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Abstract

Feature-oriented software product lines are built using features that imple-
ment a functionality or configuration option. Thus code is reused which
leads to reduced development costs. The variability of features can lead to
product-line-specific type errors, which occur if a feature requires another
feature without that relation being described in the feature model. Hence
a valid product can contain references to not included features and conse-
quently contain type errors. The relation between such type errors and static
attributes is examined in this thesis in order to increase understanding of
them. 29 feature-oriented software product lines are evaluated with 17 mea-
sures belonging to different approaches that try to capture different aspects
of the reasons for those type errors: Variability, coupling, possible feature
interactions and code fragmentation. For the variability measures, which
are based solely on the feature model, no correlations to type errors have
been found. Approaches which considered the references between features
(coupling) and the number of possible feature interactions showed weak to
moderate correlation for about a third of the subject product lines. Fragmen-
tation of classes correlated to the type errors for half of the subject systems,
most moderately or strongly. Measures based on classes correlated stronger
to type errors than measures based on features.
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1 Introduction

1.1 Motivation

Software is part of our daily lives, still it is almost never finished completely
- it is work in progress, evolving version for version. This brings certain
challenges for developers.

On the one hand, software systems tend to grow into software-ecosystems,
like Eclipse and Firefox, which provide a huge range of configuration possi-
bilities e.g. with plugins that enable users to adjust the software according
to their own requirements through adding extra functions and features. On
the other hand, more and more platforms for running software are avail-
able. A good example are all those different platforms for mobile devices like
Android, iOS, Windows Phone, Sailfish OS, Ubuntu Touch, Bada and even
more.

Therefore a programming paradigm was necessary to enable developers
to keep pace with those trends and not having to develop the same software
over and over again in different configurations or for different platforms.

This is what software product lines and feature-oriented programming are
created for. Instead of developing one self-contained and inflexible software,
rather a family of programs belonging to a certain domain is developed.
This is achieved through reuse and variability of features, which represent
software parts in terms of a functionality or a configuration option. Thus
software product lines facilitate mass-customization [1]. Through immense
reuse of code lower time-to-market and cost reduction is possible for large
software systems when implemented as product line [11].

A huge drawback of larger software systems is that they get harder to
maintain and enhance as the complexity usually grows with the size. This
is also true for software product lines, because of the additional difficulty of
optional software parts (features) that are potentially not completely isolated
from each other and hence can require or even disturb each other. That is
why errors can arise only for certain products of the product line which
contain or miss specific features. Those are product-line-specific type errors,
as they can not occur in software without optional parts. Those errors are
therefore harder to find than errors in conventional software, because either
all products, which can be up-to exponential to the number of features,
need to be tested or variability-aware testing that has to take into account
relationships between features is necessary [17].

Given that feature-oriented software product line development is a rather
new paradigm, the understanding of what causes product-line-specific type
errors is fairly low. Experienced developers often have a good intuition about
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which code parts of a software they work on are likely to cause errors. There
are several measures for conventional software which capture different as-
pects of that intuition, for example measures that indicate structuredness or
complexity of code components. However, as feature-oriented development
is quite young, there are so far no measures for indicating which code parts
or features are likely to contain those product-line-specific type errors.

Therefore the goal of this thesis is to explore the reasons for product-
line-specific type errors in order to find measures which correlate with them.
That knowledge and measures can then be used by developers to understand
what kind of components they have to pay extra attention to for avoiding
type errors. The focus for that matter lies on the characteristics of features
that contain type errors.

1.2 Outline of the Thesis

This thesis is organized in four large parts.
In Chapter 2 Background fundamentals of software product lines and

feature-oriented development are covered as well as principles of feature mod-
els and feature interactions. Also information about software measures and
type checking for product lines is given.

Chapter 3 Design and Implementation is divided in two parts: The first
covers how type errors are counted in this thesis and the way they can be
represented as a graph. The second part elaborates on the measures which are
used to quantify static attributes of feature-oriented software product lines.
Most of the measures operate on code-level, therefore quantify characteristics
regarding the structure of code. Some measures also operate on the feature
model, therefore capturing the conceptual structure of a product line.

The relation between those measures and type errors is examined in Chap-
ter 4 Evaluation after the introduction of the subject product lines which are
used in this thesis.

The results are then summarized in Chapter 5 Conclusion.
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2 Background

2.1 Feature-Oriented Software Product Lines

Software product lines (SPLs) are modular software systems, each of them be-
longing to a certain domain [14]. They are build of different components that
implement single functions or requirements and are preferably isolated from
each other. These components are called features [14]. Apel and Kästner
define a feature as “a unit of functionality of a software system that sat-
isfies a requirement, represents a design decision, and provides a potential
configuration option.” [3]

Features can be combined in different ways to build a product. Therefore,
every product is a concrete software with certain characteristics and some
products may share some of these characteristics.

There are different ways in which software product lines can be imple-
mented. Some of them are using preprocessor annotations, building frame-
works, aspect orientation and feature orientation [1][27]. In contrast to other
approaches, feature orientation prioritizes the organization of all software
artifacts in features. That way all implementation fragments of one feature
are united in a single module, called collaboration. This leads to a better
overview on which code belongs to which feature hence tracing and debug-
ging are simplified [1]. Collaboration diagrams are used to illustrate the
association between features and classes. The part of a class that was in-
troduced by a certain feature is called role. An example of a collaboration
diagram is shown in Figure 1 with an excerpt of GPL, a graph library that
is implemented as product line.

Figure 1: Extract of the collaboration diagram of GPL (taken from [24])

8



2.2 Feature Model

The way features can be combined to build valid products is defined in a
feature model [8]. Therefore the feature model constitutes the variability
of its features [1]. There are different ways, in which a feature model can
be represented and in many representations it is possible to define features,
which contain no code but are used for grouping and therefore help to increase
understandability of the model. These features are called abstract features.
In contrast, all other features are called concrete features.

One simple method to represent the feature model is using feature-lists.
For each valid product there is a file which lists the names of features included
in this product. This is only suitable for small product lines, as the dependen-
cies are only implicitly modeled and for bigger product lines there is also the
problem of explosion of possible variants, up-to exponential in the number
of features [6].

Feature models can also be depicted as feature-diagrams, which are
trees whose nodes represent features [1]. Figure 2 shows the feature-diagram
of EPL, a software product line for evaluating expressions.

Figure 2: Feature-diagram of EPL

Hierarchical structures can be modeled as parent-child relations which are
easy to discern in the graphical representation and additional propositional
formulas can be used to define dependencies that do not fit into the struc-
ture of a tree. The following different dependencies between parent and
child/children are possible [8][1]:

Mandatory Parent and child can only be selected together (logical equiva-
lence)

Optional The child can only be selected if the parent is selected, whereas
the parent can be selected independently from the child (logical
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implication)

And All child features must be selected

Or One or more of the children can be selected

Alternative Exactly one of the children must be selected

Another way to describe the information of the feature model is to list
all features pairwise and state their relation. There are three possible
relations:

Never-dependency: Feature 1 can never be selected together with feature 2
and vice versa.

Always-dependency: Feature 1 is always selected if feature 2 is selected (which
does not automatically lead to feature 2 is always selected if feature 1
is selected).

Maybe-dependency: Feature 1 may be selected if feature 2 is selected (which
as well does not assume it is the same the other way around, as it is
also possible that feature 2 is always selected if feature 1 is selected)

Further possibilities to represent the feature model are using grammars
or propositional formulas. It is possible to automatically transform feature-
diagrams into grammars and vice versa, as the diagram is just another nota-
tion for the grammar [25]. A propositional formula representing the feature
model can also be derived from the feature diagram. In this thesis Fea-
tureIDE 1 was used for generating feature-diagrams and converting feature
models to their different representations.

2.3 Feature Interaction

In an ideal world, each feature of a software product line is an closed, in-
dependent component, which is therefore easy to add to or remove from
a configuration which builds a product. It only adds a defined behaviour.
When the behaviour of a feature changes due to the presence of one or more
other features a feature interaction takes place [3][5]. Sometimes feature in-
teractions are wanted, for example to ensure communication and cooperation
between features in order to accomplish a task or to ensure a requirement is
met [5].

1http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
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A very descriptive example for unintended feature interaction is the com-
bination of features “flood control” and “fire control” in facility management.
If, in case of a fire, “flood control” does turn off the sprinkling system before
the fire is extinguished, unwanted feature interaction takes place [24].

2.4 Type Checking

An important topic in computer-science is ensuring that systems behave the
way they were specified. There are different formal methods to help ensuring
the correct behaviour of programs. One formal and lightweight method are
type systems [23]. Pierce defines a type system as “a tractable syntactic
method for proving the absence of certain program behaviors by classifying
phrases according to the kinds of values they compute.” [23]

The process of analyzing if a program is well-typed, therefore containing
no type errors according to the type system defined by the programming
language, is called type checking [26].

The modularity of product lines make type checking even more challeng-
ing as type errors can occur only for certain products, which contain or miss
specific features. There are different ways in which type checking on software
product lines can be done.

One approach is to build all valid products and then type check each of
them. This is called product-based type checking. But due to the problem
of explosion of possible variants it is possible only for small product lines to
compose and check all valid products [7].

Another method is to type check every feature in isolation, therefore
called feature-based type check. With this approach the effort is linear to the
number of features instead of exponential as it is with product-based type
checking. But as the information of the feature model is not examined, the
analysis might be incomplete, because issues across two or more features are
not considered [26].

Therefore the efficient and comprehensive way to type check product lines
is to check on the entire codebase and to take into account information
about feature-dependencies and feature-variability provided by the feature
model [7][26]. This approach is called family-based type checking [18].

This thesis uses information about type errors found with Fuji 2, an ex-
tensible compiler for feature-oriented programming in Java. Fuji is capable of
all three introduced variants of type checking, but in this thesis family-based
type checking was used due to it being efficient and comprehensive. For fur-
ther differentiation, type errors that can only occur in software product lines

2http://fosd.de/fuji/
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1 package tmp ;
2

3 public class Neg {
4 public int eva l ( ){
5 return −x . eva l ( ) ;
6 }
7 }

Listing 1: Class Neg of feature
Eval Neg

1 package tmp ;
2

3 public interface Exp {
4 int eva l ( ) ;
5 }

Listing 2: Class Exp of feature
Eval

as they are based on information in two or more features, will be referred
to as SPL type errors and all others as feature-local (FL) type errors. SPL
type errors occur, if one feature references or uses information provided by
another feature, without reflecting this relationship between the two features
in the feature model. Therefore SPL type errors are unwanted feature in-
teractions. An Example of this is shown in Listings 1 and 2. According to
the feature model of EPL (see Figure 2 in Chapter 2.2), feature Eval Neg
may be selected if feature Eval is selected, but it is possible to select feature
Eval Neg without selecting feature Eval. This leads to the SPL type error
shown in Listing 3.

1 ˜/ f u j i / examples /EPL/Eval Neg/tmp/Neg . java : 5 :
2 Semantic Error : MAYBE dependency :
3 Feature Eval Neg a c c e s s e s the method
4 i n t eva l ( ) ;
5 o f f e a tu r e Eval .
6 Feature Eval may not be pre sent in every va l i d s e l e c t i o n .

Listing 3: SPL type error of EPL found with Fuji

SPL type errors can be further divided by the relationship between the
engaged features. They can occur between features that share a maybe-
dependency or a never-dependency, because only with this dependencies it
is possible that information used in one feature and introduced in another
feature is missing in a product that includes the first but excludes the second
feature.

2.5 Software Measures

Measuring of software systems is done to ensure quality and to track the
development progress [16]. It is possible to distinguish between two kinds
of software measures. On the one hand, there are measures on internal at-
tributes of software, such as lines of code, cohesion or coupling. They deal
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with the structure of software. On the other hand, there are measures for ex-
ternal attributes such as performance or usability, which require to consider
the environment, in which the software is running, besides the software it-
self [22]. Only measures on the internal attributes of software are considered
in this thesis.

Cohesion and coupling are measures used to determine structuredness
of software [2]. Cohesion refers to the degree to which code elements like
fields or methods of a class depend on other elements of the same class.
One characteristic of highly cohesive classes is that they can not be splitted
easily in two or more classes [10]. This indicates that they implement only
one concern, which is good for understanding and reusing of code [15][21].
Coupling on the contrary refers to the degree to which elements of a class
refer to elements of other classes [2]. Therefore it is the counterpart to
cohesion. Low coupling is preferable as it means that a component is mostly
isolated and therefore can be exchanged with less difficulty than components
with strong ties to other components. The concepts of coupling and cohesion
apply to features as well as classes [2].
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3 Design and Implementation

3.1 Representation and Counting of SPL Type Errors

As mentioned before, in this thesis the data regarding type errors is gathered
using Fuji 3 with family-based type checking.

3.1.1 Counting Type Errors for Features

Interactions between features and thus SPL type errors as well (see Chap-
ters 2.3 and 2.4) can be modelled as a graph: GSPLTE = (V,E), where V is
a set of vertices representing features and E ⊆ V × V is a set of edges con-
taining an edge for every pair of features that take part in a SPL type error
together. An edge weight w : E → Z is used to record the number of errors
that both features take part in. Accordingly vertex attributes aSPL : V → Z
and aFL : V → Z are used to count the number of SPL and feature-local
type errors a feature is involved in. How the number of errors for vertices
(features) and edges are calculated is described in the following.

