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A B S T R A C T

Many modern software systems have large numbers of configuration options, which enables
them to meet many requirements in a flexible manner. However, the large number of config-
urations that can be enacted from such options presents a challenge in terms of the analysis
of software systems, considering how each or most of a given system’s configurations have
to be profiled and analyzed for the analysis to be meaningful. To that end, analysis methods
have been developed which adequately deal with the complexity that high amounts of
configurability introduce, though their development is considerably difficult. In fact, during
their development researchers can face significant practical challenges. These challenges
can arise due to the lack of access to configurable software systems with adequately doc-
umented configurations and certain properties of interest, which would help researchers
validate and improve their methods. Moreover, researchers do not have adequate tools that
allow them to simulate behaviors of interest in such systems, thus preventing them from
being able to address edge cases during their work. Based on these insights, we propose a
Product-Line-based approach for producing synthetic benchmarks that match researchers’
needs. Crucially, we make use of microarchitectural ideas to ensure that the behaviors of
such benchmarks are meaningful and transparent. Overall, we envision that our work will
prove valuable to researchers in their quest for better analysis methods, and ignite more
interest in using configurability for building benchmarks.
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1
I N T R O D U C T I O N

1.1 context

Many modern software systems comprise a large number of configuration options, typically
in the hundreds [1]. These options can enable entire pieces of functionality in the system
that constitute features of that system. As such, software systems can have multiple features,
as well as many valid combinations of these features. Moreover, a combination of features
constitutes a standalone configuration of the system and represents a variant of the system
with distinct characteristics. It is also commonplace to have many features interact with
one another - that is, the presence of one feature imposes some often unintended changes
in the workings of another feature during program execution. We commonly refer to
systems that have these characteristics as configurable software systems, and the practice of
designing software systems by making use of features in a systematic way is known as
Feature-Oriented Software Development (FOSD).

For all software systems, the analysis of their non-functional properties (e.g. performance)
is important in order to improve their quality. Configurable software systems are no
exception to this, though the large number of features and the presence of interactions
complicate their analysis in several ways [2–4]. The gist of the issue is that the performance
of any such system should be examined by taking into account that different configurations
will typically contribute to different performance profiles, due to the inherent changes in
functionality enabled by their constituent features. These profiles can be quantified and
translated into a performance model, which is a mathematical description of the contribution
of each feature to the overall performance of a system. To construct such models, one would
typically need to profile several configurations and extract the overall contribution of each
feature. Based on this, we could then obtain clear expectations about the performance of
any other configuration, simply by looking at the presumably known contribution of each
of the features it comprises.

That being said, the challenge in constructing such performance models is to not resort to
brute-force methods of profiling each and every possible configuration, before determining
the performance profile of each individual feature. This is due to the fact that the more
configurations are excluded, the less information and hence accuracy we would have in
the model, although the process is much less time-consuming. Moreover, the manner in
which features interact can obfuscate the performance that each individual feature attains in
isolation. As such, the performance profile of a configuration cannot be reliably obtained by
simply combining the profiles of the features that participate in that configuration. Typically,
this is addressed by detecting, profiling, and including interactions in the performance
model itself, alongside features.

Facing issues of complexity and tractability, analysis methods that go well beyond naive
(brute-force) ideas have been developed. To that end, many analysis methods can be
categorized into either black-box or white-box. Black-box approaches often rely on learning

1



2 introduction

methods in which the performance profiles of only a subset of the configurations of a
program are obtained and then used to derive a performance model that can be used to
predict the performance of any other configuration [3]. Moreover, a distinguishing factor
of black-box approaches is that the source code of the program is not scrutinized (hence
the name). By optimizing the learning process, it is possible to use only a sample of all
configurations for the building of a performance model. This way the problem of analysing
a huge number of configurations is alleviated. In fact, a big part of the feasibility of many
analysis methods rests with the sampling strategy being employed, since it is an effective
means of dealing with a huge number of available configurations [3, 5].

Alternatively, white-box approaches can make use of the implementation and structure of
a program. Their goal is to automatically scrutinize a program’s source code with the aim
of extracting clues and important context that helps avoid the sampling of configurations
that are redundant with regard to the building of a performance model for the program
as a whole. While this adds complexity to the analysis, it can result in better results due
to the inclusion of more information. Moreover, it can also better detect and account for
feature-interactions [6, 7].

On a similar note, identifying the degree to which configurations are responsible for cer-
tain properties, without having complete knowledge of the properties of each configuration,
is also possible. For instance, Dubslaff et al. [8] have developed a method for making such
explications, using notions of causal inference. Based on that method, they can infer sets
of features that are responsible (causes) for certain functional or non-functional properties
(effects), as well to determine the degree to which the features in these sets are responsible
for said properties.

1.2 motivation

Based on the analysis techniques described thus far, we observe that it is not always easy
or reasonable for researchers to search for and examine existing software systems on
the lookout for interesting cases of feature-interactions, large numbers of configurations,
or interesting program behaviors. Indeed, the manual labor that is typically involved in
scrutinizing existing systems plays a crucial role in specifying a baseline understanding of a
system. Moreover, researchers oftentimes need to balance between a deep manual inspection
of a few systems, as opposed to a more superficial inspection of a large and varied set of
systems.

For instance, Velez et al. [6] relied on several existing systems to determine whether their
white-box method was able to correctly detect cases of feature-interactions. The choice of
the subject systems played an important role in their work - not only were they real-world
examples, they also included a reasonable amount of feature-interactions and certain other
characteristics that were deemed to be representative of configurable software systems.
Furthermore, the authors had to obtain preliminary knowledge of the actual performance
profiles of their subject systems, in order to validate the correctness and efficiency of their
method in building performance models.

On a related note, Siegmund et al. [3] constructed a learning-based, black-box method
for constructing performance-models, while making intelligent use of sampling notions
to make their method tractable. To validate their method, they relied on existing systems
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with known configuration options, features, and performance characteristics. However, they
correctly noted that the choice of such systems could easily represent a threat to the validity
of their approach, mostly due to overfitting concerns. Indeed, having a limited number of
these systems runs the risk of tailoring the analysis to those systems’ characteristics. An
analysis tool would rather need to be exposed to different types of systems - that is, systems
with varying numbers and types of features and feature-interactions - in order for it to be
able to effectively analyze any arbitrary system.

Similarly, Dubslaff et al. [8] also utilized several systems with well-known features and
performance models. This knowledge allowed them to determine whether their causal-
inference method helps in the identification of causes for observed functional or non-
functional properties. Notably, having a preliminary understanding of the exact behaviors
and intricacies of features beforehand enabled them to assess whether their inference
method identifies effects and causes correctly. Moreover, this also enabled them to see
whether it was possible to assign varying degrees of responsibility and blame to already
identified causes, w.r.t their effects.

Overall, these observations have led us to pinpoint the following practical challenges for
researchers:

1. There is currently no easy way of synthesizing configurable software systems that
exhibit specific behaviors (non-functional properties), and have other properties of
interest such as feature-interactions.

2. Having preliminary knowledge of a configurable software system’s feature-wise
behavioral profile is currently not possible without prior examination or analysis of
said system.

Therefore, our goal in this thesis is to address the aforementioned challenges. We do so by
outlining an approach for creating synthetic programs (benchmarks) that exhibit varied,
stable and transparent behaviors, on the basis of FOSD and microarchitectural notions. We
outline this approach next.

1.3 solution

To accomplish our goal of enabling researchers to build synthetic programs with desired
properties, we rely on notions of configurability and microarchitectures. Microarchitectural
considerations directly help us with regard to the synthesis of stable behaviors in our bench-
marks. In addition, configurability notions help us facilitate the synthesis of benchmarks
with varied behaviors in a structured manner.

Practically speaking, we first construct components with known features and well-defined
behaviors, to which we refer as gadgets. These components serve as building blocks for
the types of benchmarks we intend to create, as they provide us with important traits that
enable their modular use in a larger setting. To develop them, we look toward benchmarking
literature, focusing specifically on synthetic microbenchmarks [9–12]. These types of bench-
marks apply carefully designed workloads to a system with the aim of evaluating specific
aspects of that system. In the same spirit, we design our gadgets so that they apply carefully
designed workloads onto a system with the aim of simulating scenarios of performance
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Figure 1.1: A high-level, configurability-based solution concept. Gadgets and a template system are
funneled into a synthesis process through which we can produce families of synthetic
benchmarks.

regressions, and potentially other behaviors. By design, gadgets offer a small number of
features, and therefore a relatively small number of configurations. Importantly, the design
of each gadget is such that for each of their configurations we obtain distinct, sizeable, and
stable behaviors.

To ensure that our gadgets have stable impacts, we take a resource-focused approach in
that we aim to build gadgets that impact specific resources of a system’s architecture, such
as the Level-3 cache. Firstly, we identify metrics that indicate program behavior from the
perspective of an architectural resource. Then, we try to design features that contribute to
varied impacts that are noticeable through the chosen metrics. Taking this path enables us
to have more control over the behavior of a gadget, which is important for its stability. In
addition, focusing on metrics pertaining to low-level resources enables us to quantify and
evaluate the behaviors of gadgets effectively. Based on their focused and stable impacts, we
make their behavioral profiles transparent to the users.

Nevertheless, gadgets are not the ultimate benchmarks we intend to build. In fact, through
the use of gadgets we are able to build synthetic benchmarks with complex behavioral
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profiles that are of value to researchers. These synthetic benchmarks are crafted in a way
that makes use of gadgets’ properties in a careful manner. In practice, this requires some
degree of automation and application of ideas such as Software Product Lines (SPLs),
which refer to families of products that are crafted on the basis of common artifacts as
well as configurability. At a high-level, we implement the gadgets in a well-organized
manner, and subsequently combine them under existing configurable systems that act as
execution templates. This way, we are able to build entire families of benchmarks that
can combine the workloads of multiple gadgets in various ways. The specific manner in
which this combination is performed constitutes our primary means of producing synthetic
benchmarks and is explained in detail in subsequent chapters. A high-level depiction of our
solution is provided in Figure 1.1.

Overall, this approach enables us to produce meaningful benchmarks, in the sense that
their behaviors are 1) varied, 2) stable, and consequently 3) transparent, stemming from
the fact that the gadgets themselves have stable and transparent behaviors by design, and
provide a large variety of impacts due to their inherent configurability. Based on these
properties, our approach directly addresses the practical challenges we highlighted in the
previous section. In fact, having benchmarks with varied behaviors is a direct result of using
configurability, and can help researchers in generalizing their analysis methods by testing
them using different benchmarks. Similarly, ensuring stable behaviors in these benchmarks
makes them reliable in the sense that they can be used when and where the researchers
need to subject them to analysis methods. Moreover, stability allows us to document the
behaviors and make the intricate workings of our benchmarks accessible to the researchers,
which should help them validate their methods more efficiently.

