
12/05/14 12:01

Page 1 of 1file:///Users/cosh/Uni_Passau-Logo.svg

Master Thesis in Computer Science

Enhancing Program Analysis
with Git Metadata in VaRA

Julian Breiteneicher

2019-09-02

Supervisor: Prof. Dr.-Ing. Sven Apel
(Chair of Software Engineering I)

2nd corrector: Prof. Dr. Gordon Fraser
(Chair of Software Engineering II)

Advisor: Florian Sattler, M.Sc.
(Chair of Software Engineering I)

Breiteneicher, Julian:
Enhancing Program Analysis with Git Metadata in VaRA
Master Thesis, University of Passau, 2019.

Abstract

As the development of a software project progresses, it often becomes larger
and more complex. Each new change that gets introduced into the project
can have unintended interactions with different parts of the code. This can
lead to bugs that are difficult to spot. To this end, the LLVM-based framework
VaRA can perform control-flow and data-flow analyses to detect interactions
between the commits of a software project. This can aid software engineers
during development to assess the potential impact of a new change or during
debugging. It can also be used by researchers to gain insights into how
projects evolve over time and how changes interact with each other.

However, precise data-flow analyses are very expensive and can produce
a lot of results. This makes it hard to use for certain use cases. During
development, for example, long analysis times might be undesirable. Large
result sizes can make it difficult to identify interesting findings, like potential
bugs.

In order to improve VaRA’s analyses in this regard, we work on reducing
the number of false-positive results. Additionally, we integrate filter mecha-
nisms in VaRA that allow the user to fine tune the analyses by filtering out
unimportant changes, thereby speeding up the commit-interaction analysis.
We show the impact of our approaches on a small, contrived software project
and two real-world projects.

Contents

1 Introduction 1
1.1 Goals . 1
1.2 Contributions . 2
1.3 Overview . 2

2 Background 3
2.1 Control-Flow and Data-Flow Analysis 3
2.1.1 Control-Flow Analysis . 3
2.1.2 Data-Flow Analysis . 4
2.2 Git . 7
2.2.1 Commits . 8
2.2.2 Blame . 9
2.3 LLVM . 9
2.3.1 Compiler Architecture . 9
2.3.2 LLVM Frontend clang . 10
2.3.3 LLVM-IR . 11
2.3.4 LLVM Pass Framework . 12
2.4 VaRA . 13
2.4.1 Regions . 13
2.4.2 Region Aggregation . 13
2.4.3 CommitRegions . 14
2.4.4 BlameRegions . 16
2.4.5 Analysis Pipeline . 17
2.5 VaRA-Tool-Suite . 18
2.5.1 BenchBuild . 19

3 Improvements to VaRA’s Analyses 21
3.1 VaRA Git Metadata Interface . 21
3.1.1 Extending libgit2 . 23
3.2 BlameRegion Support in VaRA 24
3.2.1 vara-clang Blame Annotations 24
3.2.2 VaRA BlameDetection Pass . 24
3.2.3 BlameRegion Implementation 25
3.3 Interaction Filters . 27
3.3.1 Filter Types . 27
3.3.2 Filter Editor in VaRA-Tool-Suite 31
3.3.3 Filter Interface in VaRA . 31
3.4 Integration of Git Metadata Filters in VaRA’s Analyses 31
3.5 Complete Analysis Pipeline . 33

v

4 Evaluation 35
4.1 Cluster System . 35
4.2 Case Studies . 35
4.2.1 Niederhuber’s Calculator . 36
4.2.2 Gravity . 36
4.2.3 GNU Gzip . 36
4.3 Tools . 36
4.3.1 VaRA-Tool-Suite Experiment 36
4.3.2 VaRA-Tool-Suite Visualization 37
4.4 Experiment 1 — Calculator . 37
4.4.1 Addressing RQ1 . 39
4.5 Experiment 2 — Gravity . 39
4.5.1 Used Interaction Filters . 39
4.5.2 Results . 40
4.6 Experiment 3 — GNU Gzip . 43
4.6.1 Used Interaction Filters . 43
4.6.2 Results . 44
4.7 Addressing RQ2.1 . 46
4.8 Addressing RQ2.2 . 47

5 Conclusion 49
5.1 Summary . 49
5.2 Related Work . 49
5.3 Future Work . 50

Appendices 51

A BenchBuild Project Definition 53

B Calculator Case Study 55

6 Bibliography 61

vi Chapter 0 Contents

List of Figures

2.1 Example of a control-flow graph (taken from [Aho+06]) . . . 4
2.2 Architecture of the LLVM compiler (taken from [Lat12]) . . 9
2.4 Example of an IRegionAggregate consisting of three instruc-

tion blocks across three basic blocks 15
2.5 Example of VaRA’s visualization of control-flow and data-

flow interactions between commits 19

3.1 InteractionFilter class hierarchy 29
3.2 InteractionFilter with workaround to entirely remove certain

regions from the analysis result (as source and target) 31
3.3 Filter Editor of VaRA-Tool-Suite 32

4.1 Detected control-flow interactions in calculator case-study
when using CommitRegions (4.1a) or BlameRegions (4.1b) . 37

4.2 Detected data-flow interactions in calculator case-studywhen
using CommitRegions (4.2a) or BlameRegions (4.2b) 38

4.3 Gravity IF2.1 Results . 41
4.4 Gravity IF2.2 Results . 42
4.5 Gzip IF3.1 Results . 44
4.6 Gzip IF3.2 Results . 45

vii

List of Listings

2.1 Example of a Git commit object 8
2.2 Git blame output of a file from the git repository 9
2.3 LLVM-IR example with corresponding C++ code 11
2.4 Example of Metadata Nodes in IR Code 12
2.5 Example of marker-based CommitRegion annotation 15
2.6 Example of CommitRegion markers with C preprocessor

statements . 16
2.7 Example of Blame Metadata LLVM-IR 17

3.1 Example output of the git annotate command 23
3.2 Public API of the BlameRegion class (shortened) 25

A.1 Example of BenchBuild project definition 53

B.1 Source Code of the Calculator Case Study 56

ix

1
Introduction

Many software projects keep getting larger and more complex. For example,
in 2017 alone, the size of the linux kernel increased by over 2.5 million lines
of code [Lar18]. If a programmer introduces a new change it can be very
hard to predict its impact on the functionality of the program, especially
if multiple developers are involved in the project at the same time. If an
interaction between different parts of the program causes a bug, it can be
very hard to find the cause of that bug.

The LLVM-based framework VaRA (Variability-aware Region Analyzer)
offers functionality to help the programmer analyze interactions between
different changes. If a project’s source code is stored in a Git repository,
we can use the repository to gather information about which changes were
introduced by the commits of the project. We can then use VaRA to find
control- and data-flow interactions between the different commits of the
analyzed project. However, for large projects this analysis can take a very
long time, which makes it difficult to use in certain use-cases, like during
development. Another potential difficulty is the size of analysis results. They
can quickly become too large to be easily interpreted by the user to gain useful
insights into the project. We believe that increasing the speed of VaRA’s
commit interaction analysis would make it more useful by enabling use-cases
that were previously unfeasible, for example, analyzing very large software
projects in a reasonable amount of time or helping software engineers during
development or debugging. Additionally, limiting the size of the analysis
result by not showing interactions that are unlikely to be interesting or useful
could also make it easier to interpret the results of the analysis.

1.1. Goals

Our goal is to improve VaRA’s commit interaction analysis, which can be
used by researchers as well as software developers to detect control-flow
and data-flow interactions between commits and to estimate the impact of
a change. We aim to reduce the analysis’s false positives to make it more
precise. Furthermore, we also intend to increase the speed of the analysis
and allow the user to remove uninteresting interactions from the analysis
result to make it easier to interpret.

1

1.2. Contributions

In this thesis, we enhance VaRA’s commit interaction analysis with two main
contributions. We introduce BlameRegions as a new region type in VaRA
to increase the accuracy of the analysis. Furthermore, we provide mecha-
nisms to increase the speed of VaRA’s analysis and to filter out uninteresting
interactions from the analysis result to make it easier to interpret and to
make its size more manageable. In order to achieve these goals, we added
a Git metadata interface to VaRA that can be used to retrieve additional
information from the Git repository of an analyzed software project.

1.3. Overview

In Chapter 2, we introduce the necessary background of this thesis. We
describe the basics of control-flow and data-flow analysis, the Git revision
control system and the LLVM compiler framework. We also introduce the
reader to the VaRA analysis framework and the accompanying VaRA-Tool-
Suite application. In Chapter 3, we present our improvements of VaRA’s
commit interaction analysis. This includes the implementation of a Git
metadata interface, the development of the new BlameRegion type and the
Interaction Filters that can be used to filter the interactions of VaRA’s inter-
action analysis. These approaches are evaluated in Chapter 4 by performing
VaRA’s analysis on a set of case studies. In the last chapter, we summarize
our work and present ideas for future improvements.

2 Chapter 1 Introduction

2
Background

In this chapter, we introduce control-flow and data-flow analysis. We then
explain the revision control system Git and the LLVM compiler framework;
particularly we focus on the C/C++ frontend clang and LLVM’s intermediate
representation. At the end, we introduce the LLVM-based analysis framework
VaRA.

2.1. Control-Flow and Data-Flow Analysis

Static analyses can be used for many applications, such as program optimiza-
tion, automatic code review or software verification. This section introduces
the basics of control-flow and data-flow analysis. Both of these are static
program analysis techniques, which means that the program is analyzed
without being executed.

2.1.1. Control-Flow Analysis

The goal of control-flow analysis is to determine the order in which the
operations of a program are executed. When running the program, (a subset
of) these statements are executed in a certain order. Every sequence of
statements, which are executed directly after each other, form a so-called
execution path. By using control-flow analysis, we can find the set of possible
execution paths of a program [DGS97].

Control-Flow Graph

The control-flow graph (CFG) of a program’s method is a directed graph that
represents all possible execution paths within that method. The nodes of
the graph are the method’s basic blocks (BB). A basic block is a sequence
of instructions where the control-flow always enters the block at its first
instruction—which is called leader—and exits it at its last instruction—called
terminator. When we separate the instructions into two different kinds,
where one kind can change the control-flow of the program and the other
one can not, we can look at the definition of BBs in another way: A BB is
a sequence of instructions where only the terminator is able to change the
control-flow of the program, while all other instructions are not. If a BB can
be executed directly after another BB, then the CFG contains a (control-flow)
edge from the BB that is executed first to the BB that can be executed next. It

3

is also possible that there are multiple BBs that could potentially be executed
after another BB. In this case the BB has multiple outgoing edges. Similarly,
a BB can also have multiple ingoing edges.

Figure 2.1 shows an example CFG. The control flow of this example begins

d1 : a = 1 B1

if read()<=0 goto B4 B2

d2 : b = a
d3 : a = 243

goto B2

B3

B4

Fig. 2.1. Example of a control-flow graph (taken from [Aho+06])

with the basic block 𝐵1, which defines the variable 𝑎. Afterwards, the control-
flow continues at 𝐵2 where the read() method is called. Depending on
whether its return code is greater than zero or not, we continue the execution
of the program at 𝐵3 or 𝐵4. If the program jumps to 𝐵4, this particular BB is
executed and the program ends. If we jump to 𝐵3, however, the variables 𝑏
and 𝑎 are defined and we jump back to 𝐵2, which gets executed again. This
small example illustrates, for instance, how loops can be represented in the
CFG [Aho+06].

2.1.2. Data-Flow Analysis

Data-flow analysis aims to obtain information about how data flows along the
execution paths of a program. In this section, we explain the fundamentals
of how data-flow analysis works.

In the previous section, we have already described that a running program
can be viewed as a series of operations. These operations generally perform
a transformation of the program state—the set of the values of all variables of
the program. Each operation takes an input state—the program state before
the operation is performed—and transforms it to an output state—after the
operation is executed. In a data-flow analysis, we map a data-flow value to
every program point, which represents all program states that are possible
at that point in the program’s execution. For each point in a program’s

4 Chapter 2 Background

execution path, the analysis takes the data-flow value at a specific point and
evaluates how the next instruction modifies that value, which results in a
new data-flow value after that instruction. By propagating that information
along the execution paths of the program in this way, the analysis can collect
knowledge about the data-flow of all points of the program [Aho+06].

IN and OUT Sets

For every statement 𝑠 in a program, we can define the set of data-flow values
before the execution of that statement as IN[𝑠] and after that statement as
OUT[𝑠]. There are two kinds of constraints on the IN and OUT sets of 𝑠. The
first constraint is based on the semantics of the statement, while the second
one is based on the control-flow of the program.

Transfer Function

The first kind of constraint on the IN and OUT sets of a statement 𝑠 is based
on its semantics, since the semantics of a statement determines how its IN
set is transformed into the OUT set. The change of the data-flow values by a
statement is denoted by the transfer function 𝑓𝑠. By evaluating the transfer
function for every instruction, we can propagate the data-flow information
along the execution paths to gradually extend our knowledge about the
data-flow of the program. Determined by whether we want to propagate
the data-flow information forward in the direction of the execution path or
backward (depending on the application), the transfer function takes the IN
or the OUT set as input and returns the other one [Aho+06]:

OUT[𝑠] = 𝑓𝑠(IN[𝑠]) (forward propagation)
IN[𝑠] = 𝑓𝑠(OUT[𝑠]) (backward propagation)

The transfer function is a very central part of a data-flow analysis because it
does the actual work. By analysing the data-flow information at one point in
the program it generates information about another point, which extends
our knowledge about the program’s data-flow. We can define the transfer
function as follows:

𝑓 (𝑥) = 𝑔𝑒𝑛 ∪ (𝑥 − 𝑘𝑖𝑙𝑙)

It takes, for example, the IN set of statement 𝑠 (forward propagation) and cal-
culates OUT by using the 𝑔𝑒𝑛 and 𝑘𝑖𝑙𝑙 sets of 𝑠. 𝑔𝑒𝑛 contains the information
that is generated by 𝑠, while 𝑘𝑖𝑙𝑙 contains the information that is destroyed
by 𝑠. So by removing the killed information from the IN set of 𝑠 and adding
the information that is generated by 𝑠, we get the OUT set of 𝑠 and expand
our knowledge about the data-flow to another point in the program.