3.1.1.1 SPL Type Error between two Features
SPL type errors can arise due to different constellations, which need to be
reflected differently in GSPLTE. The simplest constellation consists of a refer-
ence from one feature to another without this relationship being reflected in
the feature model. This corresponds to a directed edge from the first feature
to the second, which is referenced. An example for this is given in Chap-
ter 2.4, Listings 1 to 3. The edge-weight w is set to the number of occurrences
of the reference in the code (or increased by the number if the edge already
exists) as well as aSPL for the feature that implements the reference. For the
feature that is referenced, aSPL is increased by 1 no matter how many code
lines implement the reference, because it is one relationship missing in the
feature model and from the point of view of the referenced feature, the type
error(s) are always caused by the same (missing) part.

3.1.1.2 SPL Type Error between more than two Features
If more than two features are involved in a SPL type error, there are two
different possibilities that need to be considered.

The first is quite similar to the case described in Chapter 3.1.1.1, but
instead of one feature that is referenced, the reference could go to several
features without having the relation to one of them reflected in the fea-
ture model. An example extracted from GPL is given in Listing 4, where

3http://fosd.de/fuji/
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method EdgeConstructor is called in feature WeightedWithEdges, which is
implemented in the features UndirectedWithEdges and DirectedWithEdges
(both not shown). The relationship from WeightedWithEdges to Undirected-
WithEdges or DirectedWithEdges is not reflected in the feature model thus
leading to the type error shown in Listing 5. Again, for the feature that
implements the reference, aSPL is increased according to the number of code
lines that implement the reference while for the features that are referenced
aSPL is increased by one, because the error is always caused by the same
(missing) part. From the feature that references to every feature that can be
used by the reference a edge in GSPLTE is added with weight w according to
the number of code lines that implement the reference.

1 public class Edge {
2 private int weight ;
3

4 public void EdgeConstructor ( Vertex th e s t a r t , Vertex
the end , int the we ight ) {

5 EdgeConstructor ( t h e s t a r t , the end ) ;
6 weight = the we ight ;
7 }
8 . . .
9 }

Listing 4: Excerpt of class Edge of feature WeightedWithEdges from GPL

1 ˜/ f u j i / examples /GPL/WeightedWithEdges/GPL/Edge . java : 1 0 :
2 Semantic Error : 2 op t i ona l t a r g e t s ( the re may be a va l i d

s e l e c t i o n where none o f the se t a r g e t s i s pre sent ) :
3 Feature WeightedWithEdges a c c e s s e s :
4 − the method
5 pub l i c void EdgeConstructor ( Vertex th e s t a r t , Vertex the end

) { . . . }
6 o f f e a tu r e UndirectedWithEdges
7 − the method
8 pub l i c void EdgeConstructor ( Vertex th e s t a r t , Vertex the end

) { . . . }
9 o f f e a tu r e DirectedWithEdges

Listing 5: SPL type error of GPL found with Fuji

The other possibility that involves more than two features is if feature
A references feature B which misses subtype-information (that is necessary
in A e.g. because of an implicit cast) which is provided by feature C (or
several other features). The type error occurs if the dependency between
B and C (which is in this case needed for the inheritance-information) is
not reflected in the feature model. An example of an type error of Mo-
bileMedia8, a product line for manipulating photos, videos and music on
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mobile devices, is given in Listings 6 to 9. In class MediaController of fea-
ture includePhotoAlbum x CopyPhotoOrSMS object controller of class Pho-
toViewController uses the method setNextController (see Listing 6, line 5
and 6). Class PhotoViewController is implemented by features includePho-
toAlbum x CopyPhotoOrSMSOrCapturePhoto (see Listing 7) and feature
x CopyPhotoOrSMSOrCapturePhoto (see Listing 8). Only feature x Copy-
PhotoOrSMSOrCapturePhoto provides the information that PhotoViewCon-
troller is a subtype of AbstractController (see Listing 8), which implements
method setNextController.

Therefore, features includePhotoAlbum x CopyPhotoOrSMS and include-
PhotoAlbum x CopyPhotoOrSMSOrCapturePhoto can only be used in com-
bination with feature x CopyPhotoOrSMSOrCapturePhoto for a bug-free
product. This relationship is again not modelled in the feature model, leading
to the type error shown in Listing 9.

1 package l an c s . mobilemedia . core . u i . c o n t r o l l e r ;
2 public class MediaContro l l er {
3 @MethodObject stat ic class MediaControl ler showImage {
4 protected void hook20 ( ) {
5 c o n t r o l l e r=new PhotoViewControl ler ( t h i s . midlet , t h i s .

getAlbumData ( ) , ( AlbumListScreen ) t h i s .
getAlbumListScreen ( ) ,name) ;

6 c o n t r o l l e r . s e tNextCont ro l l e r ( n e x t c on t r o l l e r ) ;
7 canv . setCommandListener ( c o n t r o l l e r ) ;
8 n ex t c on t r o l l e r=c o n t r o l l e r ;
9 o r i g i n a l ( ) ;

10 }
11 }
12 }

Listing 6: Class MediaController of feature
includePhotoAlbum x CopyPhotoOrSMS

1 package l an c s . mobilemedia . core . u i . c o n t r o l l e r ;
2 import l an c s . mobilemedia . core . u i . s c r e en s . PhotoViewScreen ;
3 public class PhotoViewControl ler {
4 }

Listing 7: Class PhotoViewController of feature
includePhotoAlbum x CopyPhotoOrSMSOrCapturePhoto
from MobileMedia8
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1 package l an c s . mobilemedia . core . u i . c o n t r o l l e r ;
2 . . .
3 public class PhotoViewControl ler extends Abst rac tCont ro l l e r {
4 . . .
5 }

Listing 8: Excerpt from class PhotoViewController of feature
x CopyPhotoOrSMSOrCapturePhoto from MobileMedia8

For this case, GSPLTE is updated with several edges:

• From feature A (in the example feature includePhotoAlbum x Copy-
PhotoOrSMS) to all other features that take part in the error with
weight w according to the number of code-parts that implement the
error.

• From feature B to feature C (in the example from feature includePhoto-
Album x CopyPhotoOrSMSOrCapturePhoto to feature x CopyPhoto-
OrSMSOrCapturePhoto) with weight w increased by 1, again because
it is one missing information that causes the error between those two
features.

The counting of errors for the features (vertices) is again similar to the
other cases. For the feature that contains the type error and triggers the
error-message, aSPL is increased by the number of lines that contain the
error, for all other participating features it is increased by 1.

1 ˜/ f u j i / examples /MobileMedia8−f u j i−compi lab le /
includePhotoAlbum x CopyPhotoOrSMS/ lanc s /mobilemedia/ core / u i /
c o n t r o l l e r /MediaContro l l er . java : 6 :

2 Semantic Error : MAYBE dependency :
3 Class PhotoViewControl ler o f f e a t u r e

includePhotoAlbum x CopyPhotoOrSMSOrCapturePhoto a c c e s s e s the
method

4 pub l i c void s e tNextCont ro l l e r ( Con t r o l l e r I n t e r f a c e
nex tCont ro l l e r ) { . . . }

5 which i s a c c e s s i b l e v ia c l a s s Abs t rac tCont ro l l e r .
6 Class PhotoViewControl ler o f f e a t u r e

x CopyPhotoOrSMSOrCapturePhoto extends c l a s s
Abs t rac tCont ro l l e r .

7 The in fo rmat ion that c l a s s PhotoViewControl ler extends c l a s s
Abs t rac tCont ro l l e r i s only pre sent in f e a tu r e
x CopyPhotoOrSMSOrCapturePhoto .

8 Feature x CopyPhotoOrSMSOrCapturePhoto may not be pre sent in
every va l i d s e l e c t i o n .

Listing 9: SPL type error of MobileMedia8 found with Fuji
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Figure 3: SPL type errors of EPL visualized as graph GSPLTE (line width
denotes the edge weight w (number of SPL type errors) and red color denotes
number of type errors, white = no SPL type errors, light red = some SPL
type errors and dark red = many SPL type errors)

In Figure 3 GSPLTE for EPL is shown as an example. The vertices are
colored according to the number of SPL type errors the corresponding feature
takes part in. White means no SPL type errors and the more SPL type errors
the feature is involved in the darker the red color. The width of the edges
corresponds to the edge weight w, which represents the number of type errors
that the connected features are involved in.

3.1.1.3 Feature-local Type Errors
Feature-local type errors involve only the feature they occur in, that is why
aFL of the feature that implements the error is increased by the number of
appearances of the type error.
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3.1.2 Counting Type Errors for Classes

Only the information in which class an error occurs is given. Hence the
counting is straightforward: For every class it is counted how many SPL type
errors are caused by it and if one SPL type error occurs in multiple lines it
is counted once for each line. Feature-local type errors are not considered,
because the main focus of this thesis are SPL type errors and feature-local
type errors correspond to type errors in common software (which is not build
with the software product line approach) and the relation between those and
characteristics of classes are therefore well examined already.

3.2 Measures

The goal of this thesis was to examine reasons for type errors and to find mea-
sures that can be used as indicators for error proneness of software product
line components like features. Hence the measures used and created in this
thesis were meant to catch assumed causes of SPL type errors from different
points of view. On the one hand, the complexity arising from the conceptual
structure of a certain product line, which is documented in the feature model
and therefore reflected in its variability, was examined. On the other hand a
closer look on the structure of the code of product lines was taken, in order
to find measures and that can make ”code smells” quantifiable.

3.2.1 Variability

The variability of each feature of a software product line depends on the de-
pendencies it has to other features, which are described in the feature model
(see Chapter 2.2). SPL type errors occur, if a feature has a structural depen-
dency, e.g. reference to a method of another feature without that dependency
being modeled in the feature model. Because of that a connection between
the characteristics of a feature in the feature model and SPL type errors
appears possible. The information on variability is extracted from feature
diagrams which were created using FeatureIDE 4.

In the following the two measures based solely on the information of the
feature model that were developed in this thesis are described.

3.2.1.1 Dependencies to other Features
SPL type errors can occur if two features have a maybe- or never-dependency
(see Chapter 2.4). Hence a positive correlation between the number of certain
dependencies a feature F has to other features and the number of SPL type

4http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
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errors that F takes part in seems possible. Each ordered pair of features is
mapped according to their dependency to one of the sets always, never and
maybe. For computing a measure the dependencies are weighted.

As SPL type errors can never occur if one feature has always to be selected
if another feature is selected, those types of dependencies are less important
for finding features that are likely to be part of an SPL type error. Thus
they are weighted lowest (1).

Never -dependencies are rather uncommon, because they are only derived
if alternative-groups are used in the feature model or constraints are defined
to ensure that two features can not be used in a valid product together.
Because of this they are probably also easier to remember for developers.
Hence those dependencies are weighted medium (5).

The dependency that appears most often and is therefore accountable for
most SPL type errors is the maybe-dependency. So it is weighted highest
(10).

With this weighting we define a dependency-measure dep for each fea-
ture F, where (u, v) is a pair of features:

dep(F ) = |{(u, v) ∈ maybe ∧ u = F}| ∗ 10
+ |{(u, v) ∈ never ∧ u = F}| ∗ 5
+ |{(u, v) ∈ always ∧ u = F}|

3.2.1.2 Number of Constraints
As mentioned in Chapter 2.2, a feature diagram can have additional con-
straints in form of propositional logic formulas. Constraints affect the vari-
ability just as the tree-structure of the feature diagram does. For example,
if one feature implies another feature, the variability of the first feature is
reduced as all products that contain the first but not the second feature are
no longer valid. Additionally, those constraints need to be considered while
developing, hence they impede comprehensibility of the code.

Therefore a positive correlation between the number of constraints a fea-
ture F takes part in to SPL type errors is possible. However, as additional
constraints can be used to reflect dependencies between features on code-
level in the feature diagram (and thus prevent SPL type errors), a negative
correlation seems possible as well.

For each feature F, the number of constraints it takes part in is counted:

#constraints(F) = |{constraints|F takes part in constraint}|
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3.2.2 Cohesion and Coupling

Cohesion and coupling are measures for structuredness of software (see Chap-
ter 2.5). As well-structured software components are easier to understand
than poorly structured software components and SPL type errors arise due to
references between features that are not reflected in the feature model, SPL
type errors seem more likely in poor structured features, hence features with
high coupling and low cohesion. Therefore a positive correlation between
SPL type errors and the measures for coupling is expected and a negative
correlation for the measure for cohesion.

Four measures for cohesion and coupling were examined in this thesis.
Internal-ratio Feature Dependency and External-ratio Feature Dependency
are measures for cohesion and coupling of features and were introduced by
Apel and Beyer in 2011 [2]. Coupling between Object Classes measures
cohesion between classes. It was introduced by Chidamber and Kemerer in
1994 [13]. Coupling between Features is based on the same principles but
measures cohesion for features.

