootstrap

deno

electron

moby

nextjs

react

tensorflow

typescript

vscode

Triangle Square Refined Triangle Refined Square

Congruence

P
ro

je
ct

p-value

< 0.05

>= 0.05 

First Review Interval correlated with dSTMC and dSTMCr

Figure 5.4: We present the correlation coefficients for each project and congruence in the heatmap.
We use the y-axis to denote the subject projects, while the x-axis displays the congruences.
Each cell in the heatmap represents the correlation coefficient between the first review
interval and a congruence. We use the color of the cell to indicate whether the correlation
coefficient is statistically significant or not. Green represents a p-value of less than 0.05

and white represents a p-value of greater than or equal to 0.05. For instance, in the
first column (Triangle) and the first row (Atom), we see a non-statistically significant
correlation between the first review interval and the triangle congruence (for dSTMC) for
the Atom project, with a correlation coefficient of -0.16.
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5.1.4.1 First Review Interval and dSTMC

We find that the correlation coefficients for the first review interval and the triangle con-
gruence range from -0.59 to 0.42, which are both considered strong correlation coefficients
according to the guidelines used in this thesis. Interestingly, six out of ten projects show
statistically significant correlations. These projects are: Electron, Moby, Next.js, Tensor-
Flow, React, and TypeScript. All of these projects, except React which shows a moderate
statistically significant correlation (-0.27), show strong statistically significant correlations.
Meanwhile, the other four projects show very weak, weak, or moderate correlations that are
not statistically significant.

For the Square column in the heatmap, we find that only four out of ten projects show
a statistically significant correlation. These projects are: Electron, Moby, Next.js, and
TensorFlow. Moby, Next.js, and TensorFlow show strong correlation coefficients, 0.39,
-0.63, and -0.58 respectively. Only Electron shows a moderate correlation coefficient with
-0.29. In contrast, all the other projects are not statistically significant.

As we obtain mixed results for both triangle and square congruence, we cannot give a
definitive answer to this part of the third research question. While some projects exhibit
a statistically significant correlation, others do not. Therefore, we cannot conclude whether
there is a correlation between the first review interval and the dSTMC.

5.1.4.2 First Review Interval and dSTMCr

We observe a range of correlation coefficients varying from -0.82 to 0.26 in the Refined
Triangle column. Similarly to the Triangle column, six projects show a statistically significant
correlation. These projects include Bootstrap, Electron, Next.js, React, TensorFlow,
and TypeScript. Among these, only Bootstrap exhibits a moderate statistically significant
correlation. The remaining five projects show strong correlation coefficients, with Next.js
having the highest correlation coefficient of -0.82, not only in the Refined Triangle column
but among all correlation coefficients of our findings. Conversely, the other four projects
exhibit very weak or weak correlations that are not statistically significant.

Moving on to the Refined Square column, the correlation coefficients vary from -0.65 to
0.32. Out of the ten projects, half of them show statistically significant correlations. These
projects are Bootstrap, Electron, Next.js, React, and TensorFlow with 0.32, -0.34, -0.63,
-0.44, -0.65 correlation coefficients respectively. The remaining half of the projects show no
statistically significant correlation and their correlation coefficients are very weak, weak, or
moderate.

We cannot provide a conclusive answer to whether there exists a correlation between the
first review interval and the dSTMCr due to the mixed results obtained for both triangle
and square congruence.
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In summary, our analysis of all congruences correlated to the first review interval shows
statistically significant correlations for 4 to 6 projects, depending on the type of congruence.
However, these results are not conclusive enough to determine whether there is a correlation
between the first review interval and the dSTMC or dSTMCr.

Thus, we answer our third research question inconclusively meaning that we cannot show if
there is or is not a correlation between the first review interval and the dSTMC or dSTMCr.

5.2 discussion

In this section, we discuss our findings from the results section 5.1 by explaining what the
correlation coefficients mean and what might have caused them.

We noticed that the correlation coefficients for all our research questions were sometimes
positive and sometimes negative among all projects. A positive correlation coefficient
indicates that the code review measure (acceptance rate, review rate, or first review interval)
and dSTMC or dSTMCr (we refer to dSTMC and dSTMCr together as congruence) develop in the
same direction. Meanwhile, a negative correlation coefficient indicates that the code review
measure and the congruence develop in opposite directions. However, it is important to
note that correlation does not necessarily imply causation. For example, a high dSTMC does
not necessarily and exclusively cause a high acceptance rate as other factors might affect the
acceptance rate.

In our analysis, we consider the code review measure as the dependent variable and
the congruence as the independent variable. We regard a high congruence (regardless
if it’s a square or triangle congruence) as suggesting that developers contributing to the
same files or related files often communicate with each other (supposedly) about their
contributions. On the other hand, we view a low congruence as implying that developers
are contributing to the same files or related files but not communicating with each other
about their contributions.

5.2.1 Comparing dSTMC and dSTMCr

Based on our sanity check, we observed that in most cases, by using dSTMCr we effectively
filtered out the false positive motifs that we detected by the dSTMC method. Consequently,
the triangle or square congruence of the dSTMCr is either lower than or equal to that of
the dSTMC. We also noticed that some projects exhibit statistically significant correlations
for both dSTMC and dSTMCr. Moreover, the correlation coefficients for these projects either
increase, decrease, or remain unchanged.

