
O P T I M I Z I N G I N T R A P R O C E D U R A L S TAT I C A N A LY S I S U S I N G
C A L L - G R A P H I N F O R M AT I O N A N D M E M O RY D E P E N D E N C I E S

jakob schwarzweller

bachelor thesis

Chair of Software Engineering
Faculty of Computer Science and Mathematics

University of Passau

Advisor: Florian Sattler, M. Sc.

Supervisor: Prof. Dr.-Ing. Sven Apel

March 28, 2018

Jakob Schwarzweller: Optimizing Intraprocedural Static Analysis using
Call-Graph Information and Memory Dependencies, © March 28, 2018

A B S T R A C T

Over time, the average complexity of software has increased drasti-
cally. This makes maintenance of software projects increasingly diffi-
cult. One recurring issue when changing code in a program is seeking
what the impact of this change is. Because of growing complexity, giv-
ing a useful answer to this kind of question becomes more and more
difficult, but is necessary to assist software developers.

This problem can be approached using static analysis of the flow
of control and data in a program. However, this type of analysis can
be very complex and thus take a long time. At the same time, it of-
ten yields very imprecise results [4], but even this can help in tracing
down an interaction bug. Because this is favored over overlooking a
possible interaction, we aim for providing measures to both improve
the performance of such analyses and making their results more pre-
cise.

Specifically, we try to achieve that by incorporating call-graph in-
formation to optimize the order of execution of such analyses and use
memory dependency information to improve its preciseness. We de-
ploy this in practice by optimizing the Taint Flow Analysis featured
in the VaRA LLVM framework as a proof of concept.

C O N T E N T S

1 introduction 1

1.1 Goals . 1

1.2 Contribution . 1

1.3 Overview . 2

2 background 3

2.1 LLVM . 3

2.1.1 LLVM-IR . 4

2.1.2 Memory-Dependency Analysis 5

2.1.3 LLVM pass infrastructure 6

2.1.4 LLVM call-graph representation 6

2.2 Variability-aware Region Analyzer 7

2.3 Taint Data-Flow Analysis 8

3 call-graph-ordered processing 11

3.1 Reasons . 11

3.2 Implementation . 11

3.2.1 Changes to VaRA 12

3.2.2 Example . 12

4 memory-dependency analysis 15

4.1 Reasons . 15

4.2 Implementation . 16

4.2.1 Changes to VaRA 16

4.2.2 Example . 18

5 evaluation 21

5.1 Call-graph-ordered processing 21

5.1.1 Basic functionality 21

5.1.2 Case study . 22

5.2 Memory-Dependency Analysis 23

6 conclusion 25

6.1 Summary . 25

6.2 Future work . 25

bibliography 27

L I S T O F F I G U R E S

Figure 2.1 LLVM’s three-stage design 3

L I S T O F TA B L E S

Table 5.1 Statistic without call-graph-ordering 22

Table 5.2 Statistic without call-graph-ordering 22

Table 5.3 Call-graph-ordering statistic comparison . . . 22

Table 5.4 Memory-dependence statistic comparison . . . 23

L I S T I N G S

Listing 2.1 C example . 4

Listing 2.2 Listing 2.1 in IR 4

Listing 2.3 Syntax of the store instruction 5

Listing 2.4 Syntax of the load instruction 5

Listing 2.5 Example for a memory dependency 5

Listing 2.6 Example for region annotation 7

Listing 3.1 Function usage before declaration 13

Listing 4.1 Implementation of source filtering 17

Listing 4.2 Memory dependence example 18

Listing 4.3 Memory dependence example result 19

Listing 5.1 Function usage before declaration 21

A C R O N Y M S

DAG directed acyclic graph

IR Intermediate Representation

GZIP GNU zip

SCC strongly connected component

acronyms vii

SSA static single-assignment form

VaRA Variability-aware Region Analyzer

1
I N T R O D U C T I O N

A common problem when developing software is seeking what the
implications of a change are. This question is increasingly difficult to
answer, due to the heavy complexity in modern software systems –
even a small change to one part of a program can have an effect on a
entirely different part of it.

Static analysis can give guidance on such issues, by trying to deter-
mine interactions in a program, thus figuring out parts of a program
influenced by a change, in order to support the programmer. One
framework that can be used for that purpose is the Variability-aware
Region Analyzer (VaRA) framework for LLVM. It provides an inter-
face to run arbitrary analyses over regions of code defined by a user
of the framework. One use case could be to define regions that are
relevant to a feature (i. e., a characteristic or end-user-visible behavior
of a system) and then use an analysis to try and find out what other
parts of the code base are influenced by it. The VaRA framework does
already offer analyses and regions for that purpose: a region type
(FeatureRegion) to represent a feature and a Taint Flow Analysis.

However, static analysis for larger code bases is expensive and im-
precise. For example, Heckman and Williams found in a literature
review of static analyzers meant to identify potential source code
anomalies that somewhere between 35 % and 91 % of anomalies re-
ported by these analyzers were deemed unimportant by developers
[4]. Hence we need to increase the analysis’s performance, so we can
analyze real-world applications. Furthermore, we need to make it pre-
cise to reduce the amount of miss-predictions.

In this thesis, we propose two ways of improving this type of anal-
ysis, one that increases performance and one that increases accuracy.

1.1 goals

Our goal is to improve the performance of VaRA’s Taint Flow Analysis
by reducing the amount of re-evaluations necessary using call-graph
information. Furthermore, we aim for increasing the accuracy of that
analysis by considering memory dependency information.