3.2.2.1 Internal-ratio Feature Dependency
Internal-ratio Feature Dependency (IFD) is a measure for the cohesion of a
feature. It is based on the dependency graph G = (V,E) which represents a
software system. The set V of vertices represents the elements (e.g. fields,
methods, classes) of the system and the set E ⊆ V × V the dependency
relation between those elements. Furthermore, a mapping between features
and elements is used to identify which elements were introduced by which
feature F, called elems(F ).
For IFD the number of actual internal dependencies (id) of a feature F is
measured in relation to the number of possible internal dependencies (which
is |elems(F )|2 as self-references are included):

IFD(F ) =
|id(F )|

|elems(F )|2

with id(F ) = {(v, w)|(v, w) ∈ E ∧ v ∈ elems(F ) ∧ w ∈ elems(F )}.
We get IFD(F ) = 1 if feature F is maximally cohesive, therefore all possible
internal dependencies are actually present. On the other hand, if a feature F
has no internal dependencies, IFD(F ) = 0, indicating it is not cohesive [2].
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3.2.2.2 External-ratio Feature Dependency
External-ratio Feature Dependency (EFD) is as well based on the dependency
graph and is a measure for coupling of features:

EFD(F ) =
|id(F )|
|d(F )|

with d(F ) =
∑
{(v, w)|(v, w) ∈ E ∧ v ∈ elems(F )}

For highly coupled features that depend only on elements of other features
and have no internal dependencies, EFD(F ) = 0. On the contrary, if a
feature depends only on elements it introduces, EFD(F ) = 1 [2].

3.2.2.3 Coupling between Object Classes
Coupling between Object Classes (CBO) is as well a measure for coupling,
but for classes. This measure counts to how many other classes a class C is
coupled, with some restrictions on how coupling is defined:

CBO(C) = |classes coupled to C|

Two classes are coupled, if one of them acts on the other e.g. through using
of methods or instance variables of the other class. Thereby use and used-by
relationships are examined, but every class is counted only once, no matter
how often it is accessed. Several types of relations are not counted at all:
Using of constants of another class, calls to API declarations, handling of
events, use of user-defined types and object instantiations. If polymorphy
is used, every class to which a call can go is counted [13]. Therefore a low
CBO-value means low coupling while a high CBO refers to high coupling.

3.2.2.4 Coupling between Features
Coupling between Features (CBF) is based on CBO. It counts how many
other features a feature F is coupled to:

CBO(F ) = |features coupled to F|

The rules of CBO on what types of relations are counted are applied for CBF
as well. If a code element is introduced by more than one feature, all features
are counted when it is referenced. A low CBF-value refers to low coupling
and a high value to high coupling.
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3.2.3 Possible Feature Interactions

Looking only at coupling is not sufficient to reason about type errors in
software product lines, as implications can also arise if two or more features
enhance the same class (see second example in Chapter 3.1.1.2, Listings 6
to 9). Following the argumentation that highly coupled code components
are more error-prone due to higher complexity and less structuredness, it
seems likely that features which can interact with a lot of other features are
more error-prone than features that can interact with less other features as
well. Hence in this thesis a model was designed for capturing the structure
of possible feature interactions of a feature-oriented software product line.

Feature interactions are possible if one feature references or uses a code
fragment which was introduced or enhanced by another feature (this corre-
sponds to coupling). They are also possible if two or more features introduce
or enhance the same code fragment. Other kinds of possible interactions
between features are not considered in this thesis because only those inter-
actions based on references or introduces can lead to SPL type errors.

For this thesis, the information about which code elements are introduced
by which features (from now on called ”introduces” / ”intros”) and feature-
references (from now on called ”references” / ”refs”) are gathered using Fuji.

3.2.3.1 Representation as Graph
Introduces and references can be represented as graphs. A graph for refer-
ences is Grefs = (V,E) with V being a set of vertices that represent features
and E ⊆ V × V a set of edges that contains an edge between two features if
there is a reference from the first feature to a code element that is introduced
by the second feature. The number of the references from one feature to an-
other is assigned to each edge as weight: w : E → Z. Grefs of EPL is given in
Figure 4 as an example. Again, vertices with white background correspond
to features without SPL type errors and the darker the red color, the more
type errors the corresponding feature is involved in. For clear arrangement
of the graph, the edge weight was not visualized.

Gintros = (V,E) is a graph with V being a set of vertices representing
features and E ⊆ V ×V a set of edges containing an edge if both features in
question introduce the same code element. For each two features introducing
the same code element two directed edges between them are added to Gintros

(each in one direction). The number of the same code elements that two
features introduce is used as edge-weight: w : E → Z. Figure 5 illustrates
Gintros for EPL.

Grefs and Gintros of a product line can be combined into one single graph
of possible feature interactions (PFI): GPFI = (V,E) with V = Vrefs∪Vintros
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Figure 4: Grefs for EPL (red color denotes number of type errors, white =
no SPL type errors, light red = some SPL type errors and dark red = many
SPL type errors)

, E = Erefs ∪Eintros and w = wrefs +wintros. Figure 6 shows GPFI for EPL.
Graph measures can be used in order to measure the relative importance
of a vertex (which represents a feature) in the graph (which represents the
product line). The degree of a vertex represents the number of other features
the corresponding feature can possibly interact with. Thus it is examined in
different variations of the graphs, which can be enhanced with information
based on the feature model. More complicated graph measures like between-
ness centrality and closeness centrality of vertices are not considered, because
they are based on shortest paths in the graph which is less related to SPL
type errors than the number of direct connections to other features (therefore
the degree). Only edge betweenness centrality is considered, because there is
no measure like the degree regarding the importance of an edge. Finding a
correlation between characteristics of an edge in the graph and its likeliness
for type errors is especially interesting, as the edge represents a connection
between two features and those connections are prerequisites for SPL type er-
rors. Positive correlation between these graph measures and SPL type errors
is assumed.
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Figure 5: Gintros for EPL (red color denotes number of type errors, white =
no SPL type errors, dark red = many SPL type errors)

Figure 6: GPFI for EPL (red color denotes number of type errors, white =
no SPL type errors, dark red = many SPL type errors)
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3.2.3.2 Degree Centrality
For every graph, the degree of each vertex can be computed. For GPFI the
degree of a vertex corresponds to the number of features with which a feature
F that is represented by a vertex can possibly interact. As SPL type errors
are unwanted feature interactions, it is possible that features that have more
possibilities to interact with other features are more likely to be involved in
SPL type errors.

deg(F ) = |{(u, v) ∈ E|u = F ∨ v = F}|

Instead of only taking into account how many features a feature F can
possibly interact with, the weight of the edges can be considered as well.
The weight of an edge depends on the number of references and introduces
between the two features. We define degw:

degw(F ) =
∑

(u,v)∈E∧(u=F∨v=F )

w

3.2.3.3 Degree Centrality with Dependency-Weight
The information of possible interactions stored in the graphs can be further
enhanced with information based on the feature model in order to combine
two different approaches code-based and variability-based. Hence a mapping
is defined for every edge to one of the sets always, maybe or never, depending
on the dependency between the two features in question.

The weighting is the same as for ”Dependencies to other Features” (see
Chapter 3.2.1): Always-dependencies are weighted lowest (1), never-dependencies
are weighted medium (5) and maybe-dependencies, which are accountable for
most SPL type errors are counted highest (10).
As with the edge-weight, for each vertex (corresponding to a feature F) it
is now counted how many edges of the different kinds are attached to that
vertex and then weighted accordingly. So we define degdep as:

degdep(F ) = |{(u, v) ∈ E ∧ u = F ∧ (u, v) ∈ always}|
+ |{(u, v) ∈ E ∧ u = F ∧ (u, v) ∈ never}| ∗ 5
+ |{(u, v) ∈ E ∧ u = F ∧ (u, v) ∈ maybe}| ∗ 10

Again, instead of only taking into account the type of dependency an edge
represents, it is now also possible to consider how strong the tie between
the two features in question is. The weight of the edge that corresponds to
the number of references from one feature to another or the number of code
elements that both features introduce is further weighted (multiplied) by the
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weight of the dependency between the two features. Therefore the definition
of degw,dep is:

degw,dep(F ) =
∑

(u,v)∈E∧(u=F∨v=F∧(u,v)∈always)w

+
∑

(u,v)∈E∧(u=F∨v=F∧(u,v)∈never)w ∗ 5

+
∑

(u,v)∈E∧(u=F∨v=F∧(u,v)∈maybe)w ∗ 10

3.2.3.4 Betweenness Centrality for Edges
As SPL type errors are feature interactions, it is particularly interesting, if
there is a measure that can be used to indicate for a pair of features if they
are likely to take part in SPL type errors together. This is why betweenness
centrality for edges, which is a measure for the relative importance of edges
in a graph, is considered in this thesis:

cB(e) =
∑
s,t∈V

σ(s, t|e)
σ(s, t)

where σ(s, t) is the number of shortest paths between s ∈ V and t ∈ V and
σ(s, t|e) is the number of shortest paths passing through edge e [12].

3.2.4 Code Fragmentation

Looking at a collaboration diagram (see Chapter 2.1, Figure 1) it is clear
that features and classes split code of a product line in regard to different
abstractions. The more fragmented a feature or respectively a class is, the
harder it is to comprehend. Hence more fragmentation may lead to more
type errors.

For each class and respectively for each feature the number of roles in
the collaboration diagram is counted (see Figure 7). For a feature F this
corresponds to the number of classes which it introduces or refines and for a
class C to the number of features that contribute in it and therefore crosscut
it:

fragf (F ) = |Roles of F|

fragc(C) = |Roles of C|
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Figure 7: Different views on the collaboration diagram which illustrate frag-
mentation of classes (left) and fragmentation of features (right) (excerpt of
the collaboration diagram of GPL)
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4 Evaluation

The relation between SPL type errors and the measures that were introduced
in the previous Chapter is examined in the following. 28 subject product lines
are evaluated.

4.1 Subject Product Lines

In this thesis 28 Product lines are considered. They are all based on Java,
being developed using AHEAD and FeatureHouse. AHEAD (Algebraic Hier-
archical Equations for Application Design) is a feature-oriented methodology
for creating software product lines [9] and FeatureHouse is a framework for
software composition [4].

The subject product lines are of different sizes. Because most measures
that were developed or used in this thesis work on features also the classi-
fication of the size of a product line was based on the number of features.
Statistical significance is influenced by the size of the vectors that are corre-
lated, insofar the classification of size is important for the evaluation of the
correlation results. There are three big case studies, each of them containing
more than 40 features. Then there are three product lines of medium size
and all other case studies are small product lines which contain less than 20
features. Of those there are eight very small product lines consisting of less
than ten features. See Tables 1 and 2.

Features Size Subject Product Lines

>40 big BerkeleyDB, MobileMedia8, Violet
20-39 medium GPL, GUIDSL, TankWar
10-19 small EPL, Notepad-Robinson, PokerSPL, Prop4J,

Vistex, Chat-Benduhn, Chat-Harbich, Chat-Ludwig,
Chat-Lueddecke, Chat-Meye, Chat-Otte,
Chat-Urbanek, Chat-Weigelt, Chat-Zaske

<10 very small BankAccountTP, Prevayler, Sudoku, UnionFind,
Chat-Beck, Chat-Huber, Chat-Schulze,
Chat-Vielsmaier

Table 2: Sizes of the subject product lines in comparison

The case studies contain systems that were developed from scratch as
software product lines while others were refactored from existing software
systems (see Table 1).
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All of the subject product lines are either student projects (13 Chat-
Systems, Notepad-Robinson, Vistex) or were developed/refactored at uni-
versities during research projects.

#SPL #FL Development
Name LOC #C #F TE TE process

BankAccountTP 132 3 8 5 13 S
BerkeleyDB 45000 283 99 198 273 S
Chat-Beck 423 6 8 11 74 S
Chat-Benduhn 759 14 11 4 32 S
Chat-Harbich 630 20 14 1 16 S
Chat-Huber 1270 24 5 14 88 S
Chat-Ludwig 975 9 10 16 19 S
Chat-Lueddecke 912 14 11 20 65 S
Chat-Meye 812 9 11 5 42 S
Chat-Otte 655 9 10 13 27 S
Chat-Schulze 923 11 9 79 19 S
Chat-Urbanek 963 31 11 4 45 S
Chat-Vielsmaier 957 21 7 54 55 S
Chat-Weigelt 877 11 10 39 39 S
Chat-Zaske 3093 41 16 31 216 S
EPL 111 12 12 42 0 S
GPL 1940 16 20 16 55 S
GUIDSL 11529 144 26 59 238 S
MobileMedia8 4189 51 45 142 1075 R
Notepad-Robinson 800 9 10 3 0 R
PokerSPL 283 8 10 1 18 R
Prevayler 5268 138 6 15 63 R
Prop4J 1531 14 14 490 443 R
Sudoku 1422 26 7 17 0 R
TankWar 4845 22 30 66 560 S
UnionFind 210 4 8 19 46 S
Violet 7194 67 88 117 60 R
Vistex 1608 8 16 12 31 S

Table 1: Overview of the subject product lines (LOC: Lines of code, #F:
Number of concrete features containing Java-code, #C: Number of classes,
#SPL TE: Number of software product line specific type errors, #FL TE:
Number of feature-local type errors, S: Developed from scratch as product
line, R: Refactored)
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The subject systems belong to different domains. There are three edi-
tors of different kinds: Notepad-Robinson, Violet and Vistex. Vistex and
GPL both deal with graphs. Then there are three games, namely TankWar,
Sudoku and PokerSPL. Prevayler and BerkeleyDB are databases that can
be embedded in applications. EPL, Prop4J and UnionFind implement al-
gorithms in different variants. Then there is a product line for managing a
bank account, BankAccountTP, and a tool for specifying AHEAD models
and verifying feature selections, namely GUIDSL.

