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Abstract

During the evolution of a software system, the performance often changes between
consecutive revisions of the system due to code modifications. Although some of
these changes are anticipated by the developer of the system (e.g., by using newer
versions of an underlying library), others are introduced unintentionally (e.g., by
causing a regression). Identifying and removing these accidentally introduced per-
formance bugs is crucial for user experience. However, identifying these performance
bugs in configurable software system is non-trivial because these bugs might only
have an influence on the performance of a small number of configurations of the
system.

In this work, we aim at identifying the revisions where performance changes are
introduced from different perspectives and relate them to the documentation of the
system via the change log and the commit messages. Overall, we consider 3 open-
source software systems and analyze their evolution of performance across various
releases. In more detail, we determined the performance of the configurations of the
systems and performance-influence models for the different releases that enable us
to determine the performance contribution and the relevance of individual config-
uration options and interactions among them, causing the performance changes of
the configurations.
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1. Introduction

Most of today’s software systems are highly configurable and provide a vast number
of possibilities to configure the behavior of the underlying program. Configuration
options can modify not only the functionality, the results, and the way of compu-
tation, but also non-functional properties like the execution time can be affected.
For system administrators or end-users, it might be of interest to find performance-
optimal configurations for their desired use case.

Over time, performance of software underlies changes, which can for example be
cause by the creators in the ongoing development. While producing new releases
the developers might introduce performance bugs and, thus, it would be very helpful
for them to put down those performance bugs to specific configuration options.

In this exploratory work, we aim at analyzing the evolution of performance in config-
urable software systems over time. Whenever refering to performance in this work,
we mean the execution time of the corresponding program. By learning trends which
might appear in the regarded time span, we want to provide generalizable insights
in the performance changes which configurable software systems underlie. The basic
approach of this work is to increase the level of granularity stepwise in the upcoming
research questions. Beginning with (1) the overall performance of a release, we fur-
ther investigate (2) the configurations of each release, and investigate it in even mor
detail by identifying (3) the influence of individual options or interactions among
them.

Siegmund et al. [SGAK15] provided so-called performance-influence models which
can be used to determine the influences of individual configuration options or in-
teractions among configuration options on the overall performance of a configurable
software system. These performance-influence models, for example, can be used as a
human understandable way to identify performance-intensive configuration options
or which configuration options do not affect the performance at all. As a result,
performance-influence models are a useful concept to get the most out of the con-
figuration space regarding performance.
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It is not sufficient for highly configurable software systems, to only measure the per-
formance of a few specific configurations, for predicting the performance evolution
of the entire system. Therefore, we will conduct different case studies where we con-
sider a high number of individual configurations and make the use of performance-
influence models, to gain insights into the performance changes appearing over time.
By using computed performance-influence models, we want to trace back perfor-
mance changes between different software releases to individual configuration options
or interactions among them. Finally, we compare our results with the documentation
provided by the software developers to detect possible congruence and to identify
whether the developers are aware of introduced performance changes. The results
of our case studies are meant to help the understanding of performance evolution in
highly configurable software systems which might lead to different toolsets helping
software developers to prevent or identify performance bugs.

For this exploratory research, we selected the following research questions, which
we consider appropriate for investigating the desired results explained above. The
questions will incrementally increase the level of granularity.

RQ1: How frequent and how strong are performance changes between consecutive
releases in configurable software systems?

RQ2: What is the fraction of software configurations that are affected by a perfor-
mance change between consecutive releases in configurable software systems?

RQ3.1: How frequent and how strong are performance changes between consecutive
releases influenced by individual configuration options and interactions among them?

RQ3.2: Which configuration options influence the overall performance of all con-
figurations the most and how does this change over time?

RQ4: Are performance changes between consecutive releases documented in the
version control system?

This thesis is structured as follows:

At first, in Chapter 2, we provide relevant background information which is neces-
sary to understand the concepts and terminology used in this work. Therefore, we
will explain the basics of configurable software and variability modeling followed by
the functionality of performance-influence models. The chapter is concluded by a
summary of version control systems.

The research questions above are explained in detail in Chapter 3, as well as the
operationalization, which describes how we structure the investigation of those ques-
tions.

The results of the proposed research questions and investigation methods are pre-
sented in Chapter 4. We will discuss the results for each research question directly
after we showed the outcomes for each case study.

Chapter 5 is used to discuss the internal and external validity of this thesis and its
results.

In Chapter 6, we present releated work which deal with performance in highly config-
urable software systems, the evolution of performance and the evolution of software
in general.
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Finally, Chapter 7 concludes this work and provides ideas for future work.
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2. Background

In the following chapter, we describe all relevant background knowledge which is
necessary to understand and follow the concepts which will be introduced in this
work. First, we introduce variability models in Section 2.1 followed by the explana-
tion of performance-influence models in Section 2.2. The chapter will be concluded
with a short outline on version control systems in Section 2.3.

2.1 Variability Models in Configurable Software

Most common big software systems provide a variety of configuration options which
may interact with each other to a certain degree. Configuration options are run-
time or compile-time parameters which are provided to the user by the software
developers. The configuration options enable the user to change the behavior, the
desired computation outcome and other paramters of the program. On the one
hand, compile-time options define parameters, which are already known at compile
time and can be set statically. On the other hand, run-time options can be chosen
while executing the program [ABKS13].

Not all arbitrary combinations of configuration options are valid. For instance,
there can be configuration options which mutually exclude each other. Exemplarily,
a program could provide two compression algorithms, where exactly one has to
be selected. This example and other types of relationships between configuration
options precisely define, which configuration option selections are valid and which
ones are not. There are two types of constraints that are important for this work.
The first one defines, which options are mandatory and which ones are optional.
The other crucial concept is the alternative group, which states, that precisely one
of the contained options has to be selected at a time [ABKS13].

Throughout this work, we use the following formal terminology when addressing
variability models. Let O be the set of all configuration options and C the set of
all configurations. A configuration c ∈ C is modeled as a function c : O → R which
assigns a selected value to every option. A binary option is represented by c(o) = 1



6 2. Background

if the corresponding option is selected (o = True, o ∈ O) and c(o) = 0 otherwise
(o = False, o ∈ O) [SGAK15].

To get an overview of all configuration options, there exist different approaches to
formalize the way of representing configuration options with so-called variability
models. Variability models describe all possible configuration options and relation-
ships among them in software systems. Each of the approaches has other applica-
tions, benefits, and disadvantages. In this work, we use the graphical representation
consisting of variability diagrams which are introduced in the following.

Variability Diagrams

If the primary goal is displaying all possible configuration options and their depen-
dencies, variability diagrams are much more appealing. Variability diagrams are a
graphical representation of variability models, which use hierarchical tree structures.
Each node of the tree represents a configuration option in the corresponding model.
A parent-child relation involves that the child feature is only selectable if the parent
feature also is selected. Parent nodes define more general concepts, whereas child
nodes specialize those abstractions. Several graphical notations illustrate additional
constraints, like for instance the information if an option is mandatory or optional
[ABKS13].

The graphical representation of mandatory or optional configuration options is il-
lustrated by a small circle on the child node, which is filled when the option is
mandatory ( ) and empty otherwise ( ). There are also ways of representing addi-
tional constraints concerning disjunctive combinations of configuration options. The
edges between a parent option and the child options are connected with an empty
arc if it concerns an alternative group, where only one option can be selected at a
time.

In Figure 2.1, we examplary show the variability diagram of a hyptothetic tool for
compression. It contains one alternative group where one is forced to select exactly
one compression algorithm (lzma, gzip, or lzo). Furthermore, there is an optional
configuration option, which can be used for splitting the compressed archive into
multiple files.

Compression Utility

Algorithm Split Archives

lzma gzip zpaq

Figure 2.1: Visual representation of a hypothetic compression tool. It consists of
a mandatory alternative group, where one compression algorithm has to be chosen
and an optional configuration option for splitting archives.
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2.2 Performance-Influence Models

When facing big software systems, there is a vast number of configuration options
which must be considered by the user. The Linux Kernel is one example with about
10,000 configuration options which lead to billions of different possible configura-
tions [LvRK+13]. The configuration options have a huge influence as well on used
algorithms, output quality, and functionality as on performance indicators like exe-
cution time or energy consumption. Often, configurable software systems allow the
combination of the offered configuration options. As a result, it is hard for users
to identify the configuration which suits their use case the best. Here, not only the
desired output is a relevant factor, but also the performance is of interest for the
user. For example, one could be interested in the optimal configuration regarding
the performance, and since often, not all configurations can be measured, heuristics
have to be used. In contrast to the performance-optimal case, overwhelmed by the
massive variety of configuration options, users often stick to the default configura-
tion or change only certain specific options. To face the stated problems and to
find a configuration which performs best, performance-influence models can be used
[SGAK15]. Their functionality will be described in the following.

Terminology

The primary goal of performance-influence models is to give a hint on the indi-
vidual influences of specific configuration options and interactions among them on
the overall performance of the software system. The individual influences and po-
tential interactions between multiple options find their way in a formula which is
easily understandable. Given the terminology which was introduced in Section 2.1,
a performance-influence model is a function Π : C → R that uses a configuration as
input and states the performance of the used configuration. Here, the performance
can be any measurable property which leads to interval-scaled data, e.g., execution
time or energy consumption.

An example performance-influence model for the previously introduced compression
utility example with the options lzma (L), gzip(G), zpaq(Z), and split (S) could look
like the following:

Π(c) = 100︸︷︷︸
Basic influence

Influence of L︷ ︸︸ ︷
−10 · c(L) +20 · c(G) + 50 · c(Z) + 2 · c(S) +

Influence of interaction of Z and S︷ ︸︸ ︷
0.5 · c(Z) · c(S)

It is essential to understand that there are parts, which describe both the influence of
an individual option and the influence of performance interactions. The influence of
the option lzma (L) is described by the term −10 · c(L). An interaction can be found
for the options zpaq (Z), and split (S) when looking at the term 0 .5 · c(Z ) · c(S ).
Furthermore, there is a basic influence, which is always part of the term, no matter
what configuration was inserted (coefficient 100 ).

In general, performance-influence models have the following form:
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Π(c) = β0 +
∑
i∈O

φ(c(i)) +
∑
i..j∈O

Φi..j(c(i)..c(j)) (2.1)

β0 describes a constant base performance which is shared by all configurations. φi
represents the individual influence of option i, whereas Φi,j denotes the influence of
the interaction between options i and j. Consequently,

∑
i∈O φ(c(i)) describes the

sum of the influences of all individual options and
∑

i..j∈O Φi..j(c(i)..c(j)) refers to
the sum of the influences of all interactions among all options.