Interestingly, certain projects exhibit statistically significant correlations for dSTMC but not
for dSTMCr, and in such cases, the correlation coefficients for dSTMCr are always lower. On
the other hand, some projects do not show a statistically significant correlation for dSTMC,
but they do show one for dSTMCr, and in these instances, the correlation coefficient for
dSTMCr is always higher. Based on these observations we can point that in these two cases, the
correlation between the code review measure and the dSTMC or dSTMCr tends to be lower
for projects with non-statistically significant correlations.
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Furthermore, based on our sanity check results, we demonstrated that almost all motifs
we manually checked were false positives hence, can argue that dSTMCr is a more reliable
measure than dSTMC. However, we cannot dismiss the results obtained from dSTMC entirely
since our sanity check only involved randomly selecting three motifs per project. Further
investigations are necessary to confirm this finding.

Lastly, we can argue that the results obtained from projects that exhibited a statistically
significant correlation with both dSTMC and dSTMCr are more reliable than those that
did not. These projects include Atom (only triangle congruence) for the first research
question, TensorFlow for the first and third research questions, and TypeScript (only
triangle congruence), React (only triangle congruence), Next.js, and Electron for the third
research question.

5.2.2 Research Question 1

The first research question that we investigated is the correlation between the acceptance rate
of pull requests and congruence. We found that there is a statistically significant correlation
for some projects, but not for others.

Below, we discuss the implications or the causes that may have caused the positive or
negative correlation coefficients.

1. Positive Correlation Coefficient: Both acceptance rate and congruence increase

Communication, in the context of STMC, in this scenario may lead to fewer conflicts
when changing the code, resulting in the faster merging of pull requests and an
increased acceptance rate. Another reason might also be clearer expectations of what is
required for a pull request to be accepted. Improved team motivation when developers
work closely together may contribute to a high acceptance rate.

2. Positive Correlation Coefficient: Both acceptance rate and congruence decrease

This lack of communication may cause conflicts in the code base, resulting in
delays in merging pull requests and a decreased acceptance rate.

3. Negative Correlation Coefficient: acceptance rate increases and congruence decreases

This scenario may be due to developers becoming more familiar with the code
base and each other’s work over time, leading to less communication. Additionally, a
lack of code reviews may lead to an increase in the acceptance rate as pull requests
are merged without being reviewed.

4. Negative Correlation Coefficient: acceptance rate decreases and congruence increases

This scenario may be due to low-quality contributions that are not relevant to the
code base. Alternatively, pull requests may be scrutinized very thoroughly, causing
a lot of communication for one pull request but fewer pull requests being merged
overall.

Most of the projects that showed a statistically significant correlation (Atom, Bootstrap,
TensorFlow, and TypeScript) have moderate to strong positive correlation coefficients
because when developers communicate and collaborate (i.e., high congruence), it is more
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likely that pull requests are merged quickly, leading to a high acceptance rate. On the other
hand, in projects where the developers do not communicate and collaborate, the acceptance
rate is likely to be lower, and the congruence is likely to be lower as well.

In contrast, in the rest of the projects that showed statistically significant correlations
such as Moby, Electron, and React, there is a moderate to strong negative correlation
between the acceptance rate and congruence. Since Moby is the project that shows the
strongest negative correlation, we investigated the possible reasons for this result. We found
that the contributing guidelines for this project strongly encourage getting in touch with
the project maintainers before submitting a pull request2 as they value communication a
lot. Their reviewing policy also gives great importance to comments in pull requests. In
addition, the acceptance rate of OSS projects usually decreases over time because, usually, at
the beginning of a project, only the core developers are involved, and pull requests may be
merged without proper review. As the project grows and more contributors join, the number
of pull requests increases, which may lead to longer review times and lower acceptance
rates.

Taking these factors into account, we believe that the negative correlation coefficient in
the case of Moby project may be due to a decrease in the acceptance rate as the project
becomes more complex and the number of pull requests increases, despite the efforts to
maintain communication and review practices.

To sum up, our analysis suggests that the STMC has an impact on the acceptance rate
in a few projects with a statistically significant correlation. For other projects without a
significant correlation, several factors, such as the author’s past contributions, code base
size, and code review frequency, may affect the acceptance rate. Nevertheless, we cannot
conclude that the STMC has a statistically significant correlation with the acceptance rate or
causes the acceptance rate for either group of projects (those that show statistically significant
correlations and those that do not).

5.2.3 Research Question 2

The second research question that we investigated is the correlation between the Review
Rate of pull requests and the congruence. We found that for most of the projects, there is no
statistically significant correlation between the review rate and congruence.