Further descriptions of the subject product lines are available in Ap-
pendix A.1.

4.2 Statistical Analysis Method

As SPL type errors are not normally distributed for most of the subject
product lines (p-values of Shapiro-Wilk test smaller than 0.05; see Table 14
in Appendix A.2), Spearman’s rank correlation coefficient was used to deter-
mine if a measure relates to type errors and therefore to find out if a measure
is suitable for indicating error-proneness. To ensure comparability between
results, Spearman’s rank correlation coefficient was also used for those case
studies with normally distributed errors. The p-values of Spearman’s rank
correlation coefficient, which show statistical significance, are displayed using
the following star notation:

0.05 ≥ p-value > 0.01: *
0.01 ≥ p-value > 0.001: **
0.001 ≥ p-value: ***

Correlation results in this thesis are shown as tables, correlation matrices
or line charts. Despite the data being discrete, line charts are used for better
readability in comparison to charts that only use marks.

In the next Chapters only those results that are discussed are shown. All
correlation results are available in Appendix A.3.

4.3 Correlation between Variability Measures and Type
Errors

The next two Chapters will take a closer look on the relationship between
SPL type errors and the variability-measures that were introduced in Chap-
ter 3.2.1.
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4.3.1 Dependencies to other Features

Weight of dependencies is a measure for the relations a feature has to all other
features. It was introduced in Chapter 3.2.1.1 and is now set in correlation
to the number of SPL type errors that a feature is involved in. In Table 3
and Figure 8 it is shown that only 6 out of 28 subject product lines correlate
significantly, half of them strongly negative (Chat-Benduhn, Chat-Huber and
Vistex) and the other half positive (MobileMedia8, Notepad-Robinson and
Violet). The three that correlate positively have a rather simple and more
symmetrical feature diagram while the feature diagram of Chat-Benduhn and
Vistex are more asymmetrical. Those differences are illustrated in Figures 9
and 10 with the feature models of Chat-Benduhn and NotepadRobinson.
Chat-Huber is also more symmetrical but uses constraints, which of course
affect the dependencies between the involved features. With almost sym-
metric feature models and no constraints the weight of dependencies of most
features is the same and only different for those few features outside the sym-
metry (often base-features). Therefore, if the features outside the symmetry
have less SPL type errors, the correlation is positive.

Dependencies between all features are considered in this measure no mat-

B
an

k
A
cc
ou

n
tT

P
B
er
ke
le
y
D
B

C
h
at
-B

ec
k

C
h
at
-B

en
d
u
h
n

C
h
at
-H

ar
b
ic
h

C
h
at
-H

u
b
er

C
h
at
-L
u
d
w
ig

C
h
at
-L
u
ed
d
ec
ke

C
h
at
-M

ey
e

C
h
at
-O

tt
e

C
h
at
-S
ch
u
lz
e

C
h
at
-U

rb
an

ek

C
h
at
-V

ie
ls
m
ai
er

C
h
at
-W

ei
ge
lt

C
h
at
-Z
as
ke

E
P
L

G
P
L

G
U
ID

S
L

M
ob

il
eM

ed
ia
8

N
ot
ep
ad

-R
ob

in
so
n

P
ok
er
S
P
L

P
re
va
y
le
r

P
ro
p
4J

S
u
d
ok

u

T
an

k
W
ar

U
n
io
n
F
in
d

V
io
le
t

V
is
te
x

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

0

co
rr

el
at

io
n

co
effi

ci
en

t

weight of dependencies significant (p < 0.05)

Figure 8: Correlation between SPL type errors and the weighted dependen-
cies of a feature

32



Figure 9: Feature model of Chat-Benduhn

Figure 10: Feature model of NotepadRobinson (all concrete features except
Base have the same weight of dependencies)

Chat-Benduhn

Chat-Huber

MobileMedia8

Notepad-Robinson

Violet
Viste

x

-0.681* -0.973** 0.460** 0.667* 0.625*** -0.742***

Table 3: Correlation between SPL type errors and the weighted dependencies
of a feature (only significant results shown)
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ter if there are actual relations between those features on code-level. The
results of the correlation to SPL type errors shows that this is not enough
information to find features that are likely to contain type errors.

4.3.2 Number of Constraints

11 out of 28 subject product lines use propositional constraints in their fea-
ture diagram. The number of constraints a feature takes part in (see Chap-
ter 3.2.1.2) was correlated to the number of SPL type errors of that feature
in order to find out whether the additional complexity of constraints makes
an impact on the number of type errors. On the one hand, the additional
complexity of constraints could lead to more SPL type errors, on the other
hand, code-level relations can be reflected in the feature-diagram using con-
straints, hence constraints can be used to eliminate SPL type errors. When
considering all constraints a feature takes part in, only two correlate signifi-
cantly, EPL (0.675*, 6 constraints) and Violet (0.321**, 22 constraints) (see
Figure 11).

As only two case studies correlate significantly, both assumptions about
how constraints could affect features in regard to the number of SPL type
errors were not confirmed. Therefore this measure is also not suitable as
predictor for type errors.
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Figure 11: Correlation between SPL type errors and #constraints
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4.4 Correlation between Cohesion and Coupling and
Type Errors

The four measures IFD, EFD, CBO and CBF that were described in Chap-
ter 3.2.2 are examined in regard to their relation to SPL type errors in the
next Chapters.

4.4.1 Internal-ratio Feature Dependency

Only the correlation to SPL type errors is examined as IFD measures co-
hesion for features (see Chapter 3.2.2.1). In Figure 12 the correlation is
visualised. Only six subject product lines show a significant correlation be-
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Figure 12: Correlation between SPL type errors and IFD

tween IFD and SPL type errors. All of them correlate positively, which was
not expected, as high cohesion usually indicates well-structuredness. And
well-structured features typically contain less type errors than unstructured
ones. (see Table 4).

4.4.2 External-ratio Feature Dependency

Only five of the subject product lines show a significant correlation between
SPL type errors and EFD, which was introduced in Chapter 3.2.2.2. Two
of them show a strong or very strong negative correlation and three a weak
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Chat-M
eye

Chat-Zaske

EPL MobileMedia8

TankWar
Violet

0.732* 0.551* 0.613* 0.411** 0.718*** 0.426***

Table 4: Correlation between SPL type errors and IFD (only significant
correlations)

or moderate positive correlation (see Table 5 or Figure 13 for a comparision
to the other measures for coupling). Those that correlate positively (Berke-
leyDB, MobileMedia8 and Violet) are all big product lines with more than
40 features (that contain java code) each. The negative correlating ones
are small product lines, Prevalyer with six features and Chat-Benduhn with
eleven features. Hence no clear connection between SPL type errors and EFD
exists for the subject systems in this thesis.

BerkeleyDB

Chat-Benduhn

MobileMedia8

Prevayler
Violet

0.241* -0.621* 0.458** -0.899* 0.504***

Table 5: Correlation between SPL type errors and EFD (only significant
correlations)

All values for correlation between EFD and SPL type errors are visualized
in Figure 13.

4.4.3 Coupling between Object Classes

CBO is a measure for coupling of classes (see Chapter 3.2.2.3) therefore it was
correlated to the number of type errors of classes. Because CBO is not related
to software product lines, feature-local type errors and both kinds of type
errors together (”all”) were considered as well. All results for correlation
between CBO and SPL type errors are visualized in Figure 13 (as well as
the correlation results for the other measures for coupling). In addition,
the results that correlate significantly are shown in Table 6. Sudoku has no
feature-local type errors. For most of the subject product lines the correlation
is either significant for all three (SPL, FL and all kinds of type errors) or not
significant at all. This leads to the conclusion that the likeliness for a highly
coupled class to contain feature-local type errors is the same than for SPL
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Figure 13: Correlation between SPL type errors and EFD, CBF and CBO

type errors. With an exception for GUIDSL the correlations to SPL type
errors that are significant are all medium to strong positive. There does not
seem to be a coherence between the significance of the correlation and the
domains or sizes of the product lines.

But most of the subject systems that do not correlate significantly have
balanced CBO values, therefore not having one (or several) central classes
that communicate with a lot of other classes and are involved in most func-
tionalities.

4.4.4 Coupling between Features

CBF measures Coupling between Features (see Chapter 3.2.2.4) and is similar
to EFD. And like EFD it also shows no clear negative or positive correlation
to SPL type errors for those subject systems that correlate significantly (seven
in total, see Table 7 or Figure 13).

Except for GUIDSL, all big and medium sized subject product lines cor-
relate significantly and positively to SPL type errors. And except for Violet,
they also correlate positively and significantly for feature-local type errors.
The two product lines that correlate significantly and negatively (PokerSPL
and Chat-Benduhn) to SPL type errors are small ones.

Because EFD shows as well positive correlation for big product lines and
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Name SPL type errors FL type errors All type errors

BerkeleyDB 0.402 *** 0.484 *** 0.510 ***
Chat-Lueddecke 0.614 * 0.634 * 0.670 **
Chat-Otte 0.700 * 0.449 0.651
Chat-Urbanek 0.291 0.440 * 0.440 *
Chat-Vielsmaier 0.458 * 0.678 *** 0.613 **
Chat-Zaske 0.481 ** 0.267 0.271
GPL 0.632 ** 0.665 ** 0.658 **
GUIDSL 0.286 *** 0.349 *** 0.463 ***
MobileMedia8 0.472 *** 0.380 ** 0.443 **
Sudoku 0.632 *** - 0.632 ***
TankWar 0.706 *** 0.196 0.495 *

Table 6: Correlation between type errors and CBO (only systems with at
least one significant correlation shown)

Name SPL type errors FL type errors All type errors

BerkeleyDB 0.313 ** 0.304 ** 0.351 ***
Chat-Benduhn -0.868 *** -0.723 * -0.758 **
GPL 0.471 * 0.762 *** 0.640 **
GUIDSL 0.294 0.319 0.477 *
MobileMedia8 0.561 *** 0.640 *** 0.672 ***
PokerSPL -0.640 * 0.250 -0.101
Prevayler 0.470 0.877 * 0.926 **
TankWar 0.805 *** 0.444 * 0.845 ***
Violet 0.310 ** -0.633 *** -0.211 *

Table 7: Correlation between type errors and CBF (only systems with at
least one significant correlation shown)

38



negative correlation for small product lines, there could be a connection. But
as both correlate significantly only for few of the subject product lines no
clear statement can be made.

4.5 Correlation between Possible Feature Interactions
and Type Errors

In Chapter 3.2.3 measures on the graphs Gintros, Grefs and GPFI are intro-
duced. The relation between those measures and SPL type errors is examined
in the next Chapters with a focus on GPFI , because this graph contains all
relations that can lead to SPL type errors, while the others (Gintros and
Grefs) only capture parts of those relations.

4.5.1 Degree Centrality

Figure 14 and Table 8 show the correlation between SPL type errors and
the degree (deg(F )) of each feature F for graphs Gintros, Grefs and GPFI .
The degree and the graphs were introduced in Chapters 3.2.3.1 and 3.2.3.2.
Except for three small or very small product lines, namely BankAccountTP,
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Figure 14: Correlation between number SPL type errors and degree (deg) in
the graphs Gintros, Grefs and GPFI
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Chat-Benduhn and PokerSPL, all significant correlations are positive. For
Grefs more values are significant than for Gintros, which was to be expected,
because more SPL type errors of the subject product lines are caused by
references not reflected in the feature model than by missing information in
one feature that is present in another feature which introduces the same code
element (see Chapter 3.1).

Five out of eight systems with significant positive correlations for GPFI

show stronger correlation between SPL type errors and deg(F ) for GPFI

than for Gintros and Grefs. Those systems are BerekeleyDB, EPL, GPL,
TankWar and Violet, except for EPL all medium or big product lines. This
leads to the conclusion that for certain systems GPFI is more suitable for
detecting features that are likely to be involved in SPL type errors while for
some others the additional information about introduces seems to weaken the
expressiveness of the graph. As mentioned before, this and the next chapter
focus on GPFI , because it contains all information that can lead to SPL type
errors.

Comparing the correlation between SPL type errors and deg as well as
SPL type errors and degw (see Chapter 3.2.3.2) shows that taking into ac-
count the number of references and introduces two features share brings no
clear advantage over only taking into account the number of features a feature
can possibly interact with. Of those systems that correlate significantly and
positively three show stronger correlation for degw (Berkeley DB, Notepad-
Robinson and TankWar) and four stronger correlation for deg (EPL, GPL,
GUIDSL and Violet). The comparison is shown in Figure 15 and Table 9.

4.5.2 Degree Centrality with Dependency-Weight

A comparison between the correlation of SPL type errors and degree as well as
degree with weighted dependencies and their variations is shown in figures 16
and 17 with the numeric values in Table 9. Degdep is a weighting of the degree
based on the mapping of edges of GPFI to the sets never, maybe and always
(see Chapter 3.2.3.3).