Data-Flow with Multiple Statements

So far, we have looked at how the data-flow values are changed by a single
statement. When we want to determine how the values are changed between

2.1 Control-Flow and Data-Flow Analysis 5

multiple statements, we need to consider the second kind of constrains on
the IN and OUT sets, which are based on the control-flow of the program.

Within a basic block, this is simple. For a basic block with a sequence of
statements 𝑠1, 𝑠2, … , 𝑠𝑛, the IN set of a statement is given by the OUT set of
the statement that precedes it:

IN[𝑠𝑖+1] = OUT[𝑠𝑖], for 𝑖 ∈ {1, 2, … , 𝑛 − 1}

To calculate the IN set of the first statement we simply define a virtual
𝑒𝑛𝑡𝑟𝑦 statement as predecessor of 𝑠1 with OUT[𝑒𝑛𝑡𝑟𝑦] ≔ ∅ which leads to
IN[𝑠1] = ∅.

Data-flow between multiple basic blocks is more complicated. A BB might
have multiple predecessors, so we need to find a way to “combine” the data-
flow values from all preceding blocks.

To make this task easier, from now on, we look at IN and OUT sets of
whole basic blocks instead of individual statements. We denote this as IN[𝐵]
or OUT[𝐵] with 𝐵 being the basic block in question. This is possible because
we know that in a basic block, by definition, all its statements are always
executed from the first one to the last one, since the block does not contain
any branching instructions (except the last one). For a single BB 𝐵 with
statements 𝑠1, 𝑠2, … , 𝑠𝑛 the OUT set is defined as

OUT[𝐵] = 𝑓𝐵(IN[𝐵]), with IN[𝐵] = IN[𝑠1],
OUT[𝐵] = OUT[𝑠𝑛], and
𝑓𝐵 = 𝑓𝑠𝑛

∘ … ∘ 𝑓𝑠2 ∘ 𝑓𝑠1.

To combine the IN or OUT sets of multiple predecessor BBs, we introduce a
new operator which we call the join operator. Sometimes it is also called the
meet operator. Depending on the direction in which we want to propagate
information, it combines the OUT sets of multiple predecessor blocks to
calculate the IN set of a BB, or vice versa. In case we want to propagate the
data-flow values forward (for example if we want to analyze which values
may be assigned to a variable), we could use the set union operation as join
operator and calculate the IN set of a BB as follows:

IN[𝐵] = ⋃
𝑃 a predecessor of B

OUT[𝑃]

In case wewant to use backward propagation, the OUT set could be calculated
as follows [Aho+06]:

IN[𝐵] = 𝑓𝐵(OUT[𝐵])
OUT[𝐵] = ⋃

𝑆 a successor of B
IN[𝑆]

Taint Analysis

Taint analysis is a concrete application of the general data-flow analysis
concept described previously. It tracks how variables that have been tainted

6 Chapter 2 Background

by a source propagate through the program’s execution path and determines
if they reach a sink. Sinks and sources can be functions or instructions
depending on the use-case. Taint analysis is very frequently used in security
research to find potential vulnerabilities in programs. For example, it can be
used to determine if untrusted user input can reach certain critical functions.
Functions that read untrusted input data are regarded as sources and all
variables these functions write to are marked as tainted. Critical functions or
instructions are called sinks. For example, the printf() method could be a
potential sink because it might be used in a format string attack or leak secret
information. The taint analysis propagates the tainted variables through the
program. Every time such a variable reaches a sink, the analysis has found a
potential vulnerability. However, the analysis does not only track variables
that are tainted by a source. A tainted variable can also propagate its taint
to another variable that was previously untainted. For example, if the value
of a tainted variable 𝑎 affects another variable 𝑏 (for example, if a string 𝑎 is
appended to a string 𝑏), the 𝑏 gets tainted as well. This way, the analysis can
also find sources that can indirectly reach sinks.1 1The advantages and disadvantages

of implicit flow tracking are
described in [Kin+08].

Taint analysis can also be used for other use-cases, for examplei, to find
code interactions. If we imagine, for example, two code regions that are
linked to two different features 𝐴 and 𝐵 of a program then we could use
a taint analysis to find interactions between the two features by defining
the instructions of these two regions as sources and targets. If a taint can
be propagated from a source to a target then we found a data-flow relation
between these two features of the program [SHB19].

2.2. Git

In this section, we introduce Git, a distributed revision control system. Ac-
cording to multiple surveys, it is now the most used revision control sys-
tem [Ske14; Sta18]. Git enables developers to efficiently work on a software
project and solves or eases many challenges of the development process.

When developing a software without a revision control system, every time
a developer makes a change to the project (e.g., by adding or deleting some
code), the previous state of the project is lost. There is no stored history of
the projects development. When a bug is introduced into the project it is very
hard to undo the change and go back to the previous version. Git solves this
problem by always storing the complete history of the project’s development.
Every time a change is introduced to the software, Git adds that change to its
storage while still keeping the previous state so that a developer can always
go back to any previous state.

Another big challenge of developing a software without a revision control
system is to integrate the changes of multiple developers into a single “official”
version of the project. This is not an issue if only one developer works on
the project at a time. But often this is not a desirable solution since it is very
inefficient, especially for bigger projects. When multiple developers work on
the project simultaneously on their own copy of the project, then they would

2.2 Git 7

constantly have to manually integrate their changes into a single version,
which is very error-prone and time-consuming, especially if the developers
changes conflict with each other. Git makes this process a lot easier. It can be
used to create a central instance (or repository) of the project with its current
state. The developers work on their own copies of that repository. After they
finished working on a particular code change, they can use Git to incorporate
that change into the central repository. If the new code change conflicts with
the change of another developer, Git also aids the developer in resolving that
conflict.

2.2.1. Commits

A Git commit can be seen as a snapshot of a software project at a specific
point in time. When a developer finishes working on a particular code change,
he or she can use Git to make a new commit. The commit incorporates the
code change into its repository and persists the new state of the software
project at that point in time. Other developers can base their work on that
state and make new commits with their code changes (in this case the old
commit is the parent of the new commit). The evolution of a software project
over time is reflected by Git by a series of commits. A developer can look at
the code changes of the individual commits and even revert the project to a
previous state (by going back to the commit of that point in time).

Internally, Git stores a commit as a commit object, which can be uniquely
identified by its SHA1 checksum (also called the commit hash). Listing 2.1
shows an example of the content of such an object. The first line contains
a reference to the tree of the commit (also in the form of a hash). The tree
contains the already mentioned snapshot of all files within the repository at
the time of the commit. If a commit has parent commits, their hashes are also
stored in the object. Lines 3 and 4 contain author and committer information
(name, email address, and time). The author of a commit is the person that
made the source code change (the person that “created” the commit) while
the committer is the person that added the commit to the repository. The last
part of the commit object is the commit message, a textual description of the
commits content.

1 tree 643c4d078e2ec99c79089b17e1486f7497d08416
2 parent cea583a77aeb7d3b1cf4cd216e6d843ffc5f1c8f
3 author Julian Breiteneicher <julian@example.com> 1562343972

+0200↪

4 committer Florian Sattler <florian@example.com> 1562343972
+0200↪

5

6 Commit message

Lst. 2.1. Example of a Git commit object

8 Chapter 2 Background

2.2.2. Blame

As a software project progresses, different authors add commits, which add,
modify or delete different files of the project. If we want to know which
authors created which parts of the project’s files and when, we can use a
feature of Git called blame. For each line of a file, Git blame can show which
commit last modified that line. Listing 2.2 depicts an example of a blame
output. It shows, for instance, the line number 113 was last modified by
the commit c2e86addb86 and the author Stephen Boyd in the year 2011.
Consecutive lines with the same commit hash can be grouped together to a

112 [...]
113 c2e86addb86 (Stephen Boyd 2011-03-22 00:51:05 -0700 113) void NORETURN usage(const char *err)
114 39a3f5ea7c0 (Petr Baudis 2006-06-24 04:34:38 +0200 114) {
115 64b1cb74f83 (Jonathan Nieder 2009-11-09 09:05:02 -0600 115) usagef("%s", err);
116 39a3f5ea7c0 (Petr Baudis 2006-06-24 04:34:38 +0200 116) }
117 39a3f5ea7c0 (Petr Baudis 2006-06-24 04:34:38 +0200 117)
118 [...]

Lst. 2.2. Git blame output of a file from the git repository

single hunk. In the current example, this means that lines 113 to 115 each
belong to a hunk with a single line and lines 116 to 117 belong to another
hunk.

2.3. LLVM

In this section, we introduce LLVM, a modular and reusable compiler frame-
work. We describe LLVM’s basic architecture in Section 2.3.1. In the remain-
ing sections, we explain some of its components—the frontend clang, the
intermediate representation, and the pass framework—in more detail.

2.3.1. Compiler Architecture

The LLVM compiler consists of three major parts (shown in Figure 2.2): fron-
tend, optimizer, and backend. The frontend takes the input source code,

Fig. 2.2. Architecture of the LLVM compiler (taken from [Lat12])

parses it and checks it for errors. The parsing is usually done by first con-
verting the source code to an abstract syntax tree (AST). An AST is a data

2.3 LLVM 9

structure that represents the code’s hierarchical syntactic structure. [Aho+06]
After the AST has been constructed and the code has been checked for errors
like syntax or type errors, it is then converted into LLVM’s intermediate code
representation (LLVM-IR) and passed to the optimizer, the compiler’s second
major part [Lat12].

LLVM-IR is a typed, low-level code representation that is designed to be
human readable as well as to enable efficient code analysis and transfor-
mation. All LLVM frontends transform the input source code into IR code.
This common language enables the remaining components (optimizer and
backend) to work independently of the input language. The frontend’s IR
code is passed to the optimizer which in turn passes it through one or more
of its optimization passes. Every pass analyzes the IR code it receives and
optionally optimizes it. Afterwards, it outputs (potentially modified) IR code
again which can be given to the next pass. Different passes can perform
different kinds of optimizations, for example, loop unrolling or dead code
elimination. After the last optimization pass has run, its output is passed to
the backend.

The different LLVM backends take IR code and convert it to machine
code for the target architecture, e.g., X86 or ARM. In this step, the backend
can perform target-specific optimizations, for example, by optimizing the
register allocation or by selecting different instructions depending on the
target platform [LLV19a].

2.3.2. LLVM Frontend clang

In this section, we look at clang in more detail, LLVM’s frontend for the C lan-
guage family (e.g., C, C++, Objective-C, Objective-C++). Clang is comprised
of multiple stages which we describe in the following:

Driver The driver is called when clang is launched via the clang binary. It
starts and controls the different tools, that are used during the compi-
lation process, e.g., the compiler, the assembler, and the linker.

Preprocessing During this stage, the input source code is tokenized and
the preprocessor statements (such as macros, #ifdefs, and #includes)
are processed.

Parsing and Semantic Analysis This stage takes the output of the previ-
ous stage and parses the code into an AST. It then performs semantic
analysis and error checking on the AST and outputs warnings or error
messages if necessary.

Code Generation The last stage of the frontend is the generation of LLVM
IR code based on the AST. This code is then passed to LLVM’s optimizer
pipeline and then to the backend for machine code generation and
linking.

10 Chapter 2 Background

2.3.3. LLVM-IR

LLVM-IR is a static-single assignment (SSA) based language, which means
that every variable has to be defined before it can be used and that a variable
cannot be assigned more than once. Its virtual instruction set is similar to the
RISC instruction set. It consists of a linear sequence of instructions that are
in three address form, which means that they take some inputs and write a
result into another register. LLVM-IR has a simple, strong type system which
makes it easier for the compiler to optimize it.

Listing 2.3 shows a small example with the corresponding C++ source code.
The first line of the IR code defines a method mainwith a 32-bit integer return

1 int main() {
2

3

4 int x;
5 int y;
6

7 x = 30;
8 y = 12;
9

10

11 return x+y;
12

13 }

(a) C++

1 define dso_local i32 @main() #0 {
2 entry:
3 %retval = alloca i32, align 4
4 %x = alloca i32, align 4
5 %y = alloca i32, align 4
6 store i32 0, i32* %retval, align 4
7 store i32 30, i32* %x, align 4
8 store i32 12, i32* %y, align 4
9 %0 = load i32, i32* %x, align 4

10 %1 = load i32, i32* %y, align 4
11 %add = add nsw i32 %0, %1
12 ret i32 %add
13 }

(b) LLVM-IR

Lst. 2.3. LLVM-IR example with corresponding C++ code

value (“i32”). Line 2 defines the single basic block entry of this method. The
next three lines allocate memory for the x and y variables and the method’s
return value. Lines 6 to 8 initialize the return value with 0, and the x and y
variables with 30 and 12. Next, the values of the x and y variables are loaded
(lines 9 and 10) and added (line 11). The result is stored in the add variable.
Lastly, the content of the add variable is returned by the method [Lat12;
LLV19a].

IR Metadata

LLVM-IR allows the developer to convey additional information by attaching
metadata to IR instruction. One important use-case of this is to provide
debugging information. If the compiler generates a warning or error message,
the metadata can be used to map a location in the IR code to the original
source code. There are two different kinds of metadata elements: strings and
nodes. Both always start with an exclamation mark (“!”). An example for
a metadata string is “!test” (including double quotes). A metadata node
can have multiple values of arbitrary type. A named metadata can reference
multiple metadata nodes that are stored separately in a special section of the

2.3 LLVM 11

IR code. Listing 2.4 shows a small example. The named metadata “MDName”

1 define dso_local i32 @main() #0 {
2 entry:
3 %retval = alloca i32, align 4, !MDName !23
4 [...]
5 }
6 !23 = !{!"Very", !"important", !"metadata"}

Lst. 2.4. Example of Metadata Nodes in IR Code

references the metadata node 23 which contains the metadata strings “Very”,
“important” and “metadata” [LLV19a].