1.2 contribution

We approach the performance improvement in Chapter 3 by ordering
the evaluation of functions according to the call graph. Because the
data-flow relations of the callee are not influenced by the analysis

2 introduction

result of the caller this reduces the need for re-evaluation of functions
due to information about influences having changed.

The accuracy improvement in Chapter 4 is achieved by taking into
account memory dependencies between instructions. In some cases,
the data-flow predecessor of a instruction can unambiguously be de-
termined. We enhance the data-flow analysis, so that in cases where
we can determine a direct memory dependency, the analysis only
considers the direct predecessor.

1.3 overview

In Chapter 2, we provide an overview of frameworks we later build
upon and introduce key concepts. We introduce the two frameworks
LLVM and VaRA and LLVM’s call-graph representation, further we ex-
plain the concepts of Memory-Dependency Analysis and static data-
flow analysis; particularly how they are used to build a Taint Flow
Analysis. The contribution is divided into two parts: In Chapter 3, we
discuss a performance improvement by ordering the examination by
the structure given by the call graph. In Chapter 4, we improve the
accuracy of the Taint Flow Analysis by considering memory depen-
dencies between instructions. In Chapter 5, we evaluate the effective-
ness of these modifications. Finally, in Chapter 6, we summarize our
efforts and their impact.

2
B A C K G R O U N D

In this chapter, we introduce the LLVM framework and explain rel-
evant aspects of the framework’s Intermediate Representation (IR),
as well as its call-graph representation and its Memory-Dependency
Analysis. Then we introduce the VaRA framework, an extension of
LLVM. After that, we discuss the concepts of data-flow analysis and
how to use them to build a Taint Flow Analysis.

2.1 llvm

LLVM is modern compiler framework that gives its users useful tool-
chain technologies (e. g., data structures and analyses) to build com-
pilers and related tools. It supports a number of different languages
(through so-called frontends) and target architectures (via backends) by
using a decoupled approach: Frontends compile code into an Inter-
mediate Representation (IR). Language-independent optimizations or
analyses are then performed on that IR code. At the end of a compila-
tion process, a backend compiles the IR into native code for the target
architecture.

This architecture has an important advantage: Any optimizations
or analyses that run on IR can be used on any software project regard-
less of programming language or target architecture, as long as they
are supported by LLVM. For adding support for a new programming
languages, solely a compiler from that language into IR must be writ-
ten, and all other components (including the backends for compiling
for a variety of platforms) can be re-used. The same is true for adding
support for a new target platform [6].

Figure 2.1: A schematic portrayal of LLVM’s three-stage design
[5, Figure 11.3]

4 background

2.1.1 LLVM-IR

IR is the intermediate representation that LLVM uses for code. It is
designed to be both flexible – so it can represent code by lots of dif-
ferent programming languages and for lots of different targets – and
simple, to ease human-readability. The code for an application may
be separated into a set of modules (similar to C++ translation units).
In Listing 2.1 a small example program in C can be seen, Listing 2.2
shows the correspondent IR.

int main () {

int a = 1337;

a += 23;

return 0;

}

Listing 2.1: C example

1 define i32 @main() #0 {

2 entry:

3 %retval = alloca i32, align 4

4 %a = alloca i32, align 4

5 store i32 0, i32* %retval, align 4

6 store i32 1337, i32* %a, align 4

7 %0 = load i32, i32* %a, align 4

8 %add = add nsw i32 %0, 23

9 store i32 %add, i32* %a, align 4

10 ret i32 0

11 }

Listing 2.2: Listing 2.1 in IR

The C program declares a variable a, initializes it with 1337, adds
23 and return 0. In the IR listing, the declaration of the variable a

using the alloca instruction can be seen in Line 4. Then, in Line 6,
the store instruction is used to initialize the variable.

Lines 7–9 in the IR listing show the adding process. First, the load

instruction is used to load the current value of a into the register %0.
In the following line, the add instruction is used to add 23 to that
value and stores the result in the register %add. Lastly, the result is
written to the a variable using the store instruction.

There are multiple properties of IR that can be seen here. For once,
the basic structure of loading the value of a variable into a register,
do computations and storing the result in variables again. Also, that
results of computations are stored in a new register rather than the in-
put register. The reason for this is that IR is in static single-assignment
form (SSA). This means that every register is only written to once and
is only read after that.

A notable instruction to look at in more detail is the store in-
struction, which represents saving a value in memory. Its simplified
general syntax can be seen in Listing 2.3. It takes two operands and
their corresponding types, %val and %pointer. %val is the value to be
saved in memory, while %pointer is the address in memory to save

2.1 llvm 5

the value at. A store instruction may have more options passed than
shown in Listing 2.3; those are not relevant for our work, however.

store <val type> %val, <pter type>* %pointer

Listing 2.3: Simplified general syntax of the store instruction

Another important instruction is the load instruction, which repre-
sents loading a value from memory. Its general syntax can be seen in
Listing 2.4. It takes one operand plus its type, %pointer, and returns
the value at this address. A load instruction may have more options
passed than shown in Listing 2.4; those are not relevant for our work,
however.

%res = load <res type>, <pter type>* %pointer

Listing 2.4: Simplified general syntax of the load instruction

2.1.2 Memory-Dependency Analysis

A value loaded from memory by a load must have been written there
by an store instruction. Such an relationship between two instruc-
tions is called a memory dependency; an analysis that aims to find such
relationships is called Memory-Dependency Analysis. An example for
such a memory dependency can be seen in Listing 2.5: The value
written by a store is read by a load immediately afterwards. This a
common case for memory dependencies in IR: a load on a memory
location that is not separated from the previous store by any control-
flow change (e. g., branching). Such a memory dependency can easily
be determined by iterating through the instruction before or after the
considered load or store.