For this research question, we found that only three projects demonstrated statistically
significant correlations: Moby, React, and TypeScript. Interestingly, Moby showed statisti-
cally significant correlations for both Triangle and Square congruence, while TypeScript

showed statistically significant correlations for Refined Triangle and Refined Square (see
Figure 5.3). Additionally, both projects showed strong negative correlations, indicating that
direct and indirect collaboration impact the review rate. There could be several reasons for
these negative correlations, such as a decrease in communication when developers review a
high volume of pull requests or a perception that less communication is necessary when
working on related files. However, it’s important to note that while a negative correlation
between review rate and congruence suggests an inverse relationship, other factors may
independently influence these variables.

2 https://github.com/moby/moby/blob/master/CONTRIBUTING.md#successful-changes, last accessed
28/04/2023

https://github.com/moby/moby/blob/master/CONTRIBUTING.md#successful-changes


5.2 discussion 43

For most of the projects analyzed, there was no significant correlation observed between
review rate and congruence, indicating that the correlation may have occurred by chance.
Factors such as project size, complexity, level of engagement within the community, and
quality of documentation could influence the review rate. Larger projects or those with a
more complex architecture may require more effort to review, possibly resulting in a lower
review rate. A highly engaged community can lead to more contributors willing to review
pull requests, probably leading to a higher review rate. The high quality and completeness
of the project’s documentation can also play a role in the time needed for reviewing pull
requests, possibly leading to a higher review rate.

Our research indicated that there is no strong evidence of a relationship between the
review rate and STMC for the majority of the projects analyzed. This suggests that other
factors are likely to be influencing the review rate. Therefore, further investigation is needed
to determine which factors are most influential and how they affect the review rate.

5.2.4 Research Question 3

Our third research question focused on the correlation between the first review interval and
congruence. We observed a statistically significant correlation for certain projects, but not
for others, and as a result, we were unable to provide a definitive answer.

Among the projects that exhibited a statistically significant correlation, most of them
had negative correlation coefficients, including Electron, Next.js, React, TensorFlow,
and TypeScript. In these cases, the negative correlation between the first review interval
and congruence indicated that when the first review interval was longer, the congruence
was lower, and vice versa. Longer first review intervals and lower congruence could arise
from an ineffective review process where pull requests are not prioritized. Additionally, this
might also stem as a consequence of poor documentation where the code review process is
not clearly stated.

Conversely, a shorter first review interval and higher congruence might be linked to
the skill or experience level of the developers. Experienced developers can review more
pull requests, reducing the first review interval for a significant number of pull requests.
Similarly to the above, documentation can also shorten the first review interval but increase
the communication needed afterward.

Interestingly, two projects (Bootstrap and Moby) showed a positive statistically significant
correlation coefficient, indicating that as the first review intervals increased or decreased,
so did the congruence, meaning more or less communication about a file or related files.
This could be attributed to a not effective review process, leaving developers waiting for
their reviews for an extended period and causing more communication after the review
process has begun. A well-established review process, on the other hand, could have the
opposite effect, as developers prioritize the pull requests for review, necessitating less
communication. One possibility is that longer first review intervals give developers more
time to communicate and coordinate their efforts, resulting in higher levels of congruence.
This would be consistent with the Moby project’s contribution guidelines, which state:
"...make the effort to coordinate with the maintainers of the project before submitting a pull request."

For the projects that did not exhibit statistically significant correlations, the first review
interval can be influenced by other factors, such as reviewer availability (the amount of
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time reviewers have to conduct pull requests), the complexity of the pull requests (complex
changes may necessitate more time and effort to review), and the size of the maintainer
team (for those projects where maintainers are responsible for code reviews, the number of
maintainers might impact the first review interval).

5.2.5 Characteristics of OSS Projects

We conducted an analysis of ten OSS projects that varied in age, as presented in Table 3.2.
Our analysis covered a time range of a minimum of two years and a maximum of nine years,
containing a diverse set of projects at different stages of development. This approach allowed
us to test the effectiveness of our methods across a range of project establishments. It is
important to analyze OSS projects of different ages since they undergo not only technical
but also social changes throughout their lifespan, as noted by Nakakoji et al. [26].

In Table 3.1, we presented data on the size of our ten selected OSS projects, measured in
terms of the number of issues. The number of issues varied significantly across the projects,
ranging from approximately 4k for TypeScript to around 111k for VS Code. This variation
in size is due to several factors, such as the complexity and activity level of the project, the
diversity of contributors, and the level of community engagement.

Studying OSS projects of different sizes is important because it can reveal unique insights
into the dynamics of collaboration and communication among contributors. For example,
analyzing a large project with a high level of activity may uncover patterns of collaboration
and coordination among a large and diverse group of contributors. On the other hand,
studying a smaller project with fewer contributors may highlight the critical role of a core
group of contributors in maintaining the project. By analyzing projects of different sizes, we
can develop more generalizable insights that can be applied to a wide range of OSS projects.

Our analysis of OSS projects is more generalizable by the fact that each project has
its own set of contribution guidelines. For example, the Deno project partially relies on
communication through its Discord forum, as outlined in their contribution guidelines3.
Additionally, TensorFlow provides very detailed documentation about their review process,
with maintainers responsible for assigning reviewers to pull requests4. Meanwhile, Atom

places a greater emphasis on the code of conduct rather than specific contribution guidelines,
which can confuse new contributors5. The presence of distinct contribution guidelines across
different projects allows us to consider and compare a wide range of factors that may
influence the project’s development, communication, and collaboration.