To realize our approach, we implement a framework that provides all the mechanisms
needed to create actual benchmarks. Moreover, we evaluate our implementation and the
overall approach in detail. Notably, we ensure that the gadgets have stable and transparent
behavioral profiles as intended. In addition, we successfully assess their usefulness in build-
ing synthetic benchmarks, while also pinpointing potential limitations and improvements.
Overall, we believe that our approach adequately addresses the two practical challenges we
outlined, and enables researchers to build test systems that directly aid them in improving
and developing analysis methods like the ones we described earlier.

1.4 overview

To develop our solution in a coherent manner, we structure the rest of the thesis as follows.
In Chapter 2, we provide the necessary background needed to read through the thesis
while getting a solid understanding of the main ideas. That includes basic notions of
software configurability, computer architecture, and performance engineering. In Chapter 3,
we provide a detailed description of our approach, and a formal description of the main
concepts. In Chapter 4, we then dive into the implementation details and relevant issues,
whereas in Chapter 5 we evaluate key aspects of our work. In Chapter 6, we describe
the body of literature that inspired and informed many of our ideas. In conclusion, we
summarize our contribution and present future-work ideas in Chapter 7.





2
B A C K G R O U N D

In this chapter, we present important notions of configurable software systems, computer ar-
chitecture, performance engineering, and benchmarks. All these concepts help in developing
the core ideas of gadgets, their stable and transparent behaviors with regard to architectural
resources, and ultimately the synthetic benchmarks that can be built based on our approach.

2.1 configurable software systems

In this section, we introduce important notions regarding configurable software systems,
which we use throughout the thesis. Notably, we introduce the concepts of Feature-Oriented
Software Development (FOSD) and Software Product Line (SPL) in some detail, since these
concepts are central to our work.

2.1.1 Configurability & Feature-Oriented Software Development

Modern software systems meet numerous and complex requirements through their inherent
variability. At a high level, variability can be understood as the ability of a software system
to change its functional or non-functional properties, so that it fits a specific context [13, 14].
To realize variability, a software system or artifact might comprise several variation points,
through which a stakeholder can vary its properties. The end result of variability realization
is the obtaining of different variants of the same software system [14].

One specific type of variation points are the so-called configuration options, which typically
refer to explicit parameters in the code artifacts of a software system that can be set
by a stakeholder. Notably, configuration options are mostly considered with regard to
the functional properties of a system and can facilitate the toggling of entire pieces of
functionality. Stemming from this idea, the deliberate and structured use of configuration
options gives rise to what is known as configurability.

Systematically handling configurability in modern software systems can be challenging,
especially during development. While it is possible to try to manage configurability through
refactoring and better architectural considerations [1], the proactive approach is to bring
configurability to the forefront of the engineering process. This is precisely what FOSD

achieves. In FOSD, the focus is on features - units of functionality that satisfy a requirement,
represent a design decision and provide a potential configuration option [15]. Based on
this definition, it is possible to develop software systems in which there is a clear mapping
between code fragments and logical functionality, regardless of how the code artifacts are
organized from an architectural perspective. In addition, logical functionality can be traced
from the early stages of domain analysis and design to that of implementation, since the
notion of a feature is explicit in the code artifacts. As such, the FOSD paradigm bridges the
observable structure and behavior of a system to its implementation.

7
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Figure 2.1: Feature Model for a simple Calculator. Stemming from a feature with children features,
OR groups indicate that at least one of the child features must be selected, whereas
Alternative (XOR) groups indicate that at least and at most one child feature must be
selected. A mandatory feature is one that must be selected if and only if its parent is
selected. The root feature is always selected.

An important notion in FOSD is that of feature-models [15, 16]. A common way of modeling
the features of a system, as well as their logical organization and constraints is to depict
them in a tree diagram, as shown in Figure 2.1. A hierarchical depiction of this kind places
the software system at the root, as an abstract feature that represents the overall functional
outline of the system. Features are then organized in this hierarchy based on their conceptual
meanings, as well as their inter-dependencies and constraints which are usually depicted
using notations for logical constructs such as OR, XOR and AND groups. Moving deeper
into the tree we may find other abstract features, though we should typically find concrete
features at the leaf-nodes. Such a model is easily amenable to propositional logic and
reasoning, since it is easy to derive the entire feature-model of a system in propositional
form [16].

The features in such models are usually binary, meaning that they can be either enabled
or disabled using certain configuration options. For instance, the simple Calculator program
shown in Figure 2.1 could include an Addition feature while not including Multiplication.
Non-binary features can also be modelled, however we aim to keep the models simple in
this work. Considering a model with only binary features, any group of enabled features
constitutes a configuration of the software system. In addition, if this group of enabled
features respects the constraints and dependencies in the model, it then constitutes a valid
configuration. Moreover, each valid configuration leads to a variant of the system, which is
why these terms are often used interchangeably.

Another important concept in FOSD is that of feature-interactions. Kolesnikov et al. [2] define
a feature-interaction as the case in which the functional or non-functional properties of a
feature are influenced by the presence of another feature in the same configuration. A simple
case of two interacting features is one in which the corresponding in-code implementations
are structurally interrelated in such a way that the implementation of one feature is affected
by the presence of the other. However, features might also interact in non-structural ways,
especially with regard to non-functional properties.

In Listing 2.1 we show how the implementation of a Multiplication feature can be affected
by that of the Scientific feature, based on the model in Figure 2.1. If the latter is enabled,
the function that implements the former will receive a different parameter type which may
affect its functional logic.
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#ifdef MULTPLICATION

void config_mul(layout* l, representation r) {...}

#endif

.

.

void setup(layout* l){

.

r = get_default_representation();

#ifdef MULTIPLICATION

#ifdef SCIENTIFIC

//Interaction

r = get_binary_representation();

#endif

config_mul(l, r);

#endif

.

}

Listing 2.1: Structural Feature Interaction due to control flow. Each feature is enabled on the basis of
a preprocessor directive. For instance, if the MULTIPLICATION macro is defined, the
code that implements the Multiplication feature will be included during compilation,
and therefore in the final executable.

2.1.2 Software Product Lines

FOSD provides us with a structured way of handling configurability, from the early stages
of domain analysis and design, to the implementation and derivation of different variants.
However, in order to further structure the discussion around configurable software systems,
we can rely on the notion of a Software Product Line (SPL) [13, 15, 17, 18].

The simplest way of conceptualizing an SPL is to think of all the possible variants
that we can derive for a configurable software system, considering its feature-model and
configurations. The set of these variants would constitute a product family, i.e. a group of
different software products that are related to each other in terms of the artifacts they
rely on and other commonalities. These artifacts, especially when using FOSD principles,
are systematically reused across the entire product family [15, 18]. Besides this notion
of systematic reuse, an important idea regarding SPLs is that of decision-making [13, 18].
Naturally, handling an entire set of variants for the same system necessitates decisions such
as selecting the desired features to include in a variant, enacting the selection into the code
artifacts, and generating (deriving) a final product. The presence of a feature-model greatly
helps with the feature selection, though additional tools and methods are usually employed
to bind selected features and to perform an automated product derivation.

Overall, the development lifecycle of an SPL is understood in two parts [18], as shown
in Figure 2.2. On the top half we depict the Domain Engineering process, in which we
conceptualize features and design a feature-model based on overall domain needs (Do-
main Requirements Engineering & Design), as well as craft code artifacts and introduce
configuration options in these artifacts (Domain Realisation & Testing). On the bottom
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Figure 2.2: SPL processes, adapted from [17].

half we depict the Application Engineering process in which we make feature selections
and architectural decisions regarding the composition of features, guided by specific user
requirements (Application Requirements Engineering & Design), and derive actual products
(Application Realisation & Testing).

Crucially, the development lifecycle of an SPL is contingent on having a clear approach for
the transition from Domain Engineering to Application Engineering. The most important
part of this transition is that of being able to translate high-level decisions regarding the
functionality that a product of our SPL should have, into low-level decisions that allow us to
obtain the actual product. Typically, this transition is facilitated through binding decisions.
As an example, once we have a feature-selection in mind that would give us a variant of
a given configurable software system, we need to translate it into specific decisions with
regard to the code artifacts and the configuration options thereof [14], so as to obtain the
intended variant (product).

In this work, we rely on development-time binding decisions. Technically speaking, we
facilitate bindings through compile-time techniques for handling configurability at the code
level. For instance, we rely on preprocessor directives like the ones in Listing 2.1 to enact a
feature-selection and derive a desired product variant. Looking at the code snippet, we can
see that the code corresponding to features that we have not selected will simply be omitted
from the compilation, whereas the code that corresponds to selected features is included
and contributes to a part of the resulting variant’s functionality. This way, all that we would
have to do to perform a binding is to use the preprocessor directives correctly.
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Figure 2.3: Internal organization of a computer system. The parts related to the Northbridge are
highlighted in blue.

2.2 computer architecture

In order for us to discuss microarchitectural ideas related to our approach, we present
key notions regarding memory, caching and branch-prediction. These ideas inform our
approach and implementation in subsequent chapters, especially w.r.t. the configurable
components we call gadgets.

2.2.1 Basic Notions

For the goals of this thesis, we need to have a common understanding of computer archi-
tecture in place. To facilitate the discussion regarding this concept, we present a simplified
depiction of a modern computer system’s components and their relations in Figure 2.3.
The main building blocks shown in the figure are a single Central Processing Unit (CPU),
a Random Access Memory (RAM) unit in the role of the main memory, and the main
interconnects that can be conceptually organized into the Northbridge and Southbridge
[19, 20]. Notably, the Northbridge encompasses all data buses and components that exist
between the main memory and the CPU, whereas the Southbridge encompasses all inter-
connects between the Northbridge and I/O components. An important takeaway from this
description is that there exists a large difference in the workings of different components
and interconnections; for instance, the rate of data transfers in the Northbridge is much
larger than in the Southbridge (hence the distinction).

Furthermore, the CPU usually consists of multiple cores, as well as other components
such as caches that are shared among among cores, and which can store both data and
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instructions. Each core is tasked with the fetching and processing of instructions, as well as
the storing of the results back to memory. Overall, the internal workings of the CPU, as well
as its interfacing with the other components, are guided by the clock frequency - each CPU

works at the pace of a series of pulses that are generated at a (mostly) fixed frequency. Each
pulse initiates a computational cycle across all cores, forcing them to make progress in the
processing of instructions.