LLVM features a Memory-Dependency Analysis, which can in some
cases – including the one explained above – unambiguously deter-
mine the preceding store for a given load or vice versa. It returns its
results for a function as a MemoryDependenceResults object, which in
turn has methods to get the results for a particular instruction as a

...

store i32 42, i32 * %a

%0 = load i32, i32 * %a, align 4

...

Listing 2.5: Example for a memory dependency

6 background

MemDepResult object. This result can be, among others, that it has a
definitive memory dependency, in which the case the corresponding
instruction can be obtained.

2.1.3 LLVM pass infrastructure

In LLVM, analyses and optimizations are structured into so-called
passes. Generally LLVM passes are separated into two categories:
Transformation passes for optimization (e. g., elimination of dead
code) and analysis passes for analyses, the results of which may be
used by other passes.

There are different types of passes that differ in the nature of the
analysis they perform. Most of the types can be distinguished by the
type of element that the pass’s main function is processing, such as
ModulePass, FunctionPass or LoopPass. These passes do not guar-
antee any specific order of execution. Some passes, however, differ
in way or order of processing, such as the CallGraphSCCPass, that
iterates the call graph of a program bottom-up (i. e., callees before
callers).

A pass can also require the results of other passes, even of dif-
ferent types. This requires a comprehensive way of ensuring order
of execution for passes, so the results of a required pass are there
when needed. This is done by a PassManager. An implementation
of a PassManager comes with the LLVM framework. When adding a
pass to LLVM, it must be registered at this PassManager.

In order to establish its dependencies, a pass may implement a
getAnalysisUsage() method. The PassManager will then call this
method with an AnalysisUsage object. The pass can then commu-
nicate its dependencies by calling the addRequired method on this
object. Furthermore, it can declare whether it will change data that
will invalidate other analysis’s results by calling appropriate meth-
ods on this AnalysisUsage object.

2.1.4 LLVM call-graph representation

A call graph is a representation of relationships between the functions
of a program. Its nodes are the functions; edges are drawn from the
functions that call other functions to those that they call. As follows, a
call graph is directed and contains cycles, if the program has recursive
calls.

A further concept is that of a SCC call graph, which is a graph of
strongly connected components (SCCs) from the call graph, called
CallGraphSCCs in LLVM. A SCC is a sub-graph in which all nodes
are reachable by each other node. A node of a SCC call graph can
therefore either consist of only one function (in which case the trans-
formation from call-graph node to CallGraphSCC node is trivial) or it

2.2 variability-aware region analyzer 7

int main() {
___REGION_START __RT_Commit "main"

int a = 1;

int b = a + 42;
___REGION_END __RT_Commit "main"

}

Listing 2.6: Example for region annotation

can consist of multiple nodes from the call graph. If it consists of mul-
tiple nodes, it is a sub-graph of the call graph that contains a cycle.
By grouping cyclic sub-graphs of the call graph into SCCs, the SCC call
graph becomes acyclic and thus a directed acyclic graph (DAG) [3].

2.2 variability-aware region analyzer

The Variability-aware Region Analyzer (VaRA) is an extension of the
LLVM framework that adds the concept regions of interest. This re-
gions are source code regions that have semantic meaning for the
programmer. VaRA has the abstract interface IRegion that represents
a generic region. Researchers can write analyses that work on this
interface and are therefore independent of the actual type of region
that the analysis runs on. Developers, in turn, can implement the
IRegion interface and run any analysis that has been written for VaRA

IRegions over their implementation.
An example usage of this framework is to create FeatureRegion as

an implementation of IRegion. A FeatureRegion is a piece of code
that is related to a specific feature of the application; a feature being
defined as “a characteristic or end-user-visible behavior of a software
system” [2]. Then an analysis that tries to detect interactions between
those regions can be used to try to find interactions between different
features of a software. A feature region is a region in an application’s
code that gets executed only when a specific feature (or combination
of features) is activated [9].

Another usage that is already a part of VaRA is the implementation
of a MarkerRegion IRegion type. This type is capable of extracting re-
gion information from suitable meta-data in IR modules. This in turn
may be placed there using a modified version of a LLVM frontend.
There is a modified version of the C/C++ frontend Clang that can
process region information given in C/C++ code using newly added
keywords ___REGION_START and ___REGION_END (as can be seen in
Listing 2.6). An analysis in VaRA that aims for finding interactions
between such regions is called Marker Flow Analysis [7].

The goal of VaRA is to allow developers and researchers to analyse
and reason about their regions of interest.

8 background

2.3 taint data-flow analysis

The Taint Flow Analysis is a data-flow analysis. For data-flow analy-
ses, a representation of every possible program state at a certain point
during the execution is called a data-flow value. A program is then
viewed as a sequence of transformations from one data-flow value to
another. The data-flow values before an instruction s are denoted with
IN[s] and those after it with OUT[s]. There are two constraints on the
transformations between those: those depending on the semantics of
the instruction and those depending on the flow of control.

The semantics of an instruction s dictate the relation between of
IN[s] and OUT[s], depending on those, data-flow values get elimi-
nated or introduced. This is done by a so-called transfer function. The
control flow defines the relations between OUT[s] for an instruction
s and the IN of any subsequent instructions. A sequence of instruc-
tions that will only begin execution at its start and only branch at
its end is called a basic block. Inside a basic block, that simply is
IN[s] = OUT[s − 1] (as long as both s and s − 1 are inside the ba-
sic block).

