
Department of Informatics and Mathematics
Programming Group

Diploma Thesis

Feature-Oriented Composition of XML Artifacts

Author:

Jens Dörre
March 11, 2009

Advisors:

Dr.–Ing. Sven Apel,

Prof. Christian Lengauer, Ph.D.
University of Passau

Department of Informatics and Mathematics
94030 Passau, Germany

Dörre, Jens:
Feature-Oriented Composition of XML Artifacts
Diploma Thesis, University of Passau, 2009.

To my parents.

Abstract

One of the most important aims of software engineering is to provide program-
mers with simple views and abstractions to describe and understand the ever
more complex systems they create. Since these abstractions should integrate ar-
tifacts from all steps of the software-engineering process, language-independent
paradigms better suit this purpose. One such paradigm is Feature-Oriented Soft-
ware Design (FOSD). The central concept of FOSD is the feature, a semantically
cohesive unit of behavior. Using FOSD, you are is able to modularize these units,
which normally crosscut the boundaries of modules written in modern program-
ming languages, for instance.

Today, many of those artifacts are written using XML. XML, the eXtensible
Markup Language, is the standard language for modeling semi-structured data,
which means that it can represent virtually any data. This is unlike more formal
models, which are only suited for structured data. Because XML facilitates au-
tomatic information interchange and because it is supported by an infrastructure
with many tools, XML is widely used in software engineering.

The FeatureHouse approach only applies to grammar-based languages. For many
XML-based languages, there are no grammars available, so they cannot be easily
used with FeatureHouse. Therefore, we need a theory and tools to extend FOSD
with support for XML (and in this way also XML with support for FOSD). This
work approaches this goal by analyzing the theoretical backgrounds of FOSD and
XML, designing and implementing a solution, and validating that solution in case
studies.

We use the superimposition of Feature Structure Trees (FSTs) as the composition
method for implementing FOSD. FSTs abstract away the details of artifacts and
only model the hierarchical structure of these artifacts. So we first map artifacts
from different languages to FSTs; for grammar-based languages, this has been
done in prior work by processing special annotations in the language grammars
in order to generate the mappers needed. As XML-based languages are typically
processed using general XML parsers, there are no grammars for them; instead,
the structural properties of XML-based languages are often expressed using an
XML schema, for instance.

We have therefore created an annotation mechanism for XML schemas that en-
ables us to specify how to compose different XML-based languages. We make use
of two high-level XML libraries, TrAX (the Java API for tree processors writ-
ten in the XSLT language), to transform XML artifacts to and from an XML

i

Chapter

representation of FSTs, and JAXB, a Java-to-XML binding tool, to read and
write those representations from within Java. Consequently, a solution has been
designed based on previous work (FeatureHouse to implement superimposition)
and these XML facilities. The user of our tool-set can annotate XML schemas
to customize superimposition, and then compose XML (instance) artifacts using
our tool. In this way, support for XML-based languages is available in a general
tool-set for feature composition.

We have also conducted case studies in different XML languages that show the
generality of the XML extension. In the Graph Product Line example, we have
composed XHTML documentation alongside with the Java code described by it.
In our second case study, we have superimposed diagrams in the visual language
UML. We have also composed build scripts in the dynamic language of the rule-
based ant tool. A lesson learned from our case studies is that schemas for XML
languages are oftentimes not available, but usually they are not really needed
either.

In conclusion, we can say that we have thoroughly analyzed the applicability
of superimposition to XML Artifacts. We have for the first time integrated
grammar-based and XML Schema-based languages in one tool to use one im-
plementation of superimposition. We furthermore have successfully conducted
case studies in three different XML languages which show the suitability of this
approach taken.

ii

Contents

List of Figures v

Glossary vi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Outline . 2

2 Foundations 3
2.1 Feature-Oriented Software Design 3

2.1.1 Feature Structure Trees (FSTs) 3
2.1.2 Superimposition of FSTs 4
2.1.3 Mappings to FSTs . 6
2.1.4 Generation of Mappings 7
2.1.5 FeatureHouse . 7

2.2 XML . 7
2.2.1 Syntax . 8
2.2.2 Namespaces . 9
2.2.3 XPath Data Model (XDM) 10
2.2.4 XPath . 11
2.2.5 XML Schema . 12
2.2.6 XSL Transformations (XSLT) 13
2.2.7 XML Parsers . 13

3 Extending FeatureHouse for XML Languages 15
3.1 Analysis . 15

3.1.1 XML Trees . 15
3.1.2 Annotations for XML . 17
3.1.3 Specifications for XML Languages 18

3.2 JAXP: XML Processing for Java 19
3.2.1 Lower-Level APIs . 20
3.2.2 JAXB: Binding Java Classes to XML Schemas 21
3.2.3 TrAX: Using XSLT from Java 21

3.3 Design . 21
3.3.1 XSLT as the Primary Programming Language 22
3.3.2 XML-FSTs as the Principal Data Structure 22
3.3.3 Attribute Declarations as Schema Annotations 23

iii

Chapter Contents

3.3.4 Attributes as Instance Annotations 24
3.4 Implementation . 24

3.4.1 Annotating XML Schemas 25
3.4.2 Pushing Schema Information to the Instance 26
3.4.3 If There Is No Schema . 27
3.4.4 Annotating XML Instances 27
3.4.5 Transforming Annotated XML to XML-FSTs 28
3.4.6 Transforming XML-FSTs to FSTs 29
3.4.7 Superimposing FSTs for XML Artifacts 29

4 Case Studies 31
4.1 Graph Product Line (XHTML 1.0 strict) 31
4.2 Submission (XMI 1.2 with UML 1.4) 32
4.3 Builder (ant build.xml 1.7) . 33

5 Summary 35
5.1 Related Work . 35
5.2 Conclusions . 36
5.3 Future Work . 37

Bibliography 39

iv

List of Figures

2.1 An FST for a Java class . 4
2.2 Composition of (Java) FSTs . 6
2.3 Java code and corresponding FST 6
2.4 A simple XHTML artifact . 8

3.1 Schematic view of the FeatureHouse XML Extension 25
3.2 An FST for an XHTML artifact 30

v

Glossary

AST abstract syntax tree

CIDE Colored Integrated Development Environment

DTD Document Type Declaration

FOSD Feature-Oriented Software Design

FST Feature Structure Tree

gCIDE generalized CIDE

GPL Graph Product Line

HTML HyperText Markup Language

Infoset XML Information Set

OMG Object Management Group

PSVI post-schema-validation Infoset

SE software engineering

SGML Standard Generalized Markup Language

UML Unified Modeling Language

W3C World Wide Web Consortium

XDM XPath Data Model

vi

Chapter Glossary

XHTML eXtensible HyperText Markup Language

XML eXtensible Markup Language

XPath XML Path Language

XSL eXtensible Stylesheet Language Family

XSLT XSL Transformations

vii

Chapter 1

Introduction

The work presented here is in the area of programming languages and software
engineering. It tries to advance the very methods of computer science.

1.1 Motivation

Programming has never been an easy task, and this is all the more true for
programming in the large.

Decades of programming language research have led to languages that allow to
model programs after conceptions deeply grounded in the human brain, thus
avoiding misconceptions. They have also had much success in creating languages
that curb errors by not letting the programmer use “harmful” structures (that
is, structures that lend themselves to creating errors).

Yet these prohibitions are sometimes too strict. This is the case, for example, for
configuring program families at compile-time.

In many cases the prohibitions can be circumvented by other, unstructured mech-
anisms like preprocessors, ultimately leading to error-prone code. If the use of
preprocessors is not possible, there is always the programmer’s last resort of
copying and pasting source code. The consequence is unmaintainable code.

So there is a need for an easy-to-grasp and safe mechanism for defining product
families.

1.2 Problem Statement

In prior work [AKL09], major modern programming languages have already been
examined and integrated. Batory et al. [BSR04] have shown that considering
only program source code is not sufficient to compose software. You also need

1

Chapter 1.3 Outline

to compose accompanying artifacts like documentation, visual models, and build
scripts.

Because many of these are often written in XML languages today, we will cover
this special class of languages in this work. Our goal is to research the possibilities
of feature-oriented composition for XML artifacts.

We implement our ideas as a generic extension of FeatureHouse for XML lan-
guages. This enables us to test their applicability in practice.

1.3 Outline

The rest of this work is structured as follows:

Section 2 lays out the foundations of Feature Orientation and XML. We explain
the theoretical concepts of feature-oriented composition, which have been
established in prior work. We also introduce XML, and shortly describe the
existing XML languages that we will need to be able to apply superimpo-
sition to XML artifacts.

Section 3 uses these foundations for the engineering of a solution. In this section,
we analyse the challenges posed by XML languages, design a solution that
responds to them, and discuss how we have implemented this solution.

Section 4 is an evaluation of this solution by means of case studies. They
show that the FeatureHouse extension implemented is applicable to dif-
ferent kinds of XML languages.

Section 5 relates this work to other work done in this area, summarizes it, and
gives some prospects on future work.

2

Chapter 2

Foundations

We first introduce the notion of Feature-Oriented Software Design (FOSD) used
in this work. Then we give a short overview of XML. This will allow us to apply
the concept of FOSD to XML artifacts in the next chapter.

2.1 Feature-Oriented Software Design

FOSD is a relatively new, language-independent paradigm for software engineer- generality
of FOSDing (SE). As its name suggests, it is based on features: units of behavior (of

a software system) that a user can perceive and distinguish between. These
features are manifest in different kinds of software artifacts: in requirements de-
scriptions as well as in implementation code, and in design documents as well as
in user documentation.

We here use the FeatureHouse approach [AKL09]. In this approach, we try to sep- separate
feature
units

arate the features into different files. This is in contrast to the Colored Integrated
Development Environment (CIDE) [Käs07] approach, for example, which only
provides separate views of a system already “composed” by hand. In this way,
you have the possibility to design and program each feature in separation, and
use any appropriate tool for it. But there is also the necessity for a composition
method.