Considering how instructions and data typically reside in memory and need to be fetched
before processing, the internal organization of each core comprises three logical parts:
1) the front-end, 2) the back-end (execution engine), and 3) the memory subsystem. The
memory subsystem is the primary interface to the Northbridge, and notably contains the
Level-2 cache that is shared by the front-end and back-end of the core and which stores
both data and instructions. It also includes the Level-1 data-cache for retrieving and storing
data from/into memory. Similarly, the front-end contains the Level-1 instructions-cache
to handle the fetching of instructions from memory. Lastly, the back-end incorporates all
the components that relate to the actual execution of instructions such as register files and
arithmetic logic units, and the buffering of the results prior to sending them to the memory
subsystem.

2.2.2 Memory

In modern architectures, memory components are organized into conceptual hierarchies
relating to their capacities and latencies. As such, we usually see that registers are small yet
fast memory units, whereas the caches are progressively larger and slower, and the main
memory is the largest and slowest. Practically speaking, accessing data in the main memory
can easily take about tens or even hundreds of cycles due to hardware considerations,
making for significant processing latencies [19]. The use of multiple levels of caches alleviates
this issue, since caches can reduce the number of high-latency accesses to memory, as well
as fetch data or instructions from the main memory before they are needed in the CPU [19,
21]. Given this insight, modern computer architectures usually incorporate three1 levels of
caches, typically Levels 1 and 2 which are per core, and Level 3 which is shared among cores.
A cache of a higher level is only accessed when the needed data is not found in the cache of
the preceding level in what constitutes a cache miss, and is typically larger in capacity than
its lower level counterparts. For instance, in an Intel Skylake model, the cache sizes for each
level can be at most 32, 256 and 2048 Kilobytes, respectively [22]. These are in stark contrast
to the sizes of main-memory units which range between 16-256 Gigabytes in most modern
systems. Given their limited sizes, caches implement certain policies regarding when and
how data need to be inserted, removed and kept.

Since we deal with multi-core CPUs, we usually have several instances of Level-1 and
Level-2 caches, whereby each core has a Level-1 and a Level-2 cache. While this is beneficial
for performance, cases of inconsistencies between the corresponding per-core caches of the
same level could arise when the same memory locations are concerned. For that reason,
modern CPUs implement certain algorithms to achieve cache-coherence, which refers to the

1 In many cases there is also a fourth level of caching that stores decoded micro-instructions [22], though this is
not of direct relevance to this work.
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careful coordination that takes place among cores when performing accesses on caches so
as to avoid any inconsistencies [23].

Before diving deeper into caches, it is important to have some notions of memory access
in place. The storage pattern of a RAM can be described as a two-dimensional array of cells,
each of which can store one bit of data. The typical RAM implementation is dynamic, which
means that the electric state of each cell needs to be periodically refreshed in order for
the data to be preserved. This translates to added waiting delays during memory access.
To perform an access, the CPU would need to provide an address specifying both row
and column indices that identify a cell in the array. However, to avoid inherent hardware
delays, common implementations operate at a larger granularity than a single cell whereby
multiple rows of cells are read at once. In Intel architectures we usually see memory accesses
happening in 8 rapid bursts of 8 bytes, usually amounting to a total of 64 bytes which is
also known as a cache-line due to the fact that caches typically operate in data chunks of
that size [19, 20].

Besides the basic idea of memory accesses, it is important to note that modern CPUs rely
on virtual addressing [24]. Virtual addresses present a logical space of memory locations
that is much larger than the actual physical one offered by a RAM unit. It is the job of
the operating system and the CPU to handle physical-to-virtual address translations. The
concerned physical-to-virtual mappings are dynamically maintained in specific memory-
residing data structures called page-tables. Importantly, frequent accesses to the page-tables
cause significant latencies, which is why these mappings are also cached in the so-called
Translation Lookaside Buffers (TLBs). The working principles for TLBs are quite analogous to
those of the main caches [19, 25]. Moreover, TLBs are often integrated with the Level-1 and
Level-2 caches. Notably, modern Intel systems usually incorporate two levels TLBs, where
both levels are per-core and the first level is typically split into separate units for instruction
and data, similar to the standard Level-1 caches [22].

Turning our attention back to caching, the main operating principles that underpin caches
are locality, prefetching and associativity [20, 26–28]. Locality refers to the usefulness of data
or instructions currently residing in a cache for a future computation. Usually, executing
instructions tend to relate to a set of data items that reside close to each-other in terms of
their locations. Therefore, when an item from this set is used, the other ones will likely be
used next and so they need to reside closer to the CPU (spatial locality). Similarly, data
items that were recently used tend to be used again in the near future (temporal locality).

Stemming from ideas of locality, modern CPUs make use of hardware logic to predict what
data items or instructions will be needed next based on currently cached data, making sure
to fetch those items as early as possible so that they can be immediately used when needed.
This technique is known as prefetching [26, 27]. Both locality and prefetching help ensure
that accesses to the main memory are avoided, which is crucial for performance given the
high latencies of accessing the main memory. This implies that when an executing process
accesses data (or instructions) in ways that do not adhere well to the locality ideas described
previously, its performance can deteriorate. An interesting scenario when this can happen is
when prefetching is performed for some data items which are expected to be used shortly
after, when in fact that data is not used; indeed, this wastes the effort of prefetching and
also uses up some of the cache’s capacity in a counterproductive way. Overall, bad use of
locality and wasteful prefetches lead to significant numbers of misses in the caches [19].
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To provide more context, a miss in the Level-2 caches can cause latencies of more than 10
cycles, and those in Level-3 can cause latencies of about 30-60 cycles2.

The internal organization of a cache usually tries to balance between having a fixed
location for the data residing in each memory address in what is known as direct-mapped
caching, versus having a free-choice of locations for each address in what is known as
associative caching. The former strategy results in faster searching but also in a higher
miss-rate since the cache can only contain data for a limited number of addresses, whereas
the latter can incur latency due to a large numbers of comparisons during the search for a
free location, though it attains lower miss-rates. The common solution is to mix both these
ideas, resulting in the so called set-associative caching [29]. In set-associative caches, the first
bits of an address directly map to a set of locations in the cache, with the correct set being
identified through some hashing function that takes these bits as input. The middle bits
then index into any locations within that set in a fully associative manner, whereas the last
bits serve as offsets for identifying actual blocks of data in a specific location. While this
approach is widely used nowadays, it can still have some limitations. One potential issue
is that many subsequent accesses to a cache can still map to the same set and exhaust its
capacity by using up all of its free locations, similar to what happens in direct-mapped
caches, even if there are free locations in other sets. Such occurrences are known as aliasing
effects [19].

2.2.3 Pipelined Processing

Besides the concept of computer architecture discussed earlier, an important concept is that
of an Instruction Set (IS). An IS specifies the types of instructions that a processor can execute,
whereas the actual on-chip implementation of an IS is what is commonly referred to as a
microarchitecture. In this work we consider only x86 microarchitectures, mostly Intel-based
implementations due to their common use in practice.

A major challenge in developing a microarchitecture is for the CPU to process as many
instructions as possible per cycle. The processing of any instruction is performed in multiple
stages. The main stages are 1) Fetching, 2) Decoding, 3) Executing and 4) Write-Back. As
such, one major issue is that given the memory hierarchy discussed earlier, stalls may occur
when the execution of an instruction requires memory accesses, thus blocking subsequent
instructions from starting to execute. Naturally, some parallelism is required in order to
process multiple instructions simultaneously instead of stalling an instruction in one of
the stages and blocking the overall flow of instructions. The main form of parallelism that
modern microarchitectures use is Instruction-Level Parallelism (ILP) [30].

The core idea behind ILP is that the processing of instructions in the aforementioned
stages can be overlapped; for instance, while an instruction is in the Decode stage, another
instruction can be in the Fetch stage. This way, the processor can make progress on as many
instructions as there are stages, implying that the overall processing can obtain an ideal
throughput of one instruction per cycle. This way of processing is known as pipelining,
and a processor that can obtain a theoretical maximum throughput of one instruction per
cycle is called a scalar processor [30]. Additionally, pipelines in modern systems are further
improved by having concurrently executing instructions for some or all of the four stages

2 Figures are based on reports on Intel’s Haswell family of CPUs: https://www.7-cpu.com/cpu/Haswell.html

https://www.7-cpu.com/cpu/Haswell.html
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Figure 2.4: Pipeline Bubbles, shown in blue ellipses. Adapted from Wikipedia3.

mentioned earlier. This implies that it is possible to simultaneously process more than one
instruction in each stage, therefore obtaining throughputs beyond one instruction per cycle -
such systems are called superscalar [30, 31].

While ILP greatly improves system performance, there are some important considerations
to note. For instance, branching instructions such as a simple "if" condition in high-level
code are challenging because the choice of which instruction to process next depends on
whether the branch is taken (condition is true) or not (condition is false). If the processor
does not figure out what the next instruction (otherwise known as the target instruction)
is before the branch instruction is executed, then it has to initiate a costly memory fetch
for that instruction. During this fetch, several pipeline stages can remain empty and thus
waste CPU effort, simply because the CPU does not know what new instructions to issue
into the pipeline in the mean time. The presence of such stalls in the pipeline are commonly
known as bubbles (cf. Figure 2.4) and are costly to performance [30]. Alternatively, if the
processor is able to predict the target instruction, then it can continue to do work in which
it processes the target and any succeeding instruction, thus wasting no computational effort.
Sometime later, the processor will verify whether the prediction was correct, continually
trying to improve its future predictions.

In order to reduce the number of bubbles, modern systems incorporate special circuitry
to perform branch-predictions in a component known as the Branch Prediction Unit (BPU).
These predictions are normally done in a dynamic way, i.e. during process execution.
Typically, the processor will try to guess whether a branch (e.g. an if-condition) will be taken
(condition is true) or not (condition is false). Based on the prediction, it will speculatively
process subsequent instructions without stalling. The prediction can be performed before or
by the time the branch instruction is decoded in the Decode stage, and its correctness is
evaluated when the branch instruction is in the Execute stage. In case of incorrect predictions,

3 https://en.wikipedia.org/w/index.php?title=Pipeline_stall&oldid=1144156605

https://en.wikipedia.org/w/index.php?title=Pipeline_stall&oldid=1144156605
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latencies are incurred due to the fact that the pipeline ends up doing useless work during its
speculative execution [32]. Besides the prediction of whether a branch is taken or not, it is
also important for the address of the target instruction to be known as early as possible. For
simple branch instructions, the target instruction could be known as soon as the taken-or-not
prediction is performed, but this might not always be possible. In other words, the target
should be obtained as soon as possible, and thus another form of prediction called target
prediction has to be performed.

To facilitate both types of predictions hand-in-hand, a hardware component known as
the Branch Target Buffer (BTB) is used. The BTB is practically a cache that stores previously
seen target instructions for a given branch instruction. In addition, the entries in this cache
index the so-called Pattern History Tables (PHTs) that maintain histories of predictions for
the cached branch instructions. Based on this cache, predictions can happen very early in
terms of the pipeline stages. The size of the BTB is thought to be limited to 4096 bytes in
Intel architectures [33]. In any case, Intel systems incorporate variants of predictors that use
system-wide (global) histories and can thus detect long periodic sequences of branching
decisions, resulting in highly accurate predictions overall [33, 34].