2.2.1 Sampling Configuration Spaces

The computation algorithm for performance-influence models is based on measure-
ments which have to be taken for the considered software system. A measurement
consists of a configuration and the corresponding performance results. Since the
configuration space for big software systems can be huge and the number of config-
urations increases exponentially with the number of configuration options, it is not
possible to measure all configurations in the configuration space. Therefore, some
strategies for identifying relevant configurations exist. Sampling strategies come with
the observation that individual influences and interactions among a small number
of configuration options are more relevant compared to higher order interactions
[KSK+19]. Among others, the following sampling approaches can be used for binary
options [SGAK15]:

• Option-Wise Sampling (OW):
Option-wise sampling aims at minimizing the number of configurations while
having each option selected at least once. Furthermore, it tries to minimize
the number of selected options per configuration. The goal of this strategy is
to identify the influence of individual configuration options with the absence of
interactions and this way, interactions between options can be minimized in the
resulting configurations. For each binary option, a configuration is searched
with as many options disabled as possible under the constraint c(o) = 1 and
the given constraints among the options. Valid configurations c ∈ C can be
identified by using a constraint-satisfaction problem solver. This step then has
to be repeated for all options. Additionally, the strategy adds one configuration
with all configuration options deselected, as far as possible.

• Pair-Wise Sampling (PW):
Pair-wise sampling again tries to minimize the number of configurations and
the options per configurations. In contrast to option-wise sampling, for each
pair of options p ∈ O and q ∈ O, a configuration is calculated with as many
options disabled as possible under the constraints c(p) = 1 ∧ c(q) = 1. By
proceeding like this, a minimal set of configurations including all two-way
interactions can be determined.

• Random Sampling:
Random sampling, as the name suggests, randomly chooses configurations
from the configuration space. Of course, all constraints from the variability
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model have to be fulfilled. In this work, random samples are created by com-
puting all valid configurations of the entire configuration space and, afterwards,
picking random examples thereout. The reason for using random sampling is
the fact, that we cannot know the behavior of the individual configuraion op-
tions in advance. Therefore, random sampling provides a evenly distributed
selection of configurations of the entire configuration space. Random sampling
is an appropriate sampling strategie for huge configuration spaces, like it was
also used in [LvRK+13].

2.2.2 Learning Performance-Influence Models

Performance-influence models for software systems with a formula of the form of
Equation 2.1 can be derived by using an incremental learning algorithm. This
algorithm uses a set of measured configurations and the variability model of the
software system as input. The procedure incrementally computes relevant options
and the corresponding influence on the overall performance. In each round of the
process, a configuration option or an option interaction is added to the concluding
performance-influence model until no more relevant improvements can be achieved
[SGAK15].

To calculate relevant options for the model, candidate options are considered. These
options potentially can be added to the model if the algorithm decides that a par-
ticular option has a significant influence on the performance of the system. Initially,
the candidate options contain all single options that are provided by the variability
model of the software system.

For every candidate, a model is computed using multivariable linear regression. This
computation results in a term like 20 · c(E ) (given the example from above). With
the use of these terms, the algorithm tries to predict the measured performance
values and calculates an error rate for each candidate. The candidate with the
smallest error, then, will be added to the overall model. After that, new candidates
can be added. The selection of the new candidates will be described later. This
process is repeated until the error rate decreases only marginal or a threshold for
the expected accuracy is reached [SGAK15] [KSK+19].

Candidate Selection

Due to the enormous number of theoretically possible option interactions, some
heuristics have to be considered when adding candidate features in the algorithm
described above. In this work only one heuristic is used, namely hierarchical
interactions.

It was found that often only those interactions are relevant where also the individual
options had an impact on the overall influence. As a result, after a candidate was
selected in one round of the algorithm, only the interactions with that particular
option are added to the possible candidates [SGAK15].
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2.3 Version Control System

All common software projects these days use some source code management system
which helps the developers to keep track of all changes in the program code and
supports parallel developement. In this work, we will investigate different config-
urable software systems. The search for appropriate candidates for our case studies
required the software systems to use Git as their version control system.

Requiring Git as the version control system, is not a huge constraint, because it is
one of the most used version control systems these days and a lot of open source
projects use it to handle their code base and allow contributors distributed around
the world to collaborate. Among other things, it allows the users to assign messages
to their code changes when uploading them to the server (commit messages). These
messages usually are used to inform what exactly is intended by the corresponding
code changes (e.g., ”Fixed performance bug for compression algorithm lzma”.). Apart
from that, specific software versions can be tagged. Tagging is commonly done for
major software releases. Git enables the user to check out older releases of a software
system and get the commit messages between those versions with a simple API
[GDT]. In this work, we will use the tags to identify releases which are relevant
for our experiments and use the API to retrieve all commit messages between two
specific releases.



3. Methodology

In this chapter, we formalize the investigation of performance evolution in config-
urable software systems. First of all, we precisely define the previously outlined
research questions in Section 3.1. Afterwards, we explain how we assess to answer
the research questions in Section 3.2.

3.1 Research Questions

In this exploratory research, we investigate the behavior of performance in config-
urable software systems over time. For the performance analysis, we consider the
performance from different granularity levels. Firstly, we will have a look at entire
releases of configurable systems by investigating the overall performance of releases.
Afterwards, individual configurations will be investigated. The details will be an-
alyzed when we deal with the performance of individual configuration options or
option interactions. At last, we try to validate our findings by comparing them to
the documentation provided by the case study program’s owners. In this section,
each research question will be explained in detail.

RQ1: How frequent and how strong are performance changes between
consecutive releases in configurable software systems?

With the first research question, we want to observe, if there are performance changes
between consecutive releases of configurable software systems. Here, the focus lies on
whole releases and not on individual configurations or configuration options. Both
the frequency of performance changes between releases and the magnitude of those
changes are of interest.

RQ2: What is the fraction of software configurations that are affected
by a performance change between consecutive releases in configurable
software systems?

We assume that the detected performance changes in the first research question
are caused by individual configuration options, which are not present in all possible
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configurations of the software system. Therefore, we want to determine the number
of configurations, which are concerned with performance changes regarding consec-
utive releases. For example, we can imagine, that only a few configurations cause
the overall performance to change due to specific configuration options which are
selected.

RQ3.1: How frequent and how strong are performance changes between
consecutive releases influenced by individual configuration options and
interactions among them?

In this research question, we aim at identifying wheter single configuration options
or interactions among them cause the potentially detected performance changes be-
tween consecutive releases. One example we consider as possible is a performance
bug which was introduced between to releases and only impacts one specific config-
uration option because the corresponding change in the program code was related
to that particular configuration option.

RQ3.2: Which configuration options influence the overall performance of
all configurations the most and how does this change over time?

We want to find out, if these configuration options or option interactions have rele-
vance on the overall performance changes we consider in the first research question.
One can imagine an example, where an individual configuration option has a high
impact on the overall performance of configurations where this configuration option
is selected. However, if there are only a few configurations in the configuration
space, where this configuration option is selected, the regarded behavior may not
be of much interest. Therefore, we want to use a combined metric for deciding, if a
configuration option both has high influence and appears in most of the configura-
tions. Additionally, we want to explore the described approach over time and learn
how the relevance of configuration options or option interactions changes between
releases.

RQ4: Are performance changes between consecutive releases documented
in the version control system?

With this research question, we want to check if the results of the previous work
align with the documentation of the configurable software systems. Eventually, the
previously mentioned performance bugs are documented in the changelogs or commit
messages between two releases. If we can find corresponding text passages which
fit the results of the previous research questions, our methods and models can be
validated.

Experimental Dependencies

For the construction of our experiments, we consider the following empirical variables
which are valid for all our research questions.
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Independent Variables Since we consider different case studies for answering the
research questions, we count the used configurable software systems as independent
variables. These configurable software systems are modeled with different variability
models and have different configuration and release spaces. This is the reason why
these parameters are independent variables, too.

Dependent Variables All our research questions deal with the performance of
configurable software or its configurations. Furthermore, we aim at investigat-
ing the influences of individual configuration options by using the approach of
performance-influence models. Therefore, we consider both the execution time and
the performance-influence models as dependent variables of our studies.

Confounding Variables The experiments heavily depend on the choice of the
used sampling strategies, because they are used to select specific configurations
which the execution time is measured for. Also, the hardware for the performance
measurements could affect our results. To keep the experiment effort moderate,
those two mentioned confounding variables are fixed.

3.2 Operationalization

In the following section, we will explain our approach of investigating, evaluating
and answering the previously defined research questions. In Section 3.2.1, we will
describe the experimental setup consisting of our case studies and the performance
measurement design. Afterwards, our evaluation strategies are explained in Sec-
tion 3.2.2.

3.2.1 Experimental Setup

Our experiments consist of a high number of individual performance measurements
of different configurable software systems. In this section, we provide an overview of
those case studies in Section 3.2.1.1, followed by the configuration sampling strategies
in Section 3.2.1.2, and the measurement setup in Section 3.2.1.3.

3.2.1.1 Case Studies

In the first place, it is necessary to analyze the chosen software systems. In the
following section, we aim at describing their uses, the reason for choosing them, how
they are structured, and what exactly gets measured. We selected three software
systems of two different fields. Two of them are compression utilities, and the other
one is a video encoding software.

While selecting potential candidates for our case studies, we only considered software
systems which use Git as their version control system. Having Git as a base for
retrieving different revisions of a software system is convenient, because of its tagging
features. The tags assigned to specific commits were used to identify major releases
of the regarded software system. There are several reasons for only using releases
in our case studies. Usually, releases have a robust state which has a minimum of
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bugs. Furthermore, there might be some states between two releases which do not
compile at all because of some critical software errors.

For each software system, we defined a variability model which contains configura-
tion options that are valid in all releases. Although new functionality and, thus, new
configuration options are added to software systems in newer releases, we excluded
these configuration options to maintain comparability between releases. Addition-
ally, to keep the measurement effort reasonible, we only focused on configuration
options that might have an influence on the output quality or the execution time.
To this end, we used the provided documentation of the configuration options. There
usually are options in programs, which modify the output in the logs or are used for
choosing a filename for the output. We exculed such options, because we assume
that these configuration options do not influence the resulting performance.

In the following sections, we discuss the different used software systems separately.

lrzip

lrzip is a compression utility with high performance for larger files. If the files
which have to be compressed, are bigger than 10-50 MB and a sufficient amount of
RAM is available, the execution time is the best [Kol]. The tool provides different
compression algorithms which differ in execution time and the quality of the output.
There are fast options with a low compression rate (e.g., lzo), meaning that the
resulting files are bigger, and slow options with a high compression rate (e.g., zpaq)
[Kol].

Measurement Space. In this case study, we considered all releases which were
available in the Git repository, namely all tagged releases between v0.45 and v0.631.
These releases span across a period between March 30th 2010 and October 21st 2016.
In total, we analyzed 38 releaes with 187 configurations each.

Root

Compression Method Niceness Level

lzma gzip2 bzip2 lzo zpaq No Comp. 1 2 3 4 5 6 7 8 90 5 10 15 19

Figure 3.1: The variability model of lrzip which consists of three mandatory alter-
native groups (Compression Method, Niceness, and Level).

Variability Model. The variability model of lrzip generally consists of three dif-
ferent alternative groups. These are the used compression method, a level number,
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and a niceness value. The graphical representation of the model is shown in Fig-
ure 3.1. All those options are runtime options which are available in all regarded
software releases.

The user has to choose one method which shall be used for compression. Accord-
ing to the documentation of lrzip, these modes differ in the output quality and the
execution time. The alternative group Compression Method summarizes the user’s
choices in this concern and additionally provides the option No Backend Compres-
sion which deactivates compression completely.