2.1.1 Feature Structure Trees (FSTs)

As our concept of a feature is so basic for our work, there is a need to for- abstract
artifact
model

malize it. We use a hierarchical structure that we call Feature Structure Tree
(FST)[AKL09]1. An FST is a rooted ordered tree, where each node has two
String-valued labels, type and name. Together, they serve as a two-part naming
scheme.
1 Because we want to extend the FeatureHouse tool implementation, we describe the more

concrete FST version of this tool instead of the more conceptual version in this paper.

3

Chapter 2.1 Feature-Oriented Software Design

There are two kinds of nodes:

NonTerminals additionally have a list of their children nodes, therefore making
up the structure of the FST.

Terminals can only be leaves of an FST; they additionally have three String-
valued labels, a prefix (for special tokens), the body (content) and the
name of a special composition method.

In this section, we will use Java examples to illustrate the concepts. We will
simplify them to some degree to better show their most important characteristics.
The first example is that of an FST for a Java Stack class, shown in figure 2.1.

Figure 2.1: An FST for a Java class

Nodes are represented as type:name pairs inside ovals for NonTerminals, and
inside boxes for Terminals.2 Children are shown in clockwise order.

2.1.2 Superimposition of FSTs

We now need a composition mechanism to compose FSTs. Apel et al. [AL08]
propose superimposition (of rooted trees). Superimposition can best be described top-down

algorithmas a recursive top-down algorithm. It composes two trees by merging their match-
ing sub-trees, and appending any non-matching subtrees. The result is a new tree
containing one node for each node that occurs in either input tree.

More formally, composition of two trees is defined as composition of their root
nodes. Two nodes can only be composed if they are of the same kind (that is,
they are either both NonTerminals, or both Terminals), and if their names and
their types are also the same. This way, the kind, name, and type of a composed
tree node can easily be defined as the common kind, name, and type, respectively,
of the input nodes.

2 This is a slightly adapted presentation of the examples in [AL08].

4

Chapter 2.1 Feature-Oriented Software Design

Composition of NonTerminals To compose two NonTerminals, their lists of
children are merged in the following way: We walk the list of the right
input, and for each entry we search for an entry in the list of the left input
that has the same kind, name and type. If we find a matching entry, then
we apply this algorithm recursively to it and the current right entry, and
add the result to the children list of the output NonTerminal. Else, if we
do not find a matching entry in the left input, we simply add the current
right entry unchanged to the output. Finally, we add all entries from the
left input which have never been matched.

Composition of Terminals To compose Terminals, there are different possibil-
ities. The composition method to be used can be specified using the
Terminal’s compose field. The default composition method is called the
CompositionError method, which simply raises an error when called.3

Superimposition has some useful algebraic properties. It is associative, which al- algebraic
propertieslows you to choose the composition order when composing more than two trees in

a row (and even to optimize execution time from linear to logarithmic by creating
a balanced tree of function applications). In general, it is not commutative, as the
order of the output matters. There are left and right identities to composition,
namely the empty trees. Finally, as defined above, superimposition is idempotent
(in the sense that you only have to take into account the rightmost of a number
of the same features). Of course, these properties also have to be guaranteed by
special composition methods for Terminals.

There are many alternative composition methods (or rules) for Terminals. In gen- Terminal
composi-
tion
methods

eral, they depend on the language to be composed, as Terminals with complex
bodies may contain (and thus hide) much of a language’s structure; therefore,
for very coarse granularities, one has to simulate NonTerminal composition to
some degree when writing new Terminal composition methods. But there are
also simple composition methods, which are therefore more reusable. For ex-
ample, StringConcatenation simply appends the left Terminal body to the
right body. Although this composition method somewhat resembles NonTermi-
nal composition, it differs from the latter in that it is not idempotent. The most
invasive choice is Replacement, as it copies the left Terminal over the right
one.

We will denote superimposition by “•”. As an example, figure 2.2 shows the
superimposition of the BasicStack feature from figure 2.1 with a TopOfStack
feature. This feature adds a method to access the top of the stack.

3 This is a safe default for two reasons: First, the user is forced to think about and choose
an appropriate method. Second, if we use a granularity of FSTs that does not generate
Terminal nodes (or at least no matching ones), then this algorithm is “pure” in the sense
that it is fully described by this formalization.

5

Chapter 2.1 Feature-Oriented Software Design

Figure 2.2: Composition of (Java) FSTs

2.1.3 Mappings to FSTs

Now we have to map the different kinds of artifacts to FSTs (and later map the
FSTs back to their source formats). This mapping has to be done for every kind
of artifact or language. At the inception of FSTs, abstract syntax trees (ASTs)
generated by (existing) parsers have been used as an intermediate step [ALMK08]. inter-

mediate
ASTs

You had to write (or generate) the parser, write an adapter from the resulting
AST to FST, and also write a pretty-printer.

1 package util;
2 //
3 import java.util.LinkedList;
4 class Stack {
5 LinkedList data = new LinkedList();
6 void push (Object obj) {
7 data.addFirst (obj);
8 }
9 Object pop() {

10 return data.removeFirst();
11 }
12 }

Figure 2.3: Java code and corresponding FST

In our example, the parser and adapter transform the Java code on the left of
figure 2.3 into the FST on the right (which is the same as the FST shown in
figure 2.1). The pretty-printer transforms the FST back to Java source code. As
its name suggests, the pretty-printer is supposed to beautify the input it creates.
Therefore, it is allowed to apply syntactic changes, producing a result that may
not be equal to the original input, but only semantically equivalent to it.4

4 A real unparser would produce the exact same result; however, this requirement complicates
FST representation as well as composition, as all information from the input has to be stored
in the FST, further preserved during composition, and taken into account by composition,
to be finally unparsed back.

6

Chapter 2.2 XML

2.1.4 Generation of Mappings

With time, it has become clear that much of this work can be reused for all
other kinds of artifacts, and Apel et al. [AKL09] have accordingly introduced
a new technique which generates the parser and a matched pretty-printer from
an FBNF specification. FBNF, short for Feature BNF (Backus-Naur-Form), is
a language for expressing BNF grammars. It is a slightly adapted version of the
parser input format used by JavaCC.

FBNF heavily relies on annotations, a meta-programming technique provided by customi-
zation by
annota-
tions

the underlying JavaCC, which in turn has also introduced annotations to be able
to support full Java 1.5.

2.1.5 FeatureHouse

Everything described so far has previously been implemented (in Java) in the
FeatureHouse (FH) tool-set. You can download5 and use FeatureHouse to com-
pose files written in Java, C#, JavaCC and other languages, or invest slightly
more time and extend it for new languages which are ready for superimposition.
The requirements which have to be fulfilled by the language in consideration are
listed in section 3.1 of [AKL09]. An existing parser specification of the target
language, written for a modern parser generator, significantly helps in avoiding
errors and misconceptions during the extension process.

2.2 XML

In this work, we aim to integrate XML-based languages into FeatureHouse. The the XML
UniverseeXtensible Markup Language (XML)6 is at the base of an ever-growing family of

markup languages conceived in the last decade. It has first been standardized
in 1998 by the World Wide Web Consortium (W3C)7. The W3C publishes its
standards as “recommendations” on the Internet. Nevertheless, they are true
standards, and we will cite the permanent web addresses where they can be
found like any other reference.

Markup languages are used especially on the Internet to tag parts of a text or of
a multimedia document with predefined semantics. Put in another way, artifacts
written in an XML language are self-describing in the sense that they consist
of data marked up by tags defined by this XML language. Therefore not only

5 http://www.infosun.fim.uni-passau.de/cl/staff/apel/FH/
6 http://www.w3.org/TR/2008/REC-xml-20081126/
7 http://www.w3.org/

7

http://www.infosun.fim.uni-passau.de/cl/staff/apel/FH/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/

Chapter 2.2 XML

is the data as obvious as in other textual encodings, but the tree structure is
also visible; and the human reader may even guess the semantics, as the tags are
also represented textually. XML therefore has to be able to also express semi- semi-

structured
data

structured data, in contrast to fully structured database data or programming
language code.

We will use version 1.0 of the XML standard; there is also a newer version 1.1.
Because that version is not as widely supported in combination with other stan-
dards, using it would unnecessarily complicate this work.

2.2.1 Syntax

The XML standard on its own specifies a “surface grammar” only, for example,
how tags are syntactically written, how text is encoded and escaped, and that
the structure always has to be that of a rooted (ordered) tree. Notably, it does
not specify the logical (inner) structure of XML documents in any way.

We will illustrate the concepts in this section with examples in the language
eXtensible HyperText Markup Language (XHTML), as many people are familiar
with that language. It is, for example, possible to render these XHTML artifacts
using your favorite web browser. Figure 2.4 shows a simple XHTML file with a
title, a heading, and a one-entry list.

1 <?xml version="1.0" encoding="UTF−8"?>
2 <!DOCTYPE html
3 PUBLIC "−//W3C//DTD XHTML 1.0 Strict//EN"
4 "http://www.w3.org/TR/xhtml1/DTD/xhtml1−strict.dtd">
5 <html xmlns="http://www.w3.org/1999/xhtml">
6 <head>
7 <title>
8 A simple document (conforming to XHTML 1.0 strict).
9 </title>

10 </head>
11 <body>
12 <h1>
13 Here is an unordered list:
14 </h1>
15
16
17 A first, basic entry.
18
19
20 </body>
21 </html>

Figure 2.4: A simple XHTML artifact

8

Chapter 2.2 XML

The file begins with an XML declaration; this can be omitted if it is the default
declaration, as is the case here; you can also use other text encodings or version
1.1 of the XML standard if you specify this. In fact, the XML declaration is
an XML Processing Instruction that is interpreted in a special way: Processing
Instructions are enclosed in “<?” and “?>”, they start with their name, and
they may contain arbitrary key="value" pairs, separated by whitespace.
You can also employ XML Comments , which are written using “<!-” and “->”.