2.3.4. LLVM Pass Framework

In the overview section, we have already briefly described what a LLVM
pass is. It receives IR code as input and, depending on the type of the
pass, performs some analysis on the code or transforms it. Afterwards, it
outputs the (possibly modified) IR code, which then gets passed to another
optimization pass or to the backend. There are six different kinds of passes
in LLVM:

• ModulePass
• CallGraphSCCPass
• FunctionPass
• LoopPass
• RegionPass
• BasicBlockPass

A ModulePass is the most generic type of pass. It receives the whole module
as input and can perform arbitrary transformations. In C++, a module corre-
sponds to a single translation unit (a single source file after all preprocessor
statements have been processed). The CallGraphSCCPass is used to traverse
the program’s call graph from bottom to top. FunctionPasses receive the
individual functions of the program as input, LoopPasses work on loops
within functions, RegionPasses on single entry single exit regions within
functions and BasicBlockPasses work on the individual basic blocks of a
function.

In order to implement a new pass, one has to subclass the appropriate
class, e.g., FunctionPass to implement a new function pass. The new pass can
overload three virtual methods of the parent class. When the pass modified
the program then they should return true, otherwise false. The most im-
portant method that has to be overloaded is the runOnFunction(Function)
method. It can perform its analysis or transformation on each function of the
program, which it receives as input. Additionally, the pass can overload the
methods doInitialization(Module) and doFinalization(Module), which
can be used for initialization before the runOnFunction method is called or
for cleanup afterwards. Finally, the newly created pass has to be registered

12 Chapter 2 Background

with LLVM’s PassManager. The PassManager is responsible to schedule the
execution of the passes in such a way that they run efficiently and that all
their requirements are fulfilled [LLV19b].

2.4. VaRA

In this section, we introduce VaRA, the “Variability-aware Region Analyzer”,
a software analysis framework built on top of LLVM. It is able to find different
kinds of regions in the analyzed code, for example regions that are related to a
specific run-time feature of the software or to a specific commit. Additionally,
it can perform control-flow and data-flow analyses on the detected regions.
The supported regions all share a common interface and their detection is
separated from the analysis. This makes it easy for developers to add support
for new region types which can be used by the existing analyses or to add a
new analysis that can use existing regions [Sat17].

2.4.1. Regions

One of VaRA’s central concepts is notion of an IRegion, which is defined as
a section of the code that is of specific interest for an analysis. One example
for an IRegion is the FeatureRegionwhich is defined as a section of the code
that is related to a specific run-time feature of the software, e.g., logging.
This concept is expressed in VaRA by the abstract class vara::IRegion, from
which all supported region types are inherited. This class is used as a common
type between the different region types by VaRA’s analyses. It offers certain
often-used convenience methods, for example to calculate the unique UUID
of the region [Sat17].

2.4.2. Region Aggregation

Instead of inheriting from vara::IRegion directly, a region can alternatively
inherit from the llvm::IRegionAggregate class. As already mentioned, a
region is a single section of the code. By default, this includes only sections
of code withing a basic block. However, in some use-cases, we may be
interested in viewing multiple regions with a common property as a single
entity, even though they span across multiple basic blocks, for example,
if multiple regions belong to the same feature. This can be done via the
IRegionAggregate class, which extends the IRegion class and manages a set
of llvm::InstBlock objects. An InstBlock references a block of instructions
within a llvm::BasicBlock by keeping track of three properties: a pointer
to its basic block and a pointer to its first and last instruction within that
block respectively. Since IRegionAggregate inherits from IRegion, we can
still use the common IRegion interface for all types of regions.

When detecting regions in the code, it would be a correct solution to create
only IRegions where each one only contains a single instruction. However, it
is often desirable to group these regions together as much as possible if they
are continuous in the CFG, even across basic block boundaries. One advantage

2.4 VaRA 13

of this is that it can increase the performance of VaRA’s analysis, since fewer
items have to be analyzed. During region detection, VaRA can automatically
group continuous IRegions within a function into IRegionAggregates.

In the following, we describe how this process works. It is split into two
stages: The first stage finds the regions per BB and the second one groups
these regions together across BB boundaries.

The first stage performs the following algorithm per basic block of all
functions: It iterates over all instructions of the BB and fetches the region
metadata for the current instruction, for example, the set of features this
instruction belongs to. We call this set RRIDs. In addition, a set of currently
“active” instruction blocks (ActiveInstBlocks) is maintained for each basic
block. It stores the instruction blocks we are currently collecting together
with their region ID, for example, the name of a feature together with the
block of instructions that belong to that feature. We are iterating over the
basic block instructions in sequential order. For every region ID in RRIDs,
we check if ActiveInstBlocks already contains that ID. If it does, we found
an additional instruction that belongs to that region, so we can add it to
the instruction block. If it does not, we create a new instruction block
with the current instruction and store that together with the region ID in
ActiveInstBlocks. Additionally, we check if ActiveInstBlocks contains
region IDs that are not contained in RRIDs (the set of region IDs of the current
instruction). If it does, that means we are finished with that instruction block
because the previous instructions belonged to that region but the current
instruction does not, so we cannot append it to that block. We are finished
with that block because a region is a continuous set of instructions and the
current block terminates that. If we iterate over all instructions and all basic
blocks of a function in this way, we get a set of all instruction blocks that
belong to a region together with their region ID.

In the second step, we group these instruction blocks together across basic
block boundaries into IRegionAggregate objects. This is done in backwards
order on the CFG. We iterate over the basic blocks of a function and get all the
instruction blocks we found in the previous step together with their region
identifier. If an instruction block starts at the beginning of a BB, we check if
the predecessor BBs end with instruction blocks with the same region ID. For
all BBs where this is the case, we merge the corresponding instruction blocks
to an IRegionAggregate. Figure 2.4 on the facing page shows an example
of this. It contains three instruction blocks that all have the same region ID
(e.g., they belong to the same feature). Since InstBlock_3 is at the beginning
of its BB and InstBlock_1 and InstBlock_2 are located at the end of their
BBs, we can merge them to a single IRegionAggregate [Sat17].

2.4.3. CommitRegions

In 2018, Niederhuber already extended VaRA with the ability to perform
control-flow and data-flow analyses between different commits of a software
project by adding CommitRegions as a new IRegion type. In his approach, the

14 Chapter 2 Background

Fig. 2.4. Example of an IRegionAggregate consisting of three instruction blocks
across three basic blocks

initial region detection is not performed by VaRA. Instead, a preprocessing
step is used to annotate the source code with special markers that indicate to
which CommitRegion a specific part of the source code belongs. This is done
by a special script that uses the Git repository of the analyzed project to get
Git’s blame output for each source code file to determine for each line of code
which commit added/last modified this line. Then, it determines the first and
the last occurrence of each commit. It inserts a region start annotation at the
first occurrence of a commit and a region end annotation at the last occur-
rence. An example of this can be seen in Listing 2.5. It shows a small C++ code

1 ___REGION_START __RT_Commit "7a32a36e68[...]"
2 int main() {
3 int x;
4 int y;
5 ___REGION_START __RT_Commit "5a095078d4[...]"
6 x = 30;
7 ___REGION_END __RT_Commit "5a095078d4[...]"
8 y = 12;
9 return x+y;

10 }
11 ___REGION_END __RT_Commit "7a32a36e68[...]"

Lst. 2.5. Example of marker-based CommitRegion annotation

example with the CommitRegion markers. “___REGION_START” indicates the
start of a region while “___REGION_END” indicates its end. The second string
“__RT_Commit” encodes the type of the region, which is CommitRegion in our
case, and the third string of each marker line contains the commit hash of the
region. It can be seen that the regions can be nested. For each line, the inner-
most nested regionmarker showswhich commit last modified that line. In our

2.4 VaRA 15

example, this means that line 6 was created by the commit “5a095078d4[…]”
while all other lines were created by commit “7a32a36e68[…]”.

Niederhuber also extended the clang frontend so that it can detect and
process these region markers. For each line it detects the commit hash that
belongs to it and it adds this information to the generated IR code as metadata.
VaRA’s analysis passes can then use this metadata to create CommitRegion
objects for every region, which can then be used by the control-flow and
data-flow analyses to find interactions between the commits.

However, this approach has some drawbacks. The first drawback is that it
requires an additional preprocessing step which makes the analysis process
more complex.

The second issue is the nesting of the regions. VaRA’s analysis creates
IRegions for all nested annotations in the source code. In our small code
example above, this would mean that line 6 is part of both CommitRegions
“7a32[…]” and “5a09[…]”, even if it was added by commit “5a09[…]” and was
never actually part of commit “7a32[…]”. It would be more reasonable if every
line was only part of a single IRegion, namely the region that represents the
commit that added that line.

The third drawback is that preprocessor statements cannot be handled
correctly during the annotation. If the source code contains, e.g., #ifdef
directives to conditionally include or remove statements, the region anno-
tations can become inconsistent. Listing 2.6 demonstrates this effect with a
small example. If FOO is undefined then lines 8 and 9 will be removed by the

1 ___REGION_START __RT_Commit "7a32a36e68[...]"
2 int main() {
3 int x;
4 int y;
5 ___REGION_START __RT_Commit "5a095078d4[...]"
6 x = 30;
7 #ifdef FOO
8 x += 1;
9 ___REGION_END __RT_Commit "5a095078d4[...]"

10 #endif
11 y = 12;
12 return x+y;
13 }
14 ___REGION_END __RT_Commit "7a32a36e68[...]"

Lst. 2.6. Example of CommitRegion markers with C preprocessor statements

preprocessor. This makes the region annotations inconsistent because the
region “5a09[…]” is never closed. [Nie18].

2.4.4. BlameRegions

BlameRegion is a new type of region that was added to VaRA in order to
remove the disadvantages described in the previous section. Contrary to

16 Chapter 2 Background

CommitRegions, BlameRegions do not require a preprocessing step and their
annotations can never be nested. They also work as expected in the presence
of preprocessor statements. We describe details of their implementation later
in Section 3.2 on page 24.

2.4.5. Analysis Pipeline

In this section, we explain how the first step of VaRA’s analysis pipeline
works, namely the annotation of the commit information that can be used
by VaRA’s interaction analysis in a later step.

vara-clang Blame Annotations

The BlameRegion approach does not require a preprocessing step. Instead,
clang is extended with the ability to automatically detect if the compiled
source file is stored in a Git repository. If it is, clang loads the repository and
gets Git’s blame output for the file. This information is then used when clang
generates the IR code. Every instruction gets annotated (via IRmetadata) with
the commit that added the source code line that generated this instruction.
This feature is implemented in a fork of the clang project called vara-clang
and it can be enabled via the “-fvara-GB” command-line flag.

Listing 2.7 shows an example of LLVM-IR with added blame metadata. The

1 [...]
2 define dso_local i32 @readVariable() #0 !Region !0 {
3 entry:
4 %res = alloca i32, align 4, !Region !0
5 [...]
6 }
7 [...]
8 !0 = !{!1}
9 !1 = !{!"Blame", !2,

!"60e791d8d3c792741ea6e9d19546bd269ee75ff5"}↪

10 !2 = !{!"calculator", !"/home/jb/calculator/.git/"}
11 [...]

Lst. 2.7. Example of Blame Metadata LLVM-IR

instruction in line 4 of the example is annotatedwith a named regionmetadata
that references the metadata node !0. This node then references the blame
metadata node !1, which contains the hash of the commit that last modified
the source code line that generated the IR instruction. It additionally contains
a reference to another metadata node with the name of the Git repository of
that commit as well as a filesystem path. This is necessary because software
projects can consist of multiple Git repositories and a commit hash may not
be sufficient to uniquely identify a commit across multiple repositories. The
indirection of the metadata node !0 has two reasons. A single IR instruction
might be annotated with multiple regions (potentially of different type). In

2.4 VaRA 17

this case, node !0would link to multiple region metadata nodes. Additionally,
the indirection saves space because only a single metadata node has to be
stored for every commit and multiple instructions can reference the same
blame metadata node.

With this annotation approach, dealing with preprocessor statements is not
an issue. Previously, the region annotation script added the region marker to
the source code before it was processed by clang. When using BlameRegions,
however, clang processes the original source code that was not modified
by a preprocessing script. Clang first resolves all preprocessor statements
and then builds the AST. When the AST is then used to create the IR code,
the preprocessor statements have already been processed and we can load
the region information from the Git repository. This can easily be done
because every AST node stores its SourceLocation, which can be used in
clang to get the line number in the currently processed file that corresponds
to that AST node. With the line number and the path to the source code
file (which can also be obtained via the SourceLocation), clang retrieves the
blame information from the Git repository to determine which commit added
the line. This information is then added to the generated IR instruction as
metadata.

BlameRegions also do not suffer from the nesting issue because, as we have
seen, we only retrieve a single commit hash for every AST node, namely the
hash of the commit that last modified the corresponding line in the source
code.

2.5. VaRA-Tool-Suite

The VaRA-Tool-Suite (or VaRA-TS) is an application that aids VaRA’s users
during multiple tasks. It can automatically download, build and install the
latest version of VaRA on the user’s system. An existing installation can also
be easily updated. The tool suite can perform VaRA’s analyses on a range
of preconfigured software projects. Result graphs can also be generated
to visualize the analyses’ outcomes. For example, Figure 2.5 on the next
page shows the results of VaRA’s commit interaction analysis. For each
commit of the analyzed project, it shows the number of ingoing and outgoing
commit-flow and data-flow interactions.

The GitBlameAnnotationReport experiment is one of the analyses that
are supported by the tool suite. It analyzes the control-flow and data-flow
interactions between the different commits of a project. For example, VaRA-
TS could run the GitBlameAnnotationReport experiment on gravity (one of
the preconfigured software projects). It automatically downloads the project
and compiles it. After that, it starts VaRA’s analysis and it collects the result.
VaRA-TS can not only analyze the current state of the project, it can also
automatically sample an arbitrary number of revisions from the projects
history and perform the analysis on each one of them. For example, a user
could let VaRA-TS sample 10 revisions from each year of a projects history
and perform the GitBlameAnnotationReport on each one of them. The result

18 Chapter 2 Background

(a) Visualization of control-flow interactions (b) Visualization of data-flow interactions

Fig. 2.5. Example of VaRA’s visualization of control-flow and data-flow interac-
tions between commits

can be automatically plotted, so we can examine how the control-flow and
data-flow interactions develop over time.