2.3 performance monitoring

To be able to assess the behaviors of any component that we build, we need to establish
some key notions regarding performance monitoring. Therefore, in this section we provide
an overview of concepts such as metrics, counters and tools that allow us to perform
measurements.

2.3.1 Metrics and Tooling

In order to build software systems that meet certain non-functional criteria, an understand-
ing of non-functional properties and other performance concepts is required. A program’s
functional design meets only a part of stakeholders’ requirements. The other part is that of
providing the functionality in a high quality manner through architectural and performance-
engineering decisions [35–38]. Defining quality usually requires the specification of some
non-functional attributes, such as the ones shown in Table 2.1. Note that for the most part
we are only interested in runtime Non-Functional Properties (NFPs). Certain NFPs that relate
to development, testing or maintenance help us in our work, but are not of relevance to this
thesis. Furthermore, these properties need to be quantifiable and measurable for them to be
useful. Therefore, we need to define some metrics for each NFP of interest. In this work, we
understand the term metric as a statistic of interest that helps us quantify the behavior of a
software system [11].

A common way of performing measurements w.r.t. certain metrics is to rely on the
Performance-Monitoring Unit (PMU) of an architecture [20, 28]. All x86 implementations
incorporate this unit in their design, providing a reliable way of monitoring and measuring
the performance of programs w.r.t. different components such as the Level-1 caches. The PMU

comprises several Model-Specific Registers (MSRs), and provides an interface to software
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NFP Type

Performance Runtime

Reliability Runtime

Maintainability Development-Time

Table 2.1: Example NFPs and their types, based on [39].

agents (e.g. perf4) for using these registers. In order to obtain a measurement, a software
agent can use an MSR to provide identifiers for multiple types of events, and then read
corresponding event-occurrence counts in general-purpose registers. Usually, the types
of events that can be counted are called counters, with multiple of them being available
for components in the CPU cores as well as for ones in the Northbridge or Southbridge.
Based on counters, (aggregate) metrics of interest can be calculated which we denote as
resource-specific metrics. The main utility of such metrics is that they provide a very focused
view on a program’s behavior w.r.t. specific system resources.

Another way of obtaining measurements is profiling [28]. Unlike with event-counting, the
idea is to periodically interrupt the execution of a process, take a snapshot of the executing
code-paths, sample counters or other process-state variables and resume the execution. This
method is more obstructive as it interferes with the performance profile of the process
subject to the measurements, though it can provide valuable information regarding the
code-paths that are responsible for certain behaviors.

2.3.2 Important Metrics

Other, non-resource-specific metrics that can help characterize the performance of systems
or components are latency, utilization and saturation. The term latency is usually convoluted
with that of response-time; the former refers to the time spent waiting for something to be
processed, and the latter refers to the processing time. Regardless, in microarchitectural
considerations we find that latency incorporates both the waiting time and response time
[30]. Utilization can also be understood in different ways. On one hand, utilization can refer
to the time during which a component is busy doing work, in which case it is known as
time-based utilization. On the other hand, we can conceive of a case in which a component
is busy only 50% of the time, though during that time it is fully occupied with work. In such
a case we can say that the component experiences full capacity-based utilization. Lastly,
saturation corresponds to a case of complete capacity-based utilization, in which case the
component is likely to experience increased processing times and therefore lead to queued
work [28].

4 https://en.wikipedia.org/w/index.php?title=Perf_(Linux)&oldid=1126307013

https://en.wikipedia.org/w/index.php?title=Perf_(Linux)&oldid=1126307013
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2.4 synthetic benchmarks

The ultimate goal in our thesis is to enable a way of producing benchmarks with certain
properties. Therefore, we need to establish some common ground w.r.t. the concept of
benchmarking. Kounev, Lange, and Kistowski [11] define a benchmark as a "tool coupled
with a methodology for the evaluation and comparison of systems or components with
respect to specific characteristics, such as performance, reliability, or security". From this
definition, we can discern that a benchmark program aims to operate in a way that exposes
some behaviors or traits of some target system (or component). These behaviors can be
observed and quantified using the notions discussed previously, whereas their elicitation
depends on the workload that the benchmark will apply on the target system.

Based on the scope of evaluation, benchmarks can be classified into microbenchmarks or
macrobenchmarks [11, 28]. Microbenchmarks are of relevance to this work since we try to
focus our discussion on one specific architectural component at a time. Another way of
classifying benchmarks is to look at how realistic the presented workload is. In order to
perform a precise evaluation of the performance of a system or component, it is important
to employ a realistic workload. However, realistic workloads are usually presented by real,
heavy-duty software, the availability of which is not always possible. To address this issue,
a synthetic mix of simple sets of operations can be used, in which case the benchmark is
known as a synthetic benchmark. The choices that go into specifying the operation sets, as
well as the manner in which they are mixed constitute a synthesis process.

Regarding this process, some implementations found in the literature and industry
usually employ simple memory- or cpu-intensive sets of operations in a predefined order to
obtain a presumably realistic workload [10, 12]. Other, more sophisticated methods utilize
randomness to shuffle the order in which the operations are executed. Building upon this
idea, the operations are sometimes executed as prescribed by a distribution, in what is
known as statistical simulation [9, 40].

Importantly, synthetic benchmarks can also be used similarly to fault-injection frameworks
[41, 42]. Since the focus is on replicating real-world workloads, we can conceive of real-
world programs that experience performance (or other non-functional) faults. As such, the
synthesis methods described above can be utilized to replicate such hypothetical, fault-
ridden programs, ensuring that a target component or system will always experience some
level of saturation or significant increase in latency.
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A P P R O A C H

In this chapter, we present the approach followed in addressing the issues outlined in
Chapter 1. In the first part, we describe the solution at an abstract level, discussing notions
of non-functional properties, gadgets and benchmarks. In the second part, we formalize
and discuss some of the notions in our approach that relate to the feasibility of our goals,
and organize the main intuitions through concepts like Impact Mappings and Ground Truths.

3.1 overview

The overarching goal of this thesis is to provide a structured way of producing synthetic
benchmarks with varied, stable and transparent behaviors. Oftentimes, the term behavior is
understood as a qualitative extension of functionality, in the sense that it denotes whether
some program’s functionality lives up to certain expectations of quality. A typical example
for this would be performance, e.g. we could wonder whether a program is fast in completing
a task, or if it uses little resources in doing so. As such, we take some liberty in using the
term behavior interchangeably with non-functional property. However, it should be noted
that non-functional properties comprise more than just performance considerations. In
fact, researchers often take an interest in other non-functional aspects such as reliability or
availability, to name a few [35–38], which is why we would want our approach to not be
confined strictly to performance properties.

On the other hand, to design synthetic benchmarks that have stable behaviors, we need
to take a resource-focused approach whereby we try to make our designs impact specific
resources in a computer system. Notably, we take an interest in resources that relate to
the Northbridge (cf. Chapter 2), because of their direct relevance to software performance
considerations and research value [19, 28]. Moreover, considering the overall complexity
of modern architectures, it is important for us to focus on one resource at a time. This
would allow us to tune and measure program behaviors more easily. However, taking such
an approach might appear disconnected from the ambition of addressing many types of
non-functional aspects. To that end, we posit that there is a natural congruence between
non-functional ideas and resource-specific considerations.

In Chapter 2, we touched upon the notion of resource-specific metrics, which directly
relate to a program’s behavior with regard to a specific architectural resource in a computer
system. We also touched upon the notion of (runtime) Non-Functional Properties (NFPs) and
how they typically need to be made measurable and quantifiable. Moreover, we discussed
how, based on the utilities provided by Performance-Monitoring Units (PMUs), we are
able to obtain measurements for resource-specific metrics. Once we have measurements in
place, we can rely on open standards such as Systems and software Quality Requirements and
Evaluation (SQuaRE) [39] to determine what NFPs can be of interest and how we can relate
our measurements to them. Thus, a tentative model that bridges NFPs and metrics is shown
in Figure 3.1.

19
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Figure 3.1: NFPs and types of metrics. NFPs are broken down into sub-attributes. The sub-attributes
are then quantified using generic or resource-specific metrics (cf. Chapter 2)

Based on the figure, we can consider a case in which the overall performance1 of a
program can be broken down into two conceptual properties: Time Behaviour and Resource
Use. The former refers to the extent to which the processing time of a program affects
its quality, whereas the latter refers to the extent to which the usage of certain resources
meets predefined expectations. To make it more specific, Time Behaviour can be quantified
using metrics such as Latency, which can be measured without focusing on any resource
in particular. Furthermore, we can dive deeper and obtain metrics about specific resources
such as the caches. For instance, we can use the Level-1 Miss-Rate metric; as mentioned in
Chapter 2, cache-misses cause delays in terms of the processing of data, which contributes
to latencies and implies that the program will require more time to complete its execution,
hence the direct connection to the Latency metric in the figure, but also to the Time Behaviour
property. An analogous idea applies to the Cycles per Instruction (CPI) metric, since it simply
quantifies the efficiency of the Central Processing Unit (CPU) and directly indicates both
Time Behaviour and Resource Use. In a similar manner, a metric like Branch Mispredictions
can indicate and quantify the property of Availability, which can be understood as the
ability of a program to respond to users while it is executing. This is the case because
mispredictions can lead to stalls in the CPU pipeline which, in extreme cases, can cause the
process to appear non-responsive. As such, the program might not be able to immediately
start executing new instructions, thus reducing its availability.

The example we just discussed serves to bridge the ideas of focusing on specific resources,
while still being able to speak in terms of high-level properties. While the precise ways
metrics and NFPs interrelate are not defined in a strict or comprehensive way in the afore-
mentioned standard, the guiding principle is that the more metrics we can use, the more
information we can obtain regarding NFPs. In any case, our understanding is that there are

1 In the standard, performance is typically referred to as "Performance Efficiency".
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Metric Description Component Tools Scope

Level-1
Miss-Rate

The rate in which misses
occur in the first-level

data-cache, obtained by the
ratio of misses and total

cache references.

Memory
Subsystem,
CPU-core

perf
process,

system-wide

Branch
Misprediction

Rate

The ratio of branch
mispredictions and overall

branching instructions.

Branch
Prediction

Unit,
CPU-core
Frontend

perf,
bpftrace[28]

process, core,
system-wide

Cycles per
Instruction

The number of CPU cycles
spent in executing an

instruction, on average.