Like Moby, the Bootstrap project also places a strong emphasis on communication
through GitHub, as outlined in their contribution guidelines which encourage contributors
to get in touch with maintainers before creating pull requests6. In contrast, TypeScript

encourages contributors to solve issues without contacting the maintainers or informing the
other contributors7, which could suggest a lower level of communication in this project.

3 https://deno.com/manual@v1.33.1/references/contributing, last accessed 30/04/2023

4 https://github.com/tensorflow/tensorflow/blob/master/CONTRIBUTING.md#how-to-become-a-contribut

or-and-submit-your-own-code, last accessed 30/04/2023

5 https://github.com/atom/atom/blob/master/CODE_OF_CONDUCT.md, last accessed 30/04/2023

6 https://github.com/twbs/bootstrap/blob/main/.github/CONTRIBUTING.md, last accessed 30/04/2023

7 https://github.com/microsoft/TypeScript/blob/main/CONTRIBUTING.md#issue-claiming, last accessed
30/04/2023

https://deno.com/manual@v1.33.1/references/contributing
https://github.com/tensorflow/tensorflow/blob/master/CONTRIBUTING.md#how-to-become-a-contributor-and-submit-your-own-code
https://github.com/tensorflow/tensorflow/blob/master/CONTRIBUTING.md#how-to-become-a-contributor-and-submit-your-own-code
https://github.com/atom/atom/blob/master/CODE_OF_CONDUCT.md
https://github.com/twbs/bootstrap/blob/main/.github/CONTRIBUTING.md
https://github.com/microsoft/TypeScript/blob/main/CONTRIBUTING.md#issue-claiming
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Our selected OSS projects have different communication, contribution, and collaboration
methodologies, which can significantly affect our results. By analyzing these different
methodologies, we can gain insights into the factors that influence OSS project. of different
types and sizes.

5.3 threats to validity

In this section, we discuss the threats to the validity of our study.

While conducting our analysis, we identified several potential threats to its validity. One
such threat is that our study considers only the communication that occurs in GitHub issues
or pull requests. Considering that some GitHub OSS projects may utilize multiple communi-
cation tools such as Discord, Slack, or external forums, which we have not included in our
dataset, it may lead us to miss out on communication between developers. However, we
consider this threat to be minimal because the important and most relevant communication
about issues or pull requests usually occurs in the issue or pull request itself.

Additionally, our analysis relies on specific tools like coronet for network building. This
limits the scope of our analysis to only the networks that coronet offers. Nevertheless,
coronet offers three important types of networks in the STC context, such as social networks,
technical networks, and socio-technical networks, which cover a high amount of patterns
that can occur in STC. Moreover, we use socio-technical networks constructed from different
data sources, one threat is that the socio-technical networks do not reflect the real world.
This risk is very low because previous research proves that socio-technical networks are an
adequate representation of relationships in OSS projects [23].

It is important to note that our analysis relies on the STMC methodology to measure
STC in the analyzed OSS projects. It is possible that the STMC formalization may not reflect
other socio-technical patterns that exist. Nonetheless, given that STMC captures the two
fundamental ways of collaboration, Mauerer et al. [21] believe that any other patterns
would likely appear as sub-(anti-) motifs, which means that the correlation should not differ
significantly from our results.

Moreover, the terms "commented" or "reviewed" may not accurately reflect when a pull
request is reviewed and bias the results for the review rate and first review interval of
a pull request. This is because any GitHub user can leave a comment on a pull request,
even if their comment is not related to the review process. We classify these comments as
reviews since, although they may not include a review from the project maintainers, they
still provide feedback and assessment for the pull request.

Lastly, our study uses a quantitative analysis as we did not conduct an extensive qualitative
analysis. As a result, we base our discussion section on hypotheses of what might have
caused these obtained results, hence, we can not make definitive statements about the
implications of the obtained results. Regardless, we try to mitigate this limitation by
reviewing contribution guidelines for each analyzed OSS project and presenting implications
in the discussion section.
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R E L AT E D W O R K

In this chapter, we present research papers that are related to the main concepts of this
thesis, namely, socio-technical congruence implemented using socio-technical networks and
socio-technical congruence correlated with code review measures.

The most related work for this thesis is of course the work from Mauerer et al. [21]
because we use their operationalization of STMC to measure the STC in this thesis. Mauerer
et al. correlate the STMC with software quality measures, namely, code bugs and code churn.
They use a mixed-methods statistical analysis to investigate the relationship between STMC

and code bugs and code churn. The authors collect data from 25 large OSS projects and
measure STMC based on the occurrence of triangle anti-/motifs and square anti-/motifs in
the projects.

In their STMC configuration, the authors consider files as artifacts and capture the file
dependencies (artifact relationship) from function calls, co-changes in the same commit,
and comments and key terms associated with source code. Moreover, they capture the
developer’s communication (author relationship) from issues and emails.