The analyzed projects, the used experiment and the sampled project revi-
sions can also be persisted in a CaseStudy file. This makes the experiments
easily reproducible [VaR19].

2.5.1. BenchBuild

BenchBuild is a large-scale empirical-research toolkit that can be used by
researchers to repeatedly perform compile-time or run-time experiments on
a range of software projects. It minimizes the necessary effort to prepare and
execute the experiments by automatically downloading, configuring, and
compiling the projects that are analyzed by the chosen experiment. A list of
preconfigured and ready to use projects is already supplied by BenchBuild.

However, it is very easy for the user to add own projects. The user only
needs to implement a class that inherits BenchBuild’s Project class and imple-
ment the twomethods compile() (that compiles the project) and run_tests()
(optionally, for run-time tests). An example can be see in Appendix A on
page 53, which shows the definition of the gravity project, one of VaRA’s
current case studies. The project is defined by implementing the Gravity
class. BenchBuild’s with_git decorator is added to the class so that Bench-
Build automatically clones the project’s Git repository before the compilation
step is started. It is important to note that the definition of the project is
independent from the definition of the experiment. This allows the user to
arbitrarily combine the available projects with the configured experiments.

The VaRA-Tool-Suite uses BenchBuild to configure its projects and run
its experiments. For example, to run VaRA’s GitBlameAnnotationReport on
the gravity project, the user only needs to run the command “benchbuild
run -E GitBlameAnnotationReport gravity” [Sim+16].

2.5 VaRA-Tool-Suite 19

3
Improvements to VaRA’s

Analyses

In this chapter, we explain how we extended the VaRA analysis framework
to combat the disadvantages of the previous CommitRegion implementation.
First, we describe the design of VaRA’s new Git metadata interface that allows
clang and VaRA to extract information from the Git repository of an analyzed
software project. Second, we introduce the new BlameRegion type, which we
added to VaRA. Third, we explain our BlameRegion filter interface that can
be used to filter BlameRegions before and after the analysis process based on
different criteria, in order to enhance the analysis.

3.1. VaRA Git Metadata Interface

We already briefly mentioned the Git metadata interface that we implemented
in VaRA in previous sections. Its purpose is to allow VaRA to extract meta-
data from the Git repository of an analyzed software project, for example
information about the commits of a project. It is used by clang to annotate
the IR code with the blame information and we explain in a later section how
we additionally use it to improve VaRA’s analysis. To extract the needed
metadata from Git repositories, we added the libgit2 library1 to VaRA. 1Available at https://libgit2.org

libgit2 is a library implementation of Git. Many features and methods that
are offered by the official Git command-line tool are also available via libgit2.
In order to programmatically interact with a Git repository, programmers
often parse the output of the Git command-line interface, which can be
very time-consuming and error-prone. Using libgit2 makes this a lot easier
because it offers a solid API to interact with a repository.

However, using libgit2’s C API can also be challenging, especially for
programmers that are not experienced in programming in C. For example,
the programmer often has to manually allocate and free memory for libgit2’s
data structures.

To remove this burden from the programmer, we implemented a wrapping
layer in VaRA that translates libgit2’s C API into an object-oriented and
easier to use interface. This interface also automatically manages libgit2’s
memory for the user.

VaRA’s Git interface is split into two major parts: the GitExtraInfo inter-
face and the LibGit2Wrapper interface. The LibGit2Wrapper interface is the
part that directly interacts with the libgit2 library and handles the memory

21

https://libgit2.org

management. It is not intended to be used by the programmer directly. In-
stead, the programmer should use the GitExtraInfo interface which offers
a higher-level abstraction of the LibGit2Wrapper interface. Another reason
for this separation is that it allows the high-level Git interface to not be fully
dependent on libgit2. If a user wants to compile VaRA without the libgit2
library, he or she can still use the GitExtraInfo interface, although with less
functionality.
The following are the most important classes of the LibGit2Wrapper interface:

• LGGitRepository
• LGGitTime
• LGGitSignature
• LGCommit
• LGBlame

The LGGitRepository class opens a libgit2 repository and keeps a pointer
to it. LGGitTime stores a single time point, e.g., the time of a commit.
LGGitSignature contains the metadata of either the author or the committer
of a commit, e.g., name and email address. LGCommit references a specific
commit in the repository and LGBlame contains the blame information of a
commit.
The GitExtraInfo interface consists of the following classes:

• GitExtraInfo
• Repository
• RepositoryStore
• Commit
• GitSignature

The GitExtraInfo class allows for the separation between the two interfaces.
If the libgit2 library is available, it holds a pointer to a LGGitRepository
object. A Repository object references a single Git repository. It can, for
example, be used to get a commit object for a specific commit hash from
that repository. Since a single LLVM module can have BlameRegions from
multiple repositories, the RepositoryStore keeps a list of all of them. The
Commit class represents a commit from a repository. It can be used to get
information about its author or committer. This information is returned as
GitSignature objects that store a name, an email address, and a time point.

To better understand the relationship between the two interface layers,
we look at a small usage example: A user has a pointer to a Commit object
and wants to determine the name of the commit’s author, so he or she
calls the commit’s getAuthor() method, which is implemented as follows:
Getting the author name of the commit requires access to the Git repository
via libgit2 so we need to use the LibGit2Wrapper interface. It is not used
directly, however. The Commit object calls the getExtraInfo() method of its
Repository which returns an optional of a GitExtraInfo object (which is
empty if libgit2 support is not available). The GitExtraInfo object can be used
to access the LibGit2Wrapper functionality. It offers a getAuthor(string
CommitHash) method. The Commit object calls this method, which now uses
the LibGit2Wrapper interface to get the author information from the libgit2

22 Chapter 3 Improvements to VaRA’s Analyses

library and returns it as a GitSignature object. The Commit object then
returns the GitSignature to the user, allowing convenient access to the
requested information.

3.1.1. Extending libgit2

During testing of the new BlameRegions, we discovered an issue with clang’s
blame metadata annotation. When the Git repository of the analyzed project
contained uncommitted source code changes, the LLVM-IR blame annotation
of clang was incorrect. The reason for this issue was that libgit2’s blame
feature does not report blame information for changes that have not yet been
committed to the repository. libgit2’s blame information is based on the most
recent commit of the repository. If, for example, a line was added to a source
code file without committing it, then libgit2 would have no information about
that line.

This is not an issue when using CommitRegions. The preprocessing script
that is used in this approach uses the Git command-line program to obtain
the blame information and parses its output. It uses the git annotate com-
mand, which does include blame information about uncommitted changes.
Listing 3.1 shows an example of this. The second line was added but not

a5479197371e (Teresa Johnson 2016-11-11 05:34:58 +0000 10)#include "llvm/Bitcode/BitcodeReader.h"
000000000000 (Not Committed Yet 2019-08-08 19:13:52 +0200 11)// new line
8a4442a342e3 (Mehdi Amini 2016-12-12 19:34:26 +0000 12)#include "MetadataLoader.h"
8a4442a342e3 (Mehdi Amini 2016-12-12 19:34:26 +0000 13)#include "ValueList.h"

Lst. 3.1. Example output of the git annotate command

committed yet. Git reports it as having the commit hash “00000[…]” and the
author “Not Committed Yet”.

To solve this issue when using BlameRegions, we created a fork of the
libgit2 library and extended is so that its blame feature also includes infor-
mation about uncommitted code changes.

Git Blame Uncommitted Algorithm

libgit2 stores the blame information of a file in a list of individual hunks.
Instead of modifying how libgit2 builds that list, we decided to instead modify
the list afterwards and insert the information about the uncommitted code
changes into it. The first step of the algorithm is to let libgit2 create the
hunk list with the blame information. Second, we use the libgit2 method
git_diff_tree_to_workdir to get the differences between the repository’s
latest committed state and the current (uncommitted) state of the working
directory. In the third step, we iterate over these differences and include
them into the blame hunk list. For each diff entry, we determine whether it
removes or adds source lines. If it removes lines, we find the corresponding
hunk in the list and remove the lines from it. If the hunk becomes empty in
the process, we delete it from the list. The subsequent hunks in the list are
shifted by the number of deleted lines. If the diff entry adds lines, we create a

3.1 VaRA Git Metadata Interface 23

new hunk with these changes and insert it into the hunk list. If necessary, we
split an existing hunk to be able to insert the new one. Again, all subsequent
hunks of the list are shifted by the number of added lines.

3.2. BlameRegion Support in VaRA

In Section 2.4.4 on page 16, we already briefly described BlameRegions as
an alternative to CommitRegions. Remember, CommitRegions have the
disadvantage that they need a preprocessing script to annotate the region
information in the source code. Due to the way the preprocessing script
annotates the nested regions, it can falsely mark source code lines as be-
longing to a commit. An additional drawback is the fact that C preprocessor
statements cannot be handled correctly and can lead to inconsistent region
annotation. We described these issues in detail in Section 2.4.3 on page 14.

To solve these issues, we implemented vara::BlameRegion as a new IRegion
type. In Section 2.4.2 on page 13, we explained the IRegion, IRegionAggregate,
and the InstBlock classes and how they relate to each other. Instead of
inheriting from IRegion directly, BlameRegion interhits from the IRegion-
Aggregate class, which aggregates multiple InstBlock objects into a single
region.

3.2.1. vara-clang Blame Annotations

In order to add the region metadata to the generated IR code, clang retrieves
the Git blame output of a project’s repository. It is able to get that information
from the repository by using the Git metadata interface we added to VaRA.
For each line in the compiled source code file, it fetches the blame information
from our interface and adds that information to the IR metadata. Listing 2.7
on page 17 shows an example of the blame IR metadata.

3.2.2. VaRA BlameDetection Pass

VaRA’s analyses are implemented as LLVM optimization passes. VaRA re-
ceives the LLVM-IR code from clang with the embedded BlameRegion meta-
data. In order to use that information, the first necessary step is to extract
the region metadata and use it to create the BlameRegion objects. This is
done by the vara::BlameDetection pass that we added to VaRA. It can be
run by supplying the -vara-BD command-line flag to the LLVM optimizer.
The BlameDetection class inherits llvm::FunctionPass, and thus runs on
all functions in the current module. The pass’s runOnFunction()method calls
llvm::IRegionAggregate::detectAggregateRegion(llvm::Function)with
the currently processed function as argument to do the actual region detection.
We have already described this method in Section 2.4.2 on page 13. It ex-
tracts the IRmetadata and aggregates the regions to create IRegionAggregate
objects, in our case BlameRegion objects. After the region detection is per-
formed, the BlameDetection can optionally output debugging information
about all detected BlameRegions. The user can enable this feature by passing

24 Chapter 3 Improvements to VaRA’s Analyses

the -vara-print-IRegions flag. After all BlameRegions have been created,
they are ready to be used by VaRA’s analyses.

3.2.3. BlameRegion Implementation

The vara::BlameRegion class extends the general IRegionAggregate type
and additionally stores a reference to the region’s Commit and Repository
object. Listing 3.2 shows the class’s public API. The factory method create-

1 class BlameRegion : public llvm::IRegionAggregate {
2

3 public:
4 static unsigned createID(llvm::StringRef RegionID,
5 int RepoID);
6

7 static bool classof(const llvm::IRegion *IR);
8

9 static BlameRegion *createNewBlameRegion(
10 llvm::StringRef RegionID,
11 Commit *RegionCommit, int RepoID);
12

13 explicit BlameRegion(llvm::StringRef RegionID,
14 Commit *RegionCommit,
15 int RepoID);
16 ~BlameRegion() override = default;
17

18 llvm::StringRef getRegionID() const;
19 int getRepoID() const;
20 llvm::Optional<Repository *> getRepository() const;
21 llvm::Optional<Commit *> getCommit() const;
22

23 std::string getRepresentation() const override;
24 std::string getHighlightColor() const override;
25 };

Lst. 3.2. Public API of the BlameRegion class (shortened)

NewBlameRegion() can be used to create a new BlameRegion. It gets passed
the RegionID, the RegionCommit, and the RepoID as arguments. The RegionID
is simply the region’s commit hash as a string, which uniquely identifies
the commit within a repository. Every BlameRegion stores a reference to
its commit in the form of a vara::Commit object and to the repository of
that commit (in the form of a vara::Repository object). This information
is passed to the factory method via a Commit pointer and a repository ID.
The BlameRegion offers getters for all these properties. The Commit and
Repository classes are part of VaRA’s Git metadata interface which we
explained in Section 3.1. Every region is uniquely identifiable via an ID,
which is generated by the createID() method based on the commit hash,
and the repository ID. It creates a 45-bit integer in which the first 5 bits are

3.2 BlameRegion Support in VaRA 25

the RepoID and the remaining 40 bits are created by the first 10 characters
of the commit hash. A commit hash consists of only hex characters, so
we can encode a single character in 4 bits. Using both the RepoID and the
commit hash to create the regions ID ensures that two BlameRegions from two
different commits will always have different IDs. The getRepresentation()
method returns the region’s commit hash and the getHighlightColor()
method returns a pseudorandom RGB color value based on the region’s ID
that can be used for debugging purposes to make different regions easily
distinguishable by printing them in different colors.