Next follows the Document Type Declaration (DTD) statement. In the example it DTD

specifies that the file is meant to be a document conforming to the W3C standard
XHTML 1.0 Strict; it also points to a location where to find the corresponding
DTD. Stemming from XML’s more complex precursor SGML, DTDs define in
essence how Elements may be nested. Although DTDs are included in the XML
standard, and even if the validity of XML documents is defined with respect to
them, their use is no longer recommended to specify new languages.

On line 5, there is start tag (<html>) of an html Element . The corresponding Elements

end tag (</html>) is on the last line, so the Element spans the whole XML
document, and therefore it is the necessary single root Element. There is also an
abbreviated syntax for empty Elements: <html/>.

Elements are the most important part of XML syntax. This has several reasons.

• They allow XML Attributes inside their start tags. Attributes are also writ- Attributes

ten using the above-mentioned key="value" syntax; so, in principle,
xmlns="http://www.w3.org/1999/xhtml" on line 5 is an example
of an attribute.

• More importantly, they do not only allow Comments and Processing In-
structions, but also (other) Elements and XML Text between the start and
the end tag.

An example of Text is A simple document on line 8; we could also take as an
example the whole content of the title Element from after the “>” character on
line 7 to right before the “<” character on line 9 (including all whitespace). Ex-
amples of nested Elements are head and body inside html. You can use DTDs,
for example, to define which Elements may be nested inside which Elements (and
also, which Elements may contain Text).

2.2.2 Namespaces

On top of XML, there are many other standards, ranging from small, general-
purpose extensions to big, specialized languages. One of the most basic extensions

9

Chapter 2.2 XML

are Namespaces in XML8. Namespaces have been introduced to allow for easy
combination of data from different XML languages.

The names of Elements and Attributes are therefore restricted to a format follow-
ing the namespace-prefix:local-name pattern. Here, no part may contain
a “:” character. A stand-alone local-name is also allowed; then its namespace
is the default namespace (for Elements), or the enclosing Element’s namespace
(for Attributes).

Namespace-prefixes are references to URLs; to establish them, we need namespace name-
space
declara-
tions

declarations .Namespace declarations use attribute syntax, too, but they employ
they special key xmlns:namespace-prefix. You can see this in line 5 of fig-
ure 2.4: xmlns="http://www.w3.org/1999/xhtml" This declares a new
default namespace (which will then be used by Elements without prefixes).

The scope of a namespace declaration begins with the start tag of the declar-
ing Element, and extends up to its end tag; namespace declarations may be
overridden by other namespace declarations for the same prefix. You can also
undeclare the default namespace (with the declaration xmlns=""). There is one
implicit namespace present in all Elements, too; its explicit declaration would
read xmlns:xml="http://www.w3.org/XML/1998/namespace".

The Namespaces Standard states that the choice of prefix may not matter, so the
only meaning of a prefix is the URL that it references. Furthermore, namespace
prefixes are only interpreted for Element names and Attribute keys, but not inside
Attribute values (or even inside Text).

We will use Namespaces version 1.0; there is also a (not as widely supported)
version 1.1 of this standard, that allows to undeclare namespaces other than the
default one.

In short, Namespaces are nothing but a two-part naming scheme that uses an
additional indirection through namespace prefixes.

2.2.3 XPath Data Model (XDM)

We have just defined the syntax of XML, that is, which strings belong to the
language defined by the XML grammar (or, to use XML speak, which strings are
well-formed XML). Now we need a data model to represent the strings containing
nested opening and closing tags as trees made up of nodes. This transformation
from strings to trees is called parsing, and will be discussed in section 2.2.7.

8 http://www.w3.org/TR/2006/REC-xml-names-20060816/

10

http://www.w3.org/TR/2006/REC-xml-names-20060816/

Chapter 2.2 XML

There are several different data models for XML, which are used by different XML
processing tools. The XML Information Set (Infoset)9 defines a logical view of XML

Infosetan XML artifact. It contains, for example, information about the DTD, and a
separate tree node for every character of XML Text.

The XPath Data Model (XDM)10, in contrast, does not contain any information XDM

about the DTD, and it concatenates adjacent strings to form XML Text nodes
with maximum-length content. In fact, XDM can be considered a subset of the
Infoset, as it can be created from the information contained therein (see the
non-normative appendix11: XML Information Set Mapping).

In the XDM, there are seven different kinds of tree nodes. Text nodes—which we
have already described—Element, Attribute, Namespace, Processing Instruction
and Comment Nodes, and a single Document (or Root) Node. This extra node is
needed, for example, to contain not only the root Element Node, but also possible
top-level Comment and Processing Instruction Nodes in its list of child nodes.

The inner tree structure is made up of XML Element Nodes, each with a list of Element
Nodesall its subtrees in input order. All the other five kinds of tree nodes may only

appear as leaves. Yet Attributes and Namespace Nodes are special: their order
does not matter, and there may be no duplicate keys; as a result, they form a
set (of key-value pairs12) instead of a list. Note that Namespace Nodes represent
in-scope namespaces, and not merely namespace declarations.

2.2.4 XPath

XML Path Language (XPath)13 is an expression language (that is, a functional
language) for addressing parts of an XML document. We have already seen its
data model in section 2.2.3.

Currently, there are two standardized versions of XPath. XPath 1.0 and XPath
2.0 may be considered to be different languages: XPath 2.0 is a large, not always
backwards-compatible extension of XPath 1.0. For example, XPath 2.0 uses a
richer data model with sequences in the place of node-sets. Since tool support
for XPath 2.0 is substantially poorer that for XPath 1.0, we will use XPath 1.0 XPath 1.0

in this work.

The most important feature of XPath are its path expressions. They follow the path ex-
pressionsexample set by UNIX path expressions with wildcards. Paths expressions may

be either relative to a context node or absolute. They consist of a series of steps,

9 http://www.w3.org/TR/xml-infoset/
10 http://www.w3.org/TR/xpath#data-model
11 http://www.w3.org/TR/xpath#infoset
12 This means the set represents a map.
13 http://www.w3.org/TR/xpath

11

http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xpath#data-model
http://www.w3.org/TR/xpath#infoset
http://www.w3.org/TR/xpath

Chapter 2.2 XML

separated by “/”. Absolute path expressions start at the (document) root, which
is why they have to begin with “/”.

Path expressions are matched against the XDM of the input document. The set
of matching nodes is then returned as the result.

2.2.5 XML Schema

XPath can, for example, be used to specify integrity constraints in schema lan- schema
languagesguages [MS06]. However, the principal use of schema languages is to further spec-

ify in a schema [MS06] the tree structure (mainly made up of XML Elements, as
already discussed) of a class of XML documents. Such a schema extends what
we have called the “surface grammar” of XML to something comparable in ex-
pressive power with a traditional grammar. In this way, we speak of an XML
language as the class of documents that conform to a given schema.

(W3C) XML Schema14, which is sometimes abbreviated WXS, is the W3C stan-
dard for schema languages today. It is meant to be a replacement for XML DTDs.
XML Schema reproduces and extends the capabilities offered by DTDs. For ex-
ample, it does not only allow to define the structure of XML documents, but also
allows to constrain their contents by user-defined datatypes15 (see [BNV04] for a
detailed comparison of DTDs and XML Schema).

XML schemas are normally represented in XML 1.0 syntax; this means that we
have to distinguish between schema and instance documents from now on.16 XML
Schema supports Namespaces 1.0 (unlike DTDs), and it uses them, for example,
when combining schemas. At the time of writing, XML Schema version 1.1 is not
yet finished. This is why we use version 1.0.

XML Schema uses the Infoset as its tree data model of instance documents. This
guarantees their well-formedness. The validation of instance documents against
a given schema does not only produce a boolean result (whether the instance is
schema valid), but also enriches (“augments”) the Infoset representation of this
instance with type annotations and other information. The resulting Infoset is
called the post-schema-validation Infoset (PSVI).

Since XML Schema uses XML syntax, it is possible to use any XML tool to
manipulate schema information. For example, it is easy to process schemas us-
ing XSL Transformations (XSLT). (The eXtensible Stylesheet Language Family
(XSL) “is a family of recommendations for defining XML document transforma-

14 http://www.w3.org/TR/xmlschema-1/
15 http://www.w3.org/TR/xmlschema-2/
16 There is even a meta-level: schema documents are instances of the “Schema for Schemas”,

which is therefore a meta-schema.

12

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

Chapter 2.2 XML

tion and presentation.”17 It consists of XPath, XSLT, and XSL-FO, which is “an
XML vocabulary for specifying formatting semantics”.)

2.2.6 XSL Transformations (XSLT)

XSLT18 is a declarative language for XML tree-to-tree transformations. The trees
are XDM trees. XSLT uses XPath as its expression language to select parts of
an XML document, for example, to specify matching parts of the document or
to extract them.

The XSLT version corresponds to the XPath version it uses; it follows that there
are even less implementations of XSLT 2.0 than of XPath 2.0. Although XSLT
2.0 has some real advantages over XSLT 1.0, these are merely theoretical without
enough tool support. Therefore we will restrict ourselves to version 1.0 of XSLT. XSLT 1.0

2.2.7 XML Parsers

XML languages pose a special problem: We have seen in section 2.2.1 and sec- traditional
infrastruc-
ture not
available

tion 2.2.5 that they are not defined by grammars, but rather use a two-layer
approach with a “surface grammar” and an additional schema. The powerful
tool infrastructure for grammars (like parser generators, for example) can only
be used in conjunction with traditional grammars. This means that it only has
access to the “surface grammar” of XML languages, and not to the schema.