Mauerer et al. collect data on code bugs and code churn from the same projects and
correlate them with STMC. They count the number of bugs associated with an artifact (bug
density) and compute the magnitude of churn (changed lines per artifact). An increasing
number of bugs is equivalent to decreasing software quality, and a high change rate (churn)
over extended periods of time on a given artifact indicates low software quality.

Their study’s main finding is that there is no correlation between STMC and bugs or
churn, regardless of the time frame considered. In other words, the authors do not identify
any statistically significant association between the coordination of developer tasks and
communication and the outcomes of a project. Based on their findings, they conclude that
if there exists a quantifiable connection between STMC and software quality measures, it
would have to appear in a higher level of abstraction than connections between individual
software files.

Another study that shares similarities with Mauerer et al.’s work [21] and is relevant
to our own research is the research conducted by Baldwin and Colfer [3]. This study can
be compared to Mauerer et al.’s research because, similar to their hypothesis, Baldwin
and Colfer put forth the idea that the organizational structure (specifically communication
within the context of the STMC framework) and software architecture (particularly file
dependencies within the STMC) should mirror each other.

In their study, Baldwin and Colfer propose the mirroring hypothesis, which suggests
that organizational relationships (social aspect) within a project or firm correspond to the
technical dependencies present (technical aspect). Baldwin and Colfer analyze a total of
142 empirical studies, which are classified into three categories: industry, firm, and open
collaborative projects. These studies are further classified into two types: descriptive and
normative. Descriptive studies aim to establish relationships between technical dependencies
and organizational ties, while normative studies investigate the performance outcomes of
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mirrored versus unmirrored systems. Based on their analysis of industry and firm studies,
Baldwin and Colfer find that over 70% of the descriptive studies provide strong evidence in
support of the mirroring hypothesis. However, the normative studies suggest the existence
of a "mirroring trap", where firms may become too focused on their current technical
architecture and miss out on architectural innovations that arise outside their boundaries.
Regarding the evidence from open collaborative projects, Baldwin and Colfer report that
the majority of descriptive studies (56%) do not support the mirroring hypothesis. However,
there are not enough normative studies available to provide a conclusive decision.

In this thesis, we focus on socio-technical networks as a critical component, and in this
regard, we present three studies that also utilize socio-technical networks in their research.
First, we present the study by Joblin and Apel [12]. They analyze socio-technical congruence
using socio-technical networks, in the context of project success. They define successful
projects as those with a high level of popularity, tens of thousands of commits, and an
active developer community with hundreds or thousands of contributors. Conversely, failed
projects are those that have high levels of popularity but are eventually abandoned. Joblin
and Apel examine 32 open-source projects using version control systems and classify
them as successful or failed via a keyword search and qualitative evaluation with project
maintainers. Among their findings, they discover that even a simple socio-technical network
model, based purely on version control system data, can provide accurate and generalizable
indicators of future project success.

The second study is the one by Syeed and Hammouda [32]. In their study, Syeed and
Hammouda explore the notion of Conway’s Law and utilize socio-technical networks to
evaluate socio-technical congruence in the FreeBSD1 project. They examine both social and
technical aspects of congruence, studying how communication patterns of the OSS developer
community align with the software architecture and vice versa. Syeed and Hammouda also
analyze the evolution of socio-technical congruence over time. Their findings indicate that
the communication needs established by the software architecture and the interdependency
among software modules are effectively embedded in the communication patterns of the
developer community in the FreeBSD project. Moreover, Syeed and Hammouda discover
that the level of socio-technical congruence in the project remains stable as the project
matures.

The third study we present regarding socio-technical networks is the one by Bird et
al. [5]. They investigate the influence of socio-technical networks on the fault-proneness
of individual software components for Windows Vista and Eclipse releases. Their first
hypothesis proposes that the role of a software component in the technical network and its
contribution to the social network influence its proneness to defects. The second hypothesis
suggests that software components that have key roles in the socio-technical network are
more likely to have defects. These hypotheses hold true for both projects, with the exception
of one Eclipse release. The researchers also find that incorporating socio-technical networks
in predictive models enhances the predictive power of the models in comparison to only
social or technical networks.

As we correlate STMC with code review measures, we refer to a study conducted by
Zabardast, Gonzalez-Huerta, and Tanveer [35]. Similar to this thesis, the authors employ
code reviews as a source of data and investigate a measurement similar to socio-technical

1 https://www.freebsd.org/, last accessed on 19/04/2023

https://www.freebsd.org/
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congruence in relation to code review time. Specifically, Zabardast, Gonzalez-Huerta, and
Tanveer investigate the effect of team ownership and team contribution alignment on
communication overhead such as lead time and code review time, as well as the pace of
technical debt (TD) accumulation in services. The authors define team ownership as the
official team responsible for a component. Meanwhile, they define team contribution as
the contribution coming from code production, issuing tickets, and code reviews. They
analyze data from 267 components of a company. Their early findings suggest that early
identification of such misalignment can help organizations prevent the faster accumulation
of TD. Currently, they conclude that team ownership and team contribution alignment have a
significant impact on software development processes, and identifying and addressing such
misalignments can help mitigate communication overhead and minimize TD accumulation.