The configuration options Level (values between 0 and 9) and Niceness (values
between 0 and 19) are numeric options which we converted to alternative groups
consisting of binary options. The configuration option Level is used to set the
compression level. The compression level is strongly related with the memory con-
sumption of the program. The configuration option Niceness can be used to set the
priority scheduling for the lrzip backup or decompression. To keep the configuration
space in an manageable size, we did not consider all possible numeric values for the
alternative group Niceness. Therefore, we just used niceness values between 0 and
19 with step size 5.

GNU XZ

The tool GNU XZ or XZ Utils is a free general-purpose data compression software
with a high compression ratio. It has a similar command line interface to gzip
and provides its file format for compressed data ”.xz”. The software system is the
successor of LZMA Utils, thus the file format ”.lzma” is also supported [Proa].

Measurement Space. The Git repository of GNU XZ provides 14 tagged releases
with version numbers between v5.0.0 and v5.2.4. There are also some alpha or beta
releases, which we did not consider in our studies. According to the git repository,
the regarded revisions were released in the period between October 23rd 2010 and
April 29th 2018 [Proa]. In total, we measured 14 releases with 179 configurations
respectively.

Root

Format No-Sparse Level Extreme Check

xz lzma raw 0 1 2 3 4 5 6 7 8 9 none crc32 crc64 sha256

Figure 3.2: The variability model of GNU XZ consisting of two optional config-
uration options No-Sparse and Extreme, and three mandatory alternative groups
Format, Level and Check.
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Variability Model. GNU XZ offers three big mandatory alternative groups in its
variability model. Mandatory in this case means that there are defaults values for
each group if the user does not specifically select options. The most important one
is the group Format, which the user can use for controlling the output file format.
The quality of the compression can be set by varying the Level value between 0 and
9. Lower levels result in a fast compression with a lower compression ratio, whereas
higher levels take more time but offer a higher compression ratio. With higher levels,
also the memory consumption rises. The third alternative group is called Check and
deals with the integrity checks, which are calculated for the uncompressed data and
stored in the compressed file. There are three different checks available, namely
crc32, crc64, and sha256. Besides, the user is allowed to disable integrity checks
with the option none completely.

Additionally, there are two optional configuration options, which can be selected
by the user. No-Sparse disables the creation of sparse files and Extreme uses a
slower variant for the selected compression level to get a better compression ratio.
Figure 3.2 shows the visual representation of the described variability model.

libvpx VP8

VP8 is a video codec for compressed video files which is supported by the WebM
file format. It is mainly used in web applications and therefore is present in today’s
typical web browsers. The library libvpx contains the reference implementation of
the video encoding format VP8 and is developed by the WebM Project [Prod].

Measurement Space. For our case studies, we used the versions between v0.9.6
and v1.7.0 which are the major releases provided by the Git repository. There are
also older releases in the repository we did not consider, because of there utterly
different structure. The used releases were published in the repository between 4th
March 2011 and 24th January 2018 [Prob]. This case study contains 11 releases,
whereas each release will be measured in 488 different configurations.

Variability Model. During our studies of the documentation provided by the
WebM project for the video codec VP8, we came across the variability model shown
in Figure 3.3.

First of all, there is an alternative group affecting the encoding quality and speed.
The contained options are best, good and rt (real-time). best gives the best quality
output but is the slowest of the mentioned options. good is a trade-off between
quality and execution time. When choosing the real-time option, the encoder auto
adjusts the trade-off between quality and speed with a CPU utilization target in
mind [Proc].

The video encoder provides specific options to influence the bitrate of the output.
These are CBR (constant bitrate) and VBR (variable bitrate). The constant bitrate
option aims at keeping the bitrate stable between buffering constraints. VBR dis-
tributes the bits between different frames or sections to get a maximum of output
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Root

Passes

Lag In Frames

Resize Allowed

Disable Kf

End Usage

Auto Alt Ref

Noise Sensitivity

Sharpness
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Figure 3.3: The variability model of libvpx VP8 consisting of one optional configu-
ration option Disable Kf and ten mandatory alternative groups.
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quality. For tough sections, more bits are allocated to prevent a drastic quality drop
[Proc].

VP8 provides both one-pass and two-pass encoding. When choosing the one-pass
option, the passes the video only one time and processes it directly. The two-
pass filter does two separate walks through the data. The first pass is used to
collect statistical data about the frames which then can be used to better allocate
bits between different frames or sections of the video. Afterwards, the second pass
processes the video given the data from the first pass. Two-pass encoding usually
delivers better quality but cannot be used for some use cases like live streams [Proc].

Apart from the previously mentioned configuration options, there are a few other
ones, which may influence the output quality and the execution time, according
to the documentation. These configuration options need a deeper understanding
of video encoding in general, and thus, we want to mention them for the sake of
completeness. Auto Alt Ref enables the Alternate Reference Frame mode which can
substantially improve quality in many situations, but is only available for two-pass
encodes. Arnr Max Frames and Arnr Maxstrength also deal with the mentioned
Alternate Reference Frame mode. Sharpness and Noise-Sensitivity address internal
filters which are applied during the encoding process. VP8 supports temporal and
spatial resampling which change the scale of certain frames and can be controlled
by the parameter Resize-Allowed. The keyframe placement can be disabled by the
option Disable Kf which might also affect the overall performance of the encoder
[Proc].

3.2.1.2 Configuration Sampling

An essential step before measuring the performance of the selected case studies is
to identify the set of configurations which shall be considered. Therefore, [SGAK15]
provided different sampling strategies, which were described in Section 2.2.1. Since
we only used binary configuration options in our case studies, the sampling strategies
confine to mainly two of them. We considered option-wise and pair-wise sampling
due to their simple way of constructing different valid configurations and their deter-
ministic behavior. After applying the two mentioned approaches, we added the same
number of random, but valid samples, which are not already covered by the previous
strategies. By going that way, we do not specialize in specific configuration spaces.
The software collection SPL Conqueror [Pas] provides algorithms which were utilized
to calculate sets of configurations according to the previously mentioned strategies
for each case study respectively [Sie].

3.2.1.3 Performance Measurements

After sampling a set of configurations, each case study can be measured accordingly.
To record the execution times of the regarded software systems, suitable workloads
and measurement settings have to be identified.

Workloads

Since we consider two kinds of software systems, we found two corresponding work-
loads. There is a need for the workloads to have a certain minimal size because we
want to reduce the ratio of noise and basic influence in our measurements.
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For the compression tools GNU XZ and lrzip we used files of the Canterbury Corpus
[UoC] which is a well-known and often used workload for compression utilities. We
combined two of the offered corpora, namely The Canterbury Corpus (4 times) and
The Large Corpus (6 times). This way, we achieve diversity in the contained files and
the necessary size. The compression tools in our case studies are not able to compress
multiple files at once. Therefore, we packaged the corpora in an uncompressed tar
archive which then can be picked up by the programs.

For the video encoding tool libvpx VP8, we used the movie Big Buck Bunny [Fou].
This video is often used as a benchmark for all sorts of video related tests. Only
the first minute of the film with a resolution of 1080p was used to measure the
performance of the video encoder to keep the execution time in an acceptable range.

Measurement Settings

Each configuration was measured three times with the workloads discussed above. In
addition to the configuration options which are part of the sampled configurations,
we added options to control the input and output filenames as well as the logs.
This was necessary, to automate the measurement process. For the tool lrzip we
additionally had to provide the option ”-T 0” (until v0.552 ) or ”-T” (from v0.560 ),
to prevent the program from doing a compressibility test before the real compression,
because this test would distort the measurement results.

After measuring, the standard deviation of the three recorded execution times was
computed. We repeated all measurements of configurations with a standard devi-
ation of more than 10%. The resulting execution time value in milliseconds which
will be used for evaluation is the mean value of the three measurements.

Measurement Hardware

All our performance measurements were performed on workstation PCs which all
have the exact same hardware. The computers are equipped with 16GiB RAM and
the Intel Core i5-4590 with 4 corse and a base frequency of 3.3GHz.

3.2.2 Evaluation

The following section will provide a detailed explanation of our approaches which
are used to answer our research questions, which we defined in Section 3.1. For
each research question, there will be a passage which explains our corresponding
experiments.

3.2.2.1 RQ1: Overall Execution Time Evaluation

Our first research question deals with performance changes between consecutive
releases in general. This means we don’t want to analyze the different configurations
separately. Instead, we try to get an overall picture of the execution time trend over
time.

Nonetheless, our approach for identifying trends across different releases of the soft-
ware systems relies on all considered configurations. It does not make sense only to
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investigate one particular configuration of the program because that specific config-
uration most certainly does not reflect the execution time behavior of other configu-
rations, where utterly different configuration options are selected. Therefore, we try
to take all measured configurations into consideration by averaging the measured
execution times per release, respectively. The following formula is used to calculate
the average execution time AVG per release r ∈ R where R is the set of all releases:

AVGr =

∑
c∈C tcr
|C|

,

whereas C is the set of all measured configurations and tcr depicts the execution
time of configuration c ∈ C in release r ∈ R.

After computing the average execution time per release, we can compute the change
rate CR between the releases r and r + 1 as follows:

CRr,r+1 =
AVGr+1 − AVGr

AVGr

If the mean execution time between two consecutive releases changes more than 20
percent (|CRr,r+1| > 20%), we recognize this as a substantial performance change.
Since the maximum standard deviation between measurements was set to 10 percent
during the measurement stage, choosing twice the standard deviation for comparing
two different releases is a conservative estimation. In the worst case, both releases
were measured with a standard deviation of 10 percent in opposite directions. If the
mean execution time across all configurations exceeds double the standard deviation,
we can be certain that we deal with a real performance change. We call releases
with a substantial performance change outstanding releases.

After identifying releases which underlay performance changes, we additionally are
able to make statements about the strength of the performance changes by again
investigating the change rates between the mean execution times across all configu-
rations of consecutive releases. Obviously, larger change rates between the mean ex-
ecution time across all configurations indicate more significant performance changes
between successive releases.

3.2.2.2 RQ2: Configuration Execution Time Evaluation

In contrast to the first research question, which deals with releases as such, the sec-
ond research question points at specific configuration inside the investigated releases.
It is possible, that a release with an relevant performance trend found with RQ1 only
has substantial performance changes in certain configurations. For example, a high
change rate of mean execution times can be produced by only one configuration,
which has a vast performance difference while the other configurations do not show
much change. It is also possible that all configurations show a small but significant
performance change, which again results in a performance change rate, which is of
interest for RQ1.

To address the stated behavior and to increase granularity, we focus on configurations
in particular with this research question. Again, we observe the change rates between
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consecutive releases, but for individual configurations in this case. Since the same
set of configurations is measured for every release, we can compare the exact same
configuration in two consecutive releases and compute the corresponding change rate
CR with the following formula:

CRcr,cr+1 =
tcr+1 − tcr

tcr

For the same reasons as in Section 3.2.2.1, we consider the performance change rate
as substantial, if it exceeds 20 percent.

By counting the configurations with substantial changes (|CRcr−1,cr | > 20%), we can
state if only a few configurations contributed to the overall performance difference
or if more configurations are affected by a performance change. The corresponding
configuration count CCr is defined as:

CCr = |{c | c ∈ C, |CRcr−1,cr | > 20%}|

We can calculate the fraction of configurations that are affected by a performance
change by computing the ratio between configurations with a substantial change and
all measured configurations.