BlameRegion Aggregate Traits

The general strategy of the IRegion aggregation algorithm described in Sec-
tion 2.4.2 on page 13 works independently of the concrete IRegion type.
However, there are some details of its implementation that depend on the
type. This is why the detectAggregateRegion() method is implemented as
a function template with the region type as template parameter. The parts of
the aggregation algorithm that depend on the region type are extracted into
three methods in the IRegionAggregateTrait trait class. The IRegion type
has to provide a template specialization of this trait class that implements
these three methods:

using IRegionTy = vara::BlameRegion;
using RawRegionIDTy = std::pair<llvm::StringRef, vara::Repository *>;

static SetVector<RawRegionIDTy> getRawsRegionIDsFromMD(Instruction &Inst)}
static IRegionAggregate *createNewRegion(RawRegionIDTy MD)}
static bool isSame(IRegionTy *R, RawRegionIDTy MD)}

RawRegionIDTy and IRegionTy are type aliases that also have to specified
by the region type. IRegionTy is simply an alias to the region type, e.g.,
BlameRegion. RawRegionIDTy specifies a type that can uniquely identify a
region and is used to create an IRegion object. In the case of BlameRegions,
it is a pair of the region’s commit hash and a pointer to the repository of that
commit.

By implementing the getRawsRegionIDsFromMD method, the user specifies
how the region metadata is extracted from an instruction. The method
returns that metadata as a set of RawRegionIDs. The createNewRegion
method is called by the aggregation algorithm to create a new region of
the appropriate type. The region information that was returned by the
getRawsRegionIDsFromMD method is passed as an argument. isSame is used
as a comparator between the created region and the RawRegionID. This is
used by the aggregation algorithm to determine if an IRegion object has
already been created for a specific RawRegionIDTy. With the fully speci-
fied IRegionAggregateTraits VaRA’s detection algorithm can now create
BlameRegions.

26 Chapter 3 Improvements to VaRA’s Analyses

Analysis Support for BlameRegions

To allow the analysis to use the new BlameRegions in addition to the old
CommitRegions, some modification in VaRA are needed. We implemented a
vara::BlameTaint class that extends vara::Taint. This class represents the
taint of a single BlameRegion and is used by VaRA’s taint analysis.

VaRA’s control-flow and data-flow analyses are separated in different
LLVM passes. To support BlameRegions the following two passes require
modifications:

• CommitTaintFlowAnalysis
• CommitFlowReport

The CommitTaintFlowAnalysis pass performs the actual analysis. We ex-
tended it so that it creates BlameTaint objects for all found BlameRegions.
We additionally had to extend the CommitCFGAnalysisTraits trait class to
also support BlameRegions since it is used by the CommitTaintFlowAnalysis
pass.

The CommitFlowReport is responsible to collect the result of the control-
flow and data-flow analysis and write them to a YAML file. We had do
modify it to not only fetch analysis results for CommitRegions, but also for
BlameRegions.

3.3. Interaction Filters

Depending on the analyzed software project, VaRA’s analysis can require
a lot of time and the generated analysis results can be very large. This can
make it difficult to interpret the results and to gather useful insights into the
control-flow and data-flow interactions of a project. To solve these issues
and to allow VaRA’s user to better control the analysis, we added support for
Interaction Filters in VaRA.

Interaction filters allow the user to exclude certain BlameRegions from
VaRA’s analysis based on different filter criteria. Depending on the specific
question the user wants to answer with the analysis, there can be many
BlameRegions that are of no interest for the result. By using Interaction
Filters, VaRA can ignore these regions in the analysis. This can be used to
improve the speed of the analysis and to reduce the size of the generated
result, which can make it easier to interpret.

3.3.1. Filter Types

An interaction filter specifies which interactions between two commits the
analysis should keep and which it should remove because they are of no
interest. Every filter offers the following three functions that can be used to
evaluate it:

• filter(SourceRegion, TargetRegion)
• filterSource(SourceRegion)
• filterTarget(TargetRegion)

3.3 Interaction Filters 27

The filter method takes two BlameRegions as arguments, the source and
the target of an interaction. It then returns either KEEP or REMOVE, depending
on whether the filter criteria match the passed regions or not. REMOVE means
that the interaction should not be included in the analysis result, while KEEP
means the opposite. Since the filter method requires both the source and
target region to make a filter decision, it can only be used after an interaction
has been found. Because of this, it can only be used to reduce the size of the
analysis result, but it can not improve its performance since all interactions
are always computed regardless of whether or not they will be removed
afterwards.

The filterSource and filterTargetmethods take only one BlameRegion
as argument. They allow the user to filter out regions from the analysis
before the interaction—between a source-target pair—is found. If regions
can be removed before the analysis, they do not have to be considered by
the analysis, which can increase its performance. filterSource checks if,
according to the filter, the passed region can occur in an interaction as the
source region. filterTarget checks if the region can occur as a target. If
both filterSource and filterTarget return REMOVE for a region, the region
can be ignored by the analysis.

Some types of filters can have one or more child filters. This can be used to
arrange multiple filters in a tree structure and build more complex filters by
combining different filter criteria. Figure 3.1 on the next page shows the class
hierarchy of all available filter types. InteractionFilter is the common
type of all filters. It can be divided into FilterOperators and Concrete-
InteractionFilters. A ConcreteInteractionFilter performs the actual
filtering while a FilterOperator can be used to combine filters or to define
the scope of a filter. The ConcreteInteractionFilters can be further divided
into UnaryInteractionFilters and BinaryInteractionFilters. They can
not have child filters, they can only be used as leaf nodes in the filter tree.

FilterOperator

FilterOperators can be used to combine filters or to restrict the scope of
the evaluation of a filter.

The filters SourceOperator and TargetOperator can have a single child
filter and restrict how that filter is evaluated. For example, if we imagine a
SourceOperator with a UnaryInteractionFilter (e.g., AuthorFilter) as its
child, then the SourceOperator's filter method does not return the result
of the filter method of its child, but instead returns the result of the child’s
filterSource method. Without the SourceOperator, the filter method of
a unary filter evaluates the source region as well as the target region. Adding
the SourceOperator as parent ensures that only the source region is checked
against the filter criteria.

If the user specifies a filter tree with filter types that produce a semantic
conflict (e.g., specifying a SourceOperatorwith a TargetOperator child) then
all three filter methods always return the safe KEEP decision that does not

28 Chapter 3 Improvements to VaRA’s Analyses

InteractionFilter
FilterOperator

AndOperator
OrOperator
NotOperator
SourceOperator
TargetOperator

ConcreteInteractionFilter
UnaryInteractionFilter

AuthorFilter
CommitterFilter
AuthorDateMinFilter
AuthorDateMaxFilter
CommitDateMinFilter
CommitDateMaxFilter

BinaryInteractionFilter
AuthorDateDeltaMinFilter
AuthorDateDeltaMaxFilter
CommitDateDeltaMinFilter
CommitDateDeltaMaxFilter

Fig. 3.1. InteractionFilter class hierarchy

remove anything. Similarily, calling filterTarget on a SourceOperator
filter also returns KEEP.

The remaining filter types AndOperator, OrOperator, and NotOperator
represent the basic operators of Boolean algebra and are used to combine
different filters. AndOperators and OrOperators can have two or more chil-
dren, while NotOperators can only have one child. The AndOperator's only
returns KEEP if all of its children return KEEP, otherwise it returns REMOVE.
The OrOperator returns KEEP if at least one of its children returns KEEP and
the NotOperator returns the opposite of its child.

BinaryInteractionFilter

A BinaryInteractionFilter can only evaluate a complete interaction. It
requires both the source and the target region of an interaction to make a
decision. This means that the filterSource and filterTarget methods of
these filters always return KEEP, because they do not have the second region
to make a decision whether to remove it or not.

The AuthorDateDeltaMinFilter and AuthorDateDeltaMaxFilter can be
configured with a time span and only keep an interaction if the time dif-
ference between the author dates of the source region’s commit and the
target region’s commit is bigger (min filter) or smaller (max filter) than the

3.3 Interaction Filters 29

configured time span. For example, imagine that VaRA’s analysis found
an interaction between two BlameRegions BR1 and BR2. BR1's commit has
an author date of January 1, 2017, while BR2's commit has an author date
of January 3, 2017. A AuthorDateDeltaMinFilter with a configured time
span of one day keeps this interaction, while a configured time span of five
days removes it from the result. The filters CommitDateDeltaMinFilter and
CommitDateDeltaMaxFilter are very similar, but they compare the commit
time instead of the author time.

UnaryInteractionFilter

A UnaryInteractionFilter can make a filter decision based on only one
region (source or target). When using the filterSource or filterTarget
methods, the filter checks if its filter criteria matches the passed region. If it
does, it returns KEEP. It is, however, also possible to use the filter method
with both regions of an interaction (source and target). In this case, the unary
filter only returns KEEP if both regions match the filter criteria.

The AuthorFilter bases its filter decision on the author of the commit of
the passed region. If the configured author name and email address match,
it returns KEEP, otherwise REMOVE. The AuthorDateMinFilter returns KEEP
if the author time of the commit is at least the filter’s configured date and
the AuthorDateMaxFilter returns KEEP if the author time is at most the
configured date. The commit filters work similarly, but they evaluate the
committer instead of the author of the commit.

During the evaluation of this thesis, we observed an unexpected behavior
when using unary filters. When using, for example, an AuthorFilter, to
prevent the taint creation for certain BlameRegions, we expected the analysis
results to not contain any interactions with these BlameRegions (as either
source or target). We observed, however, that while the result did not contain
any interactions with the filtered BlameRegions as the source of the interac-
tion, it still contained interactions with these regions as targets. The reason
for this behavior is the following: The interaction filter successfully prevents
the taint creation before the analysis, so the result cannot contain interactions
with these regions as source. It is, however, possible that taints from other
BlameRegions (that have not been removed by the filter) have flows to one
of the filtered regions. After the analysis, all detected interactions are filtered
again, but the unary filter only removes interactions where both regions
(source and target) fulfil the filter criterion. In this case, though, only the
target region matches, but the source region does not. Because of this, these
interactions are not removed by the filter. Fortunately, it is simple to also
remove these interactions from the result by extending the used interaction
filter. This can be seen in Figure 3.2 on the facing page. The first subtree
of the AndOperator is the initially used filter. It prevents the taint creation
of the filtered regions before the analysis. The second subtree is added to
remove interactions after the analysis where the target region matches the
filter.

30 Chapter 3 Improvements to VaRA’s Analyses

AndOperator
NotOperator

AuthorFilter
TargetOperator

NotOperator
AuthorFilter

Fig. 3.2. InteractionFilter with workaround to entirely remove certain regions from
the analysis result (as source and target)

3.3.2. Filter Editor in VaRA-Tool-Suite

To allow the user to easily configure an interaction filter, we implemented a
graphical editor in the VaRA-Tool-Suite. Figure 3.3 on the next page shows
a screenshot of the editor with an example filter. It uses the two filters
AuthorFilter and CommitDateDeltaMinFilter. Since they are combined
by an AndOperator the analysis result contains only interactions that fulfil
both of these filters. In this case, the source and the target commit of an
interaction must both be authored by “Jane Doe” and the commit times of
the two commits must be more than one year apart.

The usage of the editor is very simple. In the top half, the user can select a
parent filter and add a child filter to it by using the “+” button, which opens
a menu with the different filter types to choose from. Filters can also be
deleted and moved up or down. After selecting a filter it can be configured
in the lower half of the window. An arbitrary comment string can also be
added to every filter.

After the user finished configuring the filter, he or she can export it to a
YAML file. This file can also be loaded again to modify it and save it again.

3.3.3. Filter Interface in VaRA

After the user has configured a filter and saved it to a file, it can be used to
configure VaRA’s analysis. We added the command-line parameter -vara-
cf-interaction-filter to the LLVM optimizer which can be used to load a
filter file. By using LLVM’s “YAML I/O” library2, we parse the file, construct 2Documentation available at https:

//llvm.org/docs/YamlIO.htmlthe used filter objects and store them in a tree data structure. The filter objects
offer the filter, filterSource, and filterTarget methods that we already
described in Section 3.3.1 on page 27. The analysis pass can then use the
filter tree to remove unwanted interactions or ignore certain BlameRegions
during the analysis.

3.4. Integration of Git Metadata Filters in VaRA’s Analyses

The last remaining step is to actually use the interaction filters in the analysis.
We want to achieve two different goals by doing this. The first goal is to
remove unwanted or uninteresting interactions from the result and to reduce

3.4 Integration of Git Metadata Filters in VaRA’s

Analyses 31

https://llvm.org/docs/YamlIO.html
https://llvm.org/docs/YamlIO.html

Fig. 3.3. Filter Editor of VaRA-Tool-Suite

its size. Since a filter’s decision on whether to remove an interaction or not
might depend on both the source and target region of the interaction, we can
only make that decision after that information is known, that is after the in-
teraction analysis has finished. The CommitFlowReport pass (see Section 3.2.3
on page 27) runs after the analysis and exports the found interactions into
the result file. During that pass, we iterate over all found data-flow and
control-flow interactions and use the filter method to determine whether
to keep an interaction or whether to remove it from the result.

This, however, does not achieve the second goal, which is to reduce the
execution time of the analysis. In order to achieve this we need to remove
BlameRegions or, more specifically, their taints before running the interaction
analysis. In the beginning of the CommitTaintFlowAnalysis pass, we iterate
over all detected BlameRegions to create taints for the analysis. During this
step, we call the filter methods filterSource and filterTarget for every
BlameRegion. If both these methods return REMOVE for a region, we know
that the analysis result should not contain an interaction with this region as

32 Chapter 3 Improvements to VaRA’s Analyses

either source or target. In this case, we can completely ignore the region in
the analysis (and thus increase the performance) by simply not generating a
taint for it.

3.5. Complete Analysis Pipeline

After individually explaining the different parts of VaRA’s analyses in the
previous sections, we now explain how the parts work together by going
through the entire analysis pipeline from start to end. In this example, we
analyze a fictitious software project. To simplify the example, we assume that
the project is implemented in a single C++ source file called my-project.cpp.