CPU-core
Backend

perf
process,

system-wide

Table 3.1: Examples of resource-specific metrics, calculated on the basis of specific counters. See
Chapter 4 for complete lists of such metrics.

no limitations as to how one can relate metrics and NFPs. Based on this idea, for the rest of
this thesis we do not make explicit use of NFPs, and instead focus only on metrics without
risking any loss of generality.

In Table 3.1 we list several examples of resource-specific metrics, together with the
architectural component they relate to, using the notions presented in Chapter 2. In addition,
we indicate the scope of the metric, i.e. the level at which the metric is informative. Notably,
we can attribute measured values to one specific process (narrow scope), as opposed to all
the running processes in a system (wide scope). For instance, the Level-1 Miss-Rate metric
corresponds to Level-1 caches, and can be measured for any single process with the aim
of evaluating the cache-relevant properties of that process. This is made possible by tools
like perf, which can reliably obtain counter values from the PMU, for any single process.
The aggregation of these counters’ values is handled by us once they are available, and
the metrics that we obtain by aggregating these counters’ values are also process-specific.
Overall, we mostly rely on perf and augmented versions of it that enable us to make use of
various counters by exposing the Model-Specific Register (MSR) interface to the user-level.
For debugging purposes, we also rely on profiling (cf. Chapter 2).

Working in a bottom-up manner, and based on the NFP-metrics congruence, we then look
towards high-level programming techniques that allow us to build programs that achieve
stable values for resource-specific metrics, and consequently stable behaviors. That requires
a mix of intensive workloads and misplaced/reversed optimizations, implemented in a
mid-level language such as C++. Once we have identified such techniques, we implement
and structure them using Feature-Oriented Software Development (FOSD) notions such as
features. That provides us with configurable components to which we refer as gadgets, and
an explicit view of these techniques in the implementation. Gadgets then provide us with
the first step towards constructing actual synthetic benchmarks.
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Figure 3.2: The Gadget Concept.

The full concept of a gadget is shown in Figure 3.2. On the right side of the figure, we
highlight the congruence of NFPs and resource-specific metrics discussed previously. On
the left side we depict how the impact of a gadget can be tuned and varied on the basis of
its configurability. In this context, we use the term tuning to indicate the ability to obtain
different behavioral profiles for a gadget. However, configurability at the level of features
might not suffice. Indeed, any two variants of a gadget will target the same system resource,
yet will typically have considerably distinct behavioral profiles w.r.t. that resource. While
this is a desired aspect of our approach, it might also be useful to enable some slight
variations in the performance profile of each variant. Therefore, we also enable finer-grained
tuning by relying on other configurable parameters (knobs) that do not constitute features,
but rather simple workload scalers.

To facilitate a more structured workflow for researchers, as well as to enable code reuse,
we organize the gadgets in Software Product Lines (SPLs), whereby each valid configuration
of a gadget corresponds to a variant with a distinct behavioral profile. In other words,
each gadget variant conceptually represents a standalone product, which can be used
independently of other gadgets. The set of these variants represents a relatively small SPL,
and the artifacts that are reused are also few. While we could opt to add a large number of
features to a single gadget, we believe that would defeat the purpose of focusing on specific
system resources.

Building on top of this SPL idea for the gadgets, we then enable an approach that allows
the researcher to combine multiple gadget variants into one execution sequence. We make
this possible by complementing the SPLs with automated binding and derivation flows,
which also help in terms of maintainability. Then, provided that gadget variants can be
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derived automatically, we take inspiration from fault injection notions to enable their use in
a larger setting [41, 42].

More specifically, we make it possible to inject gadget variants in the static flow of
existing programs that we also design. While it is possible to inject the variants in arbitrary
codebases, we intend to pursue this idea in future work (cf. Chapter 7). Instead, we
make use of miniature, template systems for which we can ensure that the gadget variants
can be injected, and in which we manually specify where exactly the injections should
happen. These systems are inherently configurable and feature-oriented, with any feature or
(structural) feature-interaction therein potentially able to accommodate multiple injections
of gadget variants. Importantly, these systems are assumed to present a minor workload of
their own, such that the template itself does not convolute the performance of any injected
gadget variant. As such, we are able to perform workload synthesis, whereby the mixing
of workloads is determined by the static execution flow of the template system, and the
workloads are presented by the injected gadget variants.

Considering how the template systems are inherently configurable, it is easy to organize
them in SPLs of their own, after injecting gadget variants in their static flow. That means
that we could organize our overall approach as a two-level SPL concept, based on which we
maintain some link between variants of the template system to the variants of the gadgets.
However, that poses some additional challenges. For instance, we might want to obtain
a variant of a template system, and therefore we make a feature-selection. Then, to bind
this selection we would need to know how the features of the template system map to
gadget variants (or even more specifically, gadget features), so that those gadget variants
are generated, injected and initialized in the correct locations in the template system’s
code, before the feature-selection is actually enacted for the template system itself. Taking
into account the possibility that the implementation of features of the template system
can be scattered across code blocks and compilation units, this becomes challenging. To
address this, we opt to decouple the workings of the gadget SPLs from those of the template
systems. The injection-based approach naturally enables this by allowing us make decisions
regarding the template SPL separately (asynchronously) from the decisions regarding the
gadget SPLs. For instance, at one point in time we can derive various gadget variants, and at
a later point we can think about where and how to inject these variants in a template, and
what variant of the template to derive after injection.

Building upon the aforementioned ideas, we are ultimately able to organize our approach
into a unified concept for deriving synthetic benchmarks, depicted in Figure 3.3. In the
figure, we can distinguish two main processes: 1) a derivation process through which we
obtain different variants of a gadget by making use of its feature-oriented implementation,
and 2) a weaving process through which we make use of the gadget variants to obtain a
synthetic benchmark, based on the injection idea discussed previously. Practically, the steps
we can follow based on this concept are summarized as follows:

1. Firstly, we define a specification regarding gadget use and benchmark creation. This
artifact specifies the gadget variants and template systems we want to use, as well
as how we want to inject the gadgets variants in the template systems. As such, it is
relevant to both processes depicted in the figure.
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Figure 3.3: Synthesis Concept. Parts pertaining to the gadget SPLs are highlighted in blue.

2. Secondly, we bind feature-selections for specific gadgets and derive various gadget
variants through the derivation process.

3. Thirdly, the derivation process concludes with the outputting of multiple gadget
variants’ artifacts, while handling any issues that might hinder the next step.

4. At the fourth step, the weaving process commences, contingent on the specification
provided in the first step. The already generated gadget variants are used as input
artifacts. In addition, a template (configurable) system will be provisioned to the
process. Using these inputs, the gadget variants are combined and injected in the static
flow of the template system.

5. Lastly, after injecting and combining gadget variants in the template system, the
weaving process concludes by binding a feature-selection for the template system,
yielding a synthetic benchmark.

Crucially, the resulting synthetic benchmark will have largely stable and transparent
behaviors. This can be seen by the fact that the gadgets are designed in such a way that they
exhibit stable and transparent behaviors, and they can be weaved under any of the existing
features or (structural) feature-interactions of a given template system, which themselves are
known and transparent. Based on this idea, and the assumption that the template system
presents only minor workloads of its own, the overall behaviors of the template system
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Figure 3.4: Two-Level SPL concept in full display.

with injected gadget variants will also be stable and transparent. In other words, we can
reliably know the specific, gadget-defined, and thus stable behavior of any of the features
or configurations of a given template, after weaving. That being said, potential exceptions
might exist when the features of a given template system interact in unexpected ways,
which brings about some instability. Even if that is the case, the researchers can still benefit
from the knowledge that a certain way mixing of gadget variants’ workloads presents an
interesting behavior, and that this mixing is transparent.

To conclude this part of the discussion, we provide a closer view of the two levels of SPLs

that result from our approach, in Figure 3.4. At the top, we notice a set of gadget product-
lines, which collectively represent the first level of our two-level solution. Then, in the
bottom we have the template system, which in itself is configurable, as pointed out earlier.
A crucial idea here is that for the template system we only derive a variant after having
weaved some gadget variants in fixed locations of the template’s source code. In other
words, a template variant constitutes a benchmark only if such a weaving is performed. In
addition, considering that the locations where the gadget variants are injected are statically
defined, we say that the workload of the resulting benchmark is synthesized by means of
the static execution flow of the template. Moreover, since the template system itself could (in
principle) be organized in a product-line, we are able to obtain a family of benchmarks by
executing the weaving process multiple times for different variants of the template system.
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3.2 formalization

Having discussed the overall approach in some detail, there are certain aspects that are
missing or need to be made more precise in order to gain a better understanding of this
work. Therefore, in this section we provide formal notation and descriptions of the main
ideas surrounding gadgets and benchmarks, augmented with simple examples.

3.2.1 The Gadget

To begin our formalization, we take a deeper look into gadgets. We previously introduced
the overall concept of a gadget, which is the main building block that we use to construct
synthetic benchmarks. In this section, we make that concept more precise and formal. To that
end, we introduce definitions regarding knobs, valid configurations, and resource-specific
metrics, before precisely describing what gadgets are.

To begin with, we introduced the concept of configurations and valid configurations
in Chapter 2, though we need to make it more precise by providing a clear definition as
follows.

Definition 1. (Valid Configuration)

Let v be any selection of features for a given configurable software system that abides by
the feature-model of said system. Then, we say v is a valid configuration of that system.
We denote a set of valid configurations as V s.t. v ∈ V .

Normally, the set of all configurations for a given configurable program is denoted as C,
therefore V ⊆ C. Note that from this point onward, we take some liberty in referring to
valid configurations as variants, considering how each valid configuration effectively enables
us to obtain a variant of a system (cf. Chapter 2).

Besides the feature-based configurability of gadgets, we also enable some fine-tuning
through configurable parameters called knobs, as explained in the previous section. To that
end, we clearly specify what a knob is in the following.

Definition 2. (Knob)

Let k be any configurable parameter that does not constitute a feature, but which can be
used to scale the workload that a configurable program or system applies to the resources
of a computer system. Then, we say k is a knob. We denote a set of knobs as K s.t. k ∈ K.

The last ingredient we need to clearly specify what a gadget is, is that of resource-specific
metrics. The notion was introduced in Chapter 2, and is formally defined as follows.

Definition 3. (Resource-Specific Metric)

Let µ be any statistic of interest that is obtained through low-level performance counters
for the purpose of quantifying the behavior of a configurable program or system w.r.t. an
architectural resource of a computer system. Then, we say µ is a resource-specific metric.
We denote a set of resource-specific metrics as M s.t. µ ∈ M.

Based on the above definitions, we are now able to precisely define gadgets, presented as
follows.
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Definition 4. (Gadget)

Let g be a configurable program that has pronounced and stable impacts on specific
hardware resources, and for which we can always define the following properties:

• A set Vg = {v | v is a valid configuration of g}

• A set Kg = {k | k is a knob of g}.