Furthermore, we aim at identifying releases, where the fraction of configurations
with substantial performance changes is very high. Therefore, we compute the mean
µ and the standard deviation σ of the amounts of configurations with substantial
changes (CCr). We call a release an outstanding release regarding this research
question if CCr > µ+ 2 · σ.

3.2.2.3 RQ3: Performance-Influence Model Evaluation

After evaluating RQ2, we are able to tell, if specific configurations are affected by
substantial performance changes. Since a configuration is defined by the selected
configuration options, we can again increase the level of detail in our investigation
when looking at individual configuration options of option interactions. If only
specific configurations show a substantial performance change, it might be possible,
that a particular configuration option or option interaction causes that behavior.
We will use the approach of performance-influence models to analyze the described
situation.

Performance-Influence Models

After measuring the execution times for all sampled configurations, we are able
to compute performance-influence models per release of the corresponding software
system. Therefore, the approach by Siegmund et al. [SGAK15] which is described
in Section 2.2 can be applied. SPL Conqueror [Pas] provides an implementation for
the learning algorithm which takes the performance measurements as an input and
determines performance-influence models for the particular software revision.

When learning a performance-influence model using the incremental algorithm de-
scribed by Siegmund et al. [SGAK15], the procedure decides which configuration
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options or option interactions are the most promising ones for predicting the mea-
sured values (see Section 2.2.2). This is the reason for some options being part of
the resulting performance-influence model and some options which are absent. The
same holds for option interactions. As a result, the performance-influence models
of the different measured releases of the software systems used in our case studies
may not include the same terms. Although, one calculated performance-influence
model is a good estimation for the corresponding software revision, the performance-
influence models of different software revisions might be not comparable, because
their terms consider different configuration options.

Nevertheless, the resulting performance-influence models are a good indicator for
the maximum degree of interaction which influences the overall performance signifi-
cantly, because the incremental learning algorithm always chooses the best candidate
out of the candidate set. Here, the algorithm might favor an interaction over an in-
dividual option, if the interaction has a higher influence. Thus, if an interaction of a
higher degree is relevant for the model, it is chosen by the incremental approach. We
use the highest degree of interaction found in the results of the incremental approach
in the following new approach.

Fitting a Performance-Influence Model. Due to the lack of comparabil-
ity when using the incremental approach, we suggest a new method of learning
performance-influence models. The main problem of the approach from the previ-
ous section is that we cannot affect the choice of terms and thus, ending in different
selected terms in the models from different software revisions. Our new approach
is to specify the terms which we want to have in the model beforehand. As a re-
sult, the performance-influence models of all measured software revisions have the
same set of terms which leads to improved comparability. SPL Conqueror provides
the option to pass a specific set of terms which then will be part of the calculated
performance-influence model.

The choice of terms which will be handed over to SPL Conqueror is crucial. To avoid
the chance of missing specific relevant terms, we decided to choose all possible terms
up to a certain degree of interaction. First of all, this means that we use all single
options including the root option. Additionally, we take all possible combinations
of individual options to construct terms for the interactions. These combinations
have as many members as the degree of interaction we want to model. The de-
gree of interaction describes, how many invidivual options are interacting with each
other. We use the previously described incremental model to decide, which degree
of interaction is the highest we wish to create terms for.

Shifting in Alternative Groups. The approach of choosing all possible terms
up to a certain degree of interaction results in a problem which again might worsen
the comparability of different performance-influence models. If there are manda-
tory alternative groups in the variability model, the algorithm can ”shift” influences
between the alternative group, the root option, and between different elements of
the alternative group. The following example illustrates the problem by providing
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Root (R)

Group 1 (G1) Option 1 (O1)

Alternative 1 (A1) Alternative 2 (A2) Alternative 3 (A3)

Figure 3.4: Exemplary variability model for the shifting issue regarding mandatory
alternative groups.

two different performance-influence models which are equivalent. The underlying
variability model is shown in Figure 3.4.

Π1(c) =

βR︷︸︸︷
100 +βG1 ∗ c(G1) +

βG1︷︸︸︷
500 ∗c(A1) +

βG2︷︸︸︷
400 ∗c(A2) +

βG3︷︸︸︷
300 ∗c(A3) + βO1 ∗ c(O1)

Π2(c) = 200︸︷︷︸
βR

+βG1 ∗ c(G1) + 400︸︷︷︸
βG1

∗c(A1) + 300︸︷︷︸
βG2

∗c(A2) + 200︸︷︷︸
βG3

∗c(A3) + βO1 ∗ c(O1)

The reason for Π1(c) and Π2(c) being equivalent is the fact that both lead to the
same predictions for all configurations. Since the alternative group is mandatory,
exactly one of the three alternatives (A1−3) has to be selected. As a concequence,
any random number can be ”shifted” between the coefficients of the group (βG1−3)
and the coefficient of the root option (βR). In the provided example an influence
value of 100 is shifted from the alternative group to the root option. The same form
of shifting can happen between the alternatives of the alternative group (A1−3) and
the parent of the alternative group (G1).

We overcome this issue by removing some specific entries from the set of terms which
we fit a performance-influence model for. By deleting the parent of all alternative
groups and one random option for each mandatory alternative group in the set of
requested terms, we avoid the described issue. We also need to remove all interac-
tions wich contain the removed terms. Figure 3.5 shows a variability model with the
removed terms for the previously given example.

The illustrated approach comes with one disadvantage. By randomly removing one
option per mandatory alternative group, the learning algorithm is no longer able
to calculate the influence on the performance for that particular option. However,
the influences of the removed terms are part of the root option in that case. This
behavior is equal for all resulting performance-influence models of all revisions and
thus, leads to improved comparability.

To prevent the described artifact of shifting between alternative groups, we withdrew
specific terms for each case study, which are listed in Table 3.1.
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Root (R)

Group 1 (G1) Option 1 (O1)

Alternative 1 (A1) Alternative 2 (A2) Alternative 3 (A3)

Figure 3.5: Removing terms to avoid shifting regarding mandatory alternative
groups.

Table 3.1: Withdrawn terms for fitting a performance-influence model for the case
studies lrzip, GNU XZ, and libvpx VP8. For numeric configuration options, the
name of the option is given with the withdrawn value in parentheses.

lrzip GNU XZ libvpx VP8

No Backend Compression Raw Passes (2)
Level (9) Level (9) Lag In Frames (25)
Niceness (19) crc64 Resize Allowed (1)

CBR
Auto Alt Ref (1)
Noise Sensitivity (6)
Sharpness (7)
Arnr Max Frames (15)
Arnr Strength (6)
Rt

Intermediate Models It is possible that not all configurations of all releases
of the conducted case studies can be executed successfully. In the case of failing
measurements due to software bugs, there is the need of intermediate performance-
influence models in our evaluation. If a release contains configurations, which can
not be measured, the performance-influence model can only be learned with fewer
measured configurations as in the other releases with only successful configurations.
In that case, we calculate additional performance-influence models for the neighbor-
ing releases, where the the problematic configurations are excluded. We use these
intermediate models to compare the release to the one with failing configurations.

If there are multiple neighboring releases which have failing configurations, we take
the intersection of successful configurations to calculate intermediate performance-
influence models which then can be used for comparison approaches.

Evaluation of the Performance-Influence Models

The goal of RQ3 is to identify specific configuration options or option interactions
which are affected by performance changes between consecutive releases. After cal-
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culating performance-influence models for every release as described above, we can
compare the computed results.

RQ3.1: Identifying affected configuration options. Similar to the investiga-
tion of single configurations in RQ2, we want to compare the calculated coefficients
βo, o ∈ T , whereas T is the set of all possible configuration options and option
interactions. Respective change rates CR can be computed as follows:

CRβor ,βor+1
=
βor+1 − βor

βor

If the change rate surpasses 20 percent (|CRβor−1 ,βor
| > 20%), we regard the cor-

responding configuration option or option interaction to have a substantial change
rate. The arguments for selecting 20 percent as lower bound are the same as previ-
ously. Again, we can count the configuration options and option interactions which
have a substantial (> 20%) change rate in their coefficients between two consecu-
tive releases and make statements on how many of them are involved in the overall
performance change. The corresponding option count OCr is defined as:

OCr = |{o | o ∈ T, |CRβor−1 ,βor
| > 20%}|

Similar to RQ2, we call a release an outstanding release regarding this research
question, if OCr > µ+ 2 · σ. Here, µ is the mean and σ is the standard deviation of
the amounts of configuration options or option interactions with substantial changes
(OCr).

RQ3.2: Relevance Ranking of the Configuration Options. We assume that
not all configuration options or option interactions have the same degree of relevance
concerning the overall performance of a release across all configurations, which was of
interest in RQ1. To make statements about the relevance of configuration options,
we come up with the following metric, which allows us to rank the configuration
options and option interactions according to their relevance.

We define the Relevance Factor (RF ) for a specific configuration option or option
interaction o ∈ T for a specific release r ∈ R as:

RF r(o) = norm(βor) ∗ f(o),

whereas norm(βor) is the normalized coefficient of the configuration option or op-
tion interaction o in the performance-influence model of release r and f(o) is the
frequency of configurations with o selected. Normalizing, in this case, means that
the maximum coefficient in a performance-influence model is set to 1 and all other
coefficients are scaled accordingly to a value between 0 and 1. Since the frequency
f(o) also has to be a value between 0 and 1, the resulting relevance factor must be
between 0 and 1.
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The computed relevance factors allow us to compare the relevance of all considered
configuration options and option interactions for a specific release. Configuration
options or option interactions with a larger relevance factor are regarded as more
influential on the overarching performance of the release.

The relevance factors of a configuration option or option interaction can be compared
between the releases. Similar to the previous research questions, we calculate the
mean µ and the standard deviation σ of all relevance factors of all releases (RF r(o)).
Whenever RF r(o) > µ+2·σ, for an arbitrary release r ∈ R, we call the configuration
option or option interaction o ∈ T a dominating configuration option or dominating
option interaction.

3.2.2.4 RQ4: Documentation Analysis

RQ4 aims at confirming the results of the previous research questions. If we can find
matches between the documentation and our calculated results, it strengthens our
statements. Configuration options and option interactions with a substantial coeffi-
cient change rate seem to underly program code changes between the corresponding
releases. The developers of the regarded software systems provide documentation
in the form of changelogs for every release and commit messages in the version con-
trol system Git. If program code was changed, which is only used by a specific
configuration option, there is the chance that exactly this change is documented
either in the changelogs or in a commit message. We, therefore, try to find appear-
ances of names of configuration options in the documentation between two releases,
where our computed results also identified a substantial change in the corresponding
coefficient.

To find the matches between documentation and our results, we implemented the
following search. Firstly, this investigation searches the names of configuration op-
tions in the changelogs and in the commit messages. For every appearance, we
can tell, between which two consecutive releases the corresponding code change was
implemented. We then try to find those appearances in the respective performance-
influence models, meaning that the coefficient of the configuration option changed
substantially in the two respective consecutive releases.

