
Universität Passau
Fakultät für Informatik und Mathematik

A Specification Language for
Observer Automata in

Feature-Oriented Verification
Master Thesis

Hendrik Speidel

Advisors:

Prof. Christian Lengauer Ph.D.
Prof. Dr. Dirk Beyer

Dr. Sven Apel

22.1.2011

Abstract

This thesis presents SPLVERIFIER a toolchain aimed at verification of feature-
oriented software product lines. A software product line (SPL) is located in a spe-
cific problem space and defines a set of variants i.e. related programs. Feature-
oriented software development is a paradigm to develop software product lines
aimed at the reuse of code across variants. To this end, the problem space is decom-
posed into features. A feature represents a design decision and presents a potential
configuration option. Individual variants of the SPL can be composed automatically
from the set of available features. This circumstance and the fact that the number
of possible variants can increase exponentially with the number of features makes
it hard to verify software product lines. Therefore, SPLVERIFIER needs to check
that all possible variants of the SPL are correct. SPLVERIFIER is targeting a spe-
cific class of correctness problems that is inherent to software product lines called
feature interactions: A feature interaction is a situation in which the combination of
multiple features —even though each individual feature works as specified— leads
to emergent and possibly critical behavior.

The central part of SPLVERIFIER is the AUTOFEATURE automata language to ex-
press specifications for the use with off-the-shelf software model-checkers. The au-
tomata language allows to express specifications alongside a feature’s source code.
The specifications are woven with code to form programs that can be used as input
to existing software model checkers. Software model-checking is a formal tech-
nique to automatically verify that a program adheres to a given specification.

The toolchain can be applied to check feature-oriented product lines using two al-
ternative approaches: All possible variants that can be composed from the product
line’s features can be composed and checked individually. The other approach intro-
duced by this thesis is called variability-encoding. Here, an instrumented program
that incorporates the behavior of all possible variants can be generated from the
SPL. This makes it possible to check an entire product line without generating and
checking all possible feature combinations.

CONTENTS

1 Introduction 1
1.1 Problem Statement . 1
1.2 Related Work . 2
1.3 Outline . 2

2 Background 5
2.1 Feature-Oriented Software Development 6

2.1.1 Goals . 6
2.1.2 Feature-Model . 7
2.1.3 Feature Interactions . 8
2.1.4 FEATUREHOUSE . 9
2.1.5 Feature Structure Trees 10
2.1.6 Feature Composition . 10

2.2 Model Checking . 14
2.2.1 CPAchecker . 16
2.2.2 CBMC . 17
2.2.3 Observer Automata . 17

3 Model Checking Of Variants 19
3.1 Requirements . 19
3.2 The Observer Automata Language 22

3.2.1 Weaving Process . 22
3.2.2 Safety Automata . 23
3.2.3 The Introduction Block 24
3.2.4 ECA Rules . 25
3.2.5 Action Blocks . 26
3.2.6 Example . 27

i

3.2.7 Explicit States . 28
3.3 The Scenario Modeling Language 29

3.3.1 Action Execution Patterns 31
3.3.2 Example . 32

3.4 Counterexample Interpretation . 33

4 Model Checking Of Product Lines Using Variability-Encoding 35
4.1 Definition . 36
4.2 Example . 39
4.3 Correctness Of Variability-Encoding 43

4.3.1 Assumptions . 43
4.3.2 Structures, Fields, And Global Variable Declarations . . . 44
4.3.3 Variability-Encoding Of Functions 44

4.4 Necessary Changes To The Scenario Modeling Language 46

5 The E-Mail System Case Study 47
5.1 System Description . 47
5.2 Comparison Of Model-Checking Individual Variants And

Variability-Encoding . 48
5.3 Measurement Results . 49

5.3.1 CPACHECKER . 49
5.3.2 CBMC . 53

5.4 Discussion . 55

6 Conclusion 57

A Tool-chain Installation and Usage 59

Bibliography 61

B Erklärung 65

ii

CHAPTER

ONE

INTRODUCTION

An aspect that can be observed in todays markets is that often not only one prod-
uct needs to be developed but a software product line (SPL) consisting of multiple
distinct but closely related software products. These products are related in that
they might share parts of their code but they also differ in specific ways — be it in
functionality, optimizations, or supported hardware architecture. However, they are
located in the same problem space. Feature-oriented software development (FOSD)
is a paradigm to develop software product lines aimed at the reuse of code across
variants [AK2009]. To this end, the problem space is decomposed into features.
A feature represents a design decision and presents a potential configuration op-
tion. Individual variants of the SPL can be composed automatically from the set
of available features. This circumstance and the fact that the number of possible
variants can increase exponentially with the number of features makes it hard to
verify software product lines. In particular, feature interactions are a specific class
of correctness problems inherent to software product lines: A feature interaction
is a situation in which the combination of multiple features —even though each
individual feature works as specified— leads to emergent and possibly critical be-
havior. It is a field of ongoing research to find techniques to detect and mitigate
feature interactions in software product lines.

1.1 Problem Statement

Feature interactions present a major problem in feature-oriented software develop-
ment [CKMR2003]. Software Model Checking offers the possibility to prove that
a program adheres to a given specification [Clar1997] —a broader statement than
compared to the result of software testing. We therefore investigate how software

1

A Specification Language for Observer Automata in Feature-Oriented
Verification

model checking can be integrated in the feature-oriented software development pro-
cess. FEATUREHOUSE was chosen as the method to produce variants from the
product line. Existing model checkers are reused for verification. The C program-
ming language is employed for SPL development. As a starting point, a mechanism
is needed to express specifications in a modular way that integrates with features.
Additionally, alternative methods may be investigated that allow the detection of
feature interactions by the means of software model checking.

Ideas are implemented prototypically in JAVA and Python to be able to test their
applicability in feature aware verification.

1.2 Related Work

This thesis builds on previous research of feature-oriented software development
and software model checking. Specifically, the concepts presented here are inter-
pretations and adaptations of the following works:

• Verification of product lines has been studied previously. Post et al. study the
Linux Kernel as a configurable product line [PSK2009]. Li et al. use model
checking to find feature interactions in product lines where feature code is
represented as state machines [LKF2002]. FEATUREALLOY can be used to
express and verify feature-oriented designs [ASLK2010].

• The automata language to express the specifications that is presented here
is modeled after the BLAST Query Language that is used by the BLAST
software model checker [BCHJM2004]. The SLAM model checker also uses
an automata language to express specifications [BRa2002].

• The concept of variability-encoding is inspired by the technique of config-
uration lifting [PoSi2008]. It generates a meta-program from a product line
configurable via preprocessor directives that can then be used as input to soft-
ware model checkers. Variability-encoding is an application of that concept
to feature-oriented product lines.

1.3 Outline

Chapter 2 introduces Feature-Oriented Software Development and Model Checking
in more detail. While these techniques can be applied to other languages also,

2 Chapter 1. Introduction

A Specification Language for Observer Automata in Feature-Oriented
Verification

this document focuses on their application in conjunction with the C programming
language.

Next, chapter 3 builds on said chapter and introduces a first approach for integrating
FOSD and software model checking that can be used to check individual variants.
After an analysis of the additional requirements imposed by the feature-oriented
development process the proposed solution is introduced and open problems are
discussed.

Chapter 4 then shows how a modified composer can be used to enable checking a
property for the whole product line instead of just being able to check the generated
products individually. To that end, an instrumented program is generated from the
SPL where the feature selection process is postponed to the early runtime of that
program in such a way that the model checker needs to consider all possible variants
of the SPL during its analysis.

1.3. Outline 3

A Specification Language for Observer Automata in Feature-Oriented
Verification

4 Chapter 1. Introduction

CHAPTER

TWO

BACKGROUND

This chapter introduces the underlying concepts and tools used in this thesis.

In section 2.1, feature-oriented software development will be introduced as a
paradigm for the development of software product lines. Specifically, the FEA-
TUREHOUSE framework will be presented, which allows to automatically synthe-
size different products from a set of feature modules.

After that, section 2.2 software model checking is introduced as a formal method
to prove, that a model adheres to a specification. Here, CPACHECKER will be de-
scribed —a verification framework for programs written in the C programming lan-
guage. Additionally, a short description of the C Bounded Model Checker CBMC
is given.

The examples presented here are centered around an e-mail messaging product
line that represents a simplified implementation of a subset of the e-mail system
described by Hall that captures AT&T’s domain knowledge on e-mail systems
[Hall2005]. It has been chosen for its real world applicability and because fea-
ture interactions in that system have already been documented. The system will be
used for a case study later on.

In the following chapters, the concepts and tools introduced here are applied in
combination with the goal of detecting feature interactions using software model
checking.

5

A Specification Language for Observer Automata in Feature-Oriented
Verification

2.1 Feature-Oriented Software Development

A prominent example for a software product line is the Linux Kernel. Its users can
choose from a variety of configuration options before building a specific kernel.
The mechanism to allow this configuration was implemented specifically for the
kernel. The implementation is based on the C Preprocessor. This means that all the
variability of the kernel is encoded in clauses for conditional compilation that are
scattered throughout the source code. It creates difficulties in maintaining the code-
base, tracing a specific feature‘s code, and also makes it hard to test or check the
consistency of the product line considering the possibly huge number of different
feature combinations that a specific product can incorporate.

One solution to these problems is the use of Feature-Oriented Software Develop-
ment(FOSD) [AK2009]. Here, the source code of a software system is decomposed
into feature modules. A feature module represents a configurable unit of function-
ality of an application domain. It implements and encapsulates a design decision.
Features serve as the basic building blocks for different products in the same prob-
lem space. The set of products generatable from the set of features constitutes the
product line.

Decomposition of the system is achieved by either virtual or physical separation
of features. Virtual separation is employed in the Colored Integrated Feature De-
velopment Environment (CIDE) [Kaes2007]. It maps features on top of an already
composed system. With FEATUREHOUSE [AKL2009], the features are physically
separated from one another in different directories; specific products are composed
from features when needed. The AHEAD tool suite [Bato2006] which is aimed pri-
marily at feature-oriented programming with JAVA also physically separates fea-
tures.

2.1.1 Goals

To be able to better understand the goals of a feature-oriented approach to software
development it is necessary to analyze the shortcomings of current approaches to
software product lines: We will therefore revisit the example of the Linux kernel.
As mentioned before the configuration mechanism of the Linux kernel is based on
the C preprocessor. Different configurations are managed in the source code using
#ifdef directives. Often, multiple directives are needed for the same concern
in different places throughout the code thereby scattering the concern’s code. In
turn, this may lead to similar code being distributed across different modules. A

6 Chapter 2. Background

A Specification Language for Observer Automata in Feature-Oriented
Verification

change to the implementation may require finding and editing all affected code.
Another problem is code tangling. As the different configurations are managed with
#ifdef directives, different concerns are implemented within the same source
file. This makes the code more difficult to understand. Also the problem gets
worse if the level of configurability is increased or the directives are nested. Code
tangling and scattering can lead to code that is difficult to read and therefore hard to
maintain and extend. For example, it may be problematic to find the source location
corresponding to a feature or all code a feature consists of, e.g. in case of an error.
This is also known as the feature traceability problem. Feature-Orientation directly
addresses this problem to gain cohesion within features.