• A set Mg = {µ | µ is a resource-specific metric that quantifies the behavior of g}.

Then, we say that g is a gadget.

Moreover, we say that g ∈ G where G is the set of all gadgets. To distinguish between
properties of different gadgets, we use subscripts Kg, Vg and Mg, where g denotes the
gadget to which any of these sets correspond.

From the definition, we can discern several characteristics of gadgets. To begin with, each
gadget is built using FOSD practices, thus having a well-defined feature-model. Its inherent
configurability makes the gadget useful in obtaining a variety of behavioral profiles. In
addition, a gadget does constitute a standalone software system (program) in the technical
sense, though it is not used as such in our approach. Moreover, a gadget can be understood,
at an abstract level, as including not only the implementation but also a well-defined set of
metrics specific to some architectural resource, so as to make its impacts w.r.t. that resource
transparent. This comes as a result of our resource-focused approach.

Before looking into an example of how a gadget can be described more practically, it
is important to have some definition in place for the knobs and the values they can be
assigned, since they represent a non-trivial aspect of gadgets.

Definition 5. (Knob Assignment)

Let g ∈ G be any gadget, and let k1, k2, ..., kn ∈ Kg be the set of knobs defined for g.
Moreover, let r1, r2, ..., rn ∈ R+

0 be the set of positive (including zero) real numbers. Then,
a knob assignment for g is defined as a mapping of the form:

a : Kg → R+
0

a =
{
(k1, r1), (k2, r2), ..., (kn, rn)

} (3.1)

Moreover, we say that a ∈ Ag, where Ag is the set of all such assignments for the knobs
of gadget g.

It should be noted that a knob can always be assigned a value, but for some variants that
assignment might have no effect. This largely depends on the gadgets’ features and how
they are implemented, though we try to make knobs as general-purpose as possible. We
discuss this further in Chapter 4.
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CacheGadget
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Figure 3.5: Simplified feature-model for the Cache Gadget. The model allows for either Reads or
Writes to be enabled.

Example. (A simple gadget)
To better understand gadgets, we make use of a simplified description of a gadget we have
built, called the Cache Gadget, denoted as cg. The gadget is designed to achieve a high
number of cache-misses across all levels of caching. In this simplified example, the gadget’s
workload conceptually consists of either reads or writes, something which we capture in
the feature-model shown in Figure 3.5. Using this feature-model, we obtain the set of valid
configurations:

Vcg =
{
(CacheGadget, Reads), (CacheGadget, Writes)

}
For brevity, we will refer to the respective configurations using indexed labels, v1, v2 and so
on. That is:

v1 = (CacheGadget, Reads),

v2 = (CacheGadget, Writes)

where v1, v2 ∈ Vcg.

We can then define a set of metrics that can capture the impact of the gadget adequately:

Mcg = {MissRate, CPI}

Similarly, we can define a set of knobs that allow us to scale the impact of the gadget:

Kcg = {WorkloadAmpli f ier}

In this example, the WorkloadAmpli f ier knob is conceptualized as a variable which serves
the purpose of increasing the amount of reads or writes the gadget performs. For instance,
a value of 0.4 assigned to the knob would indicate a 40% increase in the workload, on top
of some default amount. As such, we posit that the WorkloadAmpli f ier variable takes ratio
values, i.e.:

dom(WorkloadAmpli f ier) = [0, 1]

Note that this amplification is presumably useful for both valid configurations v1 and
v2. That may or may not be the case for all knobs, since the usefulness of a knob largely
depends on the actual feature implementations (cf. Chapter 4). In any case, we then have
the following assignment a ∈ Ag:

a = {(WorkloadAmpli f ier, 0.4)}
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3.2.2 Impact Mappings

Having established a definition for gadgets, we need to address its important properties
of having stable and transparent behaviors. As mentioned in the previous section, gadgets
should provide us with stable behaviors so that they can be reliably used in our overall
process of constructing synthetic benchmarks. As such, the synthetic benchmarks that are
build from them can also have stable and consequently transparent behaviors, which in turn
would help us address the practical need for configurable software systems the behavior
of which is provided out of the box, i.e. without having to perform analysis on them (cf.
Chapter 1).

Therefore, to quantify and document the behaviors of gadgets, we formally describe
the relations between knobs, valid configurations and metrics. This way we can have a
structured description of a gadget’s behavior, alongside its implementation, which would
allow us to clearly see and verify the stability of a gadget’s behaviors and help us make
them transparent as intended.

To that end, we posit that the variants of a gadget have a specific relation to the metrics that
are associated with said gadget. This is a result of our resource-focused approach whereby
each gadget variant targets specific metrics, in the sense that the workload it applies onto
system resources is such that the values of these metrics are relatively pronounced, as well
as stable. This relation is defined as follows.

Definition 6. (Targeting Relation)

Let g ∈ G be any gadget. Then, the targeting relation is defined for gadget g as:

Vg ▷Mg =
{
(v, µ) ∈ Vg ×Mg | variant corresponding to v obtains values

w.r.t. µ that are pronounced and highly stable.} (3.2)

The relation is denoted with the operator ▷.

Based on the definition above, we can say that for a given variant v ∈ Vg, not all metrics
in Mg might be useful, which is the reason why we define the ▷-relation instead of taking
a cartesian product between Vg and Mg. In fact, a cartesian product would combine each
v ∈ Vg with each µ ∈ Mg, whereas sometimes we want to combine v with only some of
those metrics. Moreover, if some variant does not target a metric, the values that the metric
can take can vary freely.

In any case, it should be noted that what constitutes a pronounced value for a metric largely
depends on the specific resource that metric relates to and the conventional knowledge
surrounding it. We follow domain knowledge in that regard, e.g. miss-rates beyond 20% on
the Level-3 cache can be considered detrimental to performance and other non-functional
properties [19, 43].

In addition to the ▷-relation, we note that the impact that any gadget variant has on its
targeted metrics can be slightly varied through the knobs. These variations are limited by
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design, and serve only for fine-tuning purposes. However, they still play a role in the overall
behaviors of a gadget and need to be part of the description of these behaviors.

Then, based on the ideas discussed thus far we can define a formal description of a
gadget’s behaviors in what we call an Impact-Mapping (IM).

Definition 7. (Impact Mapping)

Let g ∈ G be any gadget, and let R+
0 be the set of positive (including zero) real numbers

and N be the set of positive integers. Then, an impact-mapping of gadget g is defined as
follows:

IMg : (Vg ▷Mg)×Ag → R+n

0 (3.3)

where n ∈ N , and R+n

0 is the n-fold cartesian product of R+
0 .

Based on the above definition, we firstly notice how the IM combines the variants with
the metrics that they target through the ▷-relation. Moreover, we have already mentioned
that the knobs can slightly modify the behavior of a variant, which is why we need to
include Ag in the IM; specifically, for the same (v, µ) pair, we can use different assignments
a1, a2, ..., am ∈ Ag for the knobs, which will result in slightly distinct values for the metric
µ in that pair. Overall, for each tuple of the form ((v, µ), a) we can obtain a group of
measurements for the metric µ under consideration. The number of values n in each such
group is defined based on statistical considerations (cf. Chapter 5). The benefit of obtaining
multiple values is that we can effectively construct frequency distributions for each tuple,
which allows us to better verify the stability of the behaviors resulting from variants and
knob assignments. Crucially, we intend to make these behaviors transparent, and the notion
of an IM directly helps in this regard.

Before looking at an example, we should note that it might be useful to omit the knobs
from considerations regarding gadgets’ behavioral profiles, due to their limited effects in
altering the behavior of gadget variants. In such cases, we can simply fix an assignment for
the knobs and simplify the overall notation. This provides us with a relaxed notion of an IM,
which we define as follows.

Definition 8. (Relaxed Impact Mapping)

Let g ∈ G be any gadget, R+
0 be the set of positive (including zero) real numbers and N

be the set of positive integers. Moreover, let B ⊆ Ag be the set of those knob assignments
for which we get the largest impact possible for each variant v ∈ Vg, w.r.t. the metrics
each such variant targets. Then, a relaxed impact-mapping of gadget g is defined as follows:

IMB
g : Vg ▷Mg → R+n

0 (3.4)

where n ∈ N , and R+n

0 is the n-fold cartesian product of R+
0 .

For any variant of g, B contains a knob assignment for which that variant should obtain
maximal impacts, w.r.t. the metrics that it targets. Naturally, IMB

g ⊆ IMg. The relaxed form
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of IM is thus an approximation of the actual IM, and helps us look at only the highest
possible impact of each variant. This relaxation will prove helpful to us during evaluation,
in Chapter 5.

Example. (An Impact Mapping)
To construct an example for the IM, we build upon the previous example. Firstly, assume we
use an assignment a for the knobs as in the previous case, and the same variants v1 and v2

of the Cache Gadget. Then, we can conceive of a scenario where we perform measurements
for each of the two variants, while using the same knob assignment a as in the previous
example. For each case, we can obtain two measurements (n = 2). However, we first need to
know what metrics each of the variants targets. Naturally, the ▷-relation tells us exactly this,
as it is defined alongside the gadget’s design and implementation. To that end, we can have
the following:

Vcg ▷Mcg = {
(v1, CPI),

(v2, CPI),

(v2, MissRate)

}

Based on this, we can construct the following blueprint for an IM:

IMcg = {
((v1, CPI), a) → f a

v1▷cpi ,

((v2, CPI), a) → f a
v2▷cpi ,

((v2, MissRate), a) → f a
v2▷miss-rate

}

Note that we are using → instead of simple commas to make the mapping more visible in
the pairs of the IM. In addition, we are using the symbol f to label groups of measurements.
The subscript in fv1▷cpi means that this is a series of measurements for variant v1, w.r.t. the
metric CPI that this variant targets. The superscript in f a denotes that the knob assignment
used for these measurements is a. To get a better idea, we can construe the following
hypothetical situation in which we get the following measurements:

f a
v1▷cpi = (2, 2.5)

f a
v2▷cpi = (3, 3.25)

f a
v2▷miss-rate = (0.95, 0.97)

To make the notation clearer, note that the first set of measurements simply indicates that
the CPI values for variant v1, with knob assignment a are 2 and 2.5, across two independent
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measurements conducted as part of some experiment. Based on this, and the IM blueprint
described earlier, we can describe the actual IM:

IMcg = {
(((CacheGadget, Reads), CPI), (WorkloadAmpli f ier, 0.4)) →
(2, 2.5),

(((CacheGadget, Writes), CPI), (WorkloadAmpli f ier, 0.4)) →
(3, 3.25),

(((CacheGadget, Writes), MissRate), (WorkloadAmpli f ier, 0.4)) →
(0.95, 0.97),

}

From this example IM we can clearly see that different variants lead to different impacts
w.r.t. the same metric, indicating the benefit of configurability; indeed, using the same code
artifacts, we can obtain different behaviors. For simplicity, we did not include the case when
we use different assignments for the knobs; in a case with two possible knob assignments,
we would have to include twice as many entries in the IM, since each variant would have to
be considered separately for each knob assignment, and therefore we would need to obtain
distinct measurements for each case.