Interaction Filter

The first step is to define an interaction filter. In our example, we imagine that
we are only interested in control-flow and data-flow interactions between
commits whose commit dates are at least 6months apart but not more than 12
months. Using the graphical editor of the VaRA-Tool-Suite, we configure the
following filter tree and save it to the YAML file interaction_filter.yaml:

AndOperator
CommitDateDeltaMinFilter (“P6MT”)
CommitDateDeltaMaxFilter (“P12MT”)

Clang Frontend

The next step is to use the clang frontend to convert the project’s source code
to LLVM-IR. During this phase, clang also uses VaRA’s Git metadata interface
to get the blame information for every source code line. For example, assume
clang is currently converting line 42 of my-project.cpp with the statement
“int i;” into LLVM-IR, which was added to the file by the commit 36cf1a6.
Clang converts the declaration of i into the IR instruction %i = alloca i32,
align 4 and uses the Git metadata interface to get the blame information for
line 42. That information is then added to the generated IR instruction as
metadata. After converting the entire source file to LLVM-IR, clang saves the
generated code to the file my-project.ll:

[...]
%i = alloca i32, align 4, !Region !0
[...]
!0 = !{!1}
!1 = !{!"Blame", !2, !"36cf1a6d373332571189a66cfe3d19a[...]"}
!2 = !{!"my-project", !"/path/to/my-project/.git/"}
[...]

3.5 Complete Analysis Pipeline 33

Interaction Analysis

We can now use the annotated IR file to perform VaRA’s commit interaction
analysis. Since VaRA’s analyzes are implemented as LLVM optimization
passes, we need to execute the LLVM optimizer by using the following
command:

opt -vara-BD -vara-CFR -vara-init-commits
-vara-cf-interaction-filter=interaction_filter.yaml
-yaml-out-file=my-project_analysis-results.yaml
my-project.ll

↪

↪

↪

We pass my-project.ll as input file to the optimizer as well as the interaction
filter file via the -vara-cf-interaction-filter parameter. The -vara-BD
flag instructs VaRA to load the blame metadata from the input file and cre-
ate the BlameRegion objects so that they can be used by the analysis. The
-vara-CFR flag enables VaRA’s commit interaction analysis. Since we use an
interaction filter, we also need to pass the -vara-init-commits flag so that
VaRA loads the project’s Git repository. This is necessary for the interaction
filter to work because it needs additional information about the BlameRe-
gions (in our case the time of the BlameRegion’s commit) to make its filter
decision, which it can get via the Git metadata interface. The -yaml-out-file
parameter specifies the output file in which VaRA stores the analysis result.

In the first step of VaRA’s analysis, it loads the LLVM-IR file and parses
the blame metadata for every IR instruction. It then runs VaRA’s region
aggregation algorithm (see Sections 2.4.2 on page 13 and 3.2.3 on page 26) to
group instructions with the same commit hash into regions and creates the
BlameRegion objects (see Section 3.2.3 on page 25).

The second step is the actual interaction analysis. At first, VaRA loads the
interaction filter file that we provided via the command-line. VaRA then iter-
ates over all BlameRegions that were created in the previous step and passes
them to the interaction filter to determine, which regions should be ignored
by the analysis and which ones should not. If a region should be ignored
by the analysis according to the filter, then VaRA does not generate a taint
for that region, otherwise, it does. In our example, VaRA cannot ignore any
BlameRegions in this step because we use only BinaryInteractionFilters.
The filter can only decide to remove an interaction when both the source
and the target are known because it filters based on the difference between
the commit dates of the two commits. When all taints have been created,
VaRA runs the control-flow and taint (data-flow) analysis to find the inter-
actions between the BlameRegions. After the analysis, VaRA iterates over
all found interactions and uses the interaction filter to remove all unwanted
interactions from the result. Finally, all remaining interactions are stored in
the result file that was specified via the -yaml-out-file parameter.

34 Chapter 3 Improvements to VaRA’s Analyses

4
Evaluation

In the previous chapter, we described how we added analysis support for the
new BlameRegion type and how we extended the analysis with the ability
to filter BlameRegions based on Git metadata. In this chapter, we evaluate
whether these approaches are able to improve VaRA’s commit interaction
analysis by performing the analysis on a set of case studies. Hence, we
evaluate the following research questions in this chapter.

ResearchQuestions

• RQ1: Does the use of BlameRegions lead to more accurate analysis
results compared to CommitRegions?

• RQ2.1: Can interaction filters be used to remove unwanted interac-
tions from the analysis result and reduce its size?

• RQ2.2: Can interaction filters increase the speed of VaRA’s analyses?

4.1. Cluster System

Since part of our evaluation involves time measurements, we run all of these
experiments on a dedicated test system so that we are able to produce reliable
and comparable results. We use 16 nodes of a cluster system where each
node is equipped with an Intel Xeon E-5 2690v2 CPU with 10 cores and 64GB
RAM. The used operating system is Debian 10. We exclusively reserve the
nodes during our evaluation and run only a single experiment on each node
at a time. Furthermore, we try to reduce noise by disabling turbo boost and
setting the kernel scaling governor to performance, to always scale CPU
cores to their maximum frequency.

4.2. Case Studies

In this section, we present the different case studies that we use to evaluate
our research questions. The first case study is a small, synthetic example that
implements a simple calculator. The second and third case studies are the
real world software projects gravity and gzip.

35

4.2.1. Niederhuber’s Calculator

Niederhuber developed a very small calculator program to evaluate his
CommitRegion-based commit interaction analysis [Nie18]. It is written in
C and consists of only 47 source code lines that were created by 9 commits
in total. The small size of the example has the advantage that the analysis
result is small enough so that we are able to compare the results by hand.
Appendix B on page 55 shows the calculator’s source code and a description
of each of its 9 commits.

4.2.2. Gravity

Gravity1 is a lightweight programming language written in C. At the time of1https://github.com/
marcobambini/gravity this writing, the project consists of 46 source files and 17 818 lines of code.

Its Git repository contained 575 commits. From the project’s history from
2017 to 2019, we sampled 76 revisions from a uniform distribution for our
evaluation.

4.2.3. GNU Gzip

GNU Gzip2 is a popular data compression tool for UNIX or UNIX-like oper-2https:
//www.gnu.org/software/gzip ating systems. At the time of our evaluation it consisted of 22 source files

with a total of 6 059 lines of code. The project’s Git repository contained
580 commits. Gzip uses the gnulib library, which is distributed in a separate
Git repository with 20 124 commits in total. On our evaluation system, we
were not able to compile gzip revisions older than July 2018 because earlier
revisions can not be built with recent versions of the glibc. Therefore, we
took all revisions since that date for our evaluation which are 23 revisions in
total.

4.3. Tools

To run our case studies and evaluate the results, we need to make additions
to the VaRA-Tool-Suite, which we describe in this section.

4.3.1. VaRA-Tool-Suite Experiment

We already described the tool suite’s GitBlameAnnotationReport experiment.
It compiles the case study project and runs VaRA’s commit interaction anal-
ysis on it. For our evaluation, we implemented a new experiment, called
GitBlameFilteredAnnotationReport, which performs a very similar task.
The only difference is that it can take a YAML file that configures an inter-
action filter and pass that to VaRA’s analysis. This way, we can run both
experiments on our case studies and compare their results.

In addition, we extended both experiments with the ability to measure
how long each analysis runs. We use the GNU time command to measure
the wall-clock time of the analysis.

36 Chapter 4 Evaluation

https://github.com/marcobambini/gravity
https://github.com/marcobambini/gravity
https://www.gnu.org/software/gzip
https://www.gnu.org/software/gzip

4.3.2. VaRA-Tool-Suite Visualization

To evaluate the results of our case studies we also implemented four new
plot types in the tool suite. They compare the results of a case study when
it is analyzed without interaction filters to the results when it is analyzed
with them. The four different plots compare the four metrics result size,
analysis time, number of control-flow interactions, and number of data-flow
interactions.

4.4. Experiment 1 — Calculator

We use the calulator case study to answer RQ1. We run VaRA’s commit
interaction analysis on the calculator example by using the CommitRegion
approach and the new BlameRegion approach. When comparing the two
results, we immediately spot a difference. The result file of the CommitRegion
approach is 12 KiB large while the BlameRegion result is only 9 KiB large.

Figures 4.1a and 4.1b show the found control-flow interactions of both
approaches. For each commit, they show the number of interactions from that
commit to other commits and vice versa. The first difference we observe is

(a) Control-flow interactions when using
CommitRegions

(b) Control-flow interactions when using
BlameRegions

Fig. 4.1. Detected control-flow interactions in calculator case-study when using
CommitRegions (4.1a) or BlameRegions (4.1b)

that the CommitRegion approach detected interactions with the four commits
5a09, 60e7, 6f3e, and 7662, while the BlameRegion approach did not. These
four commits added the four methods add, readVariable, listOperations,
and sub to the program. The CommitRegion-based analysis detected control-
flow interactions between these commits and the commit 7a32, the very first
commit of the calculator. When inspecting the source code, we observe that
these interactions are not correct. The program does not contain any control-
flow interactions between these four methods and any line that was added by
the 7a32 commit. 7a32 adds the first line of the file (the #include statement)
and the last line (the closing brace). The CommitRegion approach adds the
region information by adding start and end markers to the source code that

4.4 Experiment 1 — Calculator 37

indicate the start and the end of a region. The start marker is placed at the first
occurrence of a commit and the end marker at the last occurrence of a commit.
In the calculator example, it places the start marker for the 7a32 commit
before the first line and the end marker after the last line of the file. Because
of this, VaRA detects every source code line between these to markers as
belonging to the region 7a32 even if it was added later by a different commit.
This is the reason why the CommitRegion-based analysis wrongly finds many
interactions with this commit. The BlameRegion approach does not detect
these interactions because it annotates the region information differently. A
source code line is only annotated with a single BlameRegion, namely with
the commit that last modified the line. In the calculator example, this means
that only the lines that were actually added by commit 7a32 are annotated
with that region.

The other difference we find is that in some cases the BlameRegion ap-
proach seems to detect more interactions. Inspecting the result file reveals
that these are duplicates and the analysis did not actually find more interac-
tions. These duplicates can be created because multiple BlameRegions might
belong to a single commit, for example, when a commit changes code in two
different places. It can also happen if a commit contains only a single contin-
uous change, because the BlameRegion annotation happens on IR-level and
clang might rearrange the code when converting it to LLVM-IR. The result
file of the analysis contains only commit hashes, so interactions between
different BlameRegions with the same commits lead to duplicate entries in
that file.

Figures 4.2a and 4.2b show the detected data-flow interactions. In total,

(a) Data-flow interactions when using Com-
mitRegions

(b) Data-flow interactions when using
BlameRegions

Fig. 4.2. Detected data-flow interactions in calculator case-study when using
CommitRegions (4.2a) or BlameRegions (4.2b)

the CommitRegion approach detected 37 data-flow interactions, while the
BlameRegion approach detected only 12. Of the 25 interactions that were
only detected by the CommitRegion-based analysis 23 are incorrect. Again,
the reason for this is the marker-based annotation of the CommitRegion
approach. The BlameRegion approach did not detect these 23 interactions.
The two remaining interactions were correctly detected by the CommitRe-

38 Chapter 4 Evaluation

gion approach but not by the BlameRegion approach. These two interactions
are implicit data flows. They were not detected because VaRA’s taint anal-
ysis does currently not propagate indirect taints to detect such flows. The
CommitRegion-based approach only detected these interactions by chance
because the target commit inserted code above the end marker of the source
region so the code of the target region was annotated with both the source
and target commit. In general, the CommitRegion approach is also not able
to detect implicit flows.

4.4.1. Addressing RQ1

To answer RQ1 we look at how many correct and incorrect control-flow
and data-flow interactions were detected by CommitRegion-based and the
BlameRegion-based analysis. We observed that both approaches detected the
same number of correct interactions. We do not count the two indirect data
flows since this is a limitation of VaRA’s taint analysis that is independent
of the used region type. We determined that the CommitRegion approach
detected several incorrect interactions. The BlameRegion approach detected
none of these. Overall, we found that both approaches found the same
number of correct interactions. The CommitRegion approach detected several
incorrect interactions while the BlameRegion approach did not. This leads
us to accept RQ1.

4.5. Experiment 2 — Gravity

We use the gravity case study to answer RQ2.1 and RQ2.2. Both of these
research questions cover the use of the interaction filters. We run VaRA’s
commit interaction analysis on gravity with and without interaction filters
and compare the results.

4.5.1. Used Interaction Filters

In two different experiment runs, we use the following interaction filters:

• IF2.1: In the first scenario, we are only interested in interactions
where Marco Bambini, the maintainer of the gravity project, is not
involved. More precisely, we want the analysis to ignore all BlameRe-
gions whose commits were authored by Bambini. For this, we use an
AndOperator with two children. The first child is a NotOperator with
an AuthorFilter. It will prevent the creation of taints for commits
authored by Bambini. The second subtree is a TargetOperator with a
NotOperator as child, which in turn has an AndOperator as child. This
will remove all interactions from the result where the target commit
was created by Bambini.

• IF2.2: The second interaction filter removes the interactions based on
the time between their source and target commits. Hence, the result
contains only interactions where the time between the two commits

4.5 Experiment 2 — Gravity 39

of the interaction lies into a configured time span, in our case if it is
larger than 12 months. For this we use a CommitDateDeltaMinFilter.

Since all our interaction filters either filter based on time or on people, we
chose the two evaluation scenarios to cover these types. The first scenario
filters based on author and the second one on time. Another reason is that
we expect a lower analysis time with the first filter but not with the second
one. The time filter (time delta between source and target region) can only be
evaluated after the interaction has been found. This means that the analysis
still has to process all BlameRegions. With the author filter, however, VaRA’s
analysis can ignore all regions that do not match the filter, so we expect an
increased analysis speed in that case.

In addition to the two described filters, we use a third interaction filter
to create a baseline for our comparison. We configure an interaction filter
to remove all BlameRegion taints before the analysis, which results in the
fastest possible analysis with the smallest possible result. It indicates how
much we can theoretically reduce the analysis time and the result size by
using an interaction filter. We create this baseline by using an AuthorFilter
with a random string that does not match any author in the project’s Git
history.

4.5.2. Results

For each of the two interaction filters, we perform VaRA’s commit interaction
analysis with and without using the filter. Our baseline experiment is also
run. We compare result size, analysis time, number of data-flow interactions
and number of control-flow interactions for each case.