We define the set of options o, which appeared between the releases r and r + 1 in
the commit messages or in the changelog respectively as:

Tcommitr = {o|o ∈ O found in commit messages between r and r − 1}

Tchangelogr = {o|o ∈ O found in changelog between r and r − 1}

The corresponding term counts TCcommitr and TCchangelogr are defined as follows:

TCcommitr = |Tcommitr |

TCchangelogr = |Tchangelogr |
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The sets of matches between the occurences in the documentation (commit messages
or changelogs) and the computed performance-influence models are denoted as:

Mcommitr = {o|o ∈ O, o ∈ Tcommitr ,CRβor−1 ,βor
> 0.2}

Mchangelogr = {o|o ∈ O, o ∈ Tchangelogr ,CRβor−1 ,βor
> 0.2}

Respectively, the amounts of matches then are:

MCcommitr = |Mcommitr |

MCchangelogr = |Mchangelogr |

We do not assume to find all the term names in the texts as they are called in our
model. For example, we do not believe to find the word ’level1’ in the documentation
texts. However, it might very well be possible to find the word ’level’. This is the
reason, why create dictionaries, which contain words to search for, when dealing
with specific configuration options (see Section A.1). Whenever talking about option
interactions, we try to find all names of all configuration options of the interaction
in the corresponding text passage of the documentation.

For every case study, we compute the match ratios MRcommit and MRchangelog. The
ratios describe, which fraction of the occurences of option names in the documenta-
tion resulted in a match with the corresponding performance-influence model.

MRcommit =

∑
r∈R TC commitr∑
r∈R MC commitr

MRchangelog =

∑
r∈R TC changelogr∑
r∈R MC changelogr
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4. Results

Next, we describe the results of the research questions for the case studies. After
presenting some basic information of the executed performance measurements in
Section 4.1 there will be a section for every research question which presents the
results according to our operationalization described in Section 3.2. All following
sections will contain the results for all case studies, we worked on. The sections for
the research questions will be concluded with a discussion of the results.

4.1 Experiment Results

The performance measurement experiments described in Section 3.2.1 resulted in
a vast number of execution time values for all combinations of releases and config-
urations. Table 4.1 summarizes some key figures, which provide a rough overview
of the results for each case study. It contains information about the investigated
measurement space and the maximum and minimum measured execution time val-
ues per case study. Indeed, all presented execution time values are the average
of three independent measurements of the same configuration in the same release.
As already stated in Section 3.2.1.3, the maximum standard deviation of the three
measurements was limited to 10%.

lrzip

As shown in Table 4.1, the mean measured execution time values for lrzip range
between 810.71ms and 127,579.33ms. The fastest value was accomplished in the
most recent release (v0.631 ), whereas the slowest measured execution time can be
found in an older release (v0.5.2 ), which however is not the oldest release in this
case study.

Two subsequent releases contained configurations which could not successfully be
measured. When executing those configurations, the program was interrupted due to
a software bug. In release v0.550, 45 configurations could not be measured success-
fully, in release v0.551, 28 configurations lead to this problem. The 28 configurations
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Table 4.1: Basic information about measured experiment results of the three case
studies lrzip, GNU XZ and libvpx. There are metrics about the measurement space,
the minimum, and the maximum measured execution times.

Metric lrzip GNU XZ libvpx VP8

Number of Releases 38 14 11
Number of Config. 186 178 488
Measured Variants 7,068 2,492 5,368
Max. Time [ms] 127,579.33 30,399 120,322.33
Release v0.5.2 v5.2.3 v1.4.0
Min. Time [ms] 810.71 14,151 930.66
Release v0.631 v5.0.0 v0.9.6

of the second release are a strict subset of the 45 failing configurations in the pre-
ceding release. We found no obvious similarity in the selected features of the failing
configurations which may have caused the issue.

GNU XZ

The 2492 individual measurements for GNU XZ resulted in a range of measured
execution times between 14,151ms and 30,399ms. The slowest measured value was
found in release v5.2.3, which is the second youngest release we investigated. The
fastest performance was measured in release v5.0.0, which is the oldest release in
this study. The stated values can be found in Table 4.1.

libvpx VP8

For the 11 investigated releases of libvpx VP8 we measured 5368 individual perfor-
mance values, as shown in Table 4.1. The fastest performance was found in release
v0.9.6 with a value of 930.66ms. The slowest performance was measured in release
v1.4.0 with a mean execution time value of 120,322.33ms. Release v0.9.6 is the
oldest release in our investigation, where as release v1.4.0 is situated in the middle
of our rlease list.

4.2 RQ1: Overall Execution Time Evaluation

The first research question (Section 3.1) deals with performance changes between
two consecutive releases and overall trends we can find over time. Our approach
for addressing this issue is to investigate the mean execution time across all config-
urations per release as described in Section 3.2.2.1. Therefore, we search for pairs
of consecutive releases, where the mean execution time across all configurations
changed more than 20%. We call those changes substantial.

In Figure 4.1, we show the mean execution time value per release across all con-
figurations AVGR for all case studies. The blue line indicates the trend over time
of the mean execution time while the grey area illustrates a channel of 20% above
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and below the average execution time. Whenever the blue line exceeds the grey
area, a substantial performance change between the two regarded releases took place
(CRR,R+1 > 20%). In case of lrzip, this happens exactly three times (v0.45 - v0.46,
v0.520 - v0.530, v0.543 - v0.544 ). For GNU XZ, we did not detect this event at all
and for libvpx VP8, we found one occurrence of a substantial performance change
(v1.2.0 - v1.3.0 ).

As stated in Section 3.2.2.1, we want to make statements about the strength of
performance changes between the identified consecutive releases with substantial
changes. In Table 4.2, we show the exact change rates of the previously determined
releases with change rates above 20%. The height of the percentage value indicates
the strength of the corresponding performance change from one release to the other.
For the case study lrzip, we can see two performance improvements of around 57%
and one performance decline of 38%. For GNU XZ, there was no substantial per-
formance change at all. libvpx VP8 showed one performance enhancement by 58%.
All in all, we found three outstanding releases for lrzip and one for libvpx VP8.

Table 4.2: Change rates of substantial mean execution time changes for all case
studies.

Case Study Releases CRR,R+1

v0.45 - v0.46 -56.5%
lrzip v0.520 - v0.530 -56.8%

v0.543 - v0.544 +37.5%
GNU XZ - -
libvpx v1.2.0 - v1.3.0 -58.3%

Discussion

The results shown above indicate that we are able to make statements on the over-
all performance trend between different releases of configurable software systems.
Therefore, we did not only take specific configurations into account but had a look
at a wide variety of different configurations of the configurable software systems. By
averaging the execution times across all configurations for one release, we get a first
impression of how the performance of that particular release behaves in general. If
we had only measured a few specific configurations, we would not have been able
to make statements on the overall release. We found only a few substantial changes
in our case studies, whereas most of those changes appeared in older releases of
the case studies. The pairs of consecutive releases, we did not consider having a
substantial performance change may have specific configurations which underly per-
formance inprovements or reductions, which we then cannot detect when calculating
the mean value. Also, the releases with substantial performance changes may have
many configurations which did not change much regarding the execution time and
the same time this release may contain only one specific configuration which has a
massive performance in- or decreasement. This then can be sufficient to classify the
whole release as substantial.
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Figure 4.1: Average Execution times per release (AVGr) across all configurations
for case study (a) lrzip, (b) GNU XZ, (c) libvpx VP8. The mean execution time
across all considered configurations is illustrated by the blue line respectively. The
grey area sketches the substantial change channel of 20% around the mean values.
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Summary: We found three outstanding releases for lrzip with the change rates
−56.5%, −56.8%, and +37.5%, and one for libvpx VP8 (−58.3%). The case study
GNU XZ had no substantial changes in the mean execution time.

4.3 RQ2: Configuration Execution Time Evalua-

tion

In contrast to RQ1, we now will take a more in-depth look into the individual
configurations of each case study in the following. We want to know if there are
specific configurations with performance changes and how strong these performance
changes are. Therefore, we will divide this section into three parts for the three
different case studies in this work.

lrzip

A first impression of the behavior of all configurations in all measured releases can
be gathered in Figure 4.2. Each row represents one release, each column stands
for one configuration. Therefore, each cell of the heatmap describes the average of
three measured execution times for the corresponding configuration and revision.
Low execution times are illustrated with a light yellow color ( ), high execution
times with a dark red color ( ). The failing configurations in the releases v0.550
and v0.551 are represented by the black colored cells ( ).

When examining the heatmap from Figure 4.2, we can identify the big range of
execution time values which was already stated in Table 4.1. The three substantial
performance changes between consecutive releases we detected in Section 4.2 can also
be found in this graph. The first substantial performance change was identified be-
tween release v0.45 and v0.46 and on closer inspection, can be seen in the heatmap.
The cells with a deep red color for release v0.45 (e.g., around the configuration
112 ) change to a brighter tone in the row for release v0.46. Most configurations
change there color to a brighter (faster) tone when comparing the rows for release
v0.520 and v0.530. Between release v0.543 and v0.544, the tone gets a little bit
darker again, which indicates an overall performance decline. Hence, all substantial
performance changes declared in Table 4.2 can be seen in the heatmap.

On further inspection of the heatmap’s columns in Figure 4.2, we can see config-
urations or groups of configurations which have nearly the same color throughout
several releases or throughout the whole regarded time span. This means that these
configurations have a similar execution time throughout the corresponding releases.
The configurations inside one release can have considerable differences in execu-
tion times. The fastest configurations can be found in the magnitude of 1,000ms,
whereas the slowest configurations in the same release can have execution times
in the magnitude of 100,000ms. The slow configurations are slower by a factor of
around 100.

We calculated the change rates (CRcr ,cr+1 ) in execution times for every configu-
ration across subsequent releases. The maximum increase in execution time was
found between release v0.621 and v0.630, where one configuration performed about
124% slower in the younger release. The highest decrease in execution time was
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Figure 4.2: The execution time measurement values for different releases of lrzip.
The y-axis consists of all measured releases, the x-axis of all measured configura-
tions. Each cell is colored according to the measured mean execution time value.
The legend on the right provides the colors for the corresponding time values in
milliseconds. Failed measurements are colored black ( ).

found between release v0.611 and v0.612. The affected configuration’s execution
time reduced by approximately 75%. Every release contains both configurations
which performed better and configurations which performed worse compared to the
preceding release.

The heatmap in Figure 4.3 illustrates the previously described changes in execution
times. Like in the previous heatmap, rows stand for different releases, columns
for different configurations. Each cell represents the change rate of the respective
configurations comparing the release of the row and the release of the previous
row. A white colored cell means that the configuration had approximately the same
execution time in the two compared releases. Red cells ( ) describe configurations,
which performed slower compared to the previous release. In contrast, blue cells ( )
illustrate better performing configurations. The first row (release v0.45 ) contains
only white cells because there is no preceding release to compare with.
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Figure 4.3: Change rates of configuration execution times comparing subsequent re-
leases of lrzip. The y-axis consists of all measured releases, the x-axis of all measured
configurations. Each cell is colored according to the calculated change rate regarding
the preceding release. The legend on the right provides the colors for the correspond-
ing change rates. Blue color tones ( ) indicate performance improvements, whereas
red colors ( ) stand for slower performance.

Since there were some configurations in two releases, we could not measure due to a
software bug, there is an intermediate step for calculating the change rates in those
cases. Therefore, we took the last working release for that particular configuration
into consideration to compute the corresponding change rate.