Of course, you it would be perfectly possible to create a complete grammar for an
XML language, but as these grammars can become very complex, this requires
much extra effort. In consequence, there are hardly any grammars for XML
languages.

The XML infrastructure is, of course, general in the sense that it can be employed
with any XML language (and there are many of them!). From a general formal
language perspective, this tool infrastructure is very special and restricted to only
XML languages.

At the base of the XML infrastructure lie XML parsers . Like all parsers, XML XML
parsersparsers transform a string of characters into a tree representation. XML Parsers

therefore have to build a tree, for example, an XDM tree, from the sequence of
opening and closing tags found in an XML artifact.

Most parsers for widely-used modern languages are generated using a specifica-
tion. This is the state of the art in compiler construction [GBJL02]. In contrast,

17 http://www.w3.org/Style/XSL/
18 http://www.w3.org/TR/xslt

13

http://www.w3.org/Style/XSL/
http://www.w3.org/TR/xslt

Chapter 2.2 XML

existing XML parsers like Xerces-Java, for example, are written by hand. This
means that you cannot easily modify the grammar and then simply re-generate
the XML parser. Instead, you have to modify the complete parser by hand. Since
XML parsers are very complex, you are likely to introduce errors in this process.
Therefore we need to use XML parsers as they are.

Because of all this, it is difficult to integrate an XML language into the grammar- integra-
tion with
Feature-
House

based FeatureHouse tool-set. Neither of the two most obvious options can be
considered to be a good approach, because:

• Writing a parser by hand for each language does not make much sense, as
many XML languages are quite complex.

• Generating a parser from a grammar for an XML language is often impossi-
ble: Because there is not so much use for them, BNF grammars have rarely
been developed for XML languages, The few existing grammars are often
incomplete, because their correctness is not of utmost importance, given
that XML documents need not be validated against them. This addition-
ally restricts their use in a tool like FeatureHouse, which needs to preserve
semantics while it transforms, composes and transforms back artifacts.

In both cases, the user would have to specify the generic XML parts for every
XML language to be integrated , and would likely have to copy (and adapt) these
parts, as there is no possibility to reuse them.

It is not an option to write (and debug, and test . . .) a new XML parser, as this is integrate
off-the-
shelf XML
parser

too complex a task; even adapting an existing XML parser does not appear to be a
good idea. So we will have to integrate an existing (off-the-shelf) parser. It should
be written in the same language as FeatureHouse to minimize incompatibilities;
this means that we will later have to select the right Java parser for XML. We
will have to use at least some information from a possibly supplied XML Schema
to customize the mapping from artifacts written in some XML language to FSTs.
This information may have originally been present in the input, or it may consist
of user-supplied “annotations”. In the latter case, we will need to allow and
process these annotations.

14

Chapter 3

Extending FeatureHouse for XML Languages

In this section, we describe the implementation of superimposition for XML lan-
guages within the FeatureHouse tool-set. We build upon the foundations of these
two areas set out in section 2.1 and section 2.2. We will first analyze whether
and how superimposition can be applied to XML artifacts. After a short digres-
sion concerning the APIs for XML processing in Java, we use them to design a
solution. In the end, we give an overview of its implementation.

3.1 Analysis

In this section, we will explore whether superimposition is applicable to XML
artifacts.

XML trees and FSTs seem to be very similar, at least at first sight. Yet there
are some intricacies, so we have to take an in-depth look at XML trees, how they
can be annotated, and finally, how their structure can be specified.

3.1.1 XML Trees

XML models rooted ordered trees. As we have seen in section 2.2.3, there are
different data models for XML with different tree representations of an XML
artifact.

Because of its frequent reuse in other XML standards, the XDM is the XML XDM
Treestree model best supported by XML processors. Although the XDM is the most

limited one, it is also the most useful of the available data models, as it allows
us to use any XML processing facility we may need. So we will use the XDM
and therefore disregard all information which cannot be represented in this data
model.

The XML Standard stipulates that the root of an XML document is the only
XML Document (Root) Node in a tree, only XML Elements may be inner tree

15

Chapter 3.1 Analysis

nodes, and all five other kinds of XDM nodes, namely XML Text, Comment and
Processing Instruction Nodes and XML Attribute and Namespace Nodes must
be leaves in the tree. A document has to fulfill these requirements to be called
well-formed .

To apply superimposition, all children of a NonTerminal with the same type must unique
child
names

have unique names. The reason for this is the following: The superimposition
algorithm does not take into account the position of a node in the list of children
when searching for a matching node. Therefore superimposition cannot distin-
guish between two nodes with the same name (and the same type and kind). As
a result, a match will be established with all the children with the same name.
This “wildcard matching” indeed amounts to quantification. Although the quan-
tification is only local, as it is restricted to the (direct) children of a node, any
quantification is contrary to the compositional approach we have chosen. A mod-
ification of the algorithm to use only the first (or perhaps the last?) match would
also be rather arbitrary.

This “ ‘unique child names’ constraint” is not generally fulfilled in XML languages.
For example, in XHTML documents, it is normal to have more than one second-
level heading (<h2>Some Title</h2>) inside the same body Element; the
same holds true for XHTML list elements (Some Item) inside of
an ul Element representing an unordered list, for instance.1

Therefore we will have to resort to additional meta-data to be able to compose in need for
instance
annota-
tions

XML instance documents in the correct way. We will directly embed this meta-
data in annotations of the Elements in XML instance documents. An alternative
is to put external meta-data in a separate file, but then you have to provide a
mechanism to link the meta-data to the data they describe; these links tend to be
little robust when the data documents are composed. Another problem is that
they also need to be composed (and therefore (made) composable in the first
place).

From a technical point of view, it is only necessary to annotate those nodes that
are matched during superimposition; however, from a theoretical and engineering
perspective, it is advisable to annotate all children that cannot be otherwise guar-
anteed to have a unique name. This allows for easy extension by superimposition
without the need to first annotate the base instance documents.

This does not mean that you have to give names to all Elements of an XML
artifact. For example, an existing schema may already guarantee that there is
at most one child Element of the same type. In this case, there will be at most
one matching Element during superimposition, so there is no need for annotating
Elements of this type.

1 You cannot even generate unique names from the content of a whole subtree, since it is
perfectly legal to have, for example, two identical list items in XHTML.

16

Chapter 3.1 Analysis

3.1.2 Annotations for XML

We will now look into how XML artifacts can be annotated.

Annotations in grammars and in programming languages (where the grammar
annotations stem from) have in each case been introduced after the implementa- mature

grammar
annota-
tions

tion of the corresponding base formalism, which means that the annotations are
purely optional and use an independent syntax. They have matured enough now
to be supported by many standard compilers and programming language tools,
so you can easily use them at present.

By contrast, there is no standard annotation mechanism for XML, at least not no XML
annota-
tions

yet. This has several reasons:

• There is no pressing need for (additional) annotations, since XML Elements
are themselves a kind of meta-data.2 This is all the more true for XML
Attributes.

• It is not easy to extend an XML parser to support (your own kind of)
annotations because of the complexity of XML.

• There are several possibilities to use (and misuse) the standard XML syntax
to add annotations.

So let us consider the possibilities for annotations available without modifying
XML parsers.

The simplest way for annotations is to add extra Elements inside the XML struc- extra
Elementsture, which, of course, will have to be automatically ignored by the application

using the XML artifact. This is difficult to achieve, even for languages without a
schema.

Another possibility (available in almost all formal languages) is to use Comments, Com-
ments,
Text

which provide for a totally unstructured way of adding information. In XML, you
could—at least in principle—even use Text for annotations, if you can distinguish
annotation content from normal data.

A more structured way offered by XML is to employ Processing Instructions. Process-
ing
Instruc-
tions

They are designed for machine use and will be automatically ignored by other
applications. The downside to this is that you have to especially prepare your
application for using them.

Finally, you can use Attributes. This approach is in some ways comparable to Attributes

adding extra Elements. Yet it is less invasive, because Attributes are often not as

2 This is most obvious in the case of XHTML Elements structuring a text to be read by
humans.

17

Chapter 3.1 Analysis

strictly specified as Elements, and because the path from an annotated Element to
the Document Root Node remains the same. As a consequence, extra Attributes
will often be ignored. The other advantage is that Attributes can be specified
using schema languages like XML Schema. This allows for controlled annotation
and for verification of the annotations .

There are some minor disadvantages to the use of Attributes as annotations: The
most important one is the fact that an Element’s attributes have set semantics.
(This prohibits two attributes with the same key). Besides, XML poses restric-
tions on the possible values of Attributes.

We have not yet mentioned Namespace declarations for two reasons: Syntacti- Name-
space
declara-
tions

cally, they are equivalent to attributes, which we have already discussed above.
Even worse, their semantics as declarations implies that they an XML processor
may remove them if they are not used. This eliminates their use as annotations.

None of all these possibilities can be used to directly annotate anything but
Elements. This is because the possible annotations are only allowed inside of
Elements, and they therefore can only annotate these Elements in an easy way.
Attributes are most closely tied to their parent Element (as they are written inside
its start tag), which makes them ideal for annotating Elements.3 As Elements are
the most important constituent of a structured XML document, this advantage
outweighs their disadvantages compared to Processing Instructions.

In conclusion, Attributes appear to be the most viable means of annotating XML.
Still, annotation Attributes should not be over-used.

3.1.3 Specifications for XML Languages

Schema (definition) languages are rather restricted languages with the special
purpose of specifying the structure of instance documents (or, simpler instances).
Of course, you could use languages with a wider purpose, such as transformation
or even query languages. However, they are not as adapted for this purpose as
schema languages.

In the case of XML, schema languages specify the possible ways of nesting differ-
ent XML Elements, and whether these Elements may contain Text or different
Attributes. So schema languages internally use an XML data model consisting
only of Elements, Attributes and Text. This is even more restricted than the
XDM.