Figure 16 shows the differences between dep, where the relations be-
tween all features in the feature model are considered (see Chapters 3.2.1.1
and 4.3.1), and degdep, where only those relations are considered that can
actually lead to type errors because there are elements referenced or shared
between the features in question (see Chapter 3.2.3.3). Dep shows significant
correlation to SPL type errors for six of the subject systems, half of them
positive and the other half negative. For deg eight subject product lines cor-
relate significantly and only two of them negatively (see Table 9). Therefore
it seems that the information provided by the feature model alone is less
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Gintros Grefs GPFI

BankAccountTP -0.607 0.013 -0.803 *
BerkeleyDB 0.323 ** 0.326 *** 0.339 ***
Chat-Benduhn -0.761 ** -0.243 -0.796 **
Chat-Otte 0.772 ** -0.065 0.365
EPL - 0.657 * 0.701 *
GPL 0.437 0.263 0.577 **
GUIDSL 0.328 0.424 * 0.393 *
MobileMedia8 0.087 0.397 ** 0.211
PokerSPL 0.588 -0.731 * 0.186
TankWar 0.052 0.436 * 0.502 **
Violet 0.379 *** 0.448 *** 0.591 ***

Table 8: Correlation between number SPL type errors and degree (deg) in
the graphs Gintros, Grefs and GPFI (only product lines with at least one
significant value)
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Figure 15: Correlation between number of SPL type errors and deg as well
as degw in graph GPFI
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deg degw degdep degw,dep

BankAccountTP -0.803 * -0.125 -0.478 -0.025
BerkeleyDB 0.339 *** 0.346 *** 0.318 ** 0.351 ***
Chat-Benduhn -0.796 ** -0.752 ** -0.665 * -0.618 *
EPL 0.701 * 0.400 0.968 *** 0.775 **
GPL 0.577 ** 0.513 * 0.091 0.569 **
GUIDSL 0.393 * 0.365 0.276 0.443 *
MobileMedia8 0.211 0.220 0.308 * 0.298 *
Notepad-Robinson 0.559 0.701 * 0.435 0.696 *
Prop4J 0.519 0.508 0.659 * 0.705 **
Sudoku 0.462 0.430 0.905 ** 0.599
TankWar 0.502 ** 0.629 *** 0.462 * 0.653 ***
UnionFind -0.605 0.012 -0.877 ** -0.135
Violet 0.591 *** 0.377 *** 0.604 *** 0.486 ***

Table 9: Correlation between number of SPL type errors and different vari-
ations of degree in graph GPFI (only subject systems with at least one sig-
nificant correlation value)
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Figure 16: Correlation between SPL type errors and deg, degdep and dep

42



effective for finding features which are likely to contain SPL type errors than
the combination of the information about possible feature interactions on
code-level and the information provided by the feature model.

Figure 16 also shows the differences between deg and degdep for GPFI .
The three subject systems that correlate negatively and significantly to SPL
type errors for at least one of the two measures are all very small or small
(BankAccountTP, Chat-Benduhn and UnionFind). But the medium to big
product lines all show positive and significant correlation for at least one of
the two measures. Comparing deg and degdep shows no definite improvement,
as only five of the subject systems correlate stronger for degdep than for deg
and four of the systems the other way around (see Table 9).

When comparing degw and degw,dep a tendency to stronger correlations
is shown for degw,dep (see Figure 17). Again, small or very small systems
tend to show no significant correlation and if they do, it is mostly positive
(EPL, Notepad-Robinson, Prop4J) but also negative for one of the systems
(Chat-Benduhn). The medium to big systems that correlate significantly
and positively show a stronger correlation for degw,dep than for deg except
for BerkeleyDB and Notepad-Robinson.
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Figure 17: Correlation between SPL type errors and degw as well as degw,dep

Finally by comparing degdep and degw,dep again only a small improvement
by taking into account the number of references and introduces is shown for
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the subject product lines. Of those systems that correlate significantly and
positively four show a stronger correlation for degdep than for degw,dep and
six a stronger correlation for degw,dep than for degdep (see Table 9). It has
to be mentioned that all medium and big subject product lines considered
in this thesis correlate significantly and positively for degw,dep, while for the
other measures always at least one of the medium and big subject systems
does not correlate significantly. Therefore degw,dep works slightly better for
predicting SPL type errors than the other degree-based measures.

4.5.3 Betweenness Centrality for Edges

For each subject system the number of SPL type errors for its edges in
GSPLTE and the edge-betweenness-value (see Chapter 3.2.3.4) in the graphs
Gintros, Grefs and GPFI is correlated. In these graphs an edge represents a
combination of two features which introduce the same code element and/or
where one of the features references the other, depending on the graph that
is considered. Finding characteristics of pairs of features that are likely to
take part in SPL type errors together is as desirable as finding characteristics
of features that are likely to be error-prone.

Of the 28 subject product lines that are considered in this thesis, 20 show

B
an

k
A
cc
ou

n
tT

P
B
er
ke
le
y
D
B

C
h
at
-B

ec
k

C
h
at
-B

en
d
u
h
n

C
h
at
-H

ar
b
ic
h

C
h
at
-H

u
b
er

C
h
at
-L
u
d
w
ig

C
h
at
-L
u
ed
d
ec
ke

C
h
at
-M

ey
e

C
h
at
-O

tt
e

C
h
at
-S
ch
u
lz
e

C
h
at
-U

rb
an

ek

C
h
at
-V

ie
ls
m
ai
er

C
h
at
-W

ei
ge
lt

C
h
at
-Z
as
ke

E
P
L

G
P
L

G
U
ID

S
L

M
ob

il
eM

ed
ia
8

N
ot
ep
ad

-R
ob

in
so
n

P
ok
er
S
P
L

P
re
va
y
le
r

P
ro
p
4J

S
u
d
ok

u

T
an

k
W
ar

U
n
io
n
F
in
d

V
io
le
t

V
is
te
x

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

co
rr

el
at

io
n

co
effi

ci
en

t

GPFI Gintros Grefs significant (p < 0.05)

Figure 18: Correlation between SPL type errors and edge betweenness cen-
trality (cB) for graphs Gintros, Grefs and GPFI
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GPFI Gintros Grefs

BankAccountTP -0.096 -0.321 * 0.346 **
BerkeleyDB 0.005 0.080 *** 0.006
Chat-Beck 0.361 ** -0.018 -0.186
Chat-Benduhn 0.116 -0.322 *** 0.215 *
Chat-Ludwig 0.235 * 0.192 -0.149
Chat-Lueddecke 0.157 0.173 0.258 **
Chat-Otte 0.380 *** 0.412 *** -0.038
Chat-Urbanek 0.300 ** -0.177 0.260 **
Chat-Zaske 0.474 *** 0.446 *** -0.022
EPL 0.698 *** 0.047 0.694 ***
GPL 0.009 0.085 0.172 ***
GUIDSL 0.079 * 0.023 0.037
MobileMedia8 0.234 *** 0.073 ** 0.235 ***
PokerSPL 0.249 * 0.239 * -0.066
Prevayler 0.110 0.237 0.569 **
Prop4J 0.792 *** -0.132 0.684 ***
TankWar 0.012 0.003 0.082 *
UnionFind 0.385 ** -0.116 0.169
Violet 0.016 0.069 *** 0.169 ***
Vistex -0.067 -0.421 *** -0.197 **

Table 10: Correlation between SPL type errors and edge betweenness cen-
trality (cB) in GPFI , Grefs and Gintros (only subject systems with at least
one significant correlation)

at least for one of the three graphs Gintros, Grefs and GPFI a significant corre-
lation between SPL type errors of edges and edge betweenness centrality (see
Table 10 and Figure 18). Of those only three small to very small systems show
significant negative correlation (namely BankAccountTP, Chat-Benduhn and
Vistex), all other significant correlation values are positive.

9 out of the 20 systems that show a significant correlation for edge be-
tweenness centrality for at least one of the graphs correlate strongest in GPFI

(Chat-Beck, Chat-Luwdig, Chat-Urbanek, Chat-Zaske, EPL, GUIDSL, Pok-
erSPL, Prop4J and UnionFind) and 8 correlate strongest for Grefs (BankAc-
countTP, Chat-Benduhn, Chat-Lueddecke, GPL, MM8, Prevayler, TankWar
and Violet). Only two show the strongest correlation for edge betweenness
in Gintros.

For edge betweenness centrality and degree centrality the subject systems
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show different results for Gintros, Grefs and GPFI in regard to which of the
three graphs shows strongest correlation between the measure and SPL type
errors for the subject system. Overall, Gintros shows the weakest correlations
of all three graphs and GPFI shows slightly better results than Grefs. As
mentioned before, as most SPL type errors have connection to references
this result supports the intuition.

4.6 Correlation between Code Fragmentation and Type
Errors

In the next Chapters the two code fragmentation measures that were intro-
duced in Chapter 3.2.4 are evaluated.

4.6.1 Fragmentation of Classes

For each subject system the number of features that crosscut a class (see
Chapter 3.2.4) and the number of the type errors of the class (SPL as well
as FL type errors) were correlated. Every class of EPL is crosscut by ex-
actly three features, which means that there is no correlation to SPL type
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Figure 19: Fragmentation of classes (fragc) in correlation to SPL and FL
type errors
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errors, because their quantity differs between features. As no correlation
can be computed with a non-variable vector, the correlation values for EPL
are omitted in the following. Notepad-Robinson, Sudoku and EPL don’t
have feature-local type errors and are therefore not considered in this regard.
Results are shown in Figure 19 and Table 11.

For both kinds of type errors, all systems that correlate signficantly also
correlate positively, meaning that stronger fragmented classes are more error-
prone. For SPL-type errors half of the subject systems correlate significantly
and for feature-local type errors even more (17 out of 25 subject systems
with feature local type errors).

No significant correlation between SPL type errors and fragmentation of
classes is shown for all three Editors (Violet, Vistex and Notepad-Robinson)
and two (Sudoku and PokerSPL) of the three games in the subject product
lines. EPL, Prop4J and UnionFind, which do neither correlate significantly

Name SPL type errors FL type errors All type errors

BerkeleyDB 0.526 *** 0.658 *** 0.671 ***
Chat-Beck 0.950 ** 0.885 * 0.885 *
Chat-Benduhn 0.475 0.820 *** 0.827 ***
Chat-Harbich 0.349 0.502 * 0.506 *
Chat-Huber 0.538 ** 0.763 *** 0.808 ***
Chat-Ludwig 0.859 ** 0.959 *** 0.982 ***
Chat-Lueddecke 0.617 * 0.904 *** 0.904 ***
Chat-Meye 0.427 0.674 * 0.688 *
Chat-Otte 0.764 * 0.686 * 0.844 **
Chat-Schulze 0.482 0.672 * 0.559
Chat-Urbanek 0.355 * 0.575 *** 0.575 ***
Chat-Vielsmaier 0.340 0.603 ** 0.509 *
Chat-Weigelt 0.680 * -0.073 0.454
Chat-Zaske 0.999 *** 0.726 *** 0.740 ***
GPL 0.798 *** 0.714 ** 0.837 ***
GUIDSL 0.412 *** 0.153 0.355 ***
MobileMedia8 0.486 *** 0.599 *** 0.651 ***
PokerSPL 0.619 0.966 *** 0.966 ***
Prevayler 0.284 *** 0.142 0.126
TankWar 0.791 *** 0.090 0.473 *
Violet -0.021 0.763 *** 0.460 ***

Table 11: Correlation between type errors and fragmentation of classes
(fragc) (only systems with at least one significant correlation shown)
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to SPL type errors nor to feature-local type errors all implement some kind
of an algorithm. Apart from that, no connection between the correlation and
the domains of the subject product lines was found.

It has to be noticed that this measure correlates strongly for many of the
subject systems with feature-local type errors, although they are not affected
by the fragmentation. One explanation could be that highly fragmented
classes are more complex and hence more error-prone in general.

4.6.2 Fragmentation of Features

For all features the number of type errors (feature-local as well as software
product line specific type errors) was correlated to the number of classes the
feature introduces/enhances (and by which it therefore is fragmented) (see
Chapter 3.2.4). The results are shown in Figure 20 and Table 12. Aside
from PokerSPL, all correlations to SPL type errors that are significant are
positive. Of those, PokerSPL is the only small product line with less than
20 features.
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Figure 20: Fragmentation of features (fragf ) in correlation to SPL type
errors and FL type errors
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Name SPL type errors FL type errors All type errors

BerkeleyDB 0.366 *** 0.356 *** 0.393 ***
Chat-Urbanek -0.344 -0.677 * -0.648 *
Chat-Zaske -0.411 -0.522 * -0.492
GUIDSL 0.433 * 0.204 0.473 *
MobileMedia8 0.377 * 0.734 *** 0.662 ***
PokerSPL -0.645 * -0.016 -0.316
Prop4J -0.152 -0.558 * -0.253
TankWar 0.413 * 0.379 * 0.582 ***
Violet 0.247 * -0.280 ** 0.007

Table 12: Correlation between fragmentation of features (fragf ) and type
errors (only systems with at least one significant correlation shown)

4.7 Comparison of the Approaches

4.7.1 Measures based on Classes compared to Measures based on
Features

In this thesis two measures were examined both based on classes as well as
based on features: CBO/CBF and fragmentation of features/fragmentation
of classes. In both cases more significant correlations were found for the mea-
sures based on classes (see Tables 6 and 7 in Chapter 4.4 as well as Tables 11
and 12 in Chapter 4.6). One reason for this that seems plausible is that there
are often more classes than features because features often represent a higher
level of abstraction than classes (a functionality instead of a code unit) and
therefore most systems have more classes than features. This means a finer
classification of type errors and a larger vector that is correlated and thus a
higher probability of significance.