FOSD proposes the use of the feature concept throughout all phases of the software
development process as it provides structure through feature separation, variation
through product configurability, and the possibility to reuse features across differ-
ent products. However, feature orientation also has limitations: a program cannot
always be modularized across all possible concerns. So, while it offers traceability
the concerns that should be modularized as features need to be selected carefully: it
might become impossible to implement a specific concern as feature at a later time
because the concern crosscuts existing features. This problem is also known as the
tyranny of the dominant decomposition [TOHS1999].

2.1.2 Feature-Model

As stated before, the careful choice of features that make up the product line is an
important aspect of FOSD. It must be possible to compose all necessary products
from these features. Also, there might be restrictions on what constitutes a valid
product: in what combinations and in which order can the features be combined?
For example, all variants of the e-mail system product-line require the Base fea-
ture; the Encrypt feature depends on the Keys feature, which provides manage-
ment of encryption keys. Other product lines might have more complex restrictions
and dependencies.

In FOSD, the list of features, their order of composition, and their interdependencies
constitute the feature-model. The restrictions are commonly represented by using
diagrams or as a satisfiability problem.

The GUIDSL program and its model language is one implementation, that can be
used to describe a feature-model. It can also be used to check feature compatibility,
aid in product selection, and to check the product line for overall consistency. It is
part of the AHEAD tool suite [Bato2006].

2.1. Feature-Oriented Software Development 7

A Specification Language for Observer Automata in Feature-Oriented
Verification

Encrypt

EmailClient

Keys Base

Encrypt Keys

mandatory
optional

EmailClient : [Encrypt] [Keys] Base :: P1
 ;
%%
Encrypt implies Keys;

Figure 2.1: Feature-model diagram and corresponding GUIDSL model definition.

A GUIDSL model file consists of a grammar and a number of additional proposi-
tional formulas that define additional constraints. These two parts are separated by
%%. Each grammar token stands for a feature. The order of composition is defined
by the order the tokens appear in the grammar. Features are composed from right
to left (analogous to function application). If the grammar is not sufficient, com-
plex dependencies can be specified additionally using the propositional constraints.
Figure 2.1 shows the aforementioned feature-model. On the left hand the feature-
model is shown as a diagram, on the right it is expressed as a GUIDSL model. P1
is the name of the grammar rule. All grammar rules are required to have a name.

The feature-model unifies all knowledge of the variability of the product line in one
place. Thereby, FOSD also provides traceability for the concern of product line
configurability.

2.1.3 Feature Interactions

Feature Interactions are undesired phenomenons, that can be observed in feature-
oriented software systems [CKMR2003]. Specifically, a feature interaction occurs
if a certain set of features produces unwanted behavior when selected in combina-
tion while the unwanted behavior is absent in products containing only a subset of
these features. To give an example, one feature of the e-mail system mentioned be-
fore is the Forward feature which as the name suggests forwards incoming mail
to other addresses. To that end, it rewrites the sender field of forwarded messages.
In isolation this feature is working fine. However, if used in conjunction with the
Verify feature the rewriting of the sender might interfere with the key selection

8 Chapter 2. Background

A Specification Language for Observer Automata in Feature-Oriented
Verification

process for signature verification. The Forward and the Verify feature are inter-
acting and as a result variants that contain both features exhibit undesired behavior.

The concept of feature interactions originated in the telecommunications industry.
In Fundamental Nonmodularity in Electronic Mail, Hall studies feature interactions
on an e-mail product line [Hall2005]. In this system consisting of 10 features, he
was able to identify 27 feature interactions. As indicated before, a rudimentary
implementation of this system is used for a case study later on.

In summary, feature interactions are a major problem in FOSD as they are often not
obvious [CKMR2003]. They are also difficult to detect because they only occur if
a certain set of features is selected, i.e. they may be absent in most variants of the
software product line.

2.1.4 FEATUREHOUSE

FEATUREHOUSE is a tool chain and framework for the automatic composition of
software artifacts written in different languages [AKL2009]. As a general abstrac-
tion, FEATUREHOUSE uses the language-independent model of Feature Structure
Trees (FSTs). A FST represents the hierarchical structure inherent in a software
artifact and is used as an intermediate data structure that can be manipulated and
especially can be merged with other FSTs.

The composition tool that is part of FEATUREHOUSE is called FSTCOMPOSER. It
acts as a source-to-source translator and generates a product from a given list of
features. Their corresponding source artifacts are located in containment hierar-
chies. These are directories each containing the individual files which make up a
feature. FSTCOMPOSER is split up in three units: A parser, the actual composer,
and a pretty printer. The parser and the pretty printer are language specific and are
used to translate between the source language and FSTs. The composer itself is lan-
guage agnostic because it operates only on the FSTs generated by the parser. FSTs
are merged by the composer; the resulting product is then transformed back to the
source language using the pretty printer. Support for a new language can be added
to FEATUREHOUSE by giving an abstract description of its structure and composi-
tion rules in the form of an annotated grammar. A parser and a pretty printer can be
generated from that grammar. The C programming language is already supported.

In the following sections FSTs and the composition algorithm used by FEATURE-
HOUSE will be described in more detail. The examples are oriented around the
e-mail system. Because we only use FEATUREHOUSE to compose C artifacts, the

2.1. Feature-Oriented Software Development 9

A Specification Language for Observer Automata in Feature-Oriented
Verification

following description focuses on the aspects relevant for it.

2.1.5 Feature Structure Trees

The primary abstraction to support language independent feature composition are
Feature Structure Trees (FSTs). Each FST represents the hierarchical structure of a
feature module‘s contents. The trees consist of feature structure nodes. All nodes
have an associated type and a name. FST nodes can be either Nonterminal Nodes
or Terminal Nodes. Terminal nodes are always leaf nodes, nonterminal nodes may
have child nodes. All FSTs have a nonterminal root node. All introductions made
in the feature are added below that node. The parser constructs the FST and assigns
each node a name and a type. Terminal nodes also have a content attribute that is
used to capture the corresponding value from the input. For example, the content
of an include node would contain the include directive as it occurs in the source file.

FSTs are constructed from feature modules using a language specific parser that is
part of the composer. The following table lists some of the C language elements
and the corresponding FST nodes the parser translates to:

Language Element Node Type
Source file Module Nonterminal
Header file Header Nonterminal
Struct declaration StructDec Nonterminal
Include Directive Include Terminal
Variable/Field declaration VarDecl Terminal
Function declaration Function Terminal

In contrary to an abstract syntax tree generated by a typical C Parser, a C function
is a leaf node in the FST. The function body is available via the node‘s content
attribute. This level of detail might not be enough for a compiler, but it is sufficient
for the composer. As an example, Figure 2.2 shows part of the source code and the
corresponding FST of the e-mail system’s Base feature. Nonterminal nodes are
depicted as ovals; terminals are depicted as rectangles.

2.1.6 Feature Composition

To compose a product from a selection of feature modules, these have to be trans-
lated to FSTs first as described in the previous section. After that, these FSTs are

10 Chapter 2. Background

A Specification Language for Observer Automata in Feature-Oriented
Verification

clientStructDec

client.c Module

root

outgoing Function

nameVarDecl

client.hHeader

struct client
{
 char *name;
}

void outgoing(email *msg)
{
 //..
 mail(msg);
}

client.h

client.c

Figure 2.2: Simplified FST of the e-mail system‘s Base feature.

combined into one single resulting FST, which is then written out using the pretty
printer.

The composition method used by FEATUREHOUSE is called superimposition and
is described by Apel et al. [AL2008]. In the following, it will be denoted by •; the
FST of the left operand is superimposed on the right e.g. Encrypt • Base super-
imposes the Encrypt FST onto the Base FST. In FEATUREHOUSE, the process
of feature composition works as follows: The composer receives a compositional
formula as input that describes the selected features and the order of composition.
The composition order is relevant and a total ordering of all features is normally
used. FSTs are composed two at a time and are processed from right to left. So, to
generate the product described by Encrypt • Keys • Base, first Keys • Base is
produced and later Encrypt is superimposed on the result.

The superimposition of two FSTs is defined as the composition of their root nodes.
Beginning there, child nodes are composed recursively. Two nodes can only be
composed, if they have identical names, identical types, and a identical relative
location in their tree. We will refer to such nodes as corresponding nodes. How two
corresponding nodes are composed, depends on the nodes being nonterminal nodes
or terminal nodes. The different strategies will be described in the next sections.

Composition Of Nonterminal Nodes

Two Nonterminals —a left and a right one— are composed the following way:

• Create a nonterminal node result with name and type of the input nodes.

• For all children of the right node, search for a corresponding child of the left
node with the same name and type.

2.1. Feature-Oriented Software Development 11

A Specification Language for Observer Automata in Feature-Oriented
Verification

– If such a corresponding node exists compose the right child with its
corresponding node and add the resulting nodes to result as children.

– If no corresponding node exists, add the right child as a child to
result.

• Add all childs of the left node that have no corresponding node on the right
to result as children.

Essentially, this places all children of both the left and the right nodes with no
corresponding node below result in the generated tree. For corresponding nodes
the result of their composition is added. Also, the children of result retain their
order.

Composition Of Terminal Nodes

Terminal nodes are composed by applying a Composition Rule. A composition
rule takes the left and the right terminal node as input and returns one or more
nodes as output. These are added to the resulting FST in place of the input nodes.
FEATUREHOUSE already offers a variety of different composition rules. For new
languages, composition rules can be added easily.

The composition rule that is applied depends on the type of the terminal nodes
that are to be composed. The C language support of FEATUREHOUSE uses the
Replacement composition rule on all terminal node types except on function
nodes. Function nodes are composed using the FunctionRefinement compo-
sition rule. Both rules will be introduced now.

The Replacement Composition Rule

If this composition rule is applied the left node is added to the resulting FST. The
node on the right is completely ignored: it is replaced by a revised version.

The replacement rule serves multiple purposes: e.g. when applied to include nodes,
the replacement rule substitutes two identical includes by one; for a global variable,
it allows to assign a refined value.

12 Chapter 2. Background

A Specification Language for Observer Automata in Feature-Oriented
Verification

The FunctionRefinement Composition Rule

This composition rule is used for function declarations. It was specifically added for
the C language. Other composition rules like the replacement rule are reusable over
different languages. The rule allows stepwise function refinement with access to the
original implementation —a concept also found in object orientation inheritance.

The rule works as follows: If the contents of the left function node does not contain
a call to original, this composition rule behaves like Replacement. The left
function node replaces the function node on the right thereby fully overriding the
former implementation. If a call to original is made, a new name for the right
function node is generated and assigned. The call to original in the left node‘s
contents is rewritten to the new name. Then both the left and the right node form the
result and are appended to the resulting FST. Figure 2.3 shows an example of how
this rule affects the source code of a function in the product. The Base feature’s
outgoing function is refined by the Encrypt feature. The resulting product
contains both implementations and the call to original has been rewritten.

void outgoing(email *msg)
{
 encrypt(msg);
 original(msg);
}

void outgoing(email *msg)
{
 //...
 mail(msg);
}

void outgoing__Base(email *msg)
{
 //...
 mail(msg);
}

void outgoing(email *msg)
{
 encrypt(msg);
 outgoing__Base(msg);
}

BaseEncrypt Product=

Figure 2.3: Refinement of the outgoing function of the feature Base by
Encrypt(simplified).