IF2.1

Figure 4.3 on the facing page and Table 4.1 show the results of the gravity
analysis when using IF2.1. The used interaction filter ensures that the result
contains only interactions where neither the source nor the target commit
was created by Marco Bambini, the maintainer of gravity. The control-flow

Tab. 4.1. Gravity IF2.1 Results (mean values across all tested revisions)

Unfiltered Baseline Gravity IF2.1
Control-Flow Interactions 11 800 0 (−100.0%) 1 511 (−87.1%)
Data-Flow Interactions 11 622 0 (−100.0%) 569 (−95.3%)
Analysis Time (s) 58.0 49.6 (−12.9%) 49.5 (−13.1%)
Result Size (MiB) 3.59 0.73 (−76.5%) 0.98 (−69.7%)

and data-flow interaction plots show the total number of detected interactions
on the top. The bottom plot shows the number of interactions where the
source or the target commit is the newest commit (HEAD) of the project.
As expected, the baseline experiment detected no interactions, since the

40 Chapter 4 Evaluation

(a) Control-Flow Interactions (b) Data-Flow Interactions

(c) Analysis Time (d) Result Size

Fig. 4.3. Gravity IF2.1 Results

4.5 Experiment 2 — Gravity 41

(a) Control-Flow Interactions (b) Data-Flow Interactions

(c) Analysis Time (d) Result Size

Fig. 4.4. Gravity IF2.2 Results

used interaction filter removed all BlameRegions before the analysis. When
comparing the unfiltered analysis with the filtered one, we see a substantial
decrease in detected interaction. The filter decreased the detected control-
flow interactions by 87.1% on average (median: 90.1%). The average reduction
of data-flow interaction is 95.3% (median: 99.3%).

The interaction filter reduced the analysis time by 13.1% (mean) / 13.0%
(median). The baseline filter reduced the analysis time by 12.9% on average
(median: 12.8%). The interaction filter of this scenario reduced the analysis
time slightly more than the baseline experiment (by 0.2% on average). Since
this corresponds to only a difference of 0.16 seconds in the total experiment
run-time, we assume this is due to uncertainties in our measurement setup.

The size of the result file was reduced by 69.7% on average (median: 75.5%)
with a baseline reduction of 76.5% (median: 80.1%).

IF2.2

Figure 4.4 and Table 4.2 on the next page show the results of the gravity
analysis when using the IF2.2 filter that removes all interactions where the
time between the source and target commit is less than 12 months. The
interaction filter reduced the detected control-flow interactions by 76.4% on

42 Chapter 4 Evaluation

Tab. 4.2. Gravity IF2.2 Results (mean values across all tested revisions)

Unfiltered Baseline Gravity IF2.2
Control-Flow Interactions 11 800 0 (−100.0%) 3 036 (−76.4%)
Data-Flow Interactions 11 622 0 (−100.0%) 2 768 (−78.6%)
Analysis Time (s) 58.0 49.6 (−12.9%) 59.1 (+1.6%)
Result Size (MiB) 3.59 0.73 (−76.5%) 1.44 (−58.5%)

average (median: 63.2%). The data-flow interactions were reduced by 78.5%
on average (median: 66.8%).

The analysis time with the interaction filter is slightly higher than without
it (1.6% slower on average; median: 2.0%). This is because the used interaction
filter does not remove any BlameRegions before the analysis. It can only
remove interactions afterwards, since both the source and the target of an
interaction are needed to make a filter decision. The total run-time is made
up of the complete analysis process and, in addition, the filtering step after
the analysis. This leads to a slightly larger run-time when using this kind
of filter. The baseline experiment reduced the run-time by 12.9% on average
(median: 12.8%).

Similar to the number of interactions, the result size is also lower. On
average, it is 58.5% smaller (median: 51.2%). The baseline size reduction is
76.5% (median: 80.1%).

4.6. Experiment 3 — GNU Gzip

We also use the gzip case study to answerRQ2.1 andRQ2.2. The experiment
is very similar to the gravity case study. We run VaRA’s commit interaction
analysis on gzip with and without interaction filters and compare the results.

4.6.1. Used Interaction Filters

In two different experiment runs, we use the following interaction filters:

• IF3.1: The first interaction filter configures the analysis to ignore
all BlameRegions where the commit author is not one of the four
main authors of gzip and gnulib (Paul Eggert, Jim Meyering, Bruno
Haible, and Jean-loup Gailly). This is achieved by a NotOperator filter
with an OrOperator as child, which in turn has four AuthorFilters as
children. Similarly to IF2.1, we add a second subtree to the filter with a
TargetOperator so that the result contains no interactions where the
four developers are involved.

• IF3.2: The second interaction filter removes BlameRegions taints based
on their commit time. With this filter, the analysis only considers
BlameRegions whose commits were committed in the years 2015 to
2017, so the result contains only interactions were the source and target

4.6 Experiment 3 — GNU Gzip 43

(a) Control-Flow Interactions (b) Data-Flow Interactions

(c) Analysis Time (d) Result Size

Fig. 4.5. Gzip IF3.1 Results

commits are from this time range. For this we combine a CommitDate-
MinFilter with a CommitDateMaxFilter by using an AndOperator. To
also remove interactions where the target commit is outside of the
time range, we also add a second subtree with a TargetOperator.

Similar to the gravity experiment, we again use one interaction filter that
filters based on the author and one that filters based on time.

4.6.2. Results

For each of the two interaction filters, we perform VaRA’s commit interaction
analysis with and without using the filter. Like with the gzip experiment,
a baseline experiment is also run that removes all BlameRegions before
the analysis. We compare result size, analysis time, number of data-flow
interactions and number of control-flow interactions for each case.

IF3.1

Figure 4.5 and Table 4.3 on the next page show the results of the gzip analysis
when using the AuthorFilters IF3.1 filter that removes all BlameRegionswhose
commits were not created by the four main project authors. By using the
AuthorFilters, we reduced the number of control-flow interactions by 91.0%

44 Chapter 4 Evaluation

Tab. 4.3. Gzip IF3.1 Results (mean values across all tested revisions)

Unfiltered Baseline Gzip IF3.1
Control-Flow Interactions 132 233 0 (−100.0%) 11 838 (−91.0%)
Data-Flow Interactions 142 590 0 (−100.0%) 92 (−99.9%)
Analysis Time (s) 15.9 12.2 (−23.5%) 13.7 (−14.2%)
Result Size (MiB) 34.3 0.71 (−97.9%) 2.17 (−93.7%)

(a) Control-Flow Interactions (b) Data-Flow Interactions

(c) Analysis Time (d) Result Size

Fig. 4.6. Gzip IF3.2 Results

on average (median: 91.1%). The number of detected data-flow interactions
is reduced by 99.9% on average (median: 99.9%).

The interaction filter lowered the required analysis time by 14.2% on aver-
age (median: 14.3%). The maximum time reduction any filter could achieve
(baseline) is 23.5% (median: 23.4%).

The result size was reduced by 93.7% on average (median: 93.7%). The
baseline experiment reduced the size by 97.9% on average (median: 97.9%).

IF3.2

Figure 4.6 and 4.4 on the next page show the gzip results for the IF3.2 filter
that restricts the analysis to commits from the years 2 015 to 2 017. The
unfiltered result contains on average 132 233 control-flow interactions and

4.6 Experiment 3 — GNU Gzip 45

Tab. 4.4. Gzip IF3.2 Results (mean values across all tested revisions)

Unfiltered Baseline Gzip IF3.2
Control-Flow Interactions 132 233 0 (−100.0%) 339 (−99.7%)
Data-Flow Interactions 142 590 0 (−100.0%) 41 (−99.9%)
Analysis Time (s) 15.9 12.2 (−23.5%) 12.2 (−23.4%)
Result Size (MiB) 34.3 0.71 (−97.9%) 0.76 (−97.8%)

142 590 data-flow interactions. The filtered result contains only an average
number of 339 control-flow interactions and 41 data-flow interactions. This
corresponds to an average reduction of 99.7% for control-flow interactions
(median: 99.7%) and 99.9% for data-flow interactions (median: 99.9%).

The time reduction of the baseline experiment is 23.5% on average (me-
dian: 23.4). The used interaction filter results in a 23.4% lower analysis time
on average (median: 23.8%). Similar to the IF2.1 results, the median time
reduction by the interaction filter is slightly larger (0.4%) than the baseline
experiment. However, since the total run-time of the baseline experiment is
only 12.2 seconds on average, we think this difference can also be explained
by uncertainties in our measurement setup.

The result size is also almost as small as the baseline. The interaction filter
reduced the result size by 97.8% on average (median: 97.8%). The baseline
size reduction is 97.9% on average (median: 97.9%).

4.7. Addressing RQ2.1

In order to answer RQ2.1, we look at the gravity and gzip experiments and
how the used interaction filters reduced the number of detected control-flow
and data-flow interactions and the size of the result file.

For the gravity experiment, the two used interaction filters reduced the
number of data-flow interactions in the result by 95.3% and 78.6% on average.
The number of control-flow interactions was reduced by 87.1% and 76.4% on
average, and the size of the result file was 69.7% and 58.5% lower.

The achieved reduction is even higher for the gzip experiment. In the
first scenario (IF3.1), the interaction filter reduced the detected data-flow
interactions by 99.9% and the control-flow interactions by 91.0% on average.
The result size is 93.7% lower. In the second scenario (IF3.2), the filter reduced
the data-flow interactions by 99.9%, the control-flow interactions by 99.7%
and the result size by 97.8% on average.

In summary, we find that in all four scenarios, the interaction filters lead
to a considerable reduction in the number of detected interactions. This leads
us to accept RQ2.1.

46 Chapter 4 Evaluation

4.8. Addressing RQ2.2

To answer RQ2.2, look at the four scenarios of the gzip and gravity exper-
iments and by how much the interaction filters were able to reduce the
analysis time.

For the gravity experiment, the second interaction filter increased the
required analysis time by 1.6% on average because it only filtered out inter-
actions after the analysis and did not allow the analysis to ignore certain
regions.

The remaining scenarios, however, all lead to an increased analysis speed
because the used filters allowed the analysis to ignore certain BlameRegions.
The first interaction filter of the gravity experiment reduced the analysis
time by 13.1%. The two filters of the gzip experiment lead to an performance
increase of 14.2% and 23.4% on average.

In summary, all three interaction filters that lower the number of taints
that have to be created for the analysis were able to increase the speed of the
analysis. Because of this, we accept RQ2.2.

4.8 Addressing RQ2.2 47

5
Conclusion

In this chapter, we conclude the thesis by providing a summary of its contri-
butions and describing some related work. We also present possibilities to
further improve VaRA and solve some difficulties that we have encountered.

5.1. Summary

In this thesis, we have shown two approaches that improve VaRA’s analy-
ses. We introduced BlameRegions as a new region type for VaRA’s commit
interaction analysis. Compared to the previously used CommitRegion type,
BlameRegions more accurately map a commit to the code regions that were
changed by it, which increases the accuracy of the interaction analysis. We
implemented a Git metadata interface for VaRA that can be used to extract ad-
ditional metadata about the commits of a software project from its repository.
This interface is also used by LLVM’s frontend clang to find the BlameRegions
in the analyzed source code. We additionally extended the libgit2 library—the
Git library used by VaRA’s Git metadata interface—with the ability to identify
source code changes that have not yet been committed to the project’s Git
repository. In addition, we added a filter mechanism to VaRA’s analysis
that can be used to ignore BlameRegions in the analysis and to filter out
interactions from the result based on different filter criteria (e.g., the commit
author’s name or the commit date). On the one hand this can increase the
analysis speed, but on the other hand it can also reduce the number of de-
tected interactions and the result size which can make it easier to interpret
the result and answer a user’s question.

To evaluate our approaches we analyzed three software projects, a small
hand-crafted example and the two real-world software projects gzip and
gravity. We found that interaction filters were able to reduce the number
of reported interactions by up to 99.9% and the size of the result file by up
to 93.7%. Interaction filters can also increase the speed of the analysis. In
our evaluation, they were able to reduce the required analysis time by up to
23.4%.

5.2. Related Work

To the best of our knowledge, no previous works have used metadata of
revision control systems to filter control-flow and data-flow analyses results
or to increase the speed of a single, complete analysis run. However, Arzt

49

and Bodden [AB14] presented an approach to use the change information
of a revision control system to reuse data from a previous analysis run and
thus save time. While this approach does not increase the speed of the first,
complete analysis run, it can increase the speed of subsequent analyses of the
same software project. They propose to first perform a complete data-flow
analysis of a software project. If a commit is added at a later time, the commit
can be analyzed to determine which parts of the program have been changed
so that only a small part of the analysis result has to be recomputed and a
large part can be reused.

5.3. Future Work

Interaction Filters

In Section 3.3.1 on page 27, we described that in some cases the interaction
filters can lead to unexpected results. With the current implementation, when
using an UnaryInteractionFilter like an AuthorFilter to ignore interactions
in which a certain person is involved, VaRA removes all taints from the
appropriate BlameRegions before the analysis. This removes all interactions
from the analysis with the filtered BlameRegions as source of the interactions
but the result still contains interactions with these regions as targets. That
behavior can easily be solved by modifying the interaction filter to explicitly
remove these interactions, but we would like to modify the filters’ behavior
in the future to make it easier for the user to get the expected result.

Larger case studies

We would like to perform VaRA’s analyses on more case studies in the
future, in particular on larger software projects to determine howwell VaRA’s
analyses scale and whether interaction filters improve the scalability.

Whitespace Commits

When using VaRA’s commit interaction analysis, we sometimes found com-
mits with an exceptionally large number of interactions with other commits.
Some of these commits, however, did not actually change the behavior of the
analyzed source code. Instead, they merely reformatted large parts of the
codebase which lead to these commits being reported by Git blame as being
the last commits to modify these source code lines. In the future, we would
like to add the ability to VaRA to ignore such commits in its analyses.