For Coupling of Features and Coupling of Object Classes this explana-
tion seems likely, as only one of those three subject systems (MobileMedia8,
TankWar and Violet) where CBF correlates stronger to SPL type errors than
CBO has more classes than features and of the seven where CBO is bet-
ter than CBF (BerkeleyDB, Chat-Lueddecke, Chat-Otte, Chat-Vielsmaier,
Chat-Zaske, GPL, GUIDSL), only two (Chat-Otte and GPL) have more fea-
tures than classes.

But it is different for fragmentation. Of those systems that have more fea-
tures than classes (Chat-Beck, Chat-Luwdig, Chat-Meye, Chat-Otte, GPL,
Notepad-Robinson, PokerSPL, TankWar, UnionFind, Violet and Vistex) only
two show a stronger correlation for fragmentation of features than for frag-
mentation of classes. Five of them (Chat-Beck, Chat-Ludwig, Chat-Otte,
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GPL and TankWar) even show a stronger correlation between SPL type er-
rors and fragmentation of classes than for fragmentation of features, which
is a counterexample for this explanation.

Another possible explanation is that with feature oriented software devel-
opment all assets are organised in features, therefore it is easier to keep track
of a highly fragmented feature than a highly fragmented class, especially if
no tools that provide different views on the code are used. But this does not
explain, why feature-local type errors also correlate stronger to fragmenta-
tion of classes than to fragmentation of features, as those are equal easy or
hard to find in both views on the code.

What is to be considered in this regard as well is the difference in the
counting of SPL type errors between classes and features. For classes only
the information where the type error emerges is given, while for features the
information which features are involved besides the feature where the type
error arises is available and used for counting (see Chapter 3.1).

4.7.2 Measures based on the Structure of Code versus Measures
based on the Feature Model

Comparing results between measures based only on information of the feature
model (see Chapter 4.3) and measures based only on structure of the code (see
Chapters 4.4 and 4.6), shows that the information of the feature model as it
was used in this thesis is not specific enough to find characteristics of features
that are likely to take part in SPL type errors. The measures based only on
structure of the code seem more promising. In Chapter 4.5.2 a combination
of both approaches is evaluated with the result that the combination can
strengthen the correlation slightly, compared to using only the code-based
measure (see Figure 16 in Chapter 4.5.2).

4.7.3 Coupling and Possible Feature Interactions in Comparison

When only considering CBF and EFD, the measures for coupling that are
computed for each feature, in comparison to the degree in Grefs, which is a
graph for coupling of features, it is to notice that except for GPL, all systems
that correlate significantly and positively for CBF or EFD also correlate
significantly and positively for the degree in Grefs (see Table 13). Hence the
information regarding how likely a feature is to have SPL type errors when
it is highly coupled is nearly the same for all three measures.

The additional information about which features introduce the same code
elements in GPFI changes the correlation to SPL type errors only a little. For
five of the subject systems (BerkeleyDB, EPL, GPL, TankWar, Violet) the
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correlation to SPL type errors is stronger for degree in GPFI than for degree
in Grefs. Only two systems (GUIDSL, MobileMedia8) show a stronger corre-
lation between SPL type errors and degree in Grefs than to degree in GPFI .
Even when enhancing the graph with information about the dependencies
between features and taking into account the number of references and in-
troduces that connect two features, the correlation to SPL type errors is only
somewhat stronger than the correlation to EFD and CBF (see Table 13).

4.7.4 Overall Comparison

By putting all measures in one graph (see Figure 21) it is harder to see how
a certain measure performs, but the overall picture is more visible.

Four of the subject systems always correlate positively, those four are
also the biggest (in regard to the number of features) subject product lines
examined in this thesis: BerkeleyDB, MobileMedia8, TankWar and Violet.
All subject product lines that show significant negative correlation to SPL
type errors for any of the measures are small (10-19 features) or very small
(<10 features) ones, namely BankAccountTP, Chat-Benduhn, Chat-Huber,
PokerSPL, Prevayler, UnionFind and Vistex. There are two systems that
show no significant correlation to SPL type errors for any of the measures,
Chat-Harbich and Chat-Schulze, again both small or very small product lines.
All in all, the values of the different measures lie closer together for bigger
systems and wider apart for smaller systems.

One measure that often sticks out in Figure 21 is fragmentation of classes.
Every significant correlation between the measure and SPL or feature local
type errors is positive. For SPL type errors, half of the subject systems show
a significant correlation and for 17 out of 28 subject product lines there is
also a significant correlation between fragmentation of classes and feature-
local type errors (see Chapter 4.6.1). Therefore it is the measure with the
most significant correlations examined in this thesis.

4.8 Threats to Validity

The subject product lines used in this thesis are of different sizes (see Chap-
ter 4) and most of the measures are calculated per feature in order to correlate
them to the type errors of the features. Statistical significance depends on
the size of the vectors that are correlated as well as the strength of the corre-
lation. As there are various reasons for type errors and the measures mostly
capture only parts of them, the correlation is often moderate at most. In-
sofar most of the small and very small product lines are not likely to show
a significant correlation between type errors and the measures. In order to
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make the results of this thesis more generalizable, additional product lines of
larger size need to be examined.

It also must be considered that most of the measures which are based on
the structure of the code are implicitly influenced by size (lines of code) of
the feature or class they are calculated for. For example, measures that take
into account the number of relations between features - of course big features
or classes can contain more references than small ones. The same is true
for the number of introduces that two features share or the fragmentation of
features or classes.
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5 Conclusion

The goal of this thesis was to examine reasons for SPL type errors and to
find a measure that can be used as an indicator for them. Therefore different
measures were developed and examined which were meant to capture aspects
of the different reasons for SPL type errors. In this regard the conceptual
structure, therefore the feature model, of 28 product lines was analysed as
well as their code and the relations between code elements. 13 measures
were assessed in total and can be classified into four approaches: Variability,
cohesion and coupling, possible feature interactions and code fragmentation.

The measures for variability, which are based only on the feature model,
were the number of constraints of a feature and a weighting of the depen-
dencies to other features. Both were not suitable as an indicator for error-
proneness of features for the subject product lines.

On code level, cohesion and coupling were examined as well as possible
feature interactions and code fragmentation. While the measures for cohesion
and coupling that were based on features (IFD, EFD, CBF) also showed no
correlation to SPL type errors for most of the subject systems, CBO, which is
a measure for coupling of classes, showed a significant and positive correlation
for a third of the subject product lines.

Possible feature interactions were analysed based on graphs that visualise
them and computation of graph measures like degree centrality and edge
betweenness centrality. With all additional information the degree (degw,dep)
of one third of the subject systems correlated significantly and positively to
SPL type errors. Using information about the relations between features
in the possible feature interaction graphs improved the correlation between
SPL type errors and the degree insignificantly, because there were also always
subject systems that correlated less with those additional information. Edge
betweenness centrality of the basic possible feature interactions graph (GPFI)
correlated significantly and positively to SPL type errors for 11 of the 28
subject product lines.

Finally code fragmentation was evaluated for features and classes. Again
the measure based on classes showed more significant correlations to SPL
type errors than the measure for features. With half of the subject systems
correlating significantly and positively, fragmentation of classes is better than
the other evaluated measures for predicting which features contain SPL type
errors for the subject product lines that were analysed in this thesis. In
contrast to some of the other examined measures, code fragmentation is a
measure that is easily and intuitively applicable for developers in order to
find out which code-parts they have to pay extra attention to for avoiding
SPL type errors.
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A Appendix

A.1 Description of the Subject Product Lines

BankAccountTP is a software for managing a bank account, which was
developed from scratch as a product line.

BerkeleyDB (Java Edition) is an open source database engine that can
be embedded into applications as a library. In this thesis the Fuji-
compilable version is examined.

13 Chat-Systems are product lines developed by students at courses on
software product line development.

EPL is a small product line that implements the expression problem and
therefore evaluates expressions. It was implemented as an example for
using and research on feature-oriented software development [20].

GPL is a graph library implemented as product line. Like EPL it was
implemented as example and for research on feature-oriented software
development [19].

GUIDSL is a tool for configuration of product lines which use a feature
model in GUIDSL format. The GUIDSL format is a grammar with the
possibility of further constraints in form of propositional formulas. It
was implemented using feature-oriented programming methods.

MobileMedia8 is a software for manipulating photo, music and video on
mobile devices. It was developed from scratch as software product line
at Lancaster University. In this thesis the Fuji-compilable version is
examined..

Notepad-Robinson was developed, like the chat systems, by a student as
part of a course.

PokerSPL is a game which was refactored as product line at Otto-von-
Guericke University Magdeburg.

Prevayler is an open source object persistence library for Java 5 which was
refactored using feature-oriented software development.

Prop4J is a library for arbitrary propositional formulas which is used in
FeatureIDE.

5http://prevayler.org/
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Sudoku is an game which was as well refactored as feature-oriented software
product line.

TankWar is a open source game which was developed from scratch feature-
oriented.

UnionFind is a product line of UnionFind algorithms. It was developed at
Otto-von-Guericke University Magdeburg as a case study.

Violet is a simple UML Editor which was as well recreated as feature-
oriented product line through decomposing the open source software
Violet 6.

Vistex was as well developed as a student project. It is a software product
line for graphical manipulation of graphs and was designed to be easily
extensible.

6http://sourceforge.net/projects/violet/
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A.2 P-Values for Shapiro-Wilk Test

Classes Features
SPL FL all SPL FL all

BankAccountTP -9.11e-07 4.63e-01 5.10e-01 1.26e-02 1.91e-02 2.20e-02
BerkeleyDB 2.72e-32 3.87e-33 1.61e-31 1.75e-19 1.91e-21 9.70e-21
Chat-Beck 2.67e-02 6.10e-02 5.51e-02 5.22e-01 4.94e-01 9.61e-01
Chat-Benduhn 2.19e-07 6.55e-04 3.68e-04 7.17e-03 5.67e-06 2.36e-04
Chat-Harbich 2.69e-09 1.88e-05 1.44e-05 1.71e-06 1.01e-03 9.00e-04
Chat-Huber 1.46e-09 8.96e-06 3.18e-06 4.73e-01 1.11e-01 2.49e-01
Chat-Ludwig 4.29e-05 1.29e-04 2.59e-04 2.02e-01 1.33e-04 1.41e-01
Chat-Lueddecke 2.89e-07 2.72e-04 4.28e-06 1.80e-04 1.86e-03 9.95e-03
Chat-Meye 4.29e-05 3.14e-03 3.85e-03 2.89e-05 2.31e-02 9.37e-03
Chat-Otte 5.22e-06 6.73e-05 1.14e-05 1.04e-01 8.19e-04 1.52e-02
Chat-Schulze 9.45e-04 1.58e-05 4.20e-03 7.41e-03 3.13e-04 2.86e-02
Chat-Urbanek 4.64e-12 1.29e-09 5.15e-10 5.42e-03 1.54e-01 1.01e-01
Chat-Vielsmaier 1.05e-06 9.79e-07 2.05e-06 2.63e-01 7.89e-01 9.24e-01
Chat-Weigelt 3.37e-06 9.32e-02 4.83e-05 3.36e-02 9.99e-02 1.13e-01
Chat-Zaske 1.65e-13 1.13e-12 9.65e-13 1.51e-03 1.21e-02 1.59e-02
EPL 4.71e-01 1.00 4.71e-01 2.15e-01 1.00 2.15e-01
GPL 6.89e-06 8.96e-07 2.47e-06 1.59e-05 1.63e-05 1.08e-04
GUIDSL 5.80e-24 3.36e-25 1.41e-24 2.74e-06 9.13e-10 2.38e-08
MobileMedia8 5.23e-14 2.31e-09 8.75e-10 1.69e-10 2.02e-12 1.06e-11
Notepad-Robinson 3.22e-07 1.00 3.22e-07 4.67e-06 1.00 4.67e-06
PokerSPL 1.05e-06 1.39e-02 7.93e-03 1.69e-04 7.10e-04 2.14e-03
Prevayler 1.43e-25 3.24e-24 2.35e-24 1.73e-01 3.61e-02 1.71e-01
Prop4J 2.67e-06 3.99e-06 2.55e-06 1.67e-04 3.99e-06 1.24e-05
Sudoku 6.85e-09 1.00 6.85e-09 7.63e-02 1.00 7.63e-02
TankWar 4.51e-07 1.98e-08 3.61e-08 1.06e-07 4.32e-10 1.75e-09
UnionFind 1.97e-01 8.65e-01 2.75e-01 9.69e-02 3.37e-02 1.40e-01
Violet 3.58e-17 2.82e-16 1.17e-16 1.54e-19 3.52e-16 3.98e-19
Vistex 1.05e-06 1.05e-06 1.05e-06 2.57e-05 3.98e-04 5.68e-04

Table 14: P-Values for Shapiro-Wilk test on the distribution of type errors
of classes and features (bold values are greater than 0.05) (SPL: software
product line specific type errors, FL: Feature-local type errors, all: both
kinds of type errors together)