We used the previously calculated change rates between subsequent releases to find
configurations which have a substantial change rate between two specific releases. As
described in Section 3.2.2.2, we consider the change rate as a substantial deviation
if the absolute value of the change rate for a particular configuration for two subse-
quent releases is higher than 20%. Exemplarily, Figure 4.3 compares the measured
execution times of the releases v0.560 and v0.570. One point in the plot stands for
one configuration and describes the particular measured execution times for the two
compared releases. If the dot is red, the two execution times have a high deviation.
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Figure 4.4: Comparing configuration execution times of releases v0.560 (x-axis)
and v0.570 (y-axis) for case study lrzip. Each dot illustrates the execution times
of one configuration in both consecutive releases. Red dots indicate a substantial
performance change for the particular configuration.

Configurations, which have no high deviations can be found near the diagonal of the
graph and are colored blue.
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Figure 4.5: Number of configurations with substantial performance change per re-
lease for case study lrzip. There are two dashed black lines which illustrate (1) the
mean value of amounts µ and (2) the threshold for outstanding releases µ+ 2 · σ.

For every measured release, we counted the number of configurations which have a
substantial performance change compared to the preceding release (CCr). Figure 4.5
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shows the amount of those configurations with substantial change. The dashed
lines in the plot depict the relative amount of the overall measured configurations.
There are some releases which exceed half or even three-quarters of the total amount
of configurations (e.g., v0.530, v0.544 ). The plot additionally shows the mean µ
and the threshold µ + 2 · σ, which was described in Section 3.2.2.2. According to
the threshold, there are three outstanding releases for lrzip regarding this research
question.
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Figure 4.6: The execution time measurement values for different releases of GNU
XZ. The y-axis consists of all measured releases, the x-axis of all measured configu-
rations. Each cell is colored according to the measured mean execution time value.
The legend on the right provides the colors for the corresponding time values in
milliseconds.

GNU XZ

Similar to the previous case study, Figure 4.6 shows the pure execution time values
of all measurements for GNU XZ. Analogous to lrzip the configurations differ in
their execution time values. This time, they range between around 15,000ms and
30,000ms (see also Table 4.1). Again, columns have the same color tone throughout
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the entire time span of the case study. In the heatmap, we cannot detect specific
releases which stand out.

The change rates of the execution times for single configurations between subse-
quent releases range between -7% (from release v5.2.3 to release v5.2.4 ) and +6%
(from release v5.0.3 to release v5.0.4 ). The heatmap in Figure 4.7 shows all change
rates of all configurations for all releases. Similar to the previous case study, the
first release in the first row is colored white completely because there is no release
to compare with. The heatmap already indicates that we did not find configura-
tions with substantial performance changes. As a result, we also did not find any
outstanding releases for GNU XZ regarding this research question.
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Figure 4.7: Change rates of configuration execution times comparing subsequent
releases of GNU XZ. The y-axis consists of all measured releases, the x-axis of all
measured configurations. Each cell is colored according to the calculated change
rate regarding the preceding release. The legend on the right provides the colors for
the corresponding change rates. Blue color tones ( ) indicate performance improve-
ments, whereas red colors ( ) stand for slower performance.

libvpx VP8

Finally, we present the results for RQ2 for our third case study libvpx VP8. Fig-
ure 4.8 sketches the execution times for all configurations of all considered releases.
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The heatmap has the same structure and color schemes as the equivalent illustra-
tions of the previous case studies. There is one noticeable leap in the execution times
between release v1.2.0 and v1.3.0 which affects nearly all configurations. This per-
fectly matches the substantial mean performance change across all configurations
found for the first research question (see Table 4.2 and Figure 4.1). The execution
times of all configurations in all releases lie in a range between around 1,000ms and
120,000ms which is roughly a difference by the factor 100.

0 11 22 33 44 55 66 77 88 99 11
0

12
1

13
2

14
3

15
4

16
5

17
6

18
7

19
8

20
9

22
0

23
1

24
2

25
3

26
4

27
5

28
6

29
7

30
8

31
9

33
0

34
1

35
2

36
3

37
4

38
5

39
6

40
7

41
8

42
9

44
0

45
1

46
2

47
3

48
4

Configuration

v0
.9

.6
v0

.9
.7

v1
.0

.0
v1

.1
.0

v1
.2

.0
v1

.3
.0

v1
.4

.0
v1

.5
.0

v1
.6

.0
v1

.6
.1

v1
.7

.0
Re

le
as

e

103

104

105

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

Figure 4.8: The execution time measurement values for different releases of libvpx
VP8. The y-axis consists of all measured releases, the x-axis of all measured con-
figurations. Each cell is colored according to the measured mean execution time
value. The legend on the right provides the colors for the corresponding time values
in milliseconds.

In Figure 4.8, we again can observe configurations or groups of configurations, which
have the same color throughout multiple releases. Especially after the noticeable
color change between v1.2.0 and v1.3.0, we can notice that groups of configurations
behave the same after the color change. For example, there is a group of configu-
rations (162 - 171 ) which has a very high execution time in the first releases (dark
red color). From release v1.3.0 on, they have a faster execution time (lighter red
color) but they still are clearly identifiable as a group afterwards.
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As already described in Section 4.3, we computed the change rates in execution times
for every configuration for subsequent releases. The heatmap in Figure 4.9 displays
the results for those calculations. There are two releases which stand out (v0.9.7
and v1.3.0 ). Both show a significant amount of configurations with a performance
change of more than 50% compared to the preceding release. Release v0.9.7 has
a lot of configurations which performed slower than in the previous release. In
contrast, release v1.3.0 has performance improvements in lots of configurations.
Release v1.3.0 was already identified for having a substantial performance change
across all configurations. In Figure 4.1, we can see an increase of the overall mean
performance for release v0.9.7. We didn’t classify this rise as substantial because it
was lower than 20%.
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Figure 4.9: Change rates of configuration execution times comparing subsequent
releases of libvpx VP8. The y-axis consists of all measured releases, the x-axis
of all measured configurations. Each cell is colored according to the calculated
change rate regarding the preceding release. The legend on the right provides the
colors for the corresponding change rates. Blue color tones ( ) indicate performance
improvements, whereas red colors ( ) stand for slower performance.

Counting the configurations per release whose change rates exceed 20% leads to the
results in Figure 4.10. As already hinted above, the two releases v0.9.7 and v1.3.0
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are the ones which have the highest amount of configurations with substantial change
rates. For those two releases, the sum of the configurations with substantial change
ranges around 50% of all measured configurations. However, we again calculated
the mean µ and the threshold µ+ 2 ·σ, which is only exceeded by the release v1.3.0.
As a result, we only found one outstanding release for libvpx regarding this research
question.
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Figure 4.10: Number of configurations with substantial performance change per
release for case study libvpx VP8. There are two dashed black lines which illustrate
(1) the mean value of amounts µ and (2) the threshold for outstanding releases
µ+ 2 · σ.

Discussion

The second research question aimed at breaking down the overall performance
changes found in RQ1 into a more sophisticated sight on individual configurations.
We saw that the execution times for the configurations in one release might differ
by a huge factor. In two case studies, the slowest configuration was 100 times slower
than the fastest one. Therefore, it makes sense to investigate the individual con-
figurations for configurable software systems and not just to look at one particular
configuration or averaging the execution times across all configurations. For exam-
ple, it might be the case that the average execution time across all configurations
gets faster from one release to the next one, but one user might be interested in the
one configuration which performs slower compared to the previous release.

We also concluded that the results of RQ1 and RQ2 can be congruent, meaning that
the same releases show peculiarities which match. Some releases of the investigated
case studies have a substantial performance change and at the same time a high
fraction of configurations which in itself have substantial changes. Furthermore, it is
possible to have releases which did not attract our attention in RQ1 but had many
configurations with substantial changes. Of course, it is possible that those config-
urations compensate each other when calculating the mean value for the complete
release. In contrast, we can have a release with a substantial performance change
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across all configurations, but this change is only caused by one or a few individual
configurations which had a considerable performance change from one release to the
next one.

After seeing the results for RQ2, especially groups of configurations which behave in
the same manner throughout the entire release time span, we assume that individ-
ual configuration options cause the previously described effects. The configurations
which form a group of the same behavior may have a similar set of selected config-
uration options which then influence the execution times in the same way for the
affected configurations. This is the reason why we will go a step further and have a
more in-depth look inside the measured configurations and the respectively selected
configuration options.

Summary: The case studies lrzip and libvpx VP8 show configurations with a sub-
stantial change (> 20%) in the execution time between two consecutive releases. We
did not find such behavior for GNU XZ. Some results align with the ones from RQ1
and others provide new insights concerning individual configurations. We found
three outstanding releases for lrzip and one for libvpx VP8 regarding this research
question.

4.4 RQ3: Learning Performance-Influence Mod-

els

Answering RQ3.1 and RQ3.2 require the computation of performance-influence
models as we stated in Section 3.2.2.3. We described in Section 3.2.2.3 that we
want to fit a performance-influence model to all possible term combinations up to
a certain degree of interaction. We used the incremental learning approach for
performance-influence models to get the maximum degree of option interactions
which we consider relevant.

Table 4.3 shows our decisions for the maximum degree of interaction and the result-
ing number of terms as well as some metrics about the different error rates, we came
across while learning the performance-influence models. It should be noted that we
got very small error rates for lrzip in the magnitude of 10−14 and relatively high
error rates for libvpx VP8 in the magnitude of 10−1. GNU XZ ranges in between
with error rates around 10−4.

Table 4.3: Basic information about learned performance-influence models for the
case studies lrzip, GNU XZ, and libvpx VP8.

Metric lrzip GNU XZ libvpx VP8

Max. Degree of Interaction 3 3 4
Number of Terms 270 267 3897
Min. Error Rate 9.4× 10−15 2.2× 10−5 1.6× 10−2

Release v0.570 v5.2.3 v1.3.0
Max. Error Rate 7.0× 10−14 4.5× 10−4 0.27
Release v0.45 v5.0.8 v1.0.0
Avg. Error Rate 1.6× 10−14 2.2× 10−4 0.16
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4.4.1 RQ3.1: Identifying affected configuration options

After computing the performance-influence models as described in Section 4.4, we
can present our results for RQ3.1. In Section 3.2.2.3, we explained our approach
for identifying and counting terms with substantial change in the corresponding
coefficient in the performance-influence model.

Since we fitted the performance-influence models to a high number of terms (e.g.,
3,897 for libvpx VP8, see Table 4.3), there are naturally many terms which have a
coefficient of 0 or near 0. There is a high probability for very small terms near 0 for
finding substantial changes, because there is no need for a drastic absolute change
in the influence coefficient for a resulting deviation greater than 20 percent. This
is the reason why we set all coefficients which have a value smaller than 1,000 (1
second) to zero. This way, we prevent small coefficients from distorting the results.
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Figure 4.11: Number of terms with substantial change in influence per release for
case study lrzip. There are two dashed black lines, which illustrate (1) the mean
value of amounts µ and (2) the threshold for outstanding releases µ+ 2 · σ.