3.2.3 Ground Truth

The notions introduced thus far serve to organize our approach in designing and realizing
the gadget idea. The introduction of the IM helps structure our intuitions regarding our
resource-specific approach, especially regarding the verification of a gadget’s correctness
and making of its behaviors transparent. Nevertheless, the IM provides only the first step
in the quest for transparency. To see why that is the case, we can consider that any IM we
obtain for our gadgets is likely to vary significantly across environments, which makes it
difficult for us to say that a gadget will maintain its behaviors (i.e. IM) in any environment
it is used. In other words, the IM helps us make gadget behaviors transparent only if these
behaviors are guaranteed to be stable across environments. However, microarchitectural
differences across environments can make for large differences in the impact that a certain
workload can attain [9].

Before addressing this issue, we should specify what is meant by the term environment
more formally.

Definition 9. (Environment)

Let e be any computer system that can be uniquely identified on the basis of its microar-
chitecture. Then, we say e is an environment. We denote the set of such environments as E
s.t. e ∈ E .

Having this definition in place, we posit that the issue of instability across environments
can be tackled by experimentally obtaining IMs in multiple distinct systems. Naturally, this
need only be done once for each environment if the gadget is known to be consistent in its
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behaviors in that environment. However, in order to make our gadgets as useful as possible,
and to lift the burden of manually specifying IMs, we would ideally like to have some way
of indicating that the IMs we obtain for certain environments can naturally generalize to
other environments. This depends on how reproducible the behaviors of our gadgets are,
which is something we evaluate in Chapter 5.

In any case, we can benefit from a generalization of the notion of IM, which accounts for
the variety in behaviors that is due to environments. To that end, we provide the following
definition.

Definition 10. (Ground Truth)

Let g ∈ G be any gadget, R+
0 be the set of positive (including zero) real numbers, and N

be the set of positive integers. Moreover, let E be the set of known environments. Then,
the ground-truth for gadget g is defined as:

GT g : E × ((Vg ▷Mg)×Ag) → R+n

0︸ ︷︷ ︸
Impact Mapping

(3.5)

where n ∈ N , and R+n

0 is the n-fold cartesian product of R+
0 .

What we observe in the above definition is that we are still using all the constructs we used
in defining IM, but now we are accounting for the effects of environments to the measured
values, therefore generalizing the notion of an IM as intended. Moreover, given the similarity
to IM, we can also relax the notion of Ground Truth (GT) by fixing an assignment for the
knobs as before.

Definition 11. (Relaxed Ground Truth)

Let g ∈ G be any gadget, R+
0 be the set of positive (including zero) real numbers, and N

be the set of positive integers. Also, let E be the set of known environments. Moreover,
let B ⊆ Ag be the set of those knob assignments for which we get the highest impact
possible for each variant v ∈ Vg, w.r.t. the metrics each such variant targets. Then, the
relaxed ground-truth for gadget g is defined as:

GT B
g : E × (Vg ▷Mg) → R+n

0︸ ︷︷ ︸
Relaxed Impact Mapping

(3.6)

where n ∈ N , and R+n

0 is the n-fold cartesian product of R+
0 .

Similarly to the case of IM, the relaxed GT is an approximation of the actual GT in which the
knob assignments are fixed and implied for each variant.

As a last consideration regarding IMs and GTs we should note that, during implementation,
we rely on a reference environment to build and test the gadgets. As such, we make a slight
distinction between IMs that can be obtained in arbitrary environments, and the IM that can
be obtained in the reference environment. Specifically, we refer to an IM obtained in the
reference environment for a gadget as the Reference Impact-Mapping (IMref) of that gadget2.
Based on the IMref, we are able to see whether a gadget’s behaviors are consistent across

2 We introduce and use the reference environment in Chapter 5, during evaluation.
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multiple executions in the same environment, before trying to evaluate the overall stability
of gadgets across different environments.

3.2.4 Benchmarks

In Section 3.1, we introduced the overall approach that allows us to construct synthetic
benchmarks on the basis of gadgets. Now that we have some formal definitions in place for
gadgets, we aim to make the discussion around the synthetic benchmarks more precise.

As a first step, we need to specify how our approach handles the injection of gadget vari-
ants in a given template system. This requires us to take into consideration the configurable
nature of template systems; in particular, we need to consider the fact that the features of a
template configurable system can be scattered across its code artifacts, which means that it
is difficult to associate and track any injected gadget variants w.r.t. template features. To
address this issue, we introduce some indirection based on which we map in-code locations,
instead of features of the template system, to gadget variants. This allows us to inject gadget
variants in any location, without necessarily having an explicit mapping between features
of the template system to gadget variants. Ensuring that the injections are performed under
specific features (or even feature-interactions) of the template system is then part of the
implementation process of that system itself.

Before we address the ideas of injections and benchmarks, we provide the following
definitions for template systems and locations in order to avoid any misconceptions.

Definition 12. (Template System)

We define a template system as a configurable software system, in the execution flow of
which gadget variants can be weaved.

Definition 13. (Location)

Let s be some template system, and let l be any specific line of code in a code file of s,
which can be used to inject a gadget variant within the execution flow of that system.
Then, we say l is a location of s. We denote the set of such locations for system s as Ls s.t.
l ∈ Ls.

Based on the definitions of template systems and locations, we can now define a mapping
between in-code locations of the template system, and gadget variants belonging to any
gadget, in what we call Injective System-Gadget Mapping (ISG). The definition is as follows.

Definition 14. (Injective System-Gadget Mapping)

Let s denote any template system, and let G denote the set of all gadgets. Also, let
Ls describe a set of locations in the implementation of s. Then, we define an injective
system-gadget mapping for system s as:

ISGs : Ls →
⋃

g∈G
Vg (3.7)
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Based on the above definition, we can inject variants of any gadget into any of the in-code
locations of a given template system. The locations can belong to different features or feature-
interactions of the template system, based on which we can obtain a group of variants (of the
template) with synthetic behaviors, effectively yielding an SPL of benchmarks. Moreover, for
each benchmark, we could redefine its behaviors through the ISG by changing the mapping
for existing locations. After modifying the ISG this way we would simply need to re-run
the weaving process shown in Figure 3.3 to obtain an updated benchmark. In addition, one
thing to note about the above definition is that it does not take knobs into consideration. In
short, if for a given variant v ∈ Vg, for some gadget g, we use different knob assignments,
the overall ISG remains the same, though the behavior of the resulting synthetic benchmark
can vary slightly if the synthesis is performed anew. Overall, the notion of an ISG helps us
in the implementation of our approach, as well as in documenting the way gadget variants
are used w.r.t. a template system. In particular, it helps facilitate the variety in the behaviors
of benchmarks, which is an important part of what we are trying to achieve (cf. Chapter 1).

Thus far we have relied on a rather generic notion of synthetic benchmarks, based on our
discussion in Chapter 2. However, with the notion of gadgets and ISGs in place, we are able
to precisely define benchmarks in the context of our work.

Definition 15. (Benchmark)

Let s be any template system. Then, we define a benchmark as a variant of system s the
behavior of which is defined by weaving specific gadget variants in its execution flow by
means of some ISGs.

An important thing to note about the definition above is that part of the benchmark’s
workload can come as a result of the (template) system’s own workload, though we ensure
the template systems we use do not have any large impacts on any resources. This way, the
behaviors of a benchmark are mostly or entirely synthetic, as a result of our approach.

In addition, one could wonder whether we should describe an IM or a GT at the level
of the benchmarks that we obtain on the basis of injected gadget variants. While this is
possible, we believe it adds no value to our considerations. As we understand it, if the GTs

of gadgets are stable and transparent, and the ISG is specified for a given template system,
the resulting benchmark SPL is also stable3 and transparent enough to the researcher. For
instance, if gadget variants are injected in locations that correspond to a specific feature of
the template system, knowing how these variants behave provides knowledge w.r.t. that
feature in the context of the benchmark that is produced as a result of our approach.

Example. (Injection of gadget variants in a template system)
For this part we make use of a "dummy" configurable system, denoted as ds, which acts as
the template in which we can inject gadget variants. As such, we can have a set of locations
such as the following:

3 Even in cases of exceptions, instability at the level of benchmarks makes for interesting behaviors, as mentioned
in Section 3.1.
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Lds = {
Line 32 in fileA of the ’dummy’ system︷ ︸︸ ︷
"/path/to/dummy/fileA:32", "/path/to/dummy/fileB:99"}

Each location can be constructed by concatenating the system path to a file with a specific
line number in that file. Having specified some locations, we then make use of the gadget
that we introduced in previous examples. We know that this gadget has two variants. The
ISG will then look like:

ISGds =
{
("/path/to/dummy/fileA:32" → (CacheGadget, Reads)),

("/path/to/dummy/fileB:99" → (CacheGadget, Writes)),}
Again, we are using → to make the mapped pairs more visible. Also, note that for simplicity
we are using the same value for the knobs, in both injections. This does not need to be the
case. In addition, for this example we are using only one gadget; in reality we can have
multiple gadgets, the variants of which can all be used in the ISG.



4
I M P L E M E N TAT I O N

In this chapter, we describe the framework that implements the approach outlined in
Chapter 3. We specifically discuss how the two-level Software Product Line (SPL) approach
is implemented, while pinpointing the main components and their interfaces. In addition,
we describe the features of the gadgets that we have built. Lastly, we discuss some limitations
that we have identified during the implementation.

4.1 framework

The approach presented in Chapter 3 is implemented through a framework written in the
Python1 language. We rely on a modular approach whereby we have various components
responsible for the gadget SPLs, the template configurable system, and the processes of
derivation and weaving that we depicted in Figure 3.3. In Figure 4.1 we depict a component
diagram of the framework and all the relevant interfaces. The main components with which
the user interacts directly are organized under the User Subsystem. This subsystem contains
the Master component, which can be used to perform a full run of gadget variant derivations
and weavings into specified template configurable systems. The Master component is
concerned with providing the correct specification to the framework in terms of the gadgets,
gadget variants, template configurable systems and corresponding Injective System-Gadget
Mappings (ISGs), as well as executing user commands. Similarly, the Experiment component
can perform these tasks but only for the purpose of experimentation. This component
has additional capabilities through which random ISGs can be obtained and enacted, and
measurements can be performed so as to obtain Impact-Mappings (IMs) - we take advantage
of this during the evaluation in Chapter 5.