Let us now also introduce IN[B] and OUT[B] for any basic block B.
The relations between IN[B] and OUT[B] for the same basic block B
can simply be derived from the instructions inside that basic block.

For the construction of IN[B] we define a meet operator on the data-
flow values, ∧, with the following properties:

1. Idempotency: x ∧ x = x

2. Commutativity: x ∧ y = y ∧ x

3. Associativity: x ∧ (y ∧ z) = (x ∧ y) ∧ z

For a basic block B, IN[B] can then be defined as follows [1]:

IN[B] =
∧

P is a predecessor of B

OUT[P]

For monotone data-flow frameworks this meet operator must fulfill

For all data-flow values x, y and transfer functions f :

x ≤ y⇒ f (x) ≤ f (y)

where

x ≤ y :⇔ x ∧ y = x.

A use case for data-flow analysis is Taint Flow Analysis. For this
analysis, the data-flow values are taints: instructions get tainted with
a specific taint, then those taints get propagated through the program,

2.3 taint data-flow analysis 9

tainting every instruction they touch. A taint relates to a semantic fact
(e. g., a variable getting influenced by a configuration option). Propa-
gating the taint along the analysis shows which other instruction get
tainted (i. e., are influenced by the configuration option).

For example, in VaRA, every instruction in a FeatureRegion is taint-
ed with a taint belonging to that region. Then, after the analysis
has propagated the taints through the program, we can reason about
which other statements get influenced by the FeatureRegion.

VaRA’s Taint Flow Analysis is based on a monotone framework. Its
data-flow values are subsets of the set of all taints occurring in the
analysis, meet is the union operator, ∪.

The Taint Flow Analysis in VaRA adopts this approach by consid-
ering a def-use graph (definition-use graph) with the instructions as
nodes. Since IR is in SSA-form, the definition of every value can be de-
scribed with the instruction that defined it. The edges of the def-use
graph are the memory relations (both usages of registers and usages
of memory locations) between those instructions. This optimizes the
data-flow analysis, because every IN[s] set only contains data that is
directly relevant to the instruction s.

In code, the edges in the graph are indirectly defined by iterators,
via LLVM’s so-called GraphTraits. When the analysis needs the in-
coming edges of an instruction (its so-called sources) it creates a source
iterator for that instruction. This iterator is then used for constructing
the IN set for that instruction. Likewise, when the analysis needs the
outgoing edges of an instruction (sinks), it creates a sink iterator for
that instruction.

3
C A L L - G R A P H - O R D E R E D P R O C E S S I N G

In this chapter, we introduce our proposal for improving the perfor-
mance of the analysis by considering call-graph information, detail
the changes made to VaRA to incorporate this proposal into the frame-
work and show its impact using an example.

3.1 reasons

Ordering the processing by the call-graph structure reduces the need
for reprocessing of functions. Generally, functions that interact with
each other may influence each others analysis results, more precisely,
the functions that get called by a function influence the results of the
caller function. If the analysis results of a function change or are only
becoming available in the midst of an analysis run, all callers of this
function need to be re-evaluated.

Because this only affects callers of a function and not callees, chang-
ing the processing order to try to examine callees before callers will
reduce the amount of re-evaluations necessary. Also, since as of now
the order of examination of functions is up to the LLVM PassManager,
which does not guarantee any particular order of execution, changing
the order will not affect the final analysis results, but can affect the
run time of the analysis.

3.2 implementation

In order to achieve this call-graph order, we impose a partial order
on the nodes of the SCC call graph. This partial order is defined as
follows:

For all x, y nodes of the SCC call graph:

x ≤ y :⇔ y can be reached from x

The order of evaluation of SCCs then follows this partial order. Anal-
ysis on this SCCs themselves is as follows: Either the SCC consists of
only one function; then this function is evaluated.

If the SCC consists of more than one function, it is a sub-graph. This
sub-graph is acyclic, since if it was it would be divided further into
SCCs. A cyclic call graph, however, means that there are recursive calls
between at least some of the functions in the graph, which means that
those functions can influence each other’s analysis results recursively.
In this case, call-graph information cannot be used to determine in
which order functions should be evaluated. For this reason, functions

12 call-graph-ordered processing

in a multiple-element SCCs are evaluated in arbitrary order, which is
the current guarantee for the analysis order. Therefore, this does not
introduce imprecisions, but falls back to the unoptimized version.

3.2.1 Changes to VaRA

In order to achieve this execution order, the first step is to to copy
the evaluation from a FunctionPass, where the PassManager decides
on the order of evaluation of the functions, to a ModulePass. This
also involves elevating previously local variables to members of that
pass class. To reduce code duplication, we moved the analysis into a
separate analysis class, which then gets re-used by both the original
analysis and our new pass.

The reason that we want to keep the former analysis is, that the cur-
rent PassManager only allows using passes as dependencies that are
on the same level or lower. For example, this means that a Function-
Pass cannot require a ModulePass. Therefore, we want to preserve the
old FunctionPass analysis, so other FunctionPasses can still request
it.

Now we have to iterate over the functions in the module according
to the partial order. LLVM provides the analysis CallGraphWrapper-
Pass, which calculates the call graph for a module. We can access
the call graph that the analysis generates using the getAnalysis()

method, after having registered a dependency on that analysis by call-
ing AnalysisUsage.addRequired() in the getAnalysisUsage() meth-
od. We can then iterate over the SCC call graph by calling LLVM’s
scc_begin() function on the call graph. Finally, instantiating Call-
GraphSCC with the call graph and the scc_iterator as arguments
yields the current SCC call-graph node. We can then iterate over the
functions in that node and run the analysis for each of them.