The XML Standard defines the DTD as its schema language, and XML doc- alterna-
tivesuments matching their (included or referenced) DTD are officially called valid .

3 With some extra effort, you may use them to annotate Attributes, too.

18

Chapter 3.2 JAXP: XML Processing for Java

Nevertheless, DTD declarations originate from XML’s precursor SGML, and since
they do not use XML syntax themselves, you need an extra tool-set to manip-
ulate them. This is why other schema languages such as (W3C) XML Schema
(sometimes abbreviated WXS), RELAX NG (RNG), and Schematron have been
designed. RELAX NG4 is standardized by the Organization for the Advancement
of Structured Information Standards (OASIS), while Schematron is an ISO stan-
dard (ISO/IEC 19757 - Part 3). Of these alternatives, XML Schema is the most
complex schema definition language. There are many reports on XML Schema
being “too complicated” (see [MS06] for an example).

XML Schema is not only the official W3C standard, but it also appears to be XML
Schemathe most widely used schema language [BNV04], and it will probably be the

most important schema language in the future. We will use XML Schema as
our schema language to be able to support many current and most future XML
languages.

Nevertheless, we have to take into account that even the Element structure of schema-
less
languages

many XML languages cannot be completely specified using schema languages.
Two examples of XML languages without schemas are:

XSLT allows embedded template content: transformations may include literal
result Elements from the output language.

ant defines the names of Elements in the same build script in which they are
used; in effect, it includes an extra schema language.

So we need to be aware that the use of schema languages is limited, and that
there are some cases where a schema simply cannot be defined (and even more
cases where a simple schema cannot be defined).

Let us now take a look at the facilities for processing XML artifacts available
in the Java programming language. This will allow us in section 3.3 to design a
solution as an extension of the Java-based FeatureHouse.

3.2 JAXP: XML Processing for Java

The Java API for XML Processing (JAXP) is the standard API (application pro-
gramming interface) to do any XML-related processing in Java. It is available in
recent versions5 of Suns Java 2 Standard Edition (J2SE), which are used by most
Java programmers. It defines Java interfaces, which may in turn be implemented
by third-party software providers; there is also an implementation included with
the JDK. Newer versions of these reference implementations may be obtained as

4 http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
5 We use JDK1.6.

19

http://www.oasis-open.org/committees/relax-ng/spec-20011203.html

Chapter 3.2 JAXP: XML Processing for Java

open-source software from the Internet. JAXP consists of several different APIs.
We will describe in short the facilities they provide. Chapter 7 of [MS06] treats
each of them in more detail.

3.2.1 Lower-Level APIs

To begin with, there are the rather low-level APIs for parsing XML (that is,
converting the string of characters of an artifact into an XML tree).

With the Simple API for XML processing, version 2, (SAX2), an event is pushed SAX2

for each token in the XML input stream. The API user then has to write and
register appropriate event listeners to be called upon reception of such an event.
From a traditional compiler construction perspective, this merely corresponds
to the first, scanner phase in compilation; yet the SAX2 API also allows for
symbol table creation (which is needed for the namespaces feature) and even for
validation of the input against a schema (which implies creating an AST).

The Streaming API for XML (StAX) is comparable to SAX2 in many ways, StAX

the major difference being its pull-based interface: The programmer requests the
tokens she needs. This allows StAX to skip portions of the input.

In contrast, the Document Object Model, version 3, (DOM3) is a tree-based DOM3

API.6 Its in-memory representation of an XML tree can be manipulated in-place,
for example by modifying Elements or adding Attributes. As DOM3 is a language-
independent standard of the Object Management Group (OMG) with very similar
bindings to multiple programming languages, DOM3 is not very natural to use
in Java.

All previously mentioned APIs have been conceived to be used as parsers for
generic XML; therefore any well-formed XML file can be read with them. How-
ever, when it comes to writing XML files or streams (or unparsing , serializing,
or pretty-printing, as it is called in different contexts), they do not propose an
easy-to-use and standard way.

It is true that parsing (in general and of XML as a special case) is much more
complex a task than unparsing, as parsing means deriving a tree structure by
combining and nesting the elements in a list of tokens; nevertheless, unparsing
can also be a nontrivial task, even though the structural transformation is a
simple run through a tree that produces a list; the nontrivial part here stems
from the prefix “un-” in “unparsing”: unparsing is supposed to be the inverse
of parsing, and it should therefore reverse all changes made during the parsing
process. This algebraic property is of practical importance as it enables round-

6 Of course, this does not mean that implementations may not use other representations such
as tables internally, as is done for example, by some versions of the Apache Xerces parser.

20

Chapter 3.3 Design

tripping . Round-tripping means that you can start editing where you want, be it
a tree or a list of tokens, apply any changes you like, and then all your changes
will appear in both representations.

3.2.2 JAXB: Binding Java Classes to XML Schemas

This round-tripping capability is available with the Java Architecture for XML
Binding (JAXB). To make it possible, JAXB has to restrict its data model of
XML to allow only Elements, Attributes and Text. JAXB uses XML Schema to
define the XML side of the binding (or mapping), and Java classes for the Java
side. The specification of these structures also works either way: You provide
one side, and JAXB automatically generates the code of the other side. Bindings
may be customized using a separate7 XML file (for schema-to-java binding) or
annotations in the Java source files (for java-to-schema binding).

3.2.3 TrAX: Using XSLT from Java

In section 2.2.6, we have described XSLT, the standard for XML processing. The
Transformation API For XML (TrAX) makes this language available in Java, as
a scripting language with the special purpose of processing XML data. TrAX has
the option of pre-compiling XSLT transformations to Java byte code (via Java
source code), providing all the advantages of a compiler. Furthermore, the use
of TrAX is the only way to convert XML representations created by one JAXP
API into those used by another one, and TrAX provides an easy way of writing
(unparsing) them to streams or files.8 Unfortunately, the XDM used by XSLT
is the most restricted data model for processing XML, so you might be losing
information if the data model that you normally define the semantics on is more
detailed.

3.3 Design

With all the background and tools needed available, we can now proceed to
designing a solution for composing XML artifacts.

As we have learned, our desired input and output formats are different XML
languages (which can be specified by XML schemas). So we will also have to
unify the processing of the different XML languages to be supported. Because the

7 This underlines the above-mentioned difficulty of annotating XML.
8 To this end, you use the XSLT identity transform, which is created if you call an additional

object constructor provided by TrAX.

21

Chapter 3.3 Design

composition shall be done by FeatureHouse, which uses a Java FST representation
of the input, at some point we will have to adapt XML input to Java, providing
for conversions to and from Java.

In this section, we will first choose the principal programming language to be used;
We can then fix the data structures we will use, and determine what content they
will have. Finally, we decide on how to represent the two kinds of annotations
we need.

3.3.1 XSLT as the Primary Programming Language

We have to choose the programming languages to be used first, as this will have
a considerable impact on the design. There are two natural options:

• domain-specific XML processing languages like XSLT (because the data domain-
specific
languages

uses this representation)

• the general purpose programming language Java (because it is already used
by FeatureHouse)

XSLT offers some advantages in being especially designed for processing XML
trees. It offers high-level treatment of XML transformations. As a language, it
may not be as mature as Java, but there appear to be several implementations
available, which are easily usable from Java within the TrAX API, as we have
seen in section 3.2.3. Hence we will in general prefer XSLT to Java in this work.

The consequence of this choice is that we will do large parts of the processing
using XML data.

3.3.2 XML-FSTs as the Principal Data Structure

In order to have a clear separation between XML and Java processing, we in- structure

troduce a new intermediate representation: XML-FSTs. They have the same
structure as FSTs, yet they are not represented in Java, but in XML.

We specify their content by defining how XML-FSTs are filled with data from content

an XML tree. In essence, we need to lift XML up one level: We are effectively
creating a generic (meta-)representation of XML in XML. There is only one kind
of data to be treated in a special way: These are the annotations we will look at
further below.

The next step is to decide how to represent (all) the information from the XDM,
our data model, in (XML-)FSTs. Let us recall from section 2.1.1 that FSTs (and

22

Chapter 3.3 Design

therefore also XML-FSTs) use a two-part naming scheme, consisting of a type
and a name for each node. Types are used as a classification mechanism for FST names

and types
of FST
nodes

nodes; they could, for example, be used to select appropriate composition mecha-
nisms for Terminals. Names, however, are only used as identifiers; together with
the types they are compared to find a matching subtree during the composition
process.

How should we now map the XDM node types and node names (possibly be- XML
names as
FST
types?

longing to namespaces) to FST types and names? For XML nodes, it is clear
that nodes belonging to different XDM node types are not interchangeable in a
document. At first sight, you would expect that the names of XML Elements
also correspond to FST types, as they can be defined in a schema, similar to the
AST node types defined in a grammar. Surprisingly, XML Element names, for
example, are in general not suited as a classification mechanism: XML Schema
contains many concepts more targeted at data modeling than pure structural lan-
guage definition. For example, an XML schema may directly allow two alternative
kinds of Elements in a given context; it may specify a subtype which can take its
place, (there are two different ways of deriving subtypes in XML Schema), or it
may even allow substitution of one Element for another wherever it may occur;
these possibilities even exist for Elements from different XML namespaces. To
be able to extend this work with support for any of these XML Schema concepts,
we therefore cannot make FST types of XML names (not even of the namespace
part).

So we propose the following approach: Each of the seven node types of the XDM mapping
names
and types

will be represented as a separate (XML-)FST node type, while the names in the
FST will be derived from the names of the XML nodes. For the anonymous
node types Comment and Text, a new name will have to be generated. XML
namespace prefixes will be additionally preserved, as they are the first part of
the XML names of Elements and Attributes. (Namespace declarations will be
included as all in-scope namespaces from the XDM will simply be added as nodes,
in this way the fully qualified names can be reconstructed.) In this way, there
will be only seven different types of FST nodes for all XML languages. They
correspond to the node types of the XDM.