50 Chapter 5 Conclusion

Appendices

51

A
BenchBuild Project Definition

1 @with_git(
2 "https://github.com/marcobambini/gravity.git",
3 refspec="HEAD")
4 class Gravity(Project):
5 NAME = 'gravity'
6 GROUP = 'c_projects'
7 DOMAIN = 'UNIX utils'
8 VERSION = 'HEAD'
9

10 BIN_NAMES = ['gravity']
11 SRC_FILE = NAME + "-{0}".format(VERSION)
12

13 def run_tests(self, runner: run):
14 pass
15

16 def compile(self):
17 self.download()
18

19 clang = cc(self)
20 with local.cwd(self.SRC_FILE):
21 with local.env(CC=str(clang)):
22 cmake("-G", "Unix Makefiles", ".")
23 run(make["-j", int(CFG["jobs"])])

Lst. A.1. Example of BenchBuild project definition

53

B
Calculator Case Study

1 #include <stdio.h>
2

3 int add(int a, int b) {
4 return a + b;
5 }
6

7 int sub(int a, int b) {
8 return a - b;
9 }

10

11 int readVariable() {
12 int res;
13 scanf("%d", &res);
14 return res;
15 }
16

17 void listOperations() {
18 printf("0 - Addition\n");
19 printf("1 - Subtraction\n");
20 }
21

22 int main() {
23 printf("Welcome to the Calculator!\n");
24

25 listOperations();
26 printf("Choose operation: ");
27 short v1, v2, op = readVariable();
28 switch(op) {
29 case 0:
30 printf("Var 1: ");
31 v1 = readVariable();
32 printf("Var 2: ");
33 v2 = readVariable();
34 printf("%d\n", add(v1, v2));
35 break;
36 case 1:
37 printf("Var 1: ");
38 v1 = readVariable();
39 printf("Var 2: ");
40 v2 = readVariable();
41 printf("%d\n", sub(v1, v2));
42 break;

55

43 default:
44 printf("Unknown operation: %d\n", op);
45 }
46 return 0;
47 }

Lst. B.1. Source Code of the Calculator Case Study

56 Chapter B Calculator Case Study

Tab. B.2. Description of the commits of the calculator example (from oldest to
newest commit)

Nr. Hash Message Diff

1 7a32a36 Added Main
with no func-
tionality.

@@ -0,0 +1,5 @@
+#include <stdio.h>
+int main() {
+ printf("Welcome to the Calculator!\n");
+ return 0;
+}

2 5a09507 Added Add
function. @@ -1,4 +1,9 @@

#include <stdio.h>
+
+int add(int a, int b) {
+ return a + b;
+}
+
int main() {

printf("Welcome to the Calculator!\n");
return 0;

3 7662b84 Added Sub
function. @@ -4,6 +4,10 @@ int add(int a, int b) {

return a + b;
}

+int sub(int a, int b) {
+ return a - b;
+}
+
int main() {

printf("Welcome to the Calculator!\n");
return 0;

4 60e791d Added Console
Read function. @@ -8,6 +8,12 @@ int sub(int a, int b) {

return a - b;
}

+int readVariable() {
+ int res;
+ scanf("%d", &res);
+ return res;
+}
+
int main() {

printf("Welcome to the Calculator!\n");
return 0;

Chapter B 57

5 6f3ec41 Added Print Op
function. @@ -14,6 +14,11 @@ int readVariable() {

return res;
}

+void listOperations() {
+ printf("0 - Addition\n");
+ printf("1 - Subtraction\n");
+}
+
int main() {

printf("Welcome to the Calculator!\n");
return 0;

6 dd56d2a Implemented
main operation
chooser.

@@ -21,5 +21,13 @@ void listOperations() {

int main() {
printf("Welcome to the Calculator!\n");

+
+ listOperations();
+ printf("Choose operation: ");
+ int v1, v2, op = readVariable();
+ switch(op) {
+ default:
+ printf("Unknown operation: %d\n",

op);↪

+ }
return 0;

}

7 bb04138 Implemented
Add handling. @@ -26,6 +26,13 @@ int main() {

printf("Choose operation: ");
int v1, v2, op = readVariable();
switch(op) {

+ case 0:
+ printf("Var 1: ");
+ v1 = readVariable();
+ printf("Var 2: ");
+ v2 = readVariable();
+ printf("%d\n", add(v1, v2));
+ break;

default:
printf("Unknown operation: %d\n",

op);↪

}

58 Chapter B Calculator Case Study

8 83d9756 Implemented
Sub handling. @@ -33,6 +33,13 @@ int main() {

v2 = readVariable();
printf("%d\n", add(v1, v2));
break;

+ case 1:
+ printf("Var 1: ");
+ v1 = readVariable();
+ printf("Var 2: ");
+ v2 = readVariable();
+ printf("%d\n", sub(v1, v2));
+ break;

default:
printf("Unknown operation: %d\n",

op);↪

}

9 0ada3de Changed in-
term. vars
from int to
short.

@@ -24,7 +24,7 @@ int main() {

listOperations();
printf("Choose operation: ");

- int v1, v2, op = readVariable();
+ short v1, v2, op = readVariable();

switch(op) {
case 0:

printf("Var 1: ");

Chapter B 59

6
Bibliography

[Aho+06] Alfred V. Aho et al. “Compilers: Principles, Techniques, and
Tools”. Second. AddisonWesley, 2006-09-10. isbn: 978-0321486813
(cited on pp. 4, 5, 6, 10).

[AB14] Steven Arzt and Eric Bodden. “Reviser: efficiently updating IDE-
/IFDS-based data-flow analyses in response to incremental pro-
gram changes”. In: 36th International Conference on Software
Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014.
2014, pp. 288–298 (cited on pp. 49, 50).

[DGS97] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. “A Prac-
tical Framework for Demand-Driven Interprocedural Data Flow
Analysis”. In:ACMTrans. Program. Lang. Syst. 19.6 (1997), pp. 992–
1030 (cited on p. 3).

[Kin+08] Dave King et al. “Implicit Flows: Can’t Live with ’Em, Can’t Live
without ’Em”. In: Information Systems Security, 4th International
Conference, ICISS 2008, Hyderabad, India, December 16-20, 2008.
Proceedings. 2008, pp. 56–70 (cited on p. 7).

[Lar18] Michael Larabel. “The Linux Kernel Gained 2.5 Million Lines Of
Code, 71k Commits In 2017”. 2018-01-01. url: https://www.
phoronix.com/scan.php?page=news_item&px=Linux-Kernel-
Commits-2017 (visited on 2019-08-28) (cited on p. 1).

[Lat12] Chris Lattner. “LLVM”. In: The Architecture Of Open Source Appli-
cations. Ed. byAmyBrown andGregWilson. Lulu.com, 2012-03-15.
Chap. 11. isbn: 978-1257638017 (cited on pp. 9, 10, 11).

[LLV19a] LLVM Project. “LLVM Language Reference Manual”. 2019-07-13.
url: https : / / llvm . org / docs / LangRef . html (visited on
2019-07-23) (cited on pp. 10, 11, 12).

[LLV19b] LLVM Project. “Writing an LLVM Pass”. 2019-07-23. url: https:
//llvm.org/docs/WritingAnLLVMPass.html (visited on 2019-07-24)
(cited on p. 13).

[Nie18] Florian Niederhuber. “Change-Region Detection in LLVM”. MA
thesis. University of Passau, 2018-02 (cited on pp. 14, 16, 36).

[Sat17] Florian Sattler. “A variability-aware feature-region analyzer in
LLVM”. MA thesis. University of Passau, 2017-03-20 (cited on
pp. 13, 14).

61

https://books.google.com/books?vid=ISBN978-0321486813
https://books.google.com/books?vid=ISBN978-0321486813
http://dx.doi.org/10.1145/2568225.2568243
http://dx.doi.org/10.1145/2568225.2568243
http://dx.doi.org/10.1145/2568225.2568243
http://dx.doi.org/10.1145/267959.269970
http://dx.doi.org/10.1145/267959.269970
http://dx.doi.org/10.1145/267959.269970
http://dx.doi.org/10.1007/978-3-540-89862-7_4
http://dx.doi.org/10.1007/978-3-540-89862-7_4
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Kernel-Commits-2017
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Kernel-Commits-2017
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Kernel-Commits-2017
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Kernel-Commits-2017
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Kernel-Commits-2017
https://aosabook.org/en/llvm.html
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/WritingAnLLVMPass.html
https://llvm.org/docs/WritingAnLLVMPass.html
https://llvm.org/docs/WritingAnLLVMPass.html

[SHB19] PhilippDominik Schubert, BenHermann, and Eric Bodden. “PhASAR:
An Inter-procedural Static Analysis Framework for C/C++”. In:
Tools and Algorithms for the Construction and Analysis of Systems.
Ed. by Tomáš Vojnar and Lijun Zhang. Cham: Springer Inter-
national Publishing, 2019, pp. 393–410. isbn: 978-3-030-17465-1
(cited on p. 7).

[Sim+16] Andreas Simbürger et al. “BenchBuild: A Large-Scale Empirical
Research Toolkit”. Tech. rep. MIP-1602. Faculty of Informatics
and Mathematics, University of Passau, 2016-06 (cited on p. 19).

[Ske14] Ian Skerrett. “Eclipse Community Survey 2014 Results”. Archived
at https://web.archive.org/web/20140625152145/http://
ianskerrett.wordpress.com/2014/06/23/eclipse-community-
survey-2014-results/. Ianskerrett.wordpress.com. 2014-06-23.
url: https : / / ianskerrett . wordpress . com / 2014 / 06 / 23 /
eclipse-community-survey-2014-results/ (visited on 2019-07-12)
(cited on p. 7).

[Sta18] StackOverflow. “StackOverflowDeveloper Survey 2018”. Archived
at https://web.archive.org/web/20190711051752/https:
/ / insights . stackoverflow . com / survey / 2018/. 2018. url:
https://insights.stackoverflow.com/survey/2018 (visited
on 2019-07-12) (cited on p. 7).

[VaR19] VaRA Project. “VaRA-Tool-Suite”. 2019. url: https://github.
com/se-passau/VaRA-Tool-Suite/ (visited on 2019-07-28) (cited
on p. 19).

62 Chapter 6 Bibliography

https://books.google.com/books?vid=ISBN978-3-030-17465-1
https://books.google.com/books?vid=ISBN978-3-030-17465-1
https://www.fim.uni-passau.de/fileadmin/files/forschung/mip-berichte/MIP-1602.pdf
https://www.fim.uni-passau.de/fileadmin/files/forschung/mip-berichte/MIP-1602.pdf
https://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/
https://web.archive.org/web/20140625152145/http://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/
https://web.archive.org/web/20140625152145/http://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/
https://web.archive.org/web/20140625152145/http://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/
https://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/
https://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/
https://insights.stackoverflow.com/survey/2018
https://web.archive.org/web/20190711051752/https://insights.stackoverflow.com/survey/2018/
https://web.archive.org/web/20190711051752/https://insights.stackoverflow.com/survey/2018/
https://insights.stackoverflow.com/survey/2018
https://github.com/se-passau/VaRA-Tool-Suite/
https://github.com/se-passau/VaRA-Tool-Suite/
https://github.com/se-passau/VaRA-Tool-Suite/

Eidesstattliche Erklärung:

Hiermit bestätige ich, Julian Breiteneicher, dass ich die vorliegende Arbeit
selbstständig und ohne unzulässige Hilfe verfasst und keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt sowie die wörtlich und
sinngemäß übernommenen Passagen aus anderenWerken kenntlich gemacht
habe. Die Arbeit ist weder von mir noch von einer anderen Person an der
Universität Passau oder an einer anderen Hochschule zur Erlangung eines
akademischen Grades bereits eingereicht worden.

Passau, 02. September 2019
Julian Breiteneicher

	1 Introduction
	1.1 Goals
	1.2 Contributions
	1.3 Overview

	2 Background
	2.1 Control-Flow and Data-Flow Analysis
	2.1.1 Control-Flow Analysis
	2.1.2 Data-Flow Analysis

	2.2 Git
	2.2.1 Commits
	2.2.2 Blame

	2.3 LLVM
	2.3.1 Compiler Architecture
	2.3.2 LLVM Frontend clang
	2.3.3 LLVM-IR
	2.3.4 LLVM Pass Framework

	2.4 VaRA
	2.4.1 Regions
	2.4.2 Region Aggregation
	2.4.3 CommitRegions
	2.4.4 BlameRegions
	2.4.5 Analysis Pipeline

	2.5 VaRA-Tool-Suite
	2.5.1 BenchBuild

	3 Improvements to VaRA's Analyses
	3.1 VaRA Git Metadata Interface
	3.1.1 Extending libgit2

	3.2 BlameRegion Support in VaRA
	3.2.1 vara-clang Blame Annotations
	3.2.2 VaRA BlameDetection Pass
	3.2.3 BlameRegion Implementation

	3.3 Interaction Filters
	3.3.1 Filter Types
	3.3.2 Filter Editor in VaRA-Tool-Suite
	3.3.3 Filter Interface in VaRA

	3.4 Integration of Git Metadata Filters in VaRA's Analyses
	3.5 Complete Analysis Pipeline

	4 Evaluation
	4.1 Cluster System
	4.2 Case Studies
	4.2.1 Niederhuber's Calculator
	4.2.2 Gravity
	4.2.3 GNU Gzip

	4.3 Tools
	4.3.1 VaRA-Tool-Suite Experiment
	4.3.2 VaRA-Tool-Suite Visualization

	4.4 Experiment 1 — Calculator
	4.4.1 Addressing RQ1

	4.5 Experiment 2 — Gravity
	4.5.1 Used Interaction Filters
	4.5.2 Results

	4.6 Experiment 3 — GNU Gzip
	4.6.1 Used Interaction Filters
	4.6.2 Results

	4.7 Addressing RQ2.1
	4.8 Addressing RQ2.2

	5 Conclusion
	5.1 Summary
	5.2 Related Work
	5.3 Future Work

	Appendices
	A BenchBuild Project Definition
	B Calculator Case Study
	6 Bibliography