In Figure 4.11, Figure 4.12, and Figure 4.13, we illustrate the number of terms with
substantial change in the coefficient value for the corresponding case studies. The
plots show that almost every release of every case study has terms with substantial
changes. The plots also show black dashed lines for the mean amount µ and the
threshold for outstanding releases µ+2 ·σ. Releases with a single quote in the name
represent intermediate performance-influence models which were necessary because
of certain configurations which we could not measure because of software bugs.

For the case study lrzip, the highest fraction of terms with substantial changes
is around 25%, and we found three outstanding releases (v0.5.2, v0.520, v0.530 ).
Release v0.530 already was identified as an outstanding release regarding RQ1 and
RQ2. GNU XZ hast roughly the same number of terms with substantial changes
in every release. There is no outstanding release as it was not in the previous
investigations, too. The plot for case study libvpx VP8 shows three releases with
higher amounts of terms with substantial. According to the threshold µ + 2 · σ,
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Figure 4.12: Number of terms with substantial change in influence per release for
case study GNU XZ. There are two dashed black lines, which illustrate (1) the mean
value of amounts µ and (2) the threshold for outstanding releases µ+ 2 · σ.

release v1.3.0 is an outstanding release regarding this research question. It has
about 75% of terms with substantial change which also matches the previous results
for outstanding releases (see Figure 4.1). Also, v0.9.7 as a higher number of terms
with substantial changes in coefficients. This is similar behavior to what we saw
in Figure 4.1. The higher number of substantial changes for release 1.4.0 cannot
be retrieved in the previous investigations. However, v0.9.7 and v1.4.0 are no
outstanding release according to our threshold.

Discussion

We showed that we were able to fit performance-influence models to a given set of
predefined terms for the different releases of our three case studies which afterwards,
can be compared. It is striking that we found terms with substantial change for
almost every release in our investigation. This can partly be explained by the high
number of terms we considered in this approach. Since the computed performance-
influence models are based on the measured execution times which have a natural
fluctuation, it is obvious that also the performance-influence models must have some
fluctuation. Especially for small numbers, the randomized learning process leads to
different coefficients which then exceed our threshold for substantial changes (20%).
Two of our case (lrzip and libvpx VP8 ) studies showed outstanding releases according
to our threshold. Although GNU XZ didn’t show outstanding releases, we are able
to make statements about specific terms where the influence coefficient changed
significantly.

Based on the results for this research question, we want to make statements about
which terms influence the performance of our measurement space the most and how
this changes over time. Therefore, we will have a more specific look at the relevance
of the terms with substantial changes in the regarded configuration space in the next
research question.
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Figure 4.13: Number of terms with substantial change in influence per release for
case study libvpx VP8. There are two dashed black lines, which illustrate (1) the
mean value of amounts µ and (2) the threshold for outstanding releases µ+ 2 · σ.

Summary: We found configuration options or option interactions whose influ-
ence coefficients of the computed performance-influence models showed substantial
change rates. Some of those occurences strengthen the results of the previous re-
search questions, the others provide new insights regarding individual configuration
options and option interactions. We found three outstanding releases for lrzip and
one for libvpx VP8 regarding this research question.

4.4.2 RQ3.2: Relevance Ranking of the Configuration Op-
tions

The results for RQ3.1 did not point to specific configuration options or option inter-
actions which had a substantial change in the coefficient and at the same time is a
relevant term in the configuration space we took into consideration when measuring
the execution times. Therefore, we provided a new metric in Section 4.4 to make
statements about the relevance of specific configuration options or option interac-
tions. For every term in every release of our case studies, we calculated the relevance
factor which we proposed in Section 4.4. Afterwards, we were able to have a look
at the terms with the highest relevance factors per release. We considered the top
5 relevance factors, respectively. Figure 4.14, Figure 4.15, and Figure 4.16 show the
corresponding trend over time for the respective case study, as well as the overall
mean relevance factor µ and the threshold for dominating configuration options or
option interactions µ+ 2 · σ.

In every case study, there are some terms which dominate the ranking throughout
the entire time span of the considered releases. In lrzip for example, the terms zpaq
and Root are the most present ones. For GNU XZ only the term Root and for
libvpx the terms vbr, Resize Allowed 0, Passes 1 and Root have the highest ranking
values over time. According to the threshold µ + 2 · σ, we found two dominating
configuration options or option interactions for lrzip, one for GNU XZ and 101 for
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Figure 4.14: Trend over time of the top five terms according to their relevance factor
for case study lrzip. The y-axis describes the height of the relevance factor, the x-
axis contains all releases. For every release, there is a small section in the graph
with five thick lines for the five terms with the highest relevance factors. Terms
appearing in subsequent releases are connected with a dashed line. There are two
dashed black lines, which illustrate (1) the mean value of amounts µ and (2) the
threshold for outstanding releases µ+ 2 · σ.

libvpx VP8 (not all visible in the plot). The terms with smaller relevance factors
fluctuate in a small range and often switch places with other terms with similar
relevance factors. For the case studies lrzip and GNU XZ, we can see that the only
top-ranking term stays at the same level throughout all releases. For lrzip the term
root has a high range of different relevance factors compared to the other terms.
Most of the terms in all regarded case studies which rank in the top 5 consist only
of one configuration options. There are only some terms for lrzip and libvpx VP8
which represent an interaction between multiple configuration options. The highest
degree of interaction we could find in this approach is a second level interactions.
Release v1.3.0 in the case study libvpx VP8 shows a drop of the relevance factor for
most of the terms. For the case study lrzip, we can see an increase big increase in
the relevance factor for the option root between release v0.520 and release v0.530.
These to observations match the previous investigations of outstanding releases in
the previous research questions.

Discussion

The results of RQ3.2 clearly show that we are able to make profound statements on
the relevance of different terms of configurable software. We saw that the relevance
changes over time between releases and that there are a few terms which dominate
the results of the shown approach.
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Figure 4.15: Trend over time of the top five terms according to their relevance factor
for case study GNU XZ. The y-axis describes the height of the relevance factor, the
x-axis contains all releases. For every release, there is a small section in the graph
with five thick lines for the five terms with the highest relevance factors. Terms
appearing in subsequent releases are connected with a dashed line. There are two
dashed black lines, which illustrate (1) the mean value of amounts µ and (2) the
threshold for outstanding releases µ+ 2 · σ.

For two case studies (lrzip and GNU XZ ), we saw that there is only one term
which has the highest rank throughout the complete time span we considered in
our investigations. For those two terms, the relevance factor stays exactly the same
throughout all releases. The reason for this behavior is the fact, that we normal-
ized the influence coefficients per release. This results in the normalized coefficient
to always have the value 1 because the corresponding term with the high ranking
has the biggest coefficient regarding the performance-influence model of a specific
release. The frequency for each term is the same for all releases because we always
considered the same configurations. For GNU XZ the term with the highest ranking
(Root) has the value 1. This is caused by the fact that additionally to the previ-
ously described behavior regarding the normalized influence coefficients, the term
Root has the frequency 1. The artificial configuration option Root is part of every
configuration by definition.

In the two case studies, where Root is not the top ranking term, this exact term
has a high range of different relevance factors. This does not necessarily mean
that the ”basic” influence (e.g., initializing, loading data, etc.) of the corresponding
configurable software system fluctuates in the same manner. We assume that the
fluctuation of the relevance factor is caused by our approach for preventing shifting
in the computed performance-influence models (see Section 4.4). When a few spe-
cific terms are not considered during the computation of the performance-influence
model, the corresponding influence is shifted to the term Root. Thus, the term Root
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Figure 4.16: Trend over time of the top five terms according to their relevance factor
for case study libvpx VP8. The y-axis describes the height of the relevance factor, the
x-axis contains all releases. For every release, there is a small section in the graph
with five thick lines for the five terms with the highest relevance factors. Terms
appearing in subsequent releases are connected with a dashed line. There are two
dashed black lines, which illustrate (1) the mean value of amounts µ and (2) the
threshold for outstanding releases µ+ 2 · σ.

in our case does cause not only the ”basic” influence but also all influences of all re-
moved terms. As a result, this fluctuations for the term Root in the case studies can
be caused by a high fluctuation in the ”basic” influence of the program or by one or
more of the other terms which did not find there way into the performance-influence
model.

For the case study libvpx VP8, we found 101 dominating configuration options or
option interactions, which is a quite high number. This may be cause by the fact,
that the highest degree of interaction was set to four-way-interactions for livpx.
This is the reason why we have a vast number of configuration options and option
interactions, whereas most of them have a very small relevance factor. Thus, the
chosen threshold µ + 2 · σ is below a high number configuration options or option
interactions.

We saw that most of the terms appearing in the ranking plots consist of only one
configuration option. It seems that individual options have a higher influence on the
overall performance of configurable software, then option interactions, which was
also shown in [KSK+19].
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Summary: Each case study showed only a few configuration options or option
interactions which had a high relevance according to the relevance factor. The most
relevant terms consist of individual configuration options. We found two dominating
configuration options or option interactions for lrzip, one for GNU XZ and 101 for
libvpx VP8.

4.5 RQ4: Documentation Analysis

The last research question of this work is the investigation of the documentation of
the regarded configurable software systems. As already presented in Section 3.2.2.4,
we consider both the changelogs which come with every release and the commit
messages which are used by the maintainers of the project during development. In
both documentation sources, we searched all terms from the performance-influence
models of the corresponding case study. This means, we searched single option
names as well as multiple option names when dealing with a term which consists of
multiple configuration options. The results regarding the investigation of commit
messages are shown in Figure 4.17, Figure 4.18, and Figure 4.19. The blue bars
depict the number of terms of the corresponding performance-influence model we
found in the commit messages between the release of the bar’s location and the
previous release. The orange bars illustrate how many of those occurences we could
retrieve in the performance-influence models, meaning that the coefficient changed
substantially between the release of the bar’s location and the preceding one. If both
bars had the same height for one specific release, this means that all terms which
appeared in the documentation also had a substantial change of their coefficient in
the corresponding performance-influence models.

For the case studies lrzip and libvpx VP8, there are releases where we found matches
for more than a half of the terms which appeared in the commit messages. lrzip even
shows four releases, where we found matches for all terms. The case study GNU XZ
resulted in no found matches.

Analogous to the investigations of the commit message texts, we considered also
the changelogs of the configurable software systems. The way, we count the appear-
ances and matches works the same as before, only the text document is exchanged.
Figure 4.20 shows the corresponding results. A similar picture is drawn like before,
where we found several matches for lrzip and libvpx. GNU XZ does not provide any
applicable changelog. There is only the information, that all changes are documented
in the commit messages.

We calculated the match ratios according to our definition in Section 3.2.2.4. For
the commit messages, we got 25% for lrzip, 21% for libvpx VP8, and 12% for GNU
XZ. The investigations of the changelogs resulted in match ratios of 29% for lrzip,
and 20% for libvpx VP8.