As a final example for FST superimposition, Figure 2.4 shows the composition of
Encrypt • Base on FSTs. As before, the FSTs have been simplified for demon-
stration purposes. The composition starts with the root nodes. This results in the
composition of the two corresponding Module nodes. Being nonterminal nodes,
the children need to be considered. For all children on the left, the correspond-
ing nodes are looked up on the right. The outgoing nodes are composed using
the function refinement rule thereby producing two distinct function nodes in the
resulting tree. After that, the encrypt function node is added to the result.

2.1. Feature-Oriented Software Development 13

A Specification Language for Observer Automata in Feature-Oriented
Verification

Product

client.c

root

outgoingencrypt

client.c

root

BaseEncrypt =

outgoing encrypt

client.c

root

outgoingoutgoing
wrappee
Base

Figure 2.4: Simplified FSTs of the Encrypt feature and the Base feature are
superimposed.

2.2 Model Checking

Given the inherent complexity of large software systems, quality assurance and ver-
ification is necessary. This is especially true for safety-critical systems. Currently,
this is mostly done by peer-review and testing the software. However, testing leaves
a lot to be desired: It only verifies the correctness of the software for a particular
case.

Model checking is an automated technique for verifying finite-state reactive systems
[Clar1997][BK2008]. The principle is currently applied in both the verification of
hardware and software. In contrast to testing, model checking is a formal method
and examines all possible states of a system. It considers systems that have finite
state or may be reduced to finite state by means of abstraction.

The goal of model checking is to determine whether a system satisfies a certain
safety property. To that end, the model checker receives a system description and a
safety property as input. After that, most model checkers work automatically and
need no expert knowledge to operate. The model checker then either confirms that
the property is satisfied or reports that the property has been violated. In case of a
violation, the model checker provides a counterexample in the form of an execution
path that violates the property. It can be used to analyze the failure an can help
reveal design errors.

The system descriptions accepted by model checkers vary in format: Some use spe-
cial system modeling languages e.g. SPIN [Hol1997] a model checker for concur-

14 Chapter 2. Background

A Specification Language for Observer Automata in Feature-Oriented
Verification

rent systems uses Promela —a language specifically designed for it. Other model
checkers directly accept source code of general purpose programming languages.
For example, BLAST [BHJM2007] and CPACHECKER [BK2009] both operate on
C source code.

Depending on the model checker used, safety properties are specified by annotat-
ing source code, using a specialized specification language, or are expressed as a
formula in temporal logic. Safety properties are requirements such as the absence
of deadlocks, uninitialized variables, memory management errors, or other incon-
sistent states that might cause a program to crash or behave incorrectly.

To perform the analysis, the model checker uses a state graph of a given program.
States represent states of the program’s execution. A transition represents an execu-
tion step of the program. A state contains its variable values and location counters
and can have predicates associated with it. The model checker tries to reach marked
error states in the state graph by performing a reachability analysis that takes the
predicates into account. If an error state is reached a bug is reported. If no error
state is ever reachable, the verification is successful. Generally, explicit and sym-
bolic model checking can be distinguished: In explicit model checking, all states
are enumerated on the fly and are processed one at a time. Explicit model checking
is very resource intensive as states may need to be stored for later use.

Symbolic model checking operates on sets of states at a time. Also, the transition
relation of the state graph is not explicitly represented. Instead, the state space is
constructed using boolean functions mostly in the form of binary decision diagrams
(BDDs) —a very efficient way to represent and manipulate boolean functions. This
way, symbolic model checking can handle even very large state spaces.

Model checking suffers from the state-space explosion problem. The state space of
a realistic system can be very large, possibly infinite and may therefore easily ex-
ceed the amount of available memory. Hence, it is often infeasible to construct and
explore the entire state graph. It is a field of ongoing research to find and improve
techniques to reduce, abstract, and efficiently search the state space. Special care
needs to be taken in the development of model checkers that the implementation
remains sound: a model checker must not generate false negatives, i.e. the model
checker must not report the absence of bugs in a program that actually violates a
specification. Also, false positives should be avoided but can be tolerated to some
extend.

FOSD adds additional complexity to model checking and verification in general,
because of the added variability introduced through feature configurability. Instead
of one program that needs to be verified the developer is confronted with a possibly

2.2. Model Checking 15

A Specification Language for Observer Automata in Feature-Oriented
Verification

huge number of variants.

2.2.1 CPAchecker

As mentioned before, one model checker used in this thesis is CPACHECKER

[BK2009]. It can be used to verify single threaded programs written in the C pro-
gramming language. CPACHECKER is written in JAVA and is built around the
concept of Configurable Software Verification.

Instead of implementing a specific model checking algorithm it provides an ex-
tendable framework and infrastructure to integrate verification components easily.
Components are called configurable program analysis (CPA) and each consist of
an abstract domain and a set of operations that must conform to the CPA formalism
[BHT2007]. CPACHECKER can be used to perform a reachability analysis using
a CPA. Also, multiple CPAs can be used in combination. Therefore, the individ-
ual CPAs are placed inside a CompositeCPA. Its operations can be automatically
constructed from the individual CPAs’ operations.

CPACHECKER already provides a number of CPAs: Inspired by BLAST
[BHJM2007] it implements symbolic model checking with predicate abstraction
and explicit-value analysis. It also includes a CPA for pointer analysis.

Safety properties can be directly encoded in a CPA. Additionally, CPACHECKER

includes a CPA that allows safety properties to be specified as observer automata.
These automata can be specified in configurable files and are loaded by the
CPA on initialization. An error location automaton is already available. When
CPACHECKER is configured to use the observer automaton CPA with this con-
figuration, all labels named error that occur in the source code are considered
inconsistent states and CPACHECKER reports a bug as soon as it reaches such a
label. Observer automata are discussed in more detail in the next section.

Before CPACHECKER can perform an analysis, the source code must be prepro-
cessed and merged into the C intermediate language (CIL) [NPRW2002]. CIL
applies certain transformations to simplify the source code. For example, it elim-
inates for loops by replacing them with while loops. By using this approach,
CPACHECKER‘s parser does not need to take all edge cases of the C language into
account and can remain less complex.

For analysis, CPACHECKER first constructs a syntax tree of the program in ques-
tion. This tree is then transformed into a set of Control Flow Automata (CFA) —the
main data structure the configurable program analysis works upon and constructs

16 Chapter 2. Background

A Specification Language for Observer Automata in Feature-Oriented
Verification

the state space from. A CFA node represents a control-flow location, a CFA edge
represents an execution step. Due to the reduction to CIL only a small number of
different edge types need to be considered: An assume operation, an assignment
block, a function call and a function return.

After the set of CFAs has been constructed, CPACHECKER‘s main algorithm per-
forms the reachability analysis. If an error location is reached, the counter example
is logged in the form of the error path and the assignments made along it. The
counterexample can the be used to retrace the error and in turn can offer insight on
how to correct the error.

2.2.2 CBMC

CBMC is a bounded model checker for C programs [CKL2004]. With bounded
model checking the state graph is unwound up to a given bound to eliminate cycles.
If no error state is reachable within that bound, the verification is successful. In
practice, this means that for a successfully verified program bugs still can occur if
loops or recursion are executed more often than the specified bound. The program is
only guaranteed to be safe up to that bound. Using the bound reduces the number of
states the model checker needs to analyze and therefore may result in a much faster
analysis. CBMC can also verify programs that use heap allocations as it precisely
reproduces the semantics of the C programming language for analysis. In contrast,
CPACHECKER does not currently support all constructs of the C language.

For verification CBMC builds the unwound state graph of the analyzed program
and transforms it into a single equation. This equation is then passed to a decision
procedure to check if the equation is satisfiable. If so, the verification has failed and
the counter example is generated from the satisfying configuration.

2.2.3 Observer Automata

As stated before, safety properties can be expressed as formulas of temporal logic.
However, automata are sometimes used instead because they are often easier to
understand and can also be more tightly integrated with the target language e.g.
may use functions that are present in the analyzed program.

Observer automata monitor the state of a system. They remain passive, i.e. they
must not alter the state of the observed system. However, they can adapt their own
state as a result of changes observed in the state of the observed system. Observer

2.2. Model Checking 17

A Specification Language for Observer Automata in Feature-Oriented
Verification

automata are not required to have a finite number of states. Typically, infinite states
are achieved by adding memory access to the automata language. To express a
safety property as an automaton, some of the observer’s states are labeled as error
states. If such a state is reached during analysis, the safety property was violated.
Typically, the specific automata language provides a keyword to label error states
as such.

For model checking, there are currently two approaches how observer automata are
implemented: It is possible to implement the concept within the model checker or
as a preprocessor that translates and embeds the safety properties in the source code.
This is done by transforming the automaton’s states and transitions into source code
of the target language and embedding this code within the program’s original source
code. The resulting instrumented program then contains the safety property, e.g. in
the form of added control flow around specific functions and labels that indicate in-
consistent states. This approach is employed by SLIC [BRa2002] which is a speci-
fication language for the SLAM model checker that is used to verify device drivers
[BRb2002]. On the other hand, the observer automaton CPA of CPACHECKER al-
lows the execution of observer automata inside the model checker. This is realized
by embedding an automaton interpreter into the model checker. During analysis
the automaton CPA’s transfer relation is used to update the internal states of the
observer automaton.

18 Chapter 2. Background

CHAPTER

THREE

MODEL CHECKING OF
VARIANTS

This chapter describes one possible way to integrate model checking into the FOSD
process. Here, model checking is performed on all variants of the product line in
sequence. Essentially, the traditional process of FOSD is reused. After a specific
variant has been composed it is verified using the model checker. This way, errors
can be detected in relevant variants of the SPL. These can then be corrected by
modifying one or more features of the SPL.

This chapter is structured the following way: First, Section 3.1 discusses the re-
quirements and problems that arise when combining FOSD with model checking
and discusses possible solutions. Section 3.2 introduces the proposed observer au-
tomata language we use to describe the specifications needed for the model checker.
After that, section 3.3 goes into detail on how the different test scenarios are setup.
Then, section 3.4 describes the tool that was additionally developed to aid in inter-
pretation of the counterexample given by the model checker in case of a bug.

3.1 Requirements

To make use of a model checker, a way is needed to express the specifications. As
already described in the background chapter model checkers use differing methods
here. Often, the specification is directly given within the source code, e.g. in the
form of error labels or assertions. This makes it hard to check against more than
one specification as the code has to be prepared manually beforehand. In FOSD,
this would mean an even bigger effort as this would need to be done for each variant

19

A Specification Language for Observer Automata in Feature-Oriented
Verification

generated from an SPL. Therefore, we externalize the specifications each to its own
file by reusing the aforementioned concept of observer automata.