3.2.2 Example

In Listing 3.1, we see a C program featuring two functions, main and
foo. The function main calls foo, foo thus possibly influencing the
analysis result for main. But foo is declared only after main (its usage
in main is only possible by using C’s forward declaration). Let us
assume for simplicity, that this order of declaration is also in place in
an IR translation of this program and that LLVM’s PassManager will
execute FunctionPasses in this order, which is the current behavior.

If the evaluation of this program is done using the order specified
by the PassManager, this means: When main is analyzed, the analysis
results for foo, which those of main depend on, will not be available,
yet. Because of this, main has to be to analyzed again after foo has
been analyzed. This results in a total of three function analyses exe-
cuted.

3.2 implementation 13

int foo(int a);

int main() {

int a = 3;

int b = foo(a);

return 0;

}

int foo(int a) {

return a*2;

}

Listing 3.1: C example with one function being used before it is declared

In the call graph, however, there is an edge from main to foo, be-
cause main calls foo. But there are no edges leading away from foo.
This means, that in the partial order defined above, foo comes before
main.

So, when the order of evaluation is determined using that order, as
our newly added pass does, foo will be evaluated before main. The
function foo does not call other functions, so its analysis does not
depend on any. This means that foo’s analysis can be completed in
one run.

Now, when the main function is analyzed next, all information
about foo is already available. Because of that, main’s analysis can
be completed in one go, as well. As a result, the analysis is completed
after two function analyses have been run.

4
M E M O RY- D E P E N D E N C Y A N A LY S I S

In this chapter, we introduce our proposal for improving the accuracy
of the analysis by considering memory-dependency information, de-
tail the changes made to VaRA to incorporate this proposal into the
framework and show its impact using an example.

4.1 reasons

In IR program code, a repeating pattern is loading the one or more
values from memory using the load instruction, doing computations
with those values and writing the result back into memory with the
store instruction. When the Taint Flow Analysis encounters such
a pattern, it determines the taints attached to the values loaded by
checking store instructions that write to the corresponding memory
location for the taints of the values those instructions have written.

After having determined the taints of the loaded values this way,
it propagates those taints through the computations. This is usually
straightforward (e. g., the taints of the result of an arithmetic instruc-
tion with two operands are the union of the taints of the operands).
When this propagation reaches a store instruction, its taints are re-
membered for when a load instruction loads a value from this ad-
dress.

A potential problem with this modus operandi is obvious: Not all
store instructions that ever write to a memory location might be the
last store instruction to write to this location before any specific load
instruction. In other words: if a store instruction can never be the
last point at which a certain memory location was written to before a
specific load instruction, than the value that this load loads will never
have been written by this store instruction. Hence the taints, that the
value that store instruction wrote to memory had, are irrelevant for
that load instruction and should not be propagated.

Also, if we could reduce the amount of store instructions having
to be considered when determining the taints of a value loaded by
a load, then the taints of the result of a computation written back
to memory could potentially be reduced. So, if we could determine
which store the value a load loads comes from, this could reduce the
amount of taints that values in the program have and thus increase
the accuracy of the analysis.

This is why we try to determine the preceding store to the loads
in a program using Memory-Dependency Analysis and, if it can be

16 memory-dependency analysis

unambiguously determined, use only this store as a source for the
taints for this load.

4.2 implementation

As of now, propagation of taints from stores to a memory location to
loads from that memory location is happening via the alloca instruc-
tions for that memory location. This means that any taints that end
up at a store instruction are propagated to the alloca instruction
and are then distributed to the load instructions from there, intro-
ducing imprecision in the analysis. This means that there is no direct
relationship from load to store instructions.

So in order to be able to respect memory dependencies between
load and store instructions, we need load instructions to be aware
of the store instructions they are originally getting their taints from.
For this purpose, we modify the def-use graph of the Taint Flow Anal-
ysis so, that the sinks of the store instructions are no longer the
corresponding allocas, but instead the load instructions. So when
iterating the sources of a load, we now directly iterate over the corre-
sponding store instructions.

Having established these relationships, we can now filter out any
unwanted predecessors of the load instructions. For all possible
sources for an instruction as returned by the source iterator, we call a
filter method that takes the current instruction and a sources for that
instruction. This filter then checks if it can make a decision based on
memory dependencies, which it can only do if the current instruction
is a load instruction and there is a definitive memory dependency. If
it can, it will then notify the analysis to ignore all instructions that
are not this definitive dependency. Similarly, we install a filter for the
sinks of instructions.

4.2.1 Changes to VaRA

In order to add this filtering to VaRA, we first have to establish the
aforementioned direct relationship between store and load instruc-
tions. This can be achieved be changing the StoreSinkIter and
adding a LoadSourceIter to the GraphTraits of FunctionDefUse-
Graph. FunctionDefUseGraph is the graph implementation that VaRA’s
Taint Flow Analysis works on.

The StoreSinkIter is instantiated with a store instruction (Store-
Inst) and then iterates over all the sinks (i. e., the places where the
taints of a store instruction may be propagated to) of this store in-
struction. Similarly, the LoadSourceIter iterates over all sources for a
load instruction (i. e., all the places where the taints of a load instruc-
tion may come from).