3.3.3 Attribute Declarations as Schema Annotations

FeatureHouse uses annotations in grammars to specify how to parse documents
into FSTs (and how to pretty-print FSTs). Likewise, we will now try to allow for
the annotation of XML schemas.

To decide on the form of the annotations, we can use the guidelines set up in
section 3.1.2 for general annotations in XML. They would normally lead us to
choose XML Attributes (or Processing Instructions) as the representation of an-

23

Chapter 3.4 Implementation

notations.

Yet in the case of schema annotations, there is an additional problem: When
parsing an instance document, how do we get information from its XML schema
through the XML parser into the FST? If we cannot modify the XML Parser, we
need to also put the information from its schema annotations into the instances.

On the other hand, the use of XML Schema also offers an additional opportu-
nity to realize annotations: We can add declarations for XML Attributes in the
schema, and then use these extra Attribute in the instances.

This choice will offer us the possibility to automatically pass on the annotations to
the instance.9 As a consequence, an (XML-)FST will contain every information10

needed for superimposition as well as pretty-printing/unparsing.

3.3.4 Attributes as Instance Annotations

In FeatureHouse, we need to annotate only grammar documents to specify the
mapping to FSTs (see section 2.1.4). The programming languages previously
integrated into FeatureHouse provide enough structure (in particular, enough
named structural elements) at the granularity chosen in each case to successfully
map their instances to FSTs. For theses languages, there is no need to provide
any annotations in the instances. Therefore, the grammars did not have to be
extended with respect to the language accepted: The language defined by the
annotated grammar remains unchanged in comparison to the language defined
by the non-annotated grammar.11

In the case of XML, where documents often contain many anonymous tree nodes,
it is necessary to also allow for additional instance annotations, at least to specify
unique child names12 (see section 3.1.1). Fortunately, our choice of passing the
information from the schema annotations through the instances into the FST
allows us to also take into account annotations in the instance at no extra cost.

3.4 Implementation

Figure 3.1 summarizes what FeatureHouse with our XML extension does in order
to compose artifacts written in different XML languages. Artifacts created during
9 We will see this in section 3.4.2.
10 This is necessary as we will not be able to use any information coming directly from the

schema or the schema annotations.
11 The only exception is the original() keyword needed for the wrapping of Terminals, for

example, of Java methods.
12 These names will then have to be provided by the user in the instance documents.

24

Chapter 3.4 Implementation

processing are represented by boxes, whereas transformations are shown using
arrows.

• On the Schema Level

2 XML Schema Documents without Schema Annotations

l semi-automatic Schema annotation

2 XML Schema Documents with Schema Annotations

l Schema validation of Instances with augmentation

• If there is no Schema

l XSLT to directly add Instance Annotations

• On the Instance Level

2 XML Instance Documents without Instance Annotations

l semi-automatic Instance annotation (see above),
automatic Instance de-annotation

2 XML Instance Documents with Instance Annotations

l XSLT for transforming back and forth

2 XML FSTs

l JAXB for two-way Java-XML mapping of FSTs

2 FSTs

↔ FSTComposer for superimposition of Directory Hierarchies

Figure 3.1: Schematic view of the FeatureHouse XML Extension

We will explain in the following how the transformations in figure 3.1 are imple-
mented. For this, we will respect the order chosen in this figure, and proceed
from top to bottom.

3.4.1 Annotating XML Schemas

Schema annotation does not have to be done very often; normally, this will only
happen once for each XML language to be integrated into FeatureHouse. Never-
theless, since XML schemas for languages like XHTML are rather big artifacts,
it would be convenient to have tool support for this process.

As we implement schema annotations using schema declarations of default values
for Attributes (see section 3.3.3), it is possible to add them using XSLT. This
way, you can automatically add all possible schema annotations with predefined
values. This part of the process is common to all XML schemas. Afterwards, you
need to check the annotations and customize them, which requires understanding

25

Chapter 3.4 Implementation

of the schema in question. This means in summary that schema annotation is a
semi-automatic process.

It is easy to achieve de-annotation of all schemas using XSLT. However, this is
not really necessary, as you can always simply store the original XML schema
instead.

Next, we will have to process these schema annotations. As we have seen in
section 3.3.3, it is necessary to carry these meta-data over to the instance.

3.4.2 Pushing Schema Information to the Instance

There is one mechanism in the XML universe that is perfectly suited for this pur-
pose: Schema Validation of an XML instance document. As we have mentioned
in section 2.2.5, this does not only yield a yes/no answer, but it also allows us to
retrieve a PSVI.

The PSVI contains the schema type for each Element and Attribute in the in- Schema
Validation
with Aug-
mentation

stance. It includes attributes not represented in the instance, but for which the
schema specifies default values. Thus the instance information is augmented by
schema-supplied information. In the PSVI, there are also tables to manage the
references for example, from IDREF- to ID- attributes. The tables, which corre-
spond to the symbol tables created by traditional parsers, complement the parsed
tree structure to make up the graph of the input, adding non-tree edges.

As XML Schema is so complex, the schema types cannot be represented as simple
names, but rather have to be references into the schema(s) used for validation.
Having these links accessible through the PSVI of the instance would in principle
allow us to physically store all annotations in the schema, and yet to retrieve
them through the instance after parsing and validation.

Unfortunately, the format of the PSVI is not specified in the XML Schema stan-
dard, although it would be both natural and convenient to serialize and represent
the PSVI in XML using an augmented version of the input instance document.

As a consequence, it is not easily possible to retrieve schema information from
the instance with the currently available XML tools for Java. The only data
which can be retrieved rather easily are in fact the attributes defaulted from the
schema.

Surprisingly, is not easy to find a tool to implement attribute defaulting from an
XML Schema. An extensive search has revealed the following two possibilities:
xsv and SAX2. So, you can either use xsv or a simple Java tool we have
written using SAX2. This will push the information from the schema annotated
with attribute declarations (with default values) to the instance documents, from

26

Chapter 3.4 Implementation

where they can be easily retrieved later.

3.4.3 If There Is No Schema

It is clear that schema defaulting can only work for languages defined by an XML
schema. We have seen in section 3.1.3 that this is not always the case. For
these languages, we need another mechanism to specify the meta-data normally
represented in schema annotations.

This problem has been simplified through our decision to push schema anno-
tations to the instance for languages with XML schemas, as described in sec-
tion 3.4.2. Therefore we are now able to directly represent the schema annota-
tions in the instance.

Regarding schema-less languages, this means that we can find a replacement for
an XML schema in combination with the process of schema defaulting. This
replacement will, in general, be specific to the schema-less XML language in
question. It can be implemented using XSLT.13

Now that we have explained the implementation of the transformations at the
schema level, we can “descend” one level of abstraction and thus reach the in-
stance level. In the following, all transformations will apply to instance documents
only.

We start with non-annotated instance documents and follow their transformation
until we reach the Java FST representation needed by FeatureHouse. In each
step, we will also shortly describe how the corresponding back-transformation is
realized.

3.4.4 Annotating XML Instances

The input to be superimposed consists of non-annotated instance artifacts. To
begin, we will use one of the two ways of annotating instances described in sec-
tion 3.4.2 and section 3.4.3. For languages with an XML Schema, it is preferable
to use the former way (that is, schema defaulting) here. The result of this step
are annotated instance artifacts.

De-annotating instances cannot be implemented using schema validation, because
there is no possibility to remove (annotation) Attributes during validation.14 We

13 This way, we use XSLT as a schema language, which has been discussed in section 3.1.3.
14 A schema will either contain the corresponding attribute declarations and thus allow the

Attributes, or it will not contain the declarations, and reject an instance containing these
Attributes. This holds true in the case of a complete schema, when you select strict checking;

27

Chapter 3.4 Implementation

have defined a simple transformation in XSLT that is used to de-annotate in-
stances independent of the XML language they are written in. This de-annotation
is the final step in the composition process, as it transforms the annotated versions
of the composed variants into non-annotated version.

This step is necessary to make the composed variants valid with respect to the
original, non-annotated schema of the language they are written in. However, it is
a good idea to also keep the annotated variants, as they can be further composed
with other features without the need of (manually) re-annotating them.

3.4.5 Transforming Annotated XML to XML-FSTs

The next step is to transform the annotated instances to XML-FSTs (see sec-
tion 3.3.2). Since this transformation uses XML for input and output, an XML
transformation language is ideally suited for the processing. As explained in sec-
tion 3.3.1, we consider XSLT in version 1.0 the transformation language of choice.
We have also seen in section 3.2.3 that it is not only possible, but also quite simple
to drive an XSLT processor from Java using TrAX. Of course, the exact same
argument is also true for the back-conversion from XML-FSTs to XML.

This way, the only process that we do not have tool support for is the verification
of the (back-)transformation: Transformation and back-transfromation should be
the inverse of each other. As we use XSLT1 to implement them, this can only
be proven manually (or evidence could be gathered by testing). A schema-aware
XSLT2- or XQuery1-processor would indeed be able to statically type-check the
two transformations against supplied input and output schemas.15 But, as we
have seen in section 2.2.6, at the time of writing, there are too many disadvantages
to the use of these XML processing languages.

In conclusion, we cannot prove that the transformations are correct; we can only
say that our tests show that they work as expected: The (forward) transformation
produces the XML-FSTs needed in the next step, and the back-transformation
will later on be able represent the XML-FST of the composed variant in its source
XML language.

for a partial schema with lax checking, the Attributes will always be allowed.
15 We would then have to provide a specific XML Schema for the source XML language and a

generic one for XML-FSTs as the target; the forward transformation would be type-checked
against the source schema as input and the target schema as output, and for the back-
transformation we would interchange the two schemas.