To be able to express the specifications to detect the feature interactions in the e-mail
system we need a way to add error locations depending on the internal state of the
system. With an observer automata language that supports only reading variables
we would be forced to reimplement much of the functionality within the specifica-
tion that is already exposed as a function in the e-mail system. Having to reproduce
possibly large amounts of code can lead to errors in the specification. Also, over
time the implementations given by a specific variant and a specification could drift
apart. Therefore, we choose to support direct calls to functions offered by the ana-
lyzed program from within the specification. This is however not without its draw-
backs: The parts of the application that are reused in the specification are implicitly
trusted to work correctly. Also, special care needs to be taken that specifications
remain side-effect free as violating this property would invalidate the analysis as
side-effects could possibly affect the internal state of the analyzed program thereby
altering its behavior.

Another problem is that specifications need to refer directly to code, e.g. variables
or functions. In the context of FOSD variables and functions may not always be
present in all variants. Therefore, only a subset of all specifications may be appli-
cable to a particular variant. As a consequence specifications are placed within a
particular feature that contains code they may access. Figure 3.1 shows an overview
of the composition process. Feature code is composed as described in section 2.1.
Specifications located in features that are not selected are filtered out.

The next problem is more specific to the e-mail-system: It can be considered a
feature-oriented library for e-mail related applications. It provides functionality to
send and receive messages but there is no actual application in place to use that
functionality —there is no main function. Therefore, to apply model checking, we
needed a program that makes use of the exposed functionality. To be able to check
the system in multiple configurations —referred to as scenarios in the following—
a small domain specific language to describe these is provided. This reduces the
amount of code that needs to be written thereby making the process less error prone
as scenarios can be described more concise. Also, it allows to generate code that can
be checked more efficiently by the model checker than a scenario modeled using
the standard feature-oriented approach. Obviously, this scenario language needs to
support FOSD to be applicable in this context.

With the scenario language and the observer automata it is then possible to gen-
erate a program that incorporates the error locations of the specification and that

20 Chapter 3. Model Checking Of Variants

A Specification Language for Observer Automata in Feature-Oriented
Verification

Figure 3.1: Composition of a variant.

3.1. Requirements 21

A Specification Language for Observer Automata in Feature-Oriented
Verification

operates within the parameters of the given scenario. This program —referred to
as checkable program from now on— can then be given to the model checker for
analysis. In case of safety, the variant is guaranteed to adhere to the specification.
In case of a detected bug however, the counterexample of the model checker needs
to be analyzed to deduct the features the problem is related to. Unfortunately, the
variant has already been composed and various transformations applied to it at this
point. Therefore, a tool is needed to assist the programmer in association of code to
features. Here, we will make use of a tool that allows to inspect the error-path and
visually decomposes it into features.

3.2 The Observer Automata Language

This section introduces the proposed specification language. The implementation
of the translator is called AUTOFEATURE. We will now look into how specifica-
tions are woven onto composed variants followed by a description of the automata
language. This specification language is an adaption of the automata language used
by the BLAST model checker [BCHJM2004]. Automata reside in separate files
along with the code in the containment hierarchy.

3.2.1 Weaving Process

The automata language can be seen as a limited aspect-oriented language. The con-
cepts are so similar that the Aspect-C-Compiler (ACC) —a conventional aspect-
oriented source-to-source translator— is used for the actual weaving process
[GJ2008]. ACC is an adaptation of ASPECTJ [KHHKPG01] that targets the C
programming language. In a preceding step, the specification is translated into an
aspect usable by ACC. This translator has been implemented using the ANTLR-
Parser-Generator [P2007]. The C parts of the grammar are based on an existing
C grammar for ANTLR, that was adapted to incorporate the functionality of the
automata language.

As outlined before, the automata language is implemented as a preprocessor that
translates the specification and weaves it onto the source code. Figure 3.2 shows an
overview of the weaving process. To receive a program that we can supply to the
model checker we translate the specification into an aspect. Then, we use ACC to
weave the composed variant and the aspect and can then use the model checker to
verify the resulting checkable program.

22 Chapter 3. Model Checking Of Variants

A Specification Language for Observer Automata in Feature-Oriented
Verification

Aspect

ACCSpecification

 Automaton
ACC

composed

variant

checkable

program

 Auto

Feature

Figure 3.2: Process of weaving a specification and a variant.

3.2.2 Safety Automata

Automata can provide introductions to the code of the variant. By adding global
variables and adding fields to structures automata can have states. Automata react
to changes in the observed program by specifying Event-Condition-Action (ECA)
rules. Events occur at the beginning and end of the execution of a function. If an
automaton specifies an ECA rule for an occurring event and the condition holds,
the action block is executed. Actions can contain C statements and may signal that
an inconsistent state is reached by means of the fail statement. An automaton is
translated into an aspect, where every automaton event is realized as a before-call
or after-call pointcut respectively.

 dummy {
 <typedefs>
 }

 <includes>

 automaton <name> {
 introduction {
 <introductions>
 }
 <eca_rules>

 }

Figure 3.3: Structure of a specification file

Figure 3.3 shows the basic structure of a specification file. If types of the observed
programs are referenced, the appropriate header files that contain the type declara-

3.2. The Observer Automata Language 23

A Specification Language for Observer Automata in Feature-Oriented
Verification

tions or function prototypes need to be specified. The syntax mimics the syntax of
the include directive of the C preprocessor. However, the translator does not parse
included files. As a result, this means that if type names are referenced e.g. in
action blocks these need to be declared. This can be done in a in a dummy block
before the includes. This restriction is imposed upon the automata language by the
C programming language. Because of its complex grammar C-parsers need access
to type names to be able to parse the code. The dummy block can contain typedef
declarations in the format used in C. If no type declarations are needed the whole
dummy block can be omitted. The contents of the dummy block is not written to
the generated aspect.

The body of an automaton may begin with an introduction block and may be
followed by ECA rules. These constructs are described in the following sections.

3.2.3 The Introduction Block

Introductions necessary to express the temporal safety property can be added inside
the introduction block of an automaton.

Valid introductions are:

• declarations (including function declarations) in C syntax.

• shadow declarations.

Shadows can be used to add fields to existing struct or union types.

The syntax is as follows:

shadow <identifier> {
<declarations>

};

identifier must be a structure or union type name e.g. struct email, or a
name assigned to a struct or union type using a typedef declaration.

declarations must be valid struct or union field declarations. These will be
added to the type referenced by identifier.

All types referenced either as identifier or within declarations need to
be visible to the automaton. This means that the appropriate header files have to be
included at the top of the file using the #include directive as known from C.

24 Chapter 3. Model Checking Of Variants

A Specification Language for Observer Automata in Feature-Oriented
Verification

3.2.4 ECA Rules

With ECA rules, an automaton can react to events within the observed application.
Especially, if a specific event within the execution context of the application results
in an inconsistent state an ECA rule‘s action block can be used to signal the failure
to the developer.

An ECA rule for an automaton can be defined using the following syntax:

<event_pattern> [if(<expression>)] {
<action_statements>

}

event_pattern specifies the event that the rule is bound to. This can match the
beginning or the end of the execution of a function call. Specifying a condition is
optional. action_statements are only executed if expression evaluates to
true.

action_statements must be valid C statements. Additionally fail is avail-
able to signal an inconsistent state.

Event Patterns

AUTOFEATURE uses only a small subset of ACC‘s functionality. This was suf-
ficient for the case study of the e-mail system. It offers the following two event
patterns:

• the before pattern matches at the beginning of the execution of a function.

• the after pattern matches before the end of the execution of a function.

As with shadows, referenced functions and types need to be visible to the automa-
ton.

before Patterns

before patterns can be specified as follows:

before <function> (<parameter_binding>)

function consists of the return type and the name of the function that the action
should be attached to, e.g. void mail. The parameter_binding provides

3.2. The Observer Automata Language 25

A Specification Language for Observer Automata in Feature-Oriented
Verification

the means to access arguments passed to the function. For each parameter of the
function prototype this consists of a binding name or _ followed by a colon and
the parameter type separated by commas. All parameters have to be included. As
an example, for the given function prototype int add(int, int) a possible
before pattern would be:

before int add(_:int,a:int)

When function add is called during the execution of the program the value of the
second argument to add will be available as a within the condition and the action
block. Because the binding of the first parameter is set to _, the first argument is
not made available within the action. With before patterns, the action is executed
at the very beginning of the execution of the function.

after Patterns

after patterns can be specified exactly the same as before patterns. However,
the action is executed right after the execution of the original function. This way,
the return value of the function can also be made accessible within an action block.

The return value is made available using the following syntax:

after <result_binding> = <function> (<parameter_binding>)

result_binding may be any valid C identifier. The result will be available by
that name within the condition and the action block. The type of the result is the
return type of the function. function and parameter_binding are defined
the same way they are specified when using a before pattern.

3.2.5 Action Blocks

Action blocks can contain valid C declarations and statements. Additionally, the
fail statement is available inside action blocks. It is used to signal that the tem-
poral safety condition has been violated. fail statements within actions are trans-
formed into calls to __automaton_fail. This way the automata language is
decoupled from the specific mechanism of signaling a failure. Most model check-
ers support labels to mark error states and also support checking assertions. The
prototype of __automaton_fail is provided in wsllib.h. Two implementa-
tions are available in these files:

26 Chapter 3. Model Checking Of Variants

A Specification Language for Observer Automata in Feature-Oriented
Verification

• wsllib.c — This implementation can be used to compile and run the vari-
ant. It simply prints an error message.

• wsllib_check.c — This implementation is used for analysis of the case
study. It generates a label called error and jumps to it.

These files are automatically added during the weaving process. Actions must not
have side effects on the internal state of the variant. Only variables and shadow
fields introduced in the introduction block should be written to. As mentioned
before, if functions of the analyzed program are called as part of the specification,
these functions are implicitly assumed to function correctly.

3.2.6 Example

The following example shows a safety automaton that can be used to detect incon-
sistent encryption of messages. If a message is sent in encrypted form once, the
message is assumed to be private. If this message is sent in unencrypted form after
that, the safety property is violated. The specification implements this by introduc-
ing a global variable that tracks if the message was sent encrypted once. Later calls
to mail then check the variable and a violation of the specification is signaled by
means of the fail statement if it is sent in unencrypted form.

#include "Email.h"
#include "Client.h"
automaton EncryptConsistently {

introduction {
// mail_is_sensitive values:
// -1 - uninitialized
// 0 - no
// 1 - yes
int mail_is_sensitive = -1;

}
before void mail (client:int, msg:int) {

if (mail_is_sensitive == -1) {
mail_is_sensitive = isEncrypted(msg);

} else if (mail_is_sensitive != isEncrypted(msg)) {
fail;

}
}

}

3.2. The Observer Automata Language 27

A Specification Language for Observer Automata in Feature-Oriented
Verification

3.2.7 Explicit States

Explicit states are an extension of the automata language. If explicit states are used,
an automaton additionally has a current state. Initially, this is the first state defined
in the automaton. In actions the state can be changed using the state change operator
--> followed by a state defined in the automaton. States are defined like labels in
C. All ECA rules that follow a state definition are only executed if the automaton is
in that particular state. If explicit states are used all events must be inside a state. By
default, the automaton starts in the first defined state. Explicit states are represented
as a global variable in the resulting aspect.