4.2 implementation 17

bool MemoryDependenceSourceFilter::operator()(

NodeRef Current, NodeRef Node) {

if (!isa<AllocaInst>(Node)) {

if (LoadInst *I = dyn_cast<LoadInst>(Current)) {

const MemDepResult &R = MDR.getDependency(I);

if (R.isDef()) {

return R.getInst() != Node;

}

}

}

return false;

}

Listing 4.1: Implementation of source filtering

Next, we have to build the necessary infrastructure for integrating
the Memory-Dependency Analysis. The FlowAnalysis class already
has an interface to register source and sink filters. However, since the
TaintFlowAnalysis class does not inherit from that class, but just uses
it internally, we have to build a similar interface for registering and
storing such filters there. Then, when the FlowAnalysis is instantiated
in the TaintFlowAnalysis’s run method, we register all the stored
filters on that instance right before the analysis starts.

We also have to introduce classes that actually do the filtering,
MemoryDependenceSinkFilter and MemoryDependenceSourceFilter.
These get passed the MemoryDependenceResults for the analyzed func-
tion to the constructor and act as a filter function by overloading the
() operator.

As a last infrastructure step, we have to register the memory depen-
dency filters whenever the analysis is used. Usually, this happens in
so called wrapper passes. These wrap the analysis in FunctionPasses.
Whenever another analysis needs the Taint Flow Analysis, it requests
the wrapper pass’s results. This way, scheduling can be left to the
PassManager. An example of such a wrapper pass is the CommitTaint-
FWrapperPass for the Marker Flow Analysis.

With the groundwork laid, the actual filtering is quite simple, as
can be seen in Listing 4.1, which shows the filtering in MemoryDepen-
denceSourceFilter. We first check, whether the source is not a alloca

instruction, since these are always valid sources for taints. Then we
check whether the current instruction is a load instruction. Only if
it is, we try to filter (the filter has to return true for a source to be
dropped).

18 memory-dependency analysis

We then get the Memory-Dependency Analysis for that load in-
struction. If this analysis has a definitive result (i. e., the store in-
struction that wrote to that memory location most recently can unam-
biguously be determined) then we filter out every instruction that is
not this definitive dependency. If the Memory-Dependency Analysis
result is ambiguous, we don’t filter out any sources.

The MemoryDependenceSinkFilter works in the same way, except
for testing for a store instruction and the roles of Current and Node

being reversed.
Furthermore, we implement a statistic feature for evaluation. The

LLVM framework has support for statistic variables, which makes in-
tegration easy. We define four statistic variables using LLVM’s
STATISTIC macro: a counter for the filtered nodes and those that
were not filtered, for both sources and sinks. We then increment
these counters at the appropriate places in the filtering process in
the FlowAnalysis class. Output of those values is then controlled by
LLVM.

4.2.2 Example

In Listing 4.2, we see a small example program in IR to demonstrate
the behavior of our changes. A memory location is allocated then a
value is stored and loaded from it two consecutive times. Each time
the value is written, though, a different taint is applied to the store

instruction.

define i32 @main() #0 {

entry:

%a = alloca i32, align 4

store i32 42, i32* %a, !FVar !0

%0 = load i32, i32* %a, align 4

store i32 0, i32* %a, !FVar !1

%1 = load i32, i32* %a, align 4

ret i32 0;

}

!0 = !{!"Foo"}

!1 = !{!"Bar"}

Listing 4.2: Memory dependence example

Previously, this would have led to both load instructions being
tainted with both taints. Now, when first load asks for its sources,

4.2 implementation 19

initially both stores and the alloca are returned. Then the filtering
is triggered; the only filters that are registered are our new memory
dependency source and sink filters. For illustration, let us look at
what the source filter does in detail. It first has to decide whether the
alloca as a valid source for the first load. Since the filter does always
consider alloca instructions to be valid sources, it is not filtered out.

Then, the filter is asked whether the first store is a valid source.
Since the current instruction is a load, and the memory dependency
has found a definitive dependency, it checks whether the first store
is this dependency. Since it is, the filter return false. Finally, the filter
is asked whether the second store is a valid dependency for the first
load. Again, the filter knows that there is a definitive dependency.
But since the second store is not this dependency, it is filtered out.

Similar steps happen for the filtering for the second store. In List-
ing 4.3 the full result after our changes can be seen: both load instruc-
tions are only tainted with the taint of the previous store instruction.

%a = alloca i32, align 4 T: {}

store i32 42, i32* %a, !FVar !0 T: {Foo }

%0 = load i32, i32* %a, align 4 T: {Foo }

store i32 0, i32* %a, !FVar !1 T: {Bar }

%1 = load i32, i32* %a, align 4 T: {Bar }

ret i32 0 T: {}

Listing 4.3: Memory dependence example result

5
E VA L U AT I O N

In this chapter, we evaluate our optimizations, using statistical output
of the analysis. For this purpose we use a real-world program, the
compression tool GNU zip (GZIP), as a case study.

5.1 call-graph-ordered processing

Here, we evaluate our new call-graph-ordered evaluation. We first
take a look at a small example already introduced during the imple-
mentation of the optimization. Then, we use a case study to further
examine its effectiveness.

5.1.1 Basic functionality

int foo(int a);

int main() {
___REGION_START __RT_Commit "main"

int a = 3;

int b = foo(a);

return 0;
___REGION_END __RT_Commit "main"

}

int foo(int a) {
___REGION_START __RT_Commit "foo"

return a*2;
___REGION_END__RT_Commit "foo"

}

Listing 5.1: C example with one function being used before it is declared

Let us recall the example used to illustrate our changes in Sec-
tion 3.2.2: A small C program with one function used before it is
declared. It can be seen again in Listing 5.1, but instrumented with
region statements for the Marker Flow Analysis. These region mark-
ers are used to denote the start and end of region that is relevant
for the respective analysis. When compiling the program with a mod-
ified version of LLVM’s C frontend Clang, the region markers get
translated to taints in IR.