65



A.3 Correlation Results

A.3.1 Results for Correlation between Variability Measures and
Type Errors

A.3.1.1 Dependencies to other Features

Name SPL type errors FL type errors All type errors

BankAccountTP -0.621 -0.688 -0.704
BerkeleyDB 0.021 0.125 0.036
Chat-Beck -0.038 -0.578 -0.235
Chat-Benduhn -0.681 * -0.495 -0.515
Chat-Harbich 0.104 -0.564 * -0.528
Chat-Huber -0.973 ** -0.949 * -0.949 *
Chat-Ludwig -0.205 -0.111 -0.224
Chat-Lueddecke -0.132 -0.555 -0.453
Chat-Meye -0.081 -0.082 -0.139
Chat-Otte -0.334 -0.473 -0.568
Chat-Schulze -0.389 -0.273 -0.387
Chat-Urbanek -0.079 0.122 0.074
Chat-Vielsmaier -0.603 -0.538 -0.482
Chat-Weigelt -0.348 -0.412 -0.373
Chat-Zaske -0.289 -0.460 -0.433
EPL -0.272 - -0.272
GPL -0.167 -0.453 * -0.295
GUIDSL -0.261 -0.132 -0.218
MobileMedia8 0.460 ** 0.371 * 0.533 ***
Notepad-Robinson 0.667 * - 0.667 *
PokerSPL -0.472 0.576 0.185
Prevayler -0.399 0.664 0.655
Prop4J -0.036 -0.481 -0.273
Sudoku -0.428 - -0.428
TankWar 0.059 -0.285 -0.136
UnionFind -0.177 -0.203 -0.176
Violet 0.625 *** -0.805 *** -0.058
Vistex -0.742 *** -0.674 ** -0.719 **

Table 15: Correlation between type errors and weighted dependencies
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Figure 22: Correlation between type errors and the weighted dependencies
of a feature (red = SPL type errors, blue = feature local type errors)
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A.3.1.2 Number of Constraints

Name SPL type errors FL type errors All type errors

BankAccountTP - - -
BerkeleyDB 0.134 0.225 * 0.161
Chat-Beck 0.129 0.317 0.000
Chat-Benduhn - - -
Chat-Harbich -0.300 -0.100 -0.137
Chat-Huber - - -
Chat-Ludwig - - -
Chat-Lueddecke -0.408 -0.268 -0.343
Chat-Meye - - -
Chat-Otte 0.513 0.705 * 0.822 **
Chat-Schulze - - -
Chat-Urbanek - - -
Chat-Vielsmaier - - -
Chat-Weigelt - - -
Chat-Zaske -0.234 -0.349 -0.349
EPL 0.675 * - 0.675 *
GPL 0.170 0.141 0.169
GUIDSL 0.107 -0.100 0.020
MobileMedia8 0.122 0.133 0.088
Notepad-Robinson - - -
PokerSPL - - -
Prevayler - - -
Prop4J -0.055 0.282 0.186
Sudoku - - -
TankWar - - -
UnionFind - - -
Violet 0.321 ** 0.171 0.396 ***
Vistex - - -

Table 16: Correlation between type errors and the number of constraints a
feature takes part in
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Figure 23: Correlation between type errors and #constraints of a feature
(red = SPL type errors, blue = feature local type errors)
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A.3.2 Results for Correlation between Cohesion and Coupling
and Type Errors

A.3.2.1 Internal-ratio Feature Dependency

Name SPL type errors FL type errors All type errors

BankAccountTP -0.600 -0.439 -0.585
BerkeleyDB 0.083 -0.148 -0.009
Chat-Beck -0.073 0.132 0.333
Chat-Benduhn -0.222 0.264 0.034
Chat-Harbich 0.152 0.139 0.120
Chat-Huber -0.154 -0.200 -0.200
Chat-Ludwig -0.517 -0.023 -0.418
Chat-Lueddecke -0.229 0.075 0.056
Chat-Meye 0.732 * 0.328 0.476
Chat-Otte 0.522 0.065 0.506
Chat-Schulze -0.059 -0.774 * -0.412
Chat-Urbanek 0.266 0.378 0.409
Chat-Vielsmaier -0.126 0.393 -0.108
Chat-Weigelt -0.466 -0.425 -0.449
Chat-Zaske 0.551 * 0.512 * 0.525 *
EPL 0.613 * - 0.613 *
GPL -0.409 -0.497 * -0.492 *
GUIDSL -0.071 -0.214 -0.111
MobileMedia8 0.411 ** 0.603 *** 0.594 ***
Notepad-Robinson -0.348 - -0.348
PokerSPL -0.379 0.051 -0.277
Prevayler 0.145 -0.754 -0.714
Prop4J -0.187 0.168 -0.167
Sudoku 0.543 - 0.543
TankWar 0.718 *** 0.452 * 0.754 ***
UnionFind -0.408 -0.370 -0.405
Violet 0.426 *** -0.473 *** 0.004
Vistex 0.364 0.455 0.393

Table 17: Correlation between type errors and IFD
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Figure 24: Correlation between type errors and IFD (red = SPL type errors,
blue = feature local type errors)
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A.3.2.2 External-ratio Feature Dependency

Name SPL type errors FL type errors All type errors

BankAccountTP -0.308 -0.572 -0.450
BerkeleyDB 0.241 * 0.127 0.190
Chat-Beck -0.122 -0.527 -0.262
Chat-Benduhn -0.621 * -0.254 -0.437
Chat-Harbich 0.253 -0.015 0.015
Chat-Huber -0.205 -0.100 -0.100
Chat-Ludwig -0.280 -0.409 -0.407
Chat-Lueddecke 0.084 -0.522 -0.363
Chat-Meye 0.143 -0.289 -0.204
Chat-Otte -0.013 -0.578 -0.381
Chat-Schulze -0.236 -0.645 -0.445
Chat-Urbanek -0.366 -0.457 -0.446
Chat-Vielsmaier -0.036 -0.250 0.072
Chat-Weigelt 0.308 0.202 0.301
Chat-Zaske -0.479 -0.592 * -0.583 *
EPL 0.280 - 0.280
GPL 0.192 -0.043 0.137
GUIDSL -0.003 -0.061 0.057
MobileMedia8 0.458 ** 0.490 *** 0.559 ***
Notepad-Robinson -0.175 - -0.175
PokerSPL 0.477 -0.652 * -0.399
Prevayler -0.899 * -0.145 -0.257
Prop4J -0.525 -0.339 -0.341
Sudoku 0.075 - 0.075
TankWar 0.354 0.245 0.421 *
UnionFind -0.383 -0.333 -0.380
Violet 0.504 *** -0.463 *** 0.088
Vistex -0.056 -0.124 -0.129

Table 18: Correlation between type errors and EFD
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Figure 25: Correlation between type errors and EFD (red = SPL type errors,
blue = feature local type errors)
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A.3.2.3 Coupling between Object Classes

Name SPL type errors FL type errors All type errors

BankAccountTP -0.500 0.000 0.000
BerkeleyDB 0.402 *** 0.484 *** 0.510 ***
Chat-Beck 0.583 0.295 0.295
Chat-Benduhn 0.250 0.479 0.472
Chat-Harbich 0.384 0.101 0.104
Chat-Huber -0.035 0.247 0.217
Chat-Ludwig 0.474 0.617 0.621
Chat-Lueddecke 0.614 * 0.634 * 0.670 **
Chat-Meye 0.190 0.361 0.240
Chat-Otte 0.700 * 0.449 0.651
Chat-Schulze 0.353 0.241 0.353
Chat-Urbanek 0.291 0.440 * 0.440 *
Chat-Vielsmaier 0.458 * 0.678 *** 0.613 **
Chat-Weigelt 0.209 0.026 0.278
Chat-Zaske 0.481 ** 0.267 0.271
EPL -0.224 - -0.224
GPL 0.632 ** 0.665 ** 0.658 **
GUIDSL 0.286 *** 0.349 *** 0.463 ***
MobileMedia8 0.472 *** 0.380 ** 0.443 **
Notepad-Robinson 0.431 - 0.431
PokerSPL -0.218 0.201 0.201
Prevayler 0.149 -0.075 -0.043
Prop4J 0.139 0.002 0.098
Sudoku 0.632 *** - 0.632 ***
TankWar 0.706 *** 0.196 0.495 *
UnionFind -0.258 0.775 0.544
Violet 0.154 -0.235 0.007
Vistex 0.655 0.655 0.655

Table 19: Correlation between type errors and CBO
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Figure 26: Correlation between type errors and CBO (red = SPL type errors,
blue = feature local type errors)
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A.3.2.4 Coupling between Features

Name SPL type errors FL type errors All type errors

BankAccountTP -0.172 -0.058 -0.168
BerkeleyDB 0.313 ** 0.304 ** 0.351 ***
Chat-Beck -0.692 -0.296 -0.246
Chat-Benduhn -0.868 *** -0.723 * -0.758 **
Chat-Harbich 0.052 -0.124 -0.139
Chat-Huber -0.725 -0.707 -0.707
Chat-Ludwig -0.486 -0.337 -0.502
Chat-Lueddecke -0.126 -0.307 -0.236
Chat-Meye 0.086 -0.506 -0.447
Chat-Otte 0.223 0.495 0.350
Chat-Schulze 0.323 0.207 0.373
Chat-Urbanek -0.230 -0.017 -0.094
Chat-Vielsmaier 0.000 0.289 0.000
Chat-Weigelt 0.044 0.082 0.044
Chat-Zaske -0.470 -0.351 -0.333
EPL -0.173 - -0.173
GPL 0.471 * 0.762 *** 0.640 **
GUIDSL 0.294 0.319 0.477 *
MobileMedia8 0.561 *** 0.640 *** 0.672 ***
Notepad-Robinson 0.538 - 0.538
PokerSPL -0.640 * 0.250 -0.101
Prevayler 0.470 0.877 * 0.926 **
Prop4J -0.120 -0.097 -0.055
Sudoku 0.292 - 0.292
TankWar 0.805 *** 0.444 * 0.845 ***
UnionFind -0.403 -0.356 -0.401
Violet 0.310 ** -0.633 *** -0.211 *
Vistex 0.097 -0.040 0.040

Table 20: Correlation between type errors and CBF
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Figure 27: Correlation between type errors and CBF (red = SPL type errors,
blue = feature local type errors)
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A.3.3 Results for Correlation between Possible Feature Interac-
tions and Type Errors

A.3.3.1 Degree Centrality

Name SPL type errors FL type errors All type errors

BankAccountTP -0.607 -0.615 -0.592
BerkeleyDB 0.323 ** 0.288 ** 0.356 ***
Chat-Beck 0.038 -0.550 -0.381
Chat-Benduhn -0.761 ** -0.253 -0.497
Chat-Harbich 0.109 -0.103 -0.068
Chat-Huber -0.148 0.000 0.000
Chat-Ludwig 0.120 -0.042 0.059
Chat-Lueddecke -0.165 -0.263 -0.314
Chat-Meye 0.195 -0.472 -0.359
Chat-Otte 0.772 ** -0.111 0.284
Chat-Schulze 0.138 -0.040 0.101
Chat-Urbanek 0.000 -0.596 -0.467
Chat-Vielsmaier - - -
Chat-Weigelt 0.271 0.224 0.270
Chat-Zaske 0.260 0.290 0.290
EPL - - -
GPL 0.437 0.415 0.488 *
GUIDSL 0.328 0.633 *** 0.500 **
MobileMedia8 0.087 0.236 0.162
Notepad-Robinson - - -
PokerSPL 0.588 -0.322 -0.072
Prevayler 0.664 0.531 0.655
Prop4J -0.065 -0.433 -0.194
Sudoku 0.271 - 0.271
TankWar 0.052 0.598 *** 0.278
UnionFind -0.595 -0.595 -0.592
Violet 0.379 *** -0.888 *** -0.372 ***
Vistex 0.000 0.000 0.000

Table 21: Correlation between type errors and deg in Gintros
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Figure 28: Correlation between type errors and deg in Gintros (red = SPL
type errors, blue = feature local type errors)
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Name SPL type errors FL type errors All type errors

BankAccountTP 0.013 0.222 0.075
BerkeleyDB 0.326 *** 0.214 * 0.320 **
Chat-Beck -0.596 -0.201 -0.158
Chat-Benduhn -0.243 -0.532 -0.445
Chat-Harbich 0.255 -0.358 -0.331
Chat-Huber -0.105 -0.051 -0.051
Chat-Ludwig -0.218 -0.131 -0.201
Chat-Lueddecke -0.071 -0.409 -0.425
Chat-Meye 0.295 -0.281 -0.196
Chat-Otte -0.065 0.596 0.174
Chat-Schulze 0.438 -0.098 0.282
Chat-Urbanek 0.062 -0.048 -0.077
Chat-Vielsmaier -0.463 -0.312 -0.611
Chat-Weigelt 0.220 0.154 0.210
Chat-Zaske -0.240 -0.162 -0.140
EPL 0.657 * - 0.657 *
GPL 0.263 0.525 * 0.389
GUIDSL 0.424 * 0.493 * 0.515 **
MobileMedia8 0.397 ** 0.536 *** 0.520 ***
Notepad-Robinson 0.435 - 0.435
PokerSPL -0.731 * 0.270 -0.150
Prevayler 0.406 0.783 0.829 *
Prop4J 0.519 -0.074 0.245
Sudoku 0.353 - 0.353
TankWar 0.436 * 0.416 * 0.511 **
UnionFind -0.382 -0.349 -0.379
Violet 0.448 *** -0.837 *** -0.253 *
Vistex 0.014 -0.112 -0.034