Discussion

In this section, we showed that performance-influence models can be used to detect
performance changes for individual configuration options or options interactions.
Many terms, which appeared in the documentation provided by the owners of the
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Figure 4.17: Matches of commit messages with performance-influence models of
lrzip. The blue bars indicate the number of terms found in the commit message
texts. The orange bars depict how many of the found terms underlie a substantial
change in the corresponding performance-influence model.
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Figure 4.18: Matches of commit messages with performance-influence models of
GNU XZ. The blue bars indicate the number of terms found in the commit message
texts. The orange bars depict how many of the found terms underlie a substantial
change in the corresponding performance-influence model.
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Figure 4.19: Matches of commit messages with performance-influence models of
libvpx VP8. The blue bars indicate the number of terms found in the commit
message texts. The orange bars depict how many of the found terms underlie a
substantial change in the corresponding performance-influence model.

configurable software systems also had a substantial change in the corresponding
performance-influence model. The computed match ratios range between 10% and
30%, which seems to be a quite small number, but not all appearances of a configura-
tion option’s name in the documentation imply a performance change. Nevertheless,
some change in the program code was related to the configuration option and, thus,
is a potential indicator for performance changes.

On the other hand, not all performance changes are documented because, often, the
developers are not aware of those changes. If the performance for a specific part of
the program was improved, it is very likely that this change is documented. Perfor-
mance bugs are most likely not documented, because nobody is aware of them in the
first place. Therefore, performance-influence models can be used to find performance
bugs which are related to specific configuration options or option interactions by
comparing the performance-influence models of multiple releases. The performance-
influence models we computed showed more terms with substantial change than we
found in the documentation. Of course, this does not mean that these results are
wrong, because the developers might not be aware of the performance change and,
thus, did not document it, like already mentioned before.

Summary: For the case studies lrzip and libvpx VP8, we found occurences of terms
in the changelogs and in the commit messages between consecutive releases. We
found matches between those occurences and the computed performance-influence
models, where the exact same terms showed a substantial change in the influence
coefficient. The match ratios ranged between 10% (GNU XZ ) and 30% (lrzip).
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Figure 4.20: Matches of changelogs with performance-influence models of corre-
sponding case study. The blue bars indicate the number of terms found in the
changelog text. The orange bars depict how many of the found terms underlie a
substantial change in the corresponding performance-influence model.
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4.6 Summary

In this section, we will briefly show the major findings for our research questions. In
Table 4.4, we show all key figures, which we already mentioned in the corresponding
chapters.

Table 4.4: Summary of major findings for all research questions.

RQ Metric lrzip libvpx VP8 GNU XZ

RQ1 Outstanding Releases 3 1 0
RQ2 Outstanding Releases 3 1 0
RQ3.1 Outstanding Releases 3 1 0
RQ3.2 Dominant Terms 2 101 1
RQ4 Match Ratio Commits 29% 20% 12%
RQ4 Match Ratio Changelogs 25% 21% -
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5. Threats to Validity

Internal Validity

Whenever executing performance measurements of all kinds, it has to be ensured
that the results do not get distorted by random fluctuation between different itera-
tions. Therefore, we measured every configuration of every considered release three
times and computed the standard deviation. Standard deviations higher than 10%
lead to the repetition of the corresponding experiment. The execution time mea-
surements where executed in parallel on different workstation PCs. All those PCs
are equipped with the exact same hardware of the same age, which, nevertheless,
allows us to compare all results.

The choice of the configurations, which we measured the execution times for is crucial
and has to be representative regarding the entire configuration space. We focused
on individual configuration options and on option interactions consisting of two
individual configuration options. This is the reason why we used the option-wise and
the pairwise sampling strategy. To get a more representative set of configurations of
the entire configuration space, we additionally used random sampling, which evenly
distributes the samples on the space of valid configurations.

We computed the performance-influence models for all regarded releases of all case
studies. Since we fitted the performance-influence model to a set of given terms,
which consisted of all possible term combinations, there is the issue of shifting
considering alternative groups (see Section 3.2.2.3). The individual performance-
influence models of different releases are not comparable if such shifting appears.
Therefore, we prevented the described kind of shifting by following the approach of
withdrawing specific terms (see Section 3.2.2.3), which leads to good comparability
between the individual performance-influence models.

In this work, we define several thresholds for classifying the observed subjects. We
called change rates substantial if the change rate is higher then 20%. Using this
threshold is a conservative approach, as described in Section 3.2.2.1. Even more
performance changes could be found if the threshold was adapted to the real mea-
sured standard deviations. The threshold for classifying releases as outstanding is an



56 5. Threats to Validity

established method for classifying outliers in normally distributed data. Choosing
another threshold could lead to more sophisticated results.

External Validity

For our case studies, we conducted three different configurable software systems of
two different fields of application. To get generally applicable results without con-
sidering more case studies, we chose software systems with different characteristics.
Our case studies consist of a different amount of releases and different sizes of the
configuration space. Furthermore, the software systems were developed in different
years and differ in the time span between releases. Those different properties allow
us to generalize our findings.



6. Related Work

To the best of our knowledge, the evolution of performance in configurable software
systems was not investigated by the use of performance-influence models yet in other
publications. The evolution of performance across different software releases was
also analyzed by Sandoval et al., where a new visualization method for performance
evolution is proposed [SBDD13]. Profiling tools can be used to analyze execution
times for fine granular aspects of the programs like single methods, which then
will be visualized regarding the performance changes from two consecutive releases.
Although the evolution of very specific parts of the program can be analyzed, the
focus does not lie on configurable software and the influences of configuration options
or option interactions.

The work by Li et al. [LLC16] is not about the evolution of specific configurations or
configuration options of a software system, too. They focus on software architecture,
whose evolution is a point of interest in research. Performance simulation is used
for evaluating the changes of software architecture, for helping software architects
to make profound decisions on software architecture changes concerning execution
time and memory.

One key strategy of this work is to use performance-influence models as a base
for predicting performance-influences of a configurable software system. There
exist other approaches for computing individual influences like Fourier Learning
[ZGBC15]. Instead of computing performance-influence models, Fourier decompo-
sition is used to learn configurable software performance functions. However, the
approach was not used for analyzing the evolution of performance yet.

Transfer Learning is a promising concept whenever knowledge from one domain
shall be used in another domain. Jamshidi et al. [JSV+17] apply transfer learning
to the concept of performance-influence models and show that they can handle small
environmental changes (e.g., hardware, workload) without relearning a performance-
influence model. One environmental change, which they consider is the change of a
software version (e.g., new software release). However, the focus in this work does
not lie on the evolution of performance in configurable software systems, like it is in
this thesis.
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In this work, we used changelogs and commit messages, to strengthen the measured
and computed results. Palomba et al. [PBP+15] use commits in the history of the
version control system to detect code smells (e.g., large complex classes). Although
performance is not in their focus, the evolution throughout the history of the software
system leads to good results.



7. Conclusion and Future Work

Next, we will summarize the results and findings of this work in Section 7.1 and pro-
vide ideas and enhancements for further work on the presented topic in Section 7.2.

7.1 Conclusion

This exploratory thesis aimed at investigating the evolution of performance in config-
urable software systems. Therefore, we considered three real world software systems
and measured the execution times for a variety of configurations for different releases
of the programs. Apart from analyzing the pure execution times of configurations,
we computed performance-influence models for the different releases of the case stud-
ies. These calculations were followed by an in-depth analysis and comparison of the
resulting performance-influence models and the individual influences of configura-
tion options. At last, we tried to find congruencies between our results and the
documentation included in the software systems.

Firstly, we showed that we are able to identify releases in the history of a config-
urable software system which underlie a performance change. By comparing the
average execution times across all measured configurations, we also are able to make
statements on the strength and relevance of the found performance changes. For
the case study lrzip, we found three releases with substantial performance changes,
and for libvpx VP8, there was one release with a substantial performance change.

Furthermore, our investigations lead to the result that, often, performance changes
between consecutive releases can only be found in specific configurations, whereas
the performance in other configurations did not change. Again, we were able to rate
the strength of the performance changes of individual configurations by analyzing
the execution time change rates of specific configurations for consecutive releases.
There were three outstanding releases for lrzip and one outstanding release for libvpx
VP8, which showed a high number of configurations with substantial performance
changes.

After computing performance-influence models for all releases of a configurable soft-
ware system, we were able to put the performance changes down to individual config-
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uration options or option interactions. Comparing the change rates of the influence
coefficients for specific configuration options between consecutive releases leads to
profound statements on which options caused performance changes exactly and how
strong those changes were. In this investigation, we found three outstanding re-
leases for lrzip and one outstanding release for libvpx VP8. The outstanding releases
had a relatively high number of configuration options or option interactions with
substantial performance changes.

Moreover, we introduced a metric which can be successfully used to rank config-
uration options and option interactions according to their relevance in the overall
performance of a particular release. There were two dominating terms for lrzip, one
dominating term for GNU XZ, and 101 dominating terms for libvpx VP8, which had
a high relevance ranking throughout the regarded time span.

Finally, we validated our computed results by analyzing the documentation which is
provided by the developers for configurable software systems. We found congruen-
cies between the performance-influence model changes and the examined changelogs
and commit messages, which strengthens the presented results. We found between
12% and 29% of the occurences of option names in the documentation in the corre-
sponding computed performance-influence models.

7.2 Future Work

The presented work can be used as a base for further research on the performance
evolution in configurable software systems. Therefore, we want to suggest a few
ideas about improvements and next steps in the topic of this thesis.

First of all, this work demonstrated exciting and promising results regarding the
performance evolution of configurable software system based on three case studies
of two different domains. To get more resilient results and insights, more case studies
from different fields should be conducted.

Moreover, our comparison of performance changes between specific configurations,
configuration options or option interactions were based on the percental changes of
the execution times. It might be possible to find a profound comparison metric by
using machine-learning approaches for novelty detection.

In this thesis, we only investigated binary configuration options. Numeric config-
uraion options were converted to alternative groups. Further research should also
model numeric configuration options as such and provide an appropriate comparison
metric for them.

In the end, future work could use the gained insights to develop best-practices and
possibly a toolset for software developers, which could help them to keep track
of the performance of their maintained configurable software system. This way,
performance bugs could be identified and solved early on.



A. Appendix

A.1 Dictionary for Document Search

The following dictionaries are used for the term search in the changelogs and the
commit messages. For each configuration option, which we want to replace in the
search, we list the substitutes.

lrzip

• level1 -> level

• level2 -> level

• level3 -> level

• level4 -> level

• level5 -> level

• level6 -> level

• level7 -> level

• level8 -> level

• niceness0 -> niceness

• niceness5 -> niceness

• niceness10 -> niceness

• niceness15 -> niceness
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GNU XZ

• level0 -> level

• level1 -> level

• level2 -> level

• level3 -> level

• level4 -> level

• level5 -> level

• level6 -> level

• level7 -> level

• level8 -> level

libvpx VP8

• lagInFrames0 -> lag, frames

• lagInFrames5 -> lag, frames

• lagInFrames10 -> lag, frames

• lagInFrames15 -> lag, frames

• lagInFrames20 -> lag, frames

• resizeAllowed0 -> resize, allow, allowed

• autoAltRef -> auto, alt, ref

• noiseSensitivity0 -> noise, sensitivity

• noiseSensitivity3 -> noise, sensitivity

• sharpness0 -> sharp, sharpness

• arnrMaxFrames0 -> arnr, max, frame

• arnrMaxFrames5 -> arnr, max, frame

• arnrMaxFrames10 -> arnr, max, frame

• arnrStrength0 -> arnr, strength

• arnrStrength3 -> arnr, strength

• rt -> rt, realtime
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