Here, we see a safety specification that is equivalent to the specification given pre-
viously but that uses explicit states:

#include "Email.h"
#include "Client.h"
automaton EncryptConsistently2 {

INIT:
before void mail (client:int, msg:int) {

if (isEncrypted(msg)) {
--> CONFIDENTIAL;

} else {
--> PUBLIC;

}
}

PUBLIC:
before void mail (client:int, msg:int)
if (isEncrypted(msg)) {

fail;
}

CONFIDENTIAL:
before void mail (client:int, msg:int)
if (!isEncrypted(msg)) {

fail;
}

}

Initially, this automaton is in the INIT state because this state is declared first. If
mail is called, the automaton transitions to CONFIDENTIAL or PUBLIC depend-
ing on encryption used or not. If mail is called again and the email does not use
encryption consistently, the safety property is violated.

28 Chapter 3. Model Checking Of Variants

A Specification Language for Observer Automata in Feature-Oriented
Verification

3.3 The Scenario Modeling Language

As mentioned before, the e-mail system used in the case study is a library. There-
fore, to model different setups a way is needed to effectively express these scenarios
using varying actions and different numbers of users. We also need to control the
order in which actions can be executed in a specific scenario. Certainly, it is pos-
sible to express all this programmatically in C. Different scenarios could also be
modeled as features. However, the process of specifying a possibly great number
of scenarios makes this cumbersome. The use of a domain specific language has
the following benefits: Scenarios can be expressed in a more condensed way that
aids readability. Also, this layer of indirection allows to translate the scenario to
code that is specifically optimized for the model checker. For example, the current
implementation can in some cases reduce the number of functions that would oth-
erwise be generated by the composer. Also, some model checkers like CBMC can
better cope with for loops than while loops. For CPACHECKER this makes no
difference as for loops are translated to while loops during the transformation to
CIL.

The scenario modeling language is a prototype implemented in Python. The actual
specification of a scenario is directly given in Python code. A library allows to
express different action execution patterns. These patterns allow to express if and
when which actions can be executed in a scenario. Examples are patterns such as
sequential execution of actions, optional actions, permutations of actions, and exe-
cuting actions multiple times in a row. A detailed description of the available action
execution patterns is given in subsection 3.3.2. Actions are provided as functions
within the C code and can be referenced from within the scenario. For the test setup,
we chose to only use parameterless functions with a result type of void.

Fig 3.4 shows a schematic of the scenario generation process. The scenario code is
generated from the scenario description under the influence of the feature selection.
Then, the resulting module is introduced to the code of the library variant thereby
forming a variant that actually uses available library functions. The action mapping
describes which actions are introduced by which features. When generating a sce-
nario, all actions that are not part of the feature selection are omitted. Otherwise,
dangling function references would be present in the variant. An alternative would
be to compose the scenarios in a feature-oriented way. For the case study how-
ever, the former approach proved to be more feasible. It is assumed that scenario
actions do not get refined by other features. Different scenarios can either live in
independent files or can be grouped together for convenience.

3.3. The Scenario Modeling Language 29

A Specification Language for Observer Automata in Feature-Oriented
Verification

Figure 3.4: Scenario code generation.

30 Chapter 3. Model Checking Of Variants

A Specification Language for Observer Automata in Feature-Oriented
Verification

3.3.1 Action Execution Patterns

This section describes the action execution patterns that are currently available. The
implementation is currently lightweight and can be easily adapted to also support
additional patterns should the need arise.

Actions

Actions are specified as quoted strings. Actions are assumed to take no arguments.
To use actions with parameters or if the result value is needed the C execution pat-
tern is supplied that can be used to embed arbitrary C code into scenarios. As
an example, the action execution pattern ’myaction’ would be translated to
myaction() in the resulting scenario code.

Scenario

This pattern is used to model sequential execution. If the pattern is executed, all
elements are executed in sequence.

Optional

This pattern accepts only one nested pattern. As the name suggests, the nested
pattern may or may not be executed. It is translated to an if block using a nonde-
terministic condition that encloses the action.

Star

This pattern also accepts only one nested pattern. Its function is that of the Kleene-
Star known from regular expressions: The enclosed pattern may be run multiple
times in a row or not at all.

Plus

Also borrowed from regular expressions, this pattern also allows only one nested
pattern that may be executed multiple times in a row but is executed at least once.

3.3. The Scenario Modeling Language 31

A Specification Language for Observer Automata in Feature-Oriented
Verification

Permutation

Nested patterns are executed in random order. Each pattern is executed exactly
once.

SubsetPermutation

Analogous to Permutation, nested patterns are executed in random order. How-
ever, some patterns may be skipped.

C

This pattern allows raw C code to be embedded. The code is given as sole argument
and needs to be quoted.

3.3.2 Example

Scenario(
 Optional('bobKeyAdd'),
 Optional('rjhKeyChange'),
 'bobToRjh'
)

if(get_nondet()) {
 bobKeyAdd();
}
if(get_nondet()) {
 rjhKeyChange();
}
bobToRjh();

Scenario Description Scenario Code

Figure 3.5: Translation of a scenario.

Figure 3.5 shows a scenario description and the code that is generated from it.
bobKeyAdd and rjhKeyChange may be skipped. bobToRjh is always called
last and may not be skipped. Assuming that bobKeyAdd and rjhKeyChange
are provided by feature Keys these actions would have been omitted from the re-
sulting code if the Keys feature was not selected. This way, the scenario modeling
language can be used with FOSD while the scenarios can be expressed as if all fea-
tures are always present. During scenario generation, the action mapping is used
to decide if the generated code should contain a call to a particular action or if the
action is omitted.

32 Chapter 3. Model Checking Of Variants

A Specification Language for Observer Automata in Feature-Oriented
Verification

3.4 Counterexample Interpretation

After the analysis has been performed the result needs to be interpreted. In case
the model checker has deemed the program to be safe it is guaranteed to adhere to
the specification given that the model checker has been configured correctly and the
specification contains no side effects. If the model checker does not terminate or
runs out of system memory no assumptions must be made about the correctness of
the program in respect to the specification used. In case of a bug, the programmer
is now facing the task of interpreting the counterexample to locate the problem
and to be able to construct a patch. In the context of FOSD, this is challenging
as the variant has been analyzed in composed form. Therefore, the error-path and
additional information created by the model checker is referring to the composed
variant.

As previously stated however, FOSD should be employed throughout the whole de-
velopment process. As a consequence —because we do not want to depart from
that fundamental idea— we need a way to effectively analyze the counterexample
in a decomposed form. Therefore, we reuse the concept of CIDE: Features in an
already composed system are decomposed visually by using different background
colors for code originating from different features. In this case, we applied the con-
cept to the error-path returned by CPACHECKER. However, it should be possible to
also use this approach to decompose the CFA and ART respectively.

Figure 3.6: Counterexample viewer.

3.4. Counterexample Interpretation 33

A Specification Language for Observer Automata in Feature-Oriented
Verification

In the course of this thesis a counterexample viewer was developed for
CPACHECKER. Figure 3.6 shows a screenshot of the viewer. On the left we see
the error path. On the right, we can switch between views of the control flow au-
tomaton, abstract reachability tree, the CIL code, and the log and result messages
generated by CPACHECKER. Using the previous and next buttons on the left we can
step through the error path and see the current state on the control flow automaton,
abstract reachability tree, and CIL code. A viewer is generated by a Python script
that post-processes the output of CPACHECKER. The viewer itself is a JavaScript
application, that can be executed in the browser.

Figure 3.7: Excerpt of a decomposed view of an error-path.

Figure 3.7 shows a decomposed error-path. Different features are indicated using
different colors as known from CIDE. The first column contains the elements of
the error-path. The second column shows the active function that contains the code.
The third column shows the feature that introduced the code. Code introduced by
specifications is shown in red and can be distinguished from feature code as the
third column is set to SPECIFICATION.

34 Chapter 3. Model Checking Of Variants

CHAPTER

FOUR

MODEL CHECKING OF
PRODUCT LINES USING

VARIABILITY-ENCODING

Even though model checking of individual variants is beneficial, it leaves room for
improvement. In settings, where the number of variants is small it could be imple-
mented by automatically performing a set of configured checks on these variants
whenever the product line changes in the spirit of continuous integration testing.
However, there may be situations where this approach is unfeasible due to the com-
putation effort of checking all variants against all specifications. Then, it might
be more feasible to investigate model checking of the product line as a whole as
opposed to checking the set of possible variants individually. For a given speci-
fication, the model checker would then check all possible variants —the product
line— in a single run. Conceptually, this can be approached from two angles: A
specialized model checker could be constructed. The model checker would be able
to directly operate on the product line and would need access to the feature model
and incorporate knowledge about the feature composition process. The alternative
is to create an instrumented program that incorporates all possible variants and the
feature selection in accordance to the feature-model and the composition rules. This
is the approach we will investigate in the following.

We will refer to the process of creating the instrumented program as variability-
encoding because the variability of the product line is encoded in the resulting pro-
gram. The concept is also described briefly in [ASWB2011]. The assumption is
that incorporating all variants in one single program and checking it in a single
run may reduce the time to find an interaction or prove the safety of a product line
as this eliminates the need to generate all variants and weave the specifications on

35

A Specification Language for Observer Automata in Feature-Oriented
Verification

each one. Also, the model checker needs to be run only once as opposed to multi-
ple times when checking all variants. As individual variants may share large parts
of their code these checks may also need to re-investigate code that has already
been analyzed in related variants. On the other hand, variability-encoding creates
a program that is bigger than all variants individually: all variants are incorporated
into the variability-encoded product line including additional control flow that is
necessary to select a particular variant at runtime. Therefore, it is not apparent if
variability-encoding is beneficial to model checking of software product lines as
the advantages of not having to generate all variants and possibly eliminating re-
dundant checks weigh against the disadvantage of having to cope with a possibly
much larger program to investigate. Hence, we will compare both approaches in
the course of a case study in chapter 5.

Fig 4.1 shows an overview of the proposed process of variability-encoding. Sim-
ilar to the first approach features consist of code and specifications. These parts
are specified in exactly the same format. Therefore, variability-encoding can eas-
ily be applied to a product line instead of or in combination to checking individual
variants. In contrast to composition, variability-encoding always uses all features.
To construct the variability-encoded product line the variability-encoder needs to
know the composition order. Also, because only valid variants must be considered,
it needs access to the feature model. Analogous to the approach of checking all
variants individually we use the variability-encoder to select the applicable specifi-
cations. As variability-encoding always considers all features no specifications are
filtered out. However, hybrid approaches would be possible where only a subset
of features is variability-encoded. The following sections explain the technique of
variability-encoding. First, variability-encoding is defined followed by an abstract
example. Then, we show that proving the safety of the variability-encoded program
is equivalent to proving the safety of all possible variants of the product line.