28

Chapter 3.4 Implementation

3.4.6 Transforming XML-FSTs to FSTs

What we are lacking now is just a way to convert between XML-FSTs and “nor- Binding
XML-
FSTs to
FSTs

mal” (Java) FSTs. We could think about writing a parser for XML-FSTs (maybe
we would even write this parser manually, as this restricted XML format is under
our control), and also writing a simple output routine to “pretty-print” FSTs as
XML.16 Alternatively, we could decide to employ as much programming language
tool support as possible, and make use of a Java XML parser which also supports
the generation of XML output.

Fortunately, we have a tool at hand that is even simpler to use: JAXB (see
section 3.2.2) allow us to specify a simple mapping between an XML Schema-
and a Java Class-hierarchy; it will then automatically generate code to parse and
unparse XML, optionally performing on-the-fly validation.

We have chosen this approach to generate the mapping between Java- and XML-
FSTs. As a consequence, the JAXB run-time will automatically perform this
two-way mapping. This means that after this step, the XML artifacts from the
input will be represented as Java-FSTs, ready to be composed by FeatureHouse.

In figure 3.2, we show the FST of the simple XHTML example whose source code
we have shown in figure 2.4. Note the computer-generated names for the XML
Text nodes which are the Terminal nodes of this FST. Like the FST for a Java ar-
tifact (shown in figure 2.1), this figure of an FST has also been slightly simplified.
For instance, it does not show all the XML Text nodes that correspond to the
whitespace between the XHTML Elements, which is only used for indentation.

Care has been taken to not lose any information contained in the XDM during
all the bidirectional transformations described in all the previous sections.

3.4.7 Superimposing FSTs for XML Artifacts

By application of the transformations listed above, FeatureHouse is able to com-
pose XML files by superimposition. FeatureHouse will not only compose single
files, but complete directories with all their sub-directories. This means that you
can put all the files that a feature consists of in a directory, and FeatureHouse
will superimpose them at once when you call it to compose two features.

In conclusion, this XML extension makes FeatureHouse capable of composing ar-
tifacts written in many different languages in a unified way. Furthermore, the lan-

16 A smarter way of doing these conversions manually would be to take advantage of the above-
mentioned asymmetry between parsing and unparsing, and to replace the complex XML
parser written in Java with a Java “pretty-printer” written in XSLT, thereby reutilizing
Java’s capability of parsing and subsequently loading its own source code at run-time.

29

Chapter 3.4 Implementation

Figure 3.2: An FST for an XHTML artifact

guages can be described using two different specification languages: FeatureBNF
for traditional grammar-based languages, and XML Schema (with additional se-
mantics for feature annotations) for XML languages; there is even a possibility
to use FeatureHouse for (XML-)languages without a formal language definition.

30

Chapter 4

Case Studies

In this section we present three case studies. We have conducted them to evaluate
the FeatureHouse approach for XML languages. Each case study uses a different
XML language.

4.1 Graph Product Line (XHTML 1.0 strict)

The Graph Product Line (GPL) case study [LB01] consists of several features with
Java code for different graph implementations, as well as graph algorithms that
work on them. It has been extended in prior work with XHTML documentation to
describe the capabilities of a composed variant. Fortunately, the documentation
has already been annotated with fstname Attributes to guarantee unique child
names.

XHTML is an XML-based reformulation of Standard Generalized Markup Lan- XHTML

guage (SGML)-based HTML. It has been designed to represent semi-structured
data. As it is an official (and recent) W3C standard, and a XML Schema defin-
ing XHTML is available.1 In practice, many of the artifacts claiming to conform
to XHTML are invalid with respect to this XML Schema, because they have
only been updated to reference the XHTML schema, while their content remains
antiquated HyperText Markup Language (HTML).

Since FeatureHouse is a general superimposition tool, we are able to compose the
Java code and the accompanying XHTML artifacts at the same time, using the
same implementation of superimposition.

The result is a variant of the GPL with only the data structures and algorithms
needed. It contains tailored documentation describing the graph features in-
cluded.

1 In fact, there are three different XML schemas for XHTML; we use XHTML 1.0 strict.

31

Chapter 4.2 Submission (XMI 1.2 with UML 1.4)

4.2 Submission (XMI 1.2 with UML 1.4)

In this case study, we compose Unified Modeling Language (UML) class diagrams
that model the submission process of scientific papers. The case study has been
originally presented in [BCRL07]. Its XMI representation has been kindly pro-
vided by Florian Janda.

The OMG standard UML uses XMI as its serialization. We will use version 1.4 of no
schema
available

UML here, which is embedded in version 1.2 XMI artifacts. The reason for this
choice is that ArgoUML, which appears to be the best freely available UML tool,
uses this format. Unfortunately, XML schemas for both XMI and UML have only
been created for later versions of these standards.

Although UML is a visual language that uses diagrams as its main construct,
there is no standard serialization for them in version 1.4: An XMI artifact for an
UML model only describes its structure; (re-)visualizing is left to the processing
application.

UML class diagrams model class hierarchies using graphs instead of trees. This is graphs in
XMLnecessary, as the class diagrams do not only allow tree edges for the inheritance

relation, but also associations between arbitrarily chosen classes. As a conse-
quence, the serialized representation XMI also needs to be a graph data format.
In this way, it uses references from IDREF Attributes to ID Attributes in order to
store graph edges. ID Attributes are used to uniquely identify an Element within
one XML document. Because UML is a visual language, IDs are auto-generated,
and there is not even a possibility for the user to visually change them.

Since IDs are document-unique identifiers, an additional problem arises when IDs

composing separately created UML class diagrams: Each feature is a separate
document (from the application’s point of view) with separately auto-created
IDs. Superimposition will match Elements with the same fstname annotation,
but different IDs, effectively removing at least one of the two IDs concerned.
References to these IDs will not be taken into account by general tree super-
imposition. This means that a composed variant will have dangling references
from IDREF Attributes to ID Attributes which do no longer exist. This does
not only make the variant invalid with respect to its XML Schema or DTD,
but also effectively removes these edges from the UML class diagram the variant
represents.

It is clear that standard tree superimposition cannot be applied without problems
to graphs “modeled” as trees. Therefore the question is, how can we solve this
problem for XMI (and perhaps for comparable languages, too)?

In XMI, IDs appear to be arbitrarily chosen, and they will not be referenced

32

Chapter 4.3 Builder (ant build.xml 1.7)

from anywhere outside of the composed XMI artifact.2 It is therefore possible
to replace them by more suitably chosen meta-data. Natural candidates are the
fstname annotations that you have to add to the instances to make children
names unique. Of course, they need to be more carefully chosen for this purpose,
because they do not only have to be unique among a node’s children now, but
also unique within a whole composed artifact.

Therefore, we will additionally use fstname annotations to create new IDs (which reuse
fstnames
for new
IDs

will then be the same before and after composition). As a consequence, we will
also have to change the referencing IDREF Attributes. Both operations can be
executed simultaneously in a preprocessing step. This is done using XSLT. Note
that this transformation employs our knowledge of the XMI language: We need
to know which the ID Attributes are, and that they can be arbitrarily chosen.

Using this additional preprocessing step, we are able to successfully compose the
UML class diagrams for the submission process.

4.3 Builder (ant build.xml 1.7)

Apache ant is the standard build tool for Java-based projects. It takes the place
of the classical make, which is especially used in C- and C++-projects. The ant
tool uses XML-based build scripts instead of the (sometimes infamous) Makefiles
[ZK05].

As we have already discussed in section 3.1.3, it is possible for the user to define dynamic
language
structure

in a build script new Elements for use in the same build script. This means
that the language structure is defined dynamically. Consequently, a schema that
completely specifies the structure of this build script will depend on the content
of this very build script. This means that there cannot be a complete schema
for the class of all ant build scripts. Actually, not even a partial schema for all
build scripts has been created by the ant authors. It is only possible to retrieve
a (complete) DTD for a given build script.

We have created the Builder case study especially for this work. It contains in
different features several build targets that depend on one another. As a rule-
based tool, ant will automatically use these dependencies to determine which
other targets it needs to build when the user invokes ant to build a specific
target.

After composition, the generated variant contains the targets needed by the se-
lected features. It can be successfully used by ant to build targets. This shows

2 If they need to be referenced from other documents, for instance, then there are also other
possibilities to keep one of the two IDs concerned.

33

Chapter 4.3 Builder (ant build.xml 1.7)

that we have successfully superimposed artifacts written in the language of the
ant tool.

In summary, the case studies conducted have shown that superimposition is appli-
cable to different classes of XML languages. We have learned that these languages
use several concepts that need special attention. Although some languages may
require additional preprocessing, there is no principal obstacle that hinders the
use of superimposition to compose them.

34

Chapter 5

Summary

We will now end with some concluding remarks. To begin, we discuss related
work. Next follows a summary of the work presented. We then give an outlook
into possible future research.

5.1 Related Work

Since this work is an extension of FeatureHouse, the research leading to Fea-
tureHouse is the most related one. In the beginning, superimposition has been
proposed in [AL08] as a general approach to FOSD. This has been implemented
in the FSTComposer tool.

Later on, it has been formalized in an algebra [ALMK08]. This algebra fur-
thermore unifies the compositional approach taken with other approaches, like,
for example, global modifications. These global modifications are, for example,
used by Aspect-Oriented Programming [KLM+97]. The FSTComposer tool has
then been redesigned to use code generation for its language plugins; this version,
which is extended by the work presented here, is described in [AKL09]. It already
contains a grammar-based plugin for the XML language as a whole. Yet this does
not allow to take into account the properties of any single XML language that is
specified by a schema.