7
C O N C L U D I N G R E M A R K S

In this chapter, we summarize the approach that we followed to perform an STC analysis
and our findings. Additionally, we explain our suggestions of what can be done in the
future to perform several studies based on this thesis.

7.1 conclusion

In this thesis, we conducted an STC analysis for OSS projects to determine if there is a
correlation between STC and code review measures. We used the STMC formalization, as
presented by Mauerer et al. [21], to measure STC and considered the Acceptance Rate,
Review Rate, and First Review Interval for code review measures.

Our case studies were ten OSS projects including Vs Code, TypeScript, TensorFlow,
React, Next.js, Moby, Electron, Deno, Bootstrap, and Atom. We chose these projects
because they vary in size, age, and domain. To get their data, we mined their git repositories
until 2020 and used codeface and GitHubWrapper to process the data.

For each project, we built multi-networks using coronet to capture socio-technical
relationships. We used files and developers as nodes, and pull requests and commits as
edges. In these multi-networks, we applied the STMC framework which consists of extracting
triangle or square motifs or anti-motifs. By using the triangle motifs we captured the
communication (or lack thereof for anti-motifs) between two developers contributing to the
same file. Meanwhile, by using the square motifs, we captured the communication (or lack
thereof for anti-motifs) between two developers contributing to two related files.

We quantified the STMC using the dSTMC which includes triangle (see 2.1) and square
congruence (see 2.2). Additionally, we proposed a new version of the STMC, called the STMCr.
By using STMCr we checked whether the file(s) in the motif is modified in any of the pull
requests that form the same motif. Similarly to dSTMC, we proposed dSTMCr that quantifies
the STMCr.

Next, we formalized the code review measures, including the Acceptance Rate, Review
Rate, and First Review Interval. We defined Acceptance Rate as the number of merged
pull requests divided by the total number of pull requests, Review Rate as the number
of reviewed pull requests divided by the total number of pull requests, and First Review
Interval as the time from the creation of a pull request until it is merged, closed, or
abandoned.

Additionally, we applied a time-split analysis for each project, splitting them into six-
month time windows and using a sliding window of three months for the Acceptance
Rate and First Review Interval. We analyzed each time window individually to gain a
comprehensive result for the complete project. Moreover, we used Kendall’s Tau to correlate
the code review measures with the dSTMC or dSTMCr and a significance level of 5% to assess
statistical significance.
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In our first research question, we correlated the Acceptance Rate with the dSTMC or
dSTMCr and found statistically significant correlations for some projects but not for others
thus, our results were inconclusive. For those projects that showed statistically significant
correlations, this suggests that the STMC or STMCr affect the Acceptance Rate presumably
due to factors such as expectations when reviewing a pull request, developers’ familiarity
with the code base, and the quality of the contributions. Meanwhile, for the other projects,
the Acceptance Rate is probably affected by factors such as authors’ past contributions, code
base size, or code review frequency.

Our second research question investigated the correlation between the Review Rate and
dSTMC or dSTMCr. We found no statistically significant correlation for most of the projects,
suggesting that there is no relationship between the Review Rate and STMC. This suggests
that other factors such as project size, complexity, level of engagement within the community,
and quality of documentation could influence the Review Rate.

In our third research question, we examined the correlation between the First Review
Interval and the dSTMC or dSTMCr. However, the results of this study were inconclusive since
some projects demonstrated statistically significant correlations while others did not. For
projects that demonstrated a statistically significant correlation, it implies that the STMC

or STMCr has an impact on the First Review Interval. This observation could be caused by
various factors, such as the quality of documentation, the pull request process, and the
importance placed by the project community on communication and collaboration.

In conclusion, this thesis aimed to investigate the correlation between the STC and code
review measures. Our study used STMC and STMCr to measure the STC and Acceptance Rate,
Review Rate, and First Review Interval as code review measures. However, we were not able
to draw a conclusion for the Acceptance Rate and First Review Interval, but our findings
indicate that there is no statistically significant correlation between the Review Rate and the
STMC or STMCr.

7.2 future work

In this section, we offer proposals for those interested in further exploring this area of
research in the future.

Our first suggestion is to expand the range of OSS projects analyzed in this study by
including more OSS projects that use not only GitHub but also other contribution tools, such
as mailing lists, Jira issues, forums, and others. Doing so would improve the robustness of
the study and increase its generalizability across different types of OSS projects. However,
this would also introduce new challenges, such as configuring the STMC with different types
of nodes and edges.

Additionally, we propose that in cases where data or STC constraints limit the use of a
square motif, which is more complex than the triangle motif, researchers could analyze
solely the triangle congruence to measure direct collaboration. As a result, researchers will
capture only a subset of the STC within a project, specifically, direct communication among
the projects’ community. This trade-off may limit the researchers to fully understanding
the alignment of the project’s social and technical structures, as indirect communication
and coordination among team members are not included in the analysis. Nonetheless, this
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approach can still provide valuable insights into the direct collaboration patterns within a
project.