4.1 Definition

Variability-encoding has been implemented by modifying FSTCOMPOSER. When
composing variants feature selection happens at composition time. The basic idea
of variability-encoding is to postpone the process of feature selection until early
runtime. Then, —at application startup time— a variant is selected by setting a set
of variables called feature variables. Each feature of the product line is represented
by a feature variable. If set to 1, the corresponding feature is selected; if set to 0,
the corresponding feature is not part of the selected variant. After initialization, the

36 Chapter 4. Model Checking Of Product Lines Using
Variability-Encoding

A Specification Language for Observer Automata in Feature-Oriented
Verification

Figure 4.1: Variability-encoding of a product line.

4.1. Definition 37

A Specification Language for Observer Automata in Feature-Oriented
Verification

values of the individual feature variables are not changed again —they are consid-
ered constants. The code of a specific feature is only executed if its feature variable
has been set to 1. This way the application behaves like a variant that has been
composed using conventional composition.

We recall that function nodes are composed by applying the
FunctionRefinement composition rule: the old node is given a new
name α, the new node is introduced and references to original within its body
are pointed to α.

For variability-encoding FunctionRefinement is exchanged for an alternative
implementation to postpone the feature selection process to the early runtime of the
program: if a function is to be replaced, it may still be needed by variants in which
the refining feature f is not present. Therefore, its function name α is rewritten to
αbefore and the new function node is introduced with name αrole. As before, calls
to original within the new function are rewritten to αbefore. A feature switch is
generated with name α. A feature switch is a function that dispatches to a variants
implementation of the function depending on feature f being selected or not, e.g.
for a function alpha returning int that accepts no parameters the generated feature
switch would be:

int alpha() {
//choose implementation depending on
//the value of feature variable of f
if (__SELECTED_FEATURE_f) {

return alpha_role_f();
} else {

return alpha_before_f();
}

}

A specific variant of the product line can now be created by initializing the feature
variables accordingly. To be able to check all variants in one run we set the feature
variables to uninitialized values. The software model checker must now take all
feature combinations into account. To exclude variants that do not satisfy the con-
ditions imposed by the feature-model, we encode the feature-model into the feature
selection process as outlined in the following pseudo code:

38 Chapter 4. Model Checking Of Product Lines Using
Variability-Encoding

A Specification Language for Observer Automata in Feature-Oriented
Verification

int main() {
select_features();
//check that selected features form a valid variant
if (valid_product()) {

//run the variant
return original_main();

}
}

Conceptually, select_features picks an arbitrary combination of features;
if valid_product —a translation of the feature-model— is true the variant is
executed. This way, the model checker needs to take all valid variants (and no more)
into account when checking the safety of the product line. If a bug is found in the
variability-encoded product line, variants that also exhibit the bug can be derived
from the counterexample given by the model checker. If the variability-encoded
product line is safe, then so are all valid variants.

4.2 Example

In the following, the normal composition process is compared to the construction
of variability-encoding.

Let us assume a product line containing the three features Base, Extension1,
and Extension2 that are composed in that order. Each feature contains a single
module named main.c. The contents of these files and the FSTs of the features
are listed in figure 4.2. For brevity, include directives are not shown in the follow-
ing FSTs. Also the order in which child nodes are depicted has been chosen for
readability and does not represent the order in which nodes are placed by FST-
COMPOSER. Dotted arrows between function nodes mean that a function may call
a function it points to.

4.2. Example 39

A Specification Language for Observer Automata in Feature-Oriented
Verification

#include <stdio.h>

void action1() {
 puts("In action1 Base");
}

void main() {
 action1();
}

void action1() {
 original();
 puts("refined by Ext1");
}

void action1() {
 puts("refined by Ext2");
 original();
}

 main.c

 main.c

 main.c

Base

Extension1

Extension2

Figure 4.2: Example FSTs and corresponding code

40 Chapter 4. Model Checking Of Product Lines Using
Variability-Encoding

A Specification Language for Observer Automata in Feature-Oriented
Verification

We will now compare the composition of a variant v containing Base and
Extension1 to the variability-encoded product line. For variability-encoding
all features are used. By selecting Base and Extension1 using the introduced
feature variables a variant is produced that behaves like the traditionally composed
variant v.

In the following, variability-encoding is denoted by] . As before, superimposition
is denoted by •.

Figure 4.3: FST of Extension1 • Base.

Figure 4.3 shows the resulting FST for Extension1 • Base. Function main
calls the implementation of action1 defined in Extension1. The call to
original is rewritten to call the implementation of action1 provided by Base.

For variability-encoding two steps are necessary. Figure 4.4 shows the FST of
the variability-encoded SPL after the first step Extension1] Base. Func-
tion main calls the feature switch for Extension1. If Extension1 is not
selected, the feature switch dispatches to the implementation of Base thereby skip-
ping Extension1. If Extension1 is selected, the feature switch dispatches
to the implementation of action1 provided by Extension1. Analogous to
composition, this implementation calls the implementation of Base for calls to
original.

Now, the FST of Extension2 is superimposed on the FST that has been obtained

4.2. Example 41

A Specification Language for Observer Automata in Feature-Oriented
Verification

Figure 4.4: FST of Extension1] Base.

Figure 4.5: FST of Extension2] Extension1] Base.

42 Chapter 4. Model Checking Of Product Lines Using
Variability-Encoding

A Specification Language for Observer Automata in Feature-Oriented
Verification

in the previous step. Figure 4.5 illustrates the resulting FST. As before, the refine-
ment of action1 by Extension2 results in the addition of a feature switch,
a node for the implementation of action1 provided by Extension2, and the
renaming of the current implementation of action1 that resulted of step one.
If Extension2 is selected using its feature variable, the implementation given
in Extension2 is called. If Extension2 is not selected, the feature switch
of Extension1 takes over: if a function is refined by multiple features, feature
switches form a cascade as a direct result of the application of the composition rule.
Therefore, if only Base and Extension1 are selected, the feature switches dis-
patch only to the implementations of action1 provided by these features. This
configuration is depicted with the red dotted arrows in figure 4.5. As the feature
switches and feature selection process of the variability-encoded product line have
no side-effects other than selecting the variant, the variability-encoded product line
behaves like the composed variant.

4.3 Correctness Of Variability-Encoding

In the following, we will show that a variability-encoded SPL behaves like a com-
posed variant if the feature variable values reflect the feature selection of the com-
posed variant. We will therefore formalize the concept of variability-encoding using
the following definitions:

Let SPL be a product line consisting of a set F of features of size n with composi-
tion order K = (f1, . . . , fn) and the set FM ⊆ P(F) of valid feature combinations
as the feature-model.

Feature selection of a variability-encoded product line is performed by the transfor-
mation σX : V → P with V being a set containing the variability-encoded product
line and intermediate results of the variability-encoding process, P being the set of
possible variants, and X ∈ FM a feature selection.

By applying σX to a variability-encoded product line, all feature variables of the
features f ∈ X are initialized with 1 while all other feature variables are set to 0.

We will use P1 ∼ P2 to indicate that a program P1 behaves like a program P2.

4.3.1 Assumptions

The construction presented here relies on the following assumptions:

4.3. Correctness Of Variability-Encoding 43

A Specification Language for Observer Automata in Feature-Oriented
Verification

• The product line is type safe, i.e., every variant that is valid according to the
feature-model is type safe. This means that the references of a feature f are
valid (non-dangling) in all variants that contain f , according to a feature-
model. Also, fields provided by structures are only accessed using the fields
name and not by memory address. As all fields of all structures are always
available in a variability-encoded product line, access by memory address
potentially accesses an unintended location.

• Variability-encoding only allows functions to be refined. Principally, the
composer could also be used to refine global variables i.e. redefine their ini-
tial value.

• Included header files must not have side-effects other than declarations e.g.
they may not redefine preprocessor macros.

4.3.2 Structures, Fields, And Global Variable Declarations

Variability-encoding uses standard composition rules for composing nonterminal
nodes such as structures and terminal nodes such as includes, global variable
declarations, and fields within structures. Therefore, the difference between the
conventional and the variability-encoded composition for these cases is only that
variability-encoding composes all features. This does not impose behavioral side-
effects upon any variant part of the variability-encoded product line as the product
line is type safe and header files are also side-effect free. Therefore, the variability-
encoding of structures, fields, and global variable declarations preserves the behav-
ior of every variant that is part of the product line. In addition, we now need to show
that the variability-encoding of functions also preserves the behavior of all variants
of the product line.

4.3.3 Variability-Encoding Of Functions

To show the correctness of variability-encoding for the composition of functions,
we will use structural induction over the composition process of the variability-
encoded product line:

v =
n⊎

i=1

fi = f1] f2 . . .] fn

Therefore, let vk be the k-th intermediate step of the variability-encoding process:

44 Chapter 4. Model Checking Of Product Lines Using
Variability-Encoding

A Specification Language for Observer Automata in Feature-Oriented
Verification

vk =
k⊎

i=1

fi = f1] f2 . . .] fk, 1 ≤ k ≤ n

We will also use CX to denote a conventionally composed variant containing all
features f ∈ X ⊆ F (as with variability-encoding, features are composed in the
composition order K).

Base: Let k = 1

Obviously, we see:

v1 = f1 and C{f1} = f1 (1).

No feature switches were introduced. As σ has no side effects, we can deduct that:

σ{f1}(v1) = σ{f1}(f1) ∼ f1 and with (1) we can state that σ{f1}(v1) ∼ C{f1}.

Therefore, variability-encoding of functions is correct for k = 1.

Induction Hypothesis: The intermediate steps of variability-encoding are con-
structed correctly —that is, for all k and all x ∈ FM ∩P({f1 . . . fk}) the following
statement holds:

σX(vk) ∼ CX

Inductive Step

vk+1 = vk] fk+1

To construct vk+1, we need to add the functions contained in fk+1 to the result vk+1.
Here, we need to consider two cases: Functions are either introduced or they refine
functions already present in vk. As additional function declarations impose no side
effect on the behavior of a program, we can make the same argument as made before
for structures and global variable declarations. On the other hand, if a function is
refined by fk+1 both the old and new implementation are made available. Like with
conventional composition calls to original are pointed to the old implementa-
tion. In contrast to conventional composition, the old implementation remains in
the code base. As mentioned before, additionally available functions do not modify
the behavior of variants in which this function would not be present. The intro-
duced feature switch that dispatches to the old or to the new implementation has
no other side effects on the behavior. Therefore, if fk+1 is not selected, the old im-
plementation of the function is called and according to the induction hypothesis the
behavior of that function is correct. If fk+1 is selected the feature switch dispatches
to the new implementation. Then, the control flow of the program is exactly the
same as with conventional composition until the next feature switch is encountered.

4.3. Correctness Of Variability-Encoding 45

A Specification Language for Observer Automata in Feature-Oriented
Verification

This feature switch is already covered by the induction hypothesis. Therefore, the
construction of variability-encoding is also correct for functions.