We also have to mention the CIDE approach [Käs07] here, as it is complementary
to the compositional approach of FeatureHouse: It researches how features can
be mined and extracted from legacy software. The most recent version of this
work is implemented in the generalized CIDE (gCIDE) tool [KTA08]. With this
Eclipse-based tool, you can mark features in source code, or in the corresponding
AST. They are highlighted in different colors, so that you can easily see which
code fragment belongs to which feature(s). To summarize, CIDE enables you to
view a (legacy) system from a feature-oriented perspective. It even allows you to
export this decomposition, so that each resulting artifact does not contain more
than one feature.

35

Chapter 5.2 Conclusions

The most closely related work regarding composition of XML artifacts is that
on the XAK tool [ADT07]. It defines XML modules that can be combined using
quantification. XAK is an interesting approach for feature-oriented XML. It is
part of the AHEAD Tool Suite [Bat06], which means that is implemented as a
stand-alone tool. It uses its own implementation of XPath-based quantification.

Viewed from a broader perspective, this work is connected to the domain of
software merging [Men02]. The most simple approaches in this domain only
exploit the line-based representation of textual artifacts to match them. This
approach is used to date in successful version control systems like CVS [ZK05].
However, more advanced approaches propose semantic merging to guarantee for
semantic correctness of merged artifacts.

Semantic merging has also been proposed for XML artifacts [Lin04]. In this
paper, differences between trees are modeled as edits. In a second step, the edits
are reconciled. This approach is designed for more complex scenarios, in which
different users modify documents in complex ways.

The composition of UML artifacts has been regarded in [BCRL07] as a special
case of general model merging. It encompasses an abstract view of UML artifacts
that is not restricted by the XMI representation they may have. This enables a
semantics-oriented approach to composing UML artifacts compared to the tree-
based approach taken by this work.

5.2 Conclusions

In this work, we have made the following contributions:

We first have conducted an analysis of the challenges posed by XML languages.
We therefore have unified XML Trees and Feature Structure Trees; we have ex-
plained the need for unique child names during superimposition. this involves
the necessity of instance annotations for XML artifacts. Furthermore, we have
discussed different possibilities of annotations for XML; the most promising of
them are Processing Instructions and Attributes. To conclude the analysis, we
have provided an overview of the languages you can use to specify other XML
languages.

This analysis has enabled us to integrate a generic extension for XML languages
with the FeatureHouse tool-set. Our implementation has the following properties:

• use of high-level APIs and the special-purpose languages XSLT and XML
Schema

• a meta-representation of XML in XML, which is used as the intermediate

36

Chapter 5.3 Future Work

data structure between XML and FSTs

• annotations realized by a combination of Attribute Declarations in the
schema and Attributes in the instances

• included handling of schema-less languages

With this extension, FeatureHouse is able to compose artifacts written in gram-
mar-based as well as schema-based languages in a unified way.

We have furthermore conducted three case studies with artifacts written in highly
different XML languages. These languages have been selected because of their
prevalent use in modern software engineering. We estimate that these languages
cover a broad area of application.

1. The Graph Product Line example contains XHTML documentation to-
gether with the Java code it accompanies. We here demonstrate the in-
tegrated composition of XML- and non-XML artifacts that FeatureHouse
now is capable of. It also shows how semi-structured data can be superim-
posed.

2. The Submission example consists of UML class diagrams, which constitute
a visual, graph-based language. Our FeatureHouse extension for XML has
composed them as well.

3. In the Builder example, we have superimposed ant build scripts, which
use a dynamically defined XML language. This case study has also proved
successful.

We have learned during our case studies that XML schemas are not available for
some important XML languages. (Neither UML nor ant provide such a schema.)
Nevertheless, it is possible to also annotate these schema-less languages with some
additional effort.

5.3 Future Work

This work has analyzed how XML languages can be superimposed, and how they
can be integrated into FeatureHouse. We have only integrated some example
languages; several other important XML languages remain for future integration.

There also are many possibilities to automate the especially time-consuming in-
stance annotation process, at least to some degree. The most worthwhile option
may be the extension of gCIDE for XML languages; this will require a consider-
able effort, but it will also be very valuable, as it will allow the semi-automatic
de-composition of existing XML artifacts into features.

37

Chapter 5.3 Future Work

To make composition of XML artifacts safer, it is desirable to include automatic
validation of composed variants against an XML Schema. This may also be an
option for the features in the input, depending on whether they are supposed to
be valid instances on their own or not.

38

Bibliography

[ADT07] Felipe I. Anfurrutia, Oscar Díaz, and Salvador Trujillo. On refining
XML artifacts. In Proceedings of the 7th International Conference on
Web Engineering, volume 4607 of Lecture Notes in Computer Science,
pages 473–478. Springer, July 2007. 36

[AKL09] Sven Apel, Christian Kästner, and Christian Lengauer. FeatureHouse:
Language-independent, automated software composition. In Proceed-
ings of the 31th International Conference on Software Engineering
(ICSE). IEEE Computer Society, May 2009. To appear. 1, 3, 7, 35

[AL08] Sven Apel and Christian Lengauer. Superimposition: A language-
independent approach to software composition. In Proceedings of
the ETAPS International Symposium on Software Composition (SC),
volume 4954 of Lecture Notes in Computer Science, pages 20–35.
Springer, March 2008. 4, 35

[ALMK08] Sven Apel, Christian Lengauer, Bernhard Möller, and Christian Käst-
ner. An algebra for features and feature composition. In Proceed-
ings of the 12th International Conference on Algebraic Methodology
and Software Technology (AMAST), volume 5140 of Lecture Notes in
Computer Science, pages 36–50. Springer-Verlag, July 2008. 6, 35

[Bat06] Don S. Batory. A tutorial on feature oriented programming and the
AHEAD Tool Suite. In Generative and Transformational Techniques
in Software Engineering, volume 4143 of Lecture Notes in Computer
Science, pages 3–35. Springer, 2006. 36

[BCRL07] Artur Boronat, José Á. Carsí, Isidro Ramos, and Patricio Letelier.
Formal model merging applied to class diagram integration. Electron.
Notes Theor. Comput. Sci., 166:5–26, 2007. 32, 36

[BNV04] Geert Jan Bex, Frank Neven, and Jan Van den Bussche. DTDs versus
XML Schema: a practical study. In WebDB ’04: Proceedings of the
7th International Workshop on the Web and Databases, pages 79–84,
New York, NY, USA, 2004. ACM. 12, 19

[BSR04] Don S. Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling
Step-Wise Refinement. IEEE Transactions on Software Engineering,
30(6):355–371, 2004. 1

39

Chapter Bibliography

[GBJL02] Dick Grune, Henri E. Bal, Ceriel J. H. Jacobs, and Koen Langendoen.
Modern Compiler Design. John Wiley, 2002. 13

[Käs07] Christian Kästner. CIDE: Decomposing legacy applications into fea-
tures. In Proceedings of the 11th International Software Product Line
Conference (SPLC), second volume (Demonstration), pages 149–150,
2007. 3, 35

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
Oriented Programming. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), volume 1241 of Lecture
Notes in Computer Science, pages 220–242. Springer-Verlag, 1997. 35

[KTA08] Christian Kästner, Salvador Trujillo, and Sven Apel. Visualizing soft-
ware product line variabilities in source code. In Proceedings of the 2nd
International SPLC Workshop on Visualisation in Software Product
Line Engineering (ViSPLE), pages 303–313, September 2008. 35

[LB01] Roberto E. Lopez-Herrejon and Don Batory. A standard problem
for evaluating product-line methodologies. In Proceedings of the 3rd
International Conference on Generative and Component-Based Soft-
ware Engineering, volume 2186 of Lecture Notes in Computer Science,
pages 10–24. Springer, September 2001. 31

[Lin04] Tancred Lindholm. A three-way merge for XML documents. In Do-
cEng ’04: Proceedings of the 2004 ACM symposium on Document
engineering, pages 1–10, New York, NY, USA, 2004. ACM. 36

[Men02] T. Mens. A state-of-the-art survey on software merging. IEEE Trans.
Softw. Eng., 28(5):449–462, 2002. 36

[MS06] Anders Møller and Michael I. Schwartzbach. An Introduction to XML
and Web Technologies. Addison-Wesley, January 2006. 12, 19, 20

[ZK05] Andreas Zeller and Jens Krinke. Essential Open Source Toolset. Wiley
and Sons, January 2005. 33, 36

40

Erklärung

Hiermit erkläre ich, dass ich diese Arbeit selbst verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Passau, den 11. März 2009

Jens Dörre

	Contents
	List of Figures
	Glossary
	Introduction
	Motivation
	Problem Statement
	Outline

	Foundations
	Feature-Oriented Software Design
	Feature Structure Trees (FSTs)
	Superimposition of FSTs
	Mappings to FSTs
	Generation of Mappings
	FeatureHouse

	XML
	Syntax
	Namespaces
	XPath Data Model (XDM)
	XPath
	XML Schema
	XSL Transformations (XSLT)
	XML Parsers

	Extending FeatureHouse for XML Languages
	Analysis
	XML Trees
	Annotations for XML
	Specifications for XML Languages

	JAXP: XML Processing for Java
	Lower-Level APIs
	JAXB: Binding Java Classes to XML Schemas
	TrAX: Using XSLT from Java

	Design
	XSLT as the Primary Programming Language
	XML-FSTs as the Principal Data Structure
	Attribute Declarations as Schema Annotations
	Attributes as Instance Annotations

	Implementation
	Annotating XML Schemas
	Pushing Schema Information to the Instance
	If There Is No Schema
	Annotating XML Instances
	Transforming Annotated XML to XML-FSTs
	Transforming XML-FSTs to FSTs
	Superimposing FSTs for XML Artifacts

	Case Studies
	Graph Product Line (XHTML 1.0 strict)
	Submission (XMI 1.2 with UML 1.4)
	Builder (ant build.xml 1.7)

	Summary
	Related Work
	Conclusions
	Future Work

	Bibliography