22 evaluation

Remember, that before the introduction of call-graph-ordered pro-
cessing of functions, main will be evaluated first, followed by foo.
When we run that analysis on this example and let it print statistics,
we get the results seen in Table 5.1. This shows us, that during the
evaluation of the main function, when results for foo where not yet
available, the result taint of foo was accessed 3 times, until its place-
holder was eventually resolved when foo was analyzed.

statistic value

Number of placeholder return taints needed 3

Number of placeholders resolved 1

Table 5.1: Statistic output for the Marker Flow Analysis of the simple exam-
ple without call-graph-ordering

With our new call-graph-sorted analysis order, however, foo is eval-
uated before main leading to the results seen in Table 5.2: Again, the
result taints of foo are used 3 times for the analyses of main, but this
time, they are already available at all those occasions.

statistic value

Number of early resolved return taints 3

Table 5.2: Statistic output for the Marker Flow Analysis of the simple exam-
ple with call-graph-ordering

5.1.2 Case study

Now, we evaluate our optimization with a larger case study. We
choose GNU zip (GZIP), as this was already the case study of choice
in the thesis of Niederhuber [7] when introducing the Marker Flow
Analysis. We now use their tool-chain to annotate GZIP’s code with
commit information. Running the Marker Flow Analysis both with
the previous evaluation order and with call-graph-ordering, yields
the result displayed in Table 5.3.

statistic before with order change

Early resolved ret. taints 184 754 570

Placeholder return taints 3,104 2,411 −693

Placeholders resolved 238 52 −186

Table 5.3: Comparison of statistics for the Marker Flow Analysis of GZIP with
and without call-graph-ordered evaluation

5.2 memory-dependency analysis 23

As can be seen, the amount of placeholder taints needed drops
from 3,104 to 2,411 or by 22.33 %. Simultaneously, the count of early
resolves rises from 184 to 754 (or by 309.78 %). This suggest a decrease
of function evaluation runs, as evaluation results are already available
when they are needed more often. Consequently, the amount of times
a placeholder has been resolved (i. e., when a later function analysis
run triggers a re-evaluation of another function) declines from 238 to
52 (by 78.15 %).

The reason that not all placeholder return taints are resolved is
due to dependencies outside of the current program (e. g., calls to li-
braries). Those called functions are never analyzed, hence their place-
holders never get resolved. The reason that the amount of placehold-
ers that are not resolved changes is due to a quirk in statistic collec-
tion: The placeholder counter is increased every time the result taint
of function is requested but not available, the resolve counter is only
increased once when the function analysis result is available.

5.2 memory-dependency analysis

For the evaluation of the integration of Memory-Dependency Analy-
sis filtering, we again use GZIP as a case study. We look at the filter-
ing statistic output added by us. This statistic’s output for running
the analyses both with and without memory dependence filtering en-
abled is shown in Table 5.4. No other filters were activated during the
evaluation, so all filtering is done by our filters.

statistic before with filtering change

Sources not filtered 57,948,198 2,779,754 −55,168,444

Filtered sources – 953,776 953,776

Total sources
encountered

57,948,198 3,733,530 −54,214,668

Sinks not filtered 515,005 74,725 −440,280

Filtered sinks – 3,795 3,795

Total sinks
encountered

515,005 78,520 −436,485

Table 5.4: Comparison of statistics for the Taint Flow Analysis of GZIP with
and without filtering using memory dependencies

As can be seen, with the filters activated, 3,733,530 sources were
encountered, of which 953,776 (or about 25.55 %) were filtered out.
At the same time, 78,520 sinks were encountered, of which 3,795 (or
about 4.83 %) were filtered out, however, only filtered sources are rel-
evant for the analysis accuracy. Yet, the share of filtered sources is not

24 evaluation

directly translatable to a accuracy improvement: This count is also in-
creased for intermediate results and an equal distribution of sources
that can be filtered is neither guaranteed, nor likely.

Still, this drop suggests a moderate increase of accuracy: as we
showed in our small test example in Section 4.2.2, our filters prevent
unnecessary taint propagation, which reduces over-approximation
and, therefore, increases accuracy. We verified soundness of our op-
timizations with a small set of example test cases, but would recom-
mend follow-up work that tries to evaluate this on larger case studies.

Also catching attention is the huge decline of sources encountered
with the filters activated, from 57,948,198 to 3,733,530, a drop of about
93.56 %. This is likely due to the following: Every time a source is
filtered, the amount of instructions that need to be queued for re-
evaluation because the analysis results may have changed, get re-
duced. In addition, for every instruction that does not need to be
queued, their dependencies do not have to be queued, as well, lead-
ing to a ripple effect.

This, of course, also suggests a performance boost: If less sources
have to be queued, this means less resources have to be used to pro-
cess all the sources. In fact, naïve run-time evaluations on our two
subject systems show a decrease from 145.71 s total (user plus sys-
tem) CPU time to 13.56 s (a 90.69 % drop) on one system and from
5.96 s to 0.48 s (91.95 %) on the other system for running the Taint
Flow Analysis on GZIP. For evaluation we used two subject systems:
The first system has a Intel Core i3-3110M @ 2.40 GHz with 2 cores,
4 hyperthreads and 4 GB RAM and runs Ubuntu 14.04. The second
system has a Ryzen Threadripper 1950X @ 3.4 GHz with 16 cores,
32 hyperthreads and 32 GB RAM and runs gentoo. Furthermore, we
repeated our measurements 5 times and used the average as result to
reduce the impact of system overhead.

6
C O N C L U S I O N

We conclude this thesis by summarizing the optimizations we pro-
posed and their impact. Furthermore, we discuss ideas to improve
them in future work.