4.4 Necessary Changes To The Scenario Model-
ing Language

To use the scenario modeling language presented in section 3.3 with variability-
encoding, we need to modify the translator that produces the scenario code. To
check individual variants we specified the scenario as if all features would have
been available. Then, by supplying the action mapping and the feature selection
to the translator we were able to generate scenario code for variants where specific
actions were not available. The translator omitted these actions in the generated
code and therefore did not create dangling references to functions. With variability-
encoding all features are considered. However, depending on the values of the
feature variables some actions must not be used to preserve the behavior of the
individual variants. Therefore, instead of omitting the actions in the scenario we
guard each action using the feature variable of the feature that introduced the ac-
tion: if a variant is selected during the postponed feature selection that contains the
feature that introduces the action, the action is executed. If the feature is not part
of the selected variant the execution of the action is skipped. This way, we can
reuse all scenarios that have been specified for model-checking individual variants
with variability-encoding. The generated code is different however as actions are
guarded by their feature variable instead of omitting them completely. Again, it has
to be noted that actions may not be refined by other features. This would require
additional guards in the scenario code and is not currently supported by the scenario
translator.

46 Chapter 4. Model Checking Of Product Lines Using
Variability-Encoding

CHAPTER

FIVE

THE E-MAIL SYSTEM CASE
STUDY

This chapter discusses the application of the concepts mentioned in the previous
chapters to the aforementioned e-mail system product line.

5.1 System Description

The product line that is investigated here consists only of the e-mail client features
of the e-mail system described by Hall. Therefore, we can only investigate nine of
Hall’s 27 feature interactions. We will also check for another interaction that was
found in the course of the case study between the Decrypt and the Forward
feature. It occurs when a host receives an email that he cannot decrypt and has
configured automatic message forwarding. Because he cannot decrypt the message
forwarding the message may not be reasonable. A detailed description of the inter-
actions mentioned here has been done by Hall [Hall2005]. To be able to compare
our approaches for cases where feature interactions are present and cases where the
product line is safe we use different scenarios: for all investigated interactions, we
use one scenario that leads to a feature interaction and an alternative scenario where
no interaction occurs. The following table displays the feature interactions of the
e-mail client product line:

47

A Specification Language for Observer Automata in Feature-Oriented
Verification

Interaction Interacting features Specification feature b n
0 Decrypt, Forward Forward 8 20
1 AddressBook, Encrypt Encrypt 8 16
3 Sign, Verify Sign 16 16
4 Sign, Forward Sign 8 16
6 Encrypt, Decrypt Encrypt 16 16
7 Encrypt, Verify Verify 8 16
8 Encrypt, Autoresponder Encrypt 8 16
9 Encrypt, Forward Encrypt 8 16
11 Decrypt, AutoResponder Decrypt 16 16
27 Verify, Forward Verify 8 16

Interaction is the number used by Hall. The specification that detects a particular
interaction is located in the feature given in the specification feature column. b is the
number of variants that contain the feature interaction. n is the number of variants
that needs to be checked, i.e. the number of variants where the specification feature
is present.

To be able to compare the results of different model checkers the code of the e-mail
system product line has been simplified to only contain constructs that are supported
by the model checkers used. In detail, the code does not contain structures or arrays.
Also, strings have been exchanged with integers.

5.2 Comparison Of Model-Checking Individual
Variants And Variability-Encoding

To compare the two alternative work-flows of model checking all possible variants
and model checking the variability-encoded product line, we will now discuss the
approach taken for the comparison:

Comparisons are made on a per-interaction basis. Specifically, we measure the
times needed to find an interaction or to prove the safety. As each specification is
associated with a feature both approaches need to consider only feature combina-
tions that contain this feature; all other combinations cannot contain error labels
and can therefore be omitted. First, we measure the time to discover each feature
interaction. For variability-encoding, we measure the time T to find an interaction
by checking the encoded product line against a particular specification. For check-
ing the variants, we need to generate and check these in a predefined order. After
the first erroneous feature combination has been identified, no further checks are

48 Chapter 5. The E-Mail System Case Study

A Specification Language for Observer Automata in Feature-Oriented
Verification

performed because the identified interaction invalidates all existing safety proves
(at least those in which the corresponding features are present). We note that for
checking individual variants the absolute time to find an interaction is dependent
on the order in which the checks are executed: It may be that, incidentally, we pick
an order that contains an interaction early on, so we obtain the result by perform-
ing only a few checks. Or, it may be that only the very last feature combination
we check contains the interaction, so the time to detect the interaction is the sum
of the times for checking all applicable variants of the product line. Therefore,
we measure the time Tj to generate and check each possible feature combination
Cj ∈ C1 . . . Cn for the same interaction. Then, we calculate the total time Pk for
each permutation π(T1 . . . Tn) of the checking order: If a feature combination Cj

is the first that contains an interaction, we sum the times Ti for all i ≤ j. With
the safe scenarios, we obviously need to sum up all individual checks as no feature
interactions are present in these cases.

5.3 Measurement Results

This section now presents the results of the measurements that were done using
the model checkers CPACHECKER and CBMC. All tests have been executed on a
machine with 32 GB available system memory. The file-system where output files
were written was located on the local network.

5.3.1 CPACHECKER

CPACHECKER supports different approaches to model checking. In the following,
we investigate two of the available configurations.

5.3. Measurement Results 49

A Specification Language for Observer Automata in Feature-Oriented
Verification

Symbolic Predicate Abstraction

In this setup, the symPredAbsCPA-bmc configuration of CPACHECKER is used.
Using it, CPACHECKER performs bounded model checking.

Figure 5.1: Check times for symPredAbsCPA-bmc with bug scenarios.

Figure 5.1 shows the results of the experiment. The time needed to find an in-
teraction in the variability-encoded product line is depicted as a black cross. The
possible times to find the interaction by checking the variants using the aforemen-
tioned strategy are represented as box-plots that show the minimum, maximum,
median, and inner 50% of the values. As we can see, variability-encoding is always
slower than checking the individual variants in these cases. Due to our strategy to
abort after an interaction is identified and the b/n ratio the median is close to the
minimum value.

50 Chapter 5. The E-Mail System Case Study

A Specification Language for Observer Automata in Feature-Oriented
Verification

Figure 5.2: Check times for symPredAbsCPA-bmc with safe scenarios.

In figure 5.2, we see the results when using symPredAbsCPA-bmcwith scenarios
that do not result in a feature interaction. As with the bug scenarios, variability-
encoding is always slower to detect the interaction. However, it is only slower by a
factor of two as opposed to factor 25 for the bug scenarios.

5.3. Measurement Results 51

A Specification Language for Observer Automata in Feature-Oriented
Verification

Explicit Analysis

Here, we use the explicitAnalysisInf configuration of CPACHECKER.

Figure 5.3: Check times for explicitAnalysisInf with bug scenarios.

As can be seen in figure 5.3 finding the interactions in the variability-encoded prod-
uct line is also slower when using the explicitAnalysisInf configuration in
the investigated cases. However, for these cases explicitAnalysisInf per-
forms better than symPredAbsCPA-bmc.

52 Chapter 5. The E-Mail System Case Study

A Specification Language for Observer Automata in Feature-Oriented
Verification

Figure 5.4: Check times for explicitAnalysisInf with safe scenarios.

Figure 5.4 now shows the times needed with explicitAnalysisInf. Still,
the variability-encoding approach is slower than checking all applicable vari-
ants. As with bugs, the difference between both approaches is smaller than with
symPredAbsCPA-bmc.

5.3.2 CBMC

In this section, we will now use the software model checker CBMC instead of
CPACHECKER. As mentioned before, the e-mail system does not contain loops or
recursion. Therefore, setting a bound is not necessary as no constructs need to be
unwound.

5.3. Measurement Results 53

A Specification Language for Observer Automata in Feature-Oriented
Verification

Figure 5.5: Check times for CBMC with scenarios leading to a bug.

Analogous to the CPACHECKER results, model checking of the variability-encoded
SPL is mostly slower that checking individual variants. However, if we look at
interactions 3 and 7 in figure 5.5, we notice that in these cases the results of
variability-encoding are better than with CPACHECKER. For interaction 7, check-
ing the variability-encoded product line is actually close to the median and within
the inner 50% of the values.

54 Chapter 5. The E-Mail System Case Study

A Specification Language for Observer Automata in Feature-Oriented
Verification

Figure 5.6: Check times for CBMC with scenarios that are safe.

For the safe cases depicted in figure 5.6, we now see the opposite results of the pre-
vious experiments. Here, checking the variability-encoded SPL is about factor 10
faster than checking the individual variants. Together with the results of interaction
3 and 7 these results suggest that variability-encoding may indeed be beneficial in
certain cases.

5.4 Discussion

As can be seen, model checking the variability-encoded product line is slower than
checking individual variants except for the safe scenarios when CBMC is used as
model checker. As mentioned before, variability-encoding creates a program that is
more complex than any individual variant because all features are used and control-
flow is added in the form of feature switches and the postponed feature selection
process. On the other hand, variability-encoding makes it unnecessary to generate
and check all variants individually. Therefore, the strength of variability-encoding
can come to play only if there are multiple checks necessary. If the product line does
not contain an interaction all variants need to be proven safe. Here, it is most likely
that model checking the variability-encoded product line is faster. With CBMC, this
is actually the case for the investigated product line. If the product line contains an
interaction it is however still possible that variability-encoding is beneficial. If the
order in which checks are executed does not contain an interaction early on, a possi-
bly huge number of model checks is necessary to detect the interaction. Especially,

5.4. Discussion 55

A Specification Language for Observer Automata in Feature-Oriented
Verification

the number of necessary checks can be expected to be high if the interaction is only
present in a small number of variants. For the cases where an interaction is present
in the e-mail client product line the number of variants b that contain an interac-
tion is at least half as high as the number of variants n that need to be considered.
Therefore, there is at least a 50% chance that we pick a checking order that requires
only a single check to reveal the interaction. For other product lines, the ratio of
b/n might be lower which would increase the chances that model checking of the
variability-encoded product line outperforms checking the individual variants. Un-
fortunately, as b is not known beforehand, this ratio cannot be used as a criteria to
decide when to use variability-encoding. It could also be argued that for values of
b/n that are close to 1 standard testing techniques are likely to reveal the presence of
interactions and therefore make model checking as such unnecessary. Also, it has to
be noted that the b/n ratio is not the only factor that decides if variability-encoding
is beneficial: The complexity of the feature code and the specific technique used
by the employed model checker are also relevant. However, as these factors are de-
pendent on the investigated product line, we cannot make a general statement here.
Therefore, to be able to assess if variability-encoding is useful for model checking
feature-oriented product lines more empirical data on the results with other product
lines is needed.

56 Chapter 5. The E-Mail System Case Study

CHAPTER

SIX

CONCLUSION

Verification of feature-oriented product lines is an ongoing research effort and many
unsolved problems remain. Particularly, software model checking offers the pos-
sibility to find feature interactions automatically in real code. In conjunction with
feature-oriented SPLs the possibly huge number of variants that need to be ac-
counted for makes the verification problem even harder than model checking single
applications.