We recommend conducting a qualitative study before analyzing the STC in OSS projects.
The qualitative study would involve examining how the code review process is managed in
the selected OSS projects by checking the project contribution guidelines or consulting with
project maintainers to obtain a better understanding of how code reviews are conducted.
This information would be necessary to ensure that the measures that we used to assess
the code review process, such as Acceptance Rate, Review Rate, and First Review Interval,
are accurate and suitable for the chosen OSS projects. For instance, in our second research
question, we discovered that different projects have different review processes. Some projects
used the Review option in GitHub, while others relied on comments. In some cases, the
review process was unclear. The results could become robust by conducting a qualitative
analysis.

Furthermore, we recommended grouping the analyzed OSS projects into categories based
on their review methodologies, rather than using a general measurement for all projects.
For instance, one group could be for projects that use GitHub’s Review option for code
review, while another group could be for projects that rely on comments for code review.
This approach would help to ensure that the analysis is more similar to the specific review
methodologies employed by the OSS projects, leading to more accurate results.

Another recommendation is to refine and test the STMCr further. As demonstrated by
our preliminary sanity check, the STMCr successfully filters out false positive motifs that
the original STMC framework may detect. To improve the accuracy of the STMCr, additional
manual checks could be conducted.

Lastly, it is worth considering other code review measures when investigating the correla-
tion between STC and code review measures. For example, in their study on socio-technical
code review measures and security vulnerabilities, Meneely et al. [22] explored various
code review measures such as the number of people invited to provide feedback on a file,
the number of different people who provided feedback on a file across all its code reviews,
the percentage of reviews that exceeded 200 lines per hour, and others. While Meneely et
al. applied these measures in the context of security vulnerabilities, we believe that they
could also be utilized in the context of STC and correlated with STMC. For instance, we could
investigate the correlation between the number of different people who provided feedback
on a file in a pull request and STMC, and investigate whether communication or lack thereof
impacts the number of different people who provided feedback on a file.





A
A P P E N D I X

In the appendix, we provide plots, tables, and additional information for this thesis.
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Figure A.1: In this Figure, we present the acceptance rate for the lifetime of the Deno project, with
the y-axis representing a range from 0 to 1. The x-axis displays the number of data
frames when using a data split analysis with a sliding window. We observe that the
acceptance rate at the start of the project is high, likely due to the small number of
contributors and the maintainers merging pull requests without a thorough review. Over
the years, the acceptance rate fluctuates.
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a.1 configuring triangle & square motifs

In this section, we explain the possible configurations that coronet offers. Additionally, we
explain why we do not choose the other possible configurations but only one and provide
an example of what would be an unsuitable configuration for our analysis.

In Figure A.2, we present a feature model that shows the possible configurations for a
multi-network using coronet. Feature models are commonly used to generate specific
configurations of a software product line by selecting and combining appropriate features
based on stakeholders’ needs and requirements. In this case, we use it to show the possible
configurations for the multi-network and not for a product line. However, it is important to
note that not all configurations may be valid, as we explain later.

Multinetwork

Nodes

Author Artifact

Feature File Function Mail Issue

Edges

BipartiteNetwork

contribution

AuthorNetwork

cochange mail issue callgraph

ArtifactNetwork

cochange1 mail1 issue1 callgraph1

Legend:

Feature

Mandatory

Alternative Group

Figure A.2: The root of the feature model is a multi-network that represents a triangle or square motif.
Regarding the legend: Feature - each blue rectangle in the feature model. Mandatory –
child feature must be selected. Alternative Group (xor) – exactly one of the sub-features
must be selected. The features beginning with a lowercase letter signify a relation such
as "cochange," "cochange1", "mail," "mail1," "issue," and others. There is no difference
between "cochange" and "cochange1" or the other sibling features; we add the 1 to differ
that it has another meaning in another type of network.

In the feature model, we can only configure the "Artifact" feature1, the type of relation-
ship between two authors (the children of the AuthorNetwork feature), and the type of
relationship between two artifacts (the children of the ArtifactNetwork feature). In the
following, we briefly explain why we either consider or do not consider the children of the
"Artifact" feature from the feature model. We do not mention the "Author" feature because
it is mandatory.

• Artifact

Feature →In software systems with multiple modules or components, the use of
features can lead to two common issues: feature scattering and feature tangling. Fea-
ture scattering arises when the implementation of a single feature is distributed across
multiple modules, resulting in difficulties in maintaining and modifying that feature
independently from others. Contrarily, feature tangling occurs when code related to
multiple features is entangled within a single module, making it challenging to modify
or maintain a single feature without impacting others. Due to these challenges, we

1 Note that with "feature" we refer to the features in the feature model and not Feature as an artifact.
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opt not to select a Feature as an artifact because identifying Features in our data set is
very problematic.

File →We decide to consider a File as a potential artifact in our configuration
because it aligns well with the relational structure of the overall graph, as depicted
in Figure 4.5. More importantly, selecting Files supports our STMC goal because they
are a technical artifact in OSS projects. Files can represent a variety of artifact types,
including source code, documents, configuration files, and data files, among others,
and can effectively track the evolution of these artifacts over time.

Function →We do not choose a Function as an artifact because we lack the
necessary data. Furthermore, Functions are too granular for the type of analysis we
intend to conduct.