Table 22: Correlation between type errors and deg in Grefs
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Figure 29: Correlation between type errors and deg in Grefs (red = SPL type
errors, blue = feature local type errors)
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Name SPL type errors FL type errors All type errors

BankAccountTP -0.803 * -0.712 * -0.783 *
BerkeleyDB 0.339 *** 0.227 * 0.340 ***
Chat-Beck -0.038 -0.255 -0.037
Chat-Benduhn -0.796 ** -0.392 -0.569
Chat-Harbich 0.360 -0.353 -0.311
Chat-Huber 0.081 0.158 0.158
Chat-Ludwig -0.525 -0.135 -0.456
Chat-Lueddecke -0.186 -0.475 -0.481
Chat-Meye 0.211 -0.464 -0.350
Chat-Otte 0.365 0.060 0.020
Chat-Schulze 0.383 0.195 0.398
Chat-Urbanek 0.296 -0.214 -0.139
Chat-Vielsmaier 0.019 -0.810 * -0.117
Chat-Weigelt 0.279 0.188 0.263
Chat-Zaske 0.057 0.136 0.147
EPL 0.701 * - 0.701 *
GPL 0.577 ** 0.663 ** 0.641 **
GUIDSL 0.393 * 0.545 ** 0.509 **
MobileMedia8 0.211 0.426 ** 0.348 *
Notepad-Robinson 0.559 - 0.559
PokerSPL 0.186 -0.203 -0.209
Prevayler 0.154 0.739 0.820 *
Prop4J 0.519 -0.074 0.245
Sudoku 0.462 - 0.462
TankWar 0.502 ** 0.499 ** 0.565 **
UnionFind -0.605 -0.605 -0.601
Violet 0.591 *** -0.858 *** -0.151
Vistex -0.484 -0.536 * -0.521 *

Table 23: Correlation between type errors and deg in GPFI
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Figure 30: Correlation between type errors and deg in GPFI (red = SPL type
errors, blue = feature local type errors)

83



Name SPL type errors FL type errors All type errors

BankAccountTP -0.125 -0.038 -0.146
BerkeleyDB 0.346 *** 0.391 *** 0.434 ***
Chat-Beck -0.417 -0.446 -0.287
Chat-Benduhn -0.752 ** -0.297 -0.422
Chat-Harbich 0.304 -0.235 -0.208
Chat-Huber -0.154 -0.100 -0.100
Chat-Ludwig -0.075 0.026 -0.043
Chat-Lueddecke -0.030 -0.256 -0.223
Chat-Meye 0.281 -0.365 -0.258
Chat-Otte -0.167 0.531 0.159
Chat-Schulze 0.008 -0.128 0.000
Chat-Urbanek 0.080 -0.374 -0.315
Chat-Vielsmaier -0.180 -0.357 -0.342
Chat-Weigelt 0.234 0.215 0.239
Chat-Zaske -0.150 0.058 0.048
EPL 0.400 - 0.400
GPL 0.513 * 0.779 *** 0.667 **
GUIDSL 0.365 0.228 0.414 *
MobileMedia8 0.220 0.646 *** 0.530 ***
Notepad-Robinson 0.701 * - 0.701 *
PokerSPL -0.288 0.007 -0.167
Prevayler 0.406 0.783 0.829 *
Prop4J 0.508 0.304 0.543 *
Sudoku 0.430 - 0.430
TankWar 0.629 *** 0.430 * 0.683 ***
UnionFind 0.012 0.012 0.024
Violet 0.377 *** -0.847 *** -0.329 **
Vistex 0.379 0.194 0.325

Table 24: Correlation between type errors and degw in GPFI
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Figure 31: Correlation between type errors and degw in GPFI (red = SPL
type errors, blue = feature local type errors)
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A.3.3.2 Degree Centrality with Dependency-Weight

Name SPL type errors FL type errors All type errors

BankAccountTP -0.478 -0.447 -0.491
BerkeleyDB 0.318 ** 0.219 * 0.313 **
Chat-Beck -0.333 -0.479 -0.398
Chat-Benduhn -0.665 * -0.350 -0.523
Chat-Harbich 0.203 -0.482 -0.442
Chat-Huber 0.289 0.359 0.359
Chat-Ludwig -0.243 -0.205 -0.294
Chat-Lueddecke 0.030 -0.312 -0.307
Chat-Meye 0.214 -0.384 -0.304
Chat-Otte 0.235 -0.046 -0.137
Chat-Schulze 0.077 0.023 0.094
Chat-Urbanek 0.076 -0.296 -0.241
Chat-Vielsmaier -0.445 0.055 -0.556
Chat-Weigelt 0.333 0.265 0.308
Chat-Zaske 0.142 0.118 0.141
EPL 0.968 *** - 0.968 ***
GPL 0.091 0.015 0.070
GUIDSL 0.276 0.602 ** 0.517 **
MobileMedia8 0.308 * 0.487 *** 0.439 **
Notepad-Robinson 0.435 - 0.435
PokerSPL 0.144 0.055 0.032
Prevayler 0.638 0.725 0.771
Prop4J 0.659 * 0.054 0.385
Sudoku 0.905 ** - 0.905 **
TankWar 0.462 * 0.586 *** 0.600 ***
UnionFind -0.877 ** -0.889 ** -0.871 **
Violet 0.604 *** -0.832 *** -0.111
Vistex -0.309 -0.311 -0.288

Table 25: Correlation between type errors and degdep in GPFI
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Figure 32: Correlation between type errors and degdep in GPFI (red = SPL
type errors, blue = feature local type errors)
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Name SPL type errors FL type errors All type errors

BankAccountTP -0.025 -0.114 -0.122
BerkeleyDB 0.351 *** 0.324 ** 0.409 ***
Chat-Beck -0.220 -0.431 -0.190
Chat-Benduhn -0.618 * -0.167 -0.311
Chat-Harbich 0.456 -0.242 -0.193
Chat-Huber -0.154 -0.100 -0.100
Chat-Ludwig 0.068 -0.013 0.012
Chat-Lueddecke 0.244 0.042 0.074
Chat-Meye 0.264 -0.215 -0.173
Chat-Otte 0.248 0.229 0.242
Chat-Schulze 0.008 -0.128 0.000
Chat-Urbanek 0.080 -0.354 -0.296
Chat-Vielsmaier -0.450 -0.143 -0.577
Chat-Weigelt 0.363 0.362 0.374
Chat-Zaske 0.150 0.214 0.229
EPL 0.775 ** - 0.775 **
GPL 0.569 ** 0.829 *** 0.714 ***
GUIDSL 0.443 * 0.186 0.462 *
MobileMedia8 0.298 * 0.652 *** 0.582 ***
Notepad-Robinson 0.696 * - 0.696 *
PokerSPL -0.216 0.083 -0.077
Prevayler 0.319 0.667 0.714
Prop4J 0.705 ** 0.348 0.644 *
Sudoku 0.599 - 0.599
TankWar 0.653 *** 0.479 ** 0.694 ***
UnionFind -0.135 -0.160 -0.122
Violet 0.486 *** -0.839 *** -0.221 *
Vistex 0.252 0.112 0.222

Table 26: Correlation between type errors and degw,dep in GPFI
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Figure 33: Correlation between type errors and degw,dep in GPFI (red = SPL
type errors, blue = feature local type errors)

89



A.3.3.3 Betweenness Centrality for Edges

GPFI Gintros Grefs

BankAccountTP -0.096 -0.321 * 0.346 **
BerkeleyDB 0.005 0.080 *** 0.006
Chat-Beck 0.361 ** -0.018 -0.186
Chat-Benduhn 0.116 -0.322 *** 0.215 *
Chat-Harbich -0.048 0.137 0.121
Chat-Huber -0.031 -0.035 0.281
Chat-Ludwig 0.235 * 0.192 -0.149
Chat-Lueddecke 0.157 0.173 0.258 **
Chat-Meye 0.114 0.075 0.081
Chat-Otte 0.380 *** 0.412 *** -0.038
Chat-Schulze 0.099 -0.096 0.139
Chat-Urbanek 0.300 ** -0.177 0.260 **
Chat-Vielsmaier -0.010 -0.007 0.154
Chat-Weigelt 0.108 0.028 0.107
Chat-Zaske 0.474 *** 0.446 *** -0.022
EPL 0.698 *** 0.047 0.694 ***
GPL 0.009 0.085 0.172 ***
GUIDSL 0.079 * 0.023 0.037
MobileMedia8 0.234 *** 0.073 ** 0.235 ***
Notepad-Robinson -0.006 0.096 -0.063
PokerSPL 0.249 * 0.239 * -0.066
Prevayler 0.110 0.237 0.569 **
Prop4J 0.792 *** -0.132 0.684 ***
Sudoku -0.025 0.230 -0.106
TankWar 0.012 0.003 0.082 *
UnionFind 0.385 ** -0.116 0.169
Violet 0.016 0.069 *** 0.169 ***
Vistex -0.067 -0.421 *** -0.197 **

Table 27: Correlation between SPL type errors and edge betweenness cen-
trality (cB) in Gintros, Grefs and GPFI
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Figure 34: Correlation between type errors and edge betweenness centrality
(cB) in Grefs
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Figure 35: Correlation between type errors and edge betweenness centrality
(cB) in Gintros
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Figure 36: Correlation between type errors and edge betweenness centrality
(cB) in GPFI
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A.3.4 Results for Correlation between Code Fragmentation and
Type Errors

A.3.4.1 Fragmentation of Classes

Name SPL type errors FL type errors All type errors

BankAccountTP -0.866 -0.500 -0.500
BerkeleyDB 0.526 *** 0.658 *** 0.671 ***
Chat-Beck 0.950 ** 0.885 * 0.885 *
Chat-Benduhn 0.475 0.820 *** 0.827 ***
Chat-Harbich 0.349 0.502 * 0.506 *
Chat-Huber 0.538 ** 0.763 *** 0.808 ***
Chat-Ludwig 0.859 ** 0.959 *** 0.982 ***
Chat-Lueddecke 0.617 * 0.904 *** 0.904 ***
Chat-Meye 0.427 0.674 * 0.688 *
Chat-Otte 0.764 * 0.686 * 0.844 **
Chat-Schulze 0.482 0.672 * 0.559
Chat-Urbanek 0.355 * 0.575 *** 0.575 ***
Chat-Vielsmaier 0.340 0.603 ** 0.509 *
Chat-Weigelt 0.680 * -0.073 0.454
Chat-Zaske 0.999 *** 0.726 *** 0.740 ***
EPL - - -
GPL 0.798 *** 0.714 ** 0.837 ***
GUIDSL 0.412 *** 0.153 0.355 ***
MobileMedia8 0.486 *** 0.599 *** 0.651 ***
Notepad-Robinson 0.488 - 0.488
PokerSPL 0.619 0.966 *** 0.966 ***
Prevayler 0.284 *** 0.142 0.126
Prop4J 0.034 0.069 -0.034
Sudoku 0.240 - 0.240
TankWar 0.791 *** 0.090 0.473 *
UnionFind -0.258 0.775 0.544
Violet -0.021 0.763 *** 0.460 ***
Vistex 0.667 0.667 0.667

Table 28: Correlation between type errors and fragmentation of classes
(fragc)
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Figure 37: Correlation between type errors and fragmentation of classes
(fragc) (red = SPL type errors, blue = feature local type errors)
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A.3.4.2 Fragmentation of Features

Name SPL type errors FL type errors All type errors

BankAccountTP -0.296 -0.180 -0.289
BerkeleyDB 0.366 *** 0.356 *** 0.393 ***
Chat-Beck -0.187 -0.505 -0.365
Chat-Benduhn -0.525 -0.066 -0.228
Chat-Harbich 0.479 -0.062 -0.010
Chat-Huber -0.105 -0.051 -0.051
Chat-Ludwig -0.052 -0.149 -0.071
Chat-Lueddecke 0.290 -0.279 -0.157
Chat-Meye 0.180 -0.355 -0.288
Chat-Otte -0.257 0.529 0.122
Chat-Schulze 0.319 -0.141 0.189
Chat-Urbanek -0.344 -0.677 * -0.648 *
Chat-Vielsmaier 0.128 -0.109 0.138
Chat-Weigelt 0.361 0.290 0.360
Chat-Zaske -0.411 -0.522 * -0.492
EPL 0.280 - 0.280
GPL 0.200 0.158 0.227
GUIDSL 0.433 * 0.204 0.473 *
MobileMedia8 0.377 * 0.734 *** 0.662 ***
Notepad-Robinson 0.246 - 0.246
PokerSPL -0.645 * -0.016 -0.316
Prevayler 0.058 0.754 0.771
Prop4J -0.152 -0.558 * -0.253
Sudoku 0.372 - 0.372
TankWar 0.413 * 0.379 * 0.582 ***
UnionFind 0.595 0.595 0.592
Violet 0.247 * -0.280 ** 0.007
Vistex 0.148 -0.040 0.046

Table 29: Correlation between type errors and and fragmentation of features
(fragf )
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Figure 38: Correlation between type errors and fragmentation of features
(fragf ) (red = SPL type errors, blue = feature local type errors)
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