Both approaches presented in this thesis can be used to detect feature interactions:
All possible variants can be checked in sequence or the product line could be
variability-encoded and checked in one single run of a model checker. The pro-
posed automata language and the scenario modeling language can be used with both
approaches presented here. As seen in section 5.3 the results if variability-encoding
is beneficial to verify feature-oriented product lines are inconclusive. To answer
that question, more case studies will need to be performed. Also, it needs to be in-
vestigated if these results are representative for SPLs consisting of a greater number
of features. Also, it might be necessary to modify the construction of variability-
encoding to achieve better results. In addition, it might prove interesting to inves-
tigate hybrid approaches where only parts of an SPL are variability-encoded. This
could be used to reduce the total number of checks necessary to check the prod-
uct line to a feasible number while providing simpler programs to check than the
variability-encoding of the whole product line. Also, if variability-encoding proves
to be ineffective for model checking of feature-oriented SPLs, it might be sensible
to investigate if heuristics can be found that can be used to determine an order to
model check the variants that finds interactions quickly.

57

A Specification Language for Observer Automata in Feature-Oriented
Verification

58 Chapter 6. Conclusion

APPENDIX

A

TOOL-CHAIN INSTALLATION
AND USAGE

This section details, how the tool-chain is installed. It also describes how the re-
sults of the case-study can be reproduced. Necessary steps have been automated
in Python. The tool-chain was developed and tested on Ubuntu Linux 10.4 and
requires the following packages to be installed:

python build-essential python sun-java6-jdk python-pip cbmc

After that, additional Python packages need to be installed:

pip install colorama
pip install fabric

Then download and unpack the SPLVERIFIER tool-chain in a directory of your
choice and change to that directory. The toolchain is available on the web on the
support website for feature aware verification at http://fosd.de/FAV/. Alternatively,
the code is available via the subversion repository at https://svn.infosun.fim.uni-
passau.de/cl/project/splverifier.

You can verify the email system by issuing the following command:

fab check_emailsystem

This command performs the checks on the email system using the CBMC model
checker. Without arguments check_emailsystem checks all generated variants
and the variability encoded product line using one specification at a time.

To check only the variability-encoded product line run:

59

http://fosd.de/FAV/
https://svn.infosun.fim.uni-passau.de/cl/project/splverifier
https://svn.infosun.fim.uni-passau.de/cl/project/splverifier

A Specification Language for Observer Automata in Feature-Oriented
Verification

fab check_emailsystem:variants=0,ve=1

To check all variants but not the variability-encoded product line run:

fab check_emailsystem:variants=1,ve=0

The commands above use scenarios, in which bugs are present. To use the safe
scenarios append scenarios=safe to the commands above, e.g. to check the
safe scenarios using variability encoding run:

fab check_emailsystem:variants=0,ve=1,scenarios=safe

To use CPACHECKER instead of CBMC add mc=CPAchecker as a configura-
tion option. The configuration file for CPACHECKER can be specified using the
mc_config option.

60 Appendix A. Tool-chain Installation and Usage

BIBLIOGRAPHY

[AK2009] Sven Apel and Christian Kästner. An Overview of Feature-Oriented
Software Development. In Journal of Object Technology (JOT), Volume 8,
Number 5, pages 49-84, 2009.

[CKMR2003] Muffy Calder, Mario Kolberg, Evan Magill, and Stephan Reiff-
Marganiec. Feature Interaction: A Critical Review and Considered Forecast.
Computer Networks: The International Journal of Computer and Telecommu-
nications Networking, Volume 41, number 1, pages 115–141, 2003.

[Clar1997] Edmund M. Clarke. Model Checking. In Foundations of Software Tech-
nology and Theoretical Computer Science, volume 1346 of Lecture Notes in
Computer Science, page 54, Springer 1997.

[PSK2009] Hendrik Post and Carsten Sinz and Wolfgang Küchlin. Towards au-
tomatic software model checking of thousands of Linux modules — a case
study with Avinux. In Proceedings of Software Testing, Verification & Reliabil-
ity (STVR), pages 155–172. John Wiley & Sons, 2009.

[LKF2002] Harry Li and Shriram Krishnamurthi and Kathi Fisler. Verifying Cross-
Cutting Features as Open Systems. In Proceedings of the 10th ACM SIGSOFT
symposium on Foundations of software engineering (FSE), pages 89–98, ACM,
2002.

[ASLK2010] Sven Apel and Wolfgang Scholz and Christian Lengauer and Chris-
tian Kästner. Detecting Dependences and Interactions in Feature-Oriented De-
sign. In Proceedings of the IEEE 21st International Symposium on Software Re-
liability Engineering (ISSRE), pages 161–170, IEEE Computer Society, 2010.

61

A Specification Language for Observer Automata in Feature-Oriented
Verification

[BCHJM2004] Dirk Beyer and Adam Chlipala and Thomas A. Henzinger and Ran-
jit Jhala and Rupak Majumdar. The BLAST Query Language for Software Ver-
ification. In Proceedings of the Static Analysis Symposium(SAS), volume 3148
of Lecture Notes in ComputerScience, pages. 2–18. Springer, 2004.

[BRa2002] Thomas Ball and Sriram K. Rajamani. SLIC: A specification language
for interface checking (of C). Tech. Rep. MSR-TR-2001-21, Microsoft Re-
search, 2002.

[PoSi2008] Hendrik Post and Carsten Sinz. Configuration Lifting: Verification
meets Software Configuration. In Proceedings of the 2008 23rd IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE),pages 347-
350, IEEE Computer Society 2008.

[Hall2005] Robert J. Hall. Fundamental Nonmodularity in Electronic Mail. In Au-
tomated Software Engineering, Volume 12, Issue 1, pages 41–79, Springer
Netherlands, 2005.

[Kaes2007] Christian Kästner. CIDE: Decomposing legacy applications into fea-
tures. In Proceedings of the 11th International Software Product Line Confer-
ence (SPLC), Volume 2(Demonstration), pages 149–150, 2007.

[AKL2009] Sven Apel and Christian Kästner and Christian Lengauer. FEATURE-
HOUSE: Language-independent, automated software composition. In Proceed-
ings of the 31th International Conference on Software Engineering (ICSE).
IEEE Computer Society, May 2009.

[Bato2006] Don S. Batory. A tutorial on feature-oriented programming and theA-
HEAD Tool Suite. In Generative and Transformational Techniques in Software
Engineering, volume 4143 of Lecture Notes in ComputerScience, pages 3–35.
Springer, 2006.

[TOHS1999] Peri Tarr and Harold Ossher and William Harrison and Stanley M.
Sutton Jr. N Degrees of Separation: Multi-Dimensional Separation of Con-
cerns. In Proceedings of the 21st international conference on Software engi-
neering (ICSE), pages 107–119, ACM 1999.

[AL2008] Sven Apel and Christian Lengauer. Superimposition: A language-
independent approach to software composition. In Proceedings of the ETAPS
International Symposium on Software Composition (SC), volume 4954 of Lec-
ture Notes in Computer Science, pages 20–35, Springer, March 2008.

[BK2008] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking
(Representation and Mind Series). The MIT Press, 2008.

62 Bibliography

A Specification Language for Observer Automata in Feature-Oriented
Verification

[Hol1997] Gerard J. Holzmann. The model checker SPIN. In IEEE Transactions on
Software Engineering, volume 23(5), pages 279–295, IEEE Computer Society,
1997.

[BHJM2007] Dirk Beyer and Thomas A. Henzinger and Ranjit Jhala and Rupak
Majumdar. The software model checker BLAST: Applications to software en-
gineering. In International Journal on Software Tools for Technology Transfer
(STTT), pages 505 — 525, Springer, September 2007.

[BK2009] Dirk Beyer and M. Erkan Keremoglu. CPACHECKER: A Tool for Con-
figurable Software Verification. Technical report SFU-CS-2009-02, School of
Computing Science (CMPT), Simon Fraser University (SFU), January 2009.

[BHT2007] Dirk Beyer and Thomas A. Henzinger and Grégory Théoduloz. Con-
figurable software verification: Concretizing the convergence of model check-
ing and program analysis. In Proceedings of the 19th international conference
on Computer aided verification (CAV07), pages 504–518, Springer, 2007.

[NPRW2002] George C. Necula and Scott McPeak and Shree P. Rahul and Wesley
Weimer. CIL: Intermediate language and tools for analysis and transformation
of C programs. In Proceedings of the International Conference on Compiler
Construction (CC), volume 2304 of Lecture Notes in Computer Science, pages
213–228, Springer, 2002.

[BRb2002] Thomas Ball and Sriram K. Rajamani. The SLAM project: Debugging
system software via static analysis. In Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (POPL), pages
1–3. ACM, 2002.

[CKL2004] Edmund Clarke and Daniel Kroening and Flavio Lerda. A Tool for
Checking ANSI-C Programs. In Tools and Algorithms for the Construction and
Analysis of Systems, volume 2988 of Lecture Notes in Computer Science, pages
168–176. Springer, 2004.

[ASWB2011] Sven Apel and Hendrik Speidel and Philipp Wendler and Dirk
Beyer. Feature-Aware Verification. under submission

[GJ2008] Michael Gong and Hans-Arno Jacobsen. AspeCt-oriented C Specifica-
tion (v0.8). Working Technical Draft, Middleware Systems Research Group,
January 2008.

[KHHKPG01] Gregor Kiczales and Erik Hilsdale and Jim Hugunin and Mik Ker-
sten and Jeffrey Palm and William Griswold. An Overview of AspectJ. In Pro-

Bibliography 63

A Specification Language for Observer Automata in Feature-Oriented
Verification

ceedings of ECOOP 2001 — Object-Oriented Programming, volume 2072 of
Lecture Notes in Computer Science, pages 327—354. Springer, 2001.

[P2007] Terence Parr. The Definitive ANTLR Reference: Building Domain-
Specific Languages (Pragmatic Programmers). Pragmatic Bookshelf, 2007.

64 Bibliography

APPENDIX

B

ERKLÄRUNG

Hiermit erkläre ich, dass ich diese Arbeit selbst verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe. Ich habe die Arbeit nicht in
gleicher oder ähnlicher Form bei einer anderen Prüfungsbehörde vorgelegt.

Böblingen, den 22. Januar 2011 Hendrik Speidel

65

	Introduction
	Problem Statement
	Related Work
	Outline

	Background
	Feature-Oriented Software Development
	Goals
	Feature-Model
	Feature Interactions
	FeatureHouse
	Feature Structure Trees
	Feature Composition

	Model Checking
	CPAchecker
	CBMC
	Observer Automata

	Model Checking Of Variants
	Requirements
	The Observer Automata Language
	Weaving Process
	Safety Automata
	The Introduction Block
	ECA Rules
	Action Blocks
	Example
	Explicit States

	The Scenario Modeling Language
	Action Execution Patterns
	Example

	Counterexample Interpretation

	Model Checking Of Product Lines Using Variability-Encoding
	Definition
	Example
	Correctness Of Variability-Encoding
	Assumptions
	Structures, Fields, And Global Variable Declarations
	Variability-Encoding Of Functions

	Necessary Changes To The Scenario Modeling Language

	The E-Mail System Case Study
	System Description
	Comparison Of Model-Checking Individual Variants And Variability-Encoding
	Measurement Results
	CPAchecker
	CBMC

	Discussion

	Conclusion
	Tool-chain Installation and Usage
	Bibliography
	Erklärung