Mail →A Mail artifact is typically employed for projects that rely on mailing lists
as a means of contribution, collaboration, and communication. However, in the present
study, we analyze ten OSS projects that use GitHub for these purposes, and thus, we
decide not to consider Mail as an artifact. Additionally, if we were to include projects
that utilize mailing lists, we would need to gather additional information to facilitate
the mapping of emails to commits, such as Patch-stack analysis (PaStA)2 data, which
links patches sent to mailing lists with upstream commits.

Based on the above reasoning, we are left with two artifact types to use, namely File
or Issue. We must also consider four relation types, namely cochange, issue, mail, and
callgraph.

We exclude mail as a relation because it requires matching the artifact (File or Issue) with
the corresponding mail thread, which necessitates the use of PaStA data. Incorporating PaStA

data would decrease the soundness of our STMC analysis as the mapping is not entirely
accurate. Moreover, we are focusing solely on GitHub projects, hence, we do not have mail
data for the ten OSS projects that we are analyzing.

There are a few projects that use both, namely mail threads and GitHub issues to
communicate. Nevertheless, incorporating mail as a relation would still require the use of
PaStA data. Figure A.3 illustrates an example of a square motif configuration containing
Issue as an artifact and mail as a relation that would not work. We use a square motif in
this illustration as it is more complicated than a triangle motif because the square motif has
one edge more. We use the same configuration for the triangle motif as for the square motif
but simplify it by removing the edge between the two artifacts.

Furthermore, we exclude callgraph because it is too finely grained as it connects artifacts
if they reference each other in the code. Callgraph would be a suitable solution if we were
using Function or Feature as an artifact.

Therefore, we have two artifacts to choose from, File and Issue, and two relation types,
cochange, and issue. These possibilities result in eight possible configurations, but only one
of them suits our goal the best. In the following, we explain the rationale for why we choose
or do not a configuration.

2 https://github.com/se-sic/coronet#data-sources, last accessed on 11/04/2023

https://github.com/se-sic/coronet#data-sources
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D2

Issue
1

D1

Issue
2

Square  Motif

mailedmailed mailed

mail

mail

Figure A.3: The dashed edges show that the developers (or the author; we call them developers not
to confuse the term with the author of the pull request) send an email to a mail thread.
The blue diagonal edge shows that developers D1 and D2 receive the solid edge "mail"
from this mail because they have both contributed to the same mail thread. Meanwhile,
the two artifacts Issue1 and Issue2 have an edge "mail" because the mail threads that
Issue1 and Issue2 are part of, reference each other. However, the data that we have does
not allow us to check if two Issues reference each other (in this exact configuration), only
if two mail threads reference each other. Additionally, we would need to add another
condition to verify that D1 and D2, who are communicating via a mail thread, have also
contributed to Issue1 and Issue2. As a result, it does not align with the socio-technical
value and a Mail artifact would be more appropriate (for projects that use mailing lists
as a primary communication tool).
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The format of the following points is [Artifact], [Artifact Relation], [Author Relation]
followed by the reasoning.

1. File, cochange, cochange

The cochange relation for the Author Relation is intended for Files, which are
typically changed in the same commit. However, this relation does not provide us
with any information about communication since it only focuses on commits. As we
need to consider both artifact dependencies and communication between developers
for an STMC analysis, the cochange relation does not add any communication value to
our analysis.

2. File, issue, issue

When the Artifact is a File, the issue relation is not suitable for the Artifact Relation
because it connects two Issues that reference each other. In this case, we would need
to check whether the File is part of the Issue when the developer is contributing to the
Issue. Also, this type of relationship is mostly suitable to detect collaboration and not
artifact dependencies.

3. File, issue, cochange

We apply the same reasoning as configurations 1 and 2.

4. File, cochange, issue

The cochange relation is appropriate for files because it connects two files that
are changed in the same commit, which is a common occurrence in OSS projects.
Additionally, it detects technical dependencies between the artifacts. Moreover, the
issue relation is suitable for two developers because they can communicate using the
comment section on an Issue. Together, the cochange and issue relation provide us
with information about the technical dependencies and communication that occur
around them. Therefore, this configuration is best aligned with our goal, and we select
it for our square motif in the STMC analysis.

5. Issue, cochange, cochange

Same reasoning as configuration 1.

6. Issue, issue, issue

This configuration is feasible and valuable. However, we do not choose it because
using the Issue as an artifact and the issue as a relation for two artifacts would
result in a higher level of granularity than necessary. Issues are typically a high-level
representation of a problem or task, and may not provide enough detail to fully
capture the complexity of relationships between artifacts in a project. Likewise, an
issue is not the most suitable relationship to capture technical dependencies, since a
lot of communication is involved there. Therefore, this configuration may not provide
us with the necessary level of granularity required for our analysis.

7. Issue, issue, cochange

We apply the same reasoning as configuration 1.
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8. Issue, cochange, issue

The cochange relation requires two issues to be changed in the same commit,
which is highly unlikely. Typically, a commit addresses changes relevant to only one
issue rather than two or more.
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