6.1 summary

In this thesis, we introduced two optimizations for a Taint Flow Anal-
ysis and implemented them in the VaRA framework:

The first optimization was using call-graph information for improv-
ing the order of execution of the analysis. The aim of this was to in-
crease analysis performance by reducing the amount of re-evaluations
needed. The second optimization was the integration of a Memory-
Dependency Analysis into the Taint Flow Analysis, in order to reduce
the amounts of taint sources considered and thus improve the analy-
sis’s accuracy.

Evaluation showed that taking call-graph information into consid-
eration when determining the execution order proved to cut the
amount of re-evaluations needed considerably, by 78.15 %, with an
increase of evaluation results being already available when needed
by 309.78 % in our case study. The evaluation results for the integra-
tion of Memory-Dependency Analysis suggest a moderate increase
in accuracy, with about 25.55 % of taint sources being filtered out. Re-
markably, it also led to a substantial performance improvement.

6.2 future work

unwind recursion in sccs Our optimization so far uses con-
version of the recursive elements in a call graph into SCCs, in order
to be able to impose a partial order on the resulting SCC call graph.
A further step would be to (possibly using heuristic methods) try to
find an optimal order of evaluation for the recursive elements of a
call graph.

better memory-dependency analysis The Memory-Depen-
dency Analysis currently used by our implementation is the one pro-
vided by the LLVM framework. As it is mostly used during the com-
pilation process, where demands on execution speed are higher than
during an extensive analysis. Because of this, it is trimmed for speed
and often fails to find a memory dependency, even if there is a defini-
tive one. Using a Memory-Dependency Analysis that tries harder to

26 conclusion

find memory dependencies could further improve the accuracy of
the Taint Flow Analysis. Currently, LLVM is preparing a Memory
SSA analysis [8]. This will provide an SSA form for memory, allowing
users of the framework to reason about relationships between defini-
tions and usages of memory.

B I B L I O G R A P H Y

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques and Tools. Second Edition. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2007.
isbn: 0321486811.

[2] Sven Apel, Don S. Batory, Christian Kästner, and Gunter Saake.
Feature-Oriented Software Product Lines - Concepts and Implementa-
tion. Springer, 2013. isbn: 978-3-642-37520-0.

[3] Bolei Guo, Matthew J. Bridges, Spyridon Triantafyllis, Guilherme
Ottoni, Easwaran Raman, and David I. August. “Practical and
Accurate Low-Level Pointer Analysis.” In: Proceedings of the Inter-
national Symposium on Code Generation and Optimization. CGO ’05.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 291–
302. isbn: 0-7695-2298-X. url: http://dx.doi.org/10.1109/CGO.
2005.27.

[4] Sarah Heckman and Laurie Williams. “A systematic literature re-
view of actionable alert identification techniques for automated
static code analysis.” In: Information and Software Technology 53.4
(2011), pp. 363–387.

[5] Chris Lattner. The Architecture of Open Source Applications: LLVM.
2015. url: http://aosabook.org/en/llvm.html (visited on
03/19/2018).

[6] Chris Lattner and Vikram Adve. “LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation.” In: Pro-
ceedings of the International Symposium on Code Generation and Op-
timization: Feedback-directed and Runtime Optimization. CGO ’04.
Palo Alto, California: IEEE Computer Society, 2004, p. 75. isbn:
0-7695-2102-9. url: http://dl.acm.org/citation.cfm?id=
977395.977673.

[7] Florian Niederhuber. “Change-Region Detection in LLVM.” MA
thesis. Universität Passau, Feb. 2018.

[8] Diego Novillo. “Memory SSA - A Unified Approach for Sparsely
Representing Memory Operations.” In: Proc of the GCC Develop-
ers’ Summit. 2007.

[9] Florian Sattler. “A variability-aware feature-region analyzer in
LLVM.” MA thesis. Universität Passau, Mar. 2017.

http://dx.doi.org/10.1109/CGO.2005.27
http://dx.doi.org/10.1109/CGO.2005.27
http://aosabook.org/en/llvm.html
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673

D E C L A R AT I O N

Hiermit versichere ich, dass ich diese Bachelorarbeit selbstständig
und ohne Benutzung anderer als der angegebenen Quellen und Hilfs-
mittel angefertigt habe und alle Ausführungen, die wörtlich oder sin-
ngemäß übernommen wurden, als solche gekennzeichnet sind, sowie
dass ich diese Masterarbeit in gleicher oder ähnlicher Form noch
keiner anderen Prüfungsbehörde vorgelegt habe.

Passau, Germany, March 28, 2018

Jakob Schwarzweller

	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Goals
	1.2 Contribution
	1.3 Overview

	2 Background
	2.1 LLVM
	2.1.1 LLVM-IR
	2.1.2 Memory-Dependency Analysis
	2.1.3 LLVM pass infrastructure
	2.1.4 LLVM call-graph representation

	2.2 Variability-aware Region Analyzer
	2.3 Taint Data-Flow Analysis

	3 Call-graph-ordered processing
	3.1 Reasons
	3.2 Implementation
	3.2.1 Changes to VaRA
	3.2.2 Example

	4 Memory-Dependency Analysis
	4.1 Reasons
	4.2 Implementation
	4.2.1 Changes to VaRA
	4.2.2 Example

	5 Evaluation
	5.1 Call-graph-ordered processing
	5.1.1 Basic functionality
	5.1.2 Case study

	5.2 Memory-Dependency Analysis

	6 Conclusion
	6.1 Summary
	6.2 Future work

	 Bibliography
	Declaration