Furthermore, in Figure 4.1 we depict two other subsystems, one which corresponds to
the gadget SPLs and the associated derivation process, and the other which corresponds
to the weaving process through which we combine and inject variants of the gadgets into
existing configurable systems (cf. Chapter 3). To maintain and handle the gadget SPLs we
rely on two components, namely the Config Registry and the Gadget Manager. The Config
Registry handles the user-provided configurations and makes them available to the Gadget
Manager. The Gadget Manager is tasked with the handling of the product lines for a given
set of gadgets, as well as with the compilation of gadget variants.

Speaking of user-provided configurations, an example for that of the gadget SPLs is shown
in Listing 4.1. Each entry in the listing specifies a variant of the gadget using an explicit
identifier, as well as knob assignments. The Gadget Manager is tasked with interpreting
these identifiers and ensuring that the correct features are selected when a gadget variant is
derived (cf. Section 4.2).

Similarly to the gadget SPLs, the template SPLs and the weaving process are handled
through the Config Registry and the Weaver components. The aspects that need to be

1 The framework has been implemented in Python v3.6.

37
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 Gadget Product-Line Subsystem Benchmark Product-Line Subsystem 

Gadget Manager WeaverConfig Registry

Gadget
Derivation

Template
Weaving

User Subsystem

Master Experiment

Setup

Figure 4.1: Component view of the framework, in UML 2.0 notation [44]. The shaded gray area
depicts the subsystem related to the "weaving" process. The area encircled by a dashed
line depicts the subsystem related to the gadget SPLs and the corresponding derivation
process. The area in yellow depicts the user-facing components. Interfaces are shown
using the "lollipop" notation whereby the component connected to the circle provides the
interface, and the component connected to the sickle implements that interface. At the
level of subsystems, interfaces are unified, shown as small rectangles (ports) on the edge
of each subsystem.

---

gadgets:

- name: ’bp_gadget’

variants:

- id: c2

options:

- <knob_name>: <knob_value>

- id: c3

- id: c4

Listing 4.1: Sample configuration artifact for the gadget SPLs, where we specify the variant using a
named identifier, and an assignment of values to the knobs for each variant. When knob
assignments are omitted, a default assignment is used.

specified in this case are two. Firstly, we need to specify a template and a corresponding
variant that we want to use, similar to the case the gadgets, except that in this case we
only specify one template and one variant. Secondly, we need the ISG to be specified by
providing a list of in-code locations for the chosen template and the gadget variants they
should map to.

To make our framework more usable, we use numbered identifiers for each in-code
location that we call injection points, using the general form IP_<ID>. An example of how
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---

injection_points:

- id: ’13’

gadget_name: bp_gadget

variant: c2

- id: ’14’

gadget_name: bp_gadget

variant: c3

Listing 4.2: Configuration artifact for the Injection Points. Each Injection Point has a unique numeric
ID.

#include <iostream>

using namespace std;

int main(){

..

#IP_14

for(i=0; i<r; i++){

#IP_13

for(j=0; j<c; j++){

mul[i][j]=0;

for(k=0; k<c; k++){

mul[i][j] = (m1[i][k] * m2[k][j]) + mul[i][j];

}

}

}

..

}

Listing 4.3: Injection Points embedded in a template configurable system. Each injection point
includes its unique ID and a fixed suffix. They are replaced during weaving, with
function calls that "invoke" specific gadget variants. Weaving will also add the correct
header files to link the shared libraries that constitute gadget variants.

the injection points are specified is shown in Listing 4.2, whereas their actual use in a
template system is shown in Listing 4.3. An injection point can appear only once in the
code of a template system, and it can map to only one gadget variant. Conceptually, this
is consistent with our definition of ISG, but at the same time more practical. This way,
modifying an ISG can be done simply by modifying the entries in Listing 4.2 so that an
injection point maps to another gadget variant. To ensure this fully matches the ISG definition
introduced in Chapter 3, we maintain some additional documentation w.r.t. the specific
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in-code locations of each injection point, and encourage users to modify an ISG only by
changing the specification mentioned previously, and not by relocating injection points.

On the basis of proper specification and placements of injection points, the Weaver
component parses the template systems, captures the injection points, extracts their numeric
ID, and finally injects code that invokes the correct gadget variant - at the time of weaving
the gadget variants are assumed to have been compiled in the form of shared libraries
(cf. Section 4.2). Moreover, each compiled variant will have been assigned values for its
knobs as shown in Listing 4.1. After all the above steps are executed, the Weaver performs
a second-level derivation through which specific bindings for the features of a template
system are enacted, and eventually a variant of the template system is generated and linked
with the gadget variants to produce a final executable. This way, the Weaver component
handles not only the weaving but also manages the resulting benchmark SPLs. Naturally,
any relevant specification for this second-level derivation needs to be provisioned through
the Config Registry.

4.2 gadgets

The gadget SPLs are crucial to our goals, since they serve as the basis for our configurability-
inspired approach for constructing synthetic benchmarks. To date, we have implemented
two gadgets that target two types of architectural resources: the caches and the Branch
Prediction Unit (BPU). Following the approach outlined in Chapter 3, we were able to
pinpoint resource-specific metrics2 of interest and obtain sizeable and consistent impacts
w.r.t. those metrics, for each gadget. However, before diving into the specifics of how these
gadgets were implemented, we need to describe how gadget derivation works in a bit more
detail.

4.2.1 Derivation

Each gadget’s implementation constitutes two main artifacts, namely the source implemen-
tation, and the so-called binding layer. The first of the two artifacts comprises the source code
which is structured based on the features that we outline in a corresponding feature-model3.

The second artifact comes in the form of a Makefile - a utility that helps automate
compilation tasks. In this artifact we incorporate some logic that enables an easy specification
of a feature-selection by the Gadget Manager component we introduced in the previous
section, such that a desired gadget variant can be derived, as shown in Figure 4.2. In
addition, the binding layer uses unique identifiers for each valid configuration of its features,
and consequently for each potential variant in the respective SPL. This makes it possible for
the Gadget Manager to keep track of variants, as well as handle user-provided specifications
more easily. As such, the provisioning of a variant ID enables an initialization of specific
macros in the binding layer. These macros constitute configuration options in terms of the
source code artifact, and an initialization of such macros constitutes a feature-selection. To
be more precise, we use multiple preprocessor macros (cf. Chapter 2) in the source code of a
gadget, with the aim of attaining variability while reusing the same code artifact. This way,

2 Hereafter we refer to these as simply metrics, unless we need to distinguish them from other types.
3 The gadgets are implemented in C++.



4.2 gadgets 41

Gadget Product Line(s)

Gadget Manager
Use

Produce

<<artifact>>
Gadget Variant

Manifest

Gadget Implementation

<<artifact>>
Binding
Layer

<<artifact>>
Gadget Source

Figure 4.2: Depiction of the Gadget Manager’s interaction with the gadget implementation. Notably,
the gadget implementation provides a binding layer as an interface to the Gadget Manager,
through which important decisions regarding feature-selections and subsequent in-code
bindings are handled. The actual implementation of features is contained in the source
artifact.

once the Gadget Manager provides a variant ID, the binding layer will invoke the compiler
and input the correct values for these macros. Thus, the binding of the selected features will
occur during the compilation4, eventually resulting in the derivation of a desired variant in
the form of a shared library. The main reason for performing compilation-time bindings
stems from the fact that the we intend to minimize the complexity in the design of the
gadgets by not including runtime ideas, though we intend to expand on this aspect in
future-work (cf. Chapter 7).

4.2.2 The Cache Gadget

Following the approach in Chapter 3, having a gadget that can simulate synthetic behav-
iors that directly relate to the memory subsystem is beneficial due to the fact that many
performance-faults in software systems relate to memory usage patterns [19], and the fact
that memory components are widely considered to be a cause for performance bottlenecks
[21]. In particular, Drepper [19] outlined several performance-optimization approaches that
specifically relate to the way a program makes use of the caches, and how it organizes mem-
ory accesses. Based on those and other findings, as well as current features and limitations
in modern x86 implementations [20], we were able to build small units of workload that
saturate caches on all levels, as well as bypass them in locality-reducing ways. Organizing
these findings, we were able to construct the feature-model shown in Figure 4.3.

4 Technically, it will occur during the preprocessing phase that precedes the actual compilation.
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Cache Gadget

Workload Generation

Read-skewing Write-skewing

Access Pattern

Locality Reduction Saturation

L1d

L2

L3

Write-spilling

L1 Amortization
Constraints:

L1 Amortization ⇒ Read-skewing

Write-spilling ⇒ Write-skewing

Figure 4.3: Complete feature-model for the Cache Gadget. The indicated constraints can be read
as logical implications, e.g. the selection of Write-spilling implies the selection of Write-
skewing.

The first step in the design of this gadget was to determine whether we could attain
noticeable effects in terms of misses, and more importantly in terms of the miss-rates
(provided that there is a substantial amount of accesses performed overall), across all
available data caches. The Performance-Monitoring Unit (PMU) of an x86 implementations
provides counters that allow us to obtain such metrics for each level of cache. In addition,
the available counters distinguish between misses that correspond to read instructions
from those that correspond to write instructions. We make use of that distinction in our
implementation since that allows us to achieve different miss-rates in the caches for either
of the two types. A list of the metrics we use is shown in Table 4.1. While we could include
and target many more metrics in our implementation, we opted to focus more on precision
and correctness, consequently focusing on metrics for which the underlying counters would
be obtained reliably in different systems5.

The distinction between reads and writes leads us to the first abstract feature, namely
the Workload Generation. This is a mandatory feature, since the gadget will necessarily be
able to generate workloads. However, we can choose either a read-heavy or a write-heavy
workload. Read-heavy workloads focus on reading from memory, whereas the write-heavy
workloads perform repeated writes in large memory allocations. Regardless of the specific
type of workload in this context, the most important part of the feature model is the
manner in which memory accesses are performed. Following a Feature-Oriented Software
Development (FOSD) approach, we abstract this idea and make it into an explicit, mandatory,
and abstract feature. While this feature is mandatory, we have a choice regarding the specific
pattern we want to use in that we can choose either Locality Reduction or Saturation,
modeled as child nodes in Figure 4.3.

The Locality Reduction feature relies on an aggressive reduction in temporal and spatial
locality, in all levels of caches. Specifically, we rely on some functionalities known as

5 See Chapter 5 for a list of systems in which we run the gadgets.
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Metric Description

L1 Load Miss-Rate
The rate in which misses occur in the first-level data-cache, obtained by
the ratio of misses and total cache references, concerning only memory

reads.

L2 Load Miss-Rate
The rate in which misses occur in the second-level cache, obtained by
the ratio of misses and total cache references, concerning only memory

reads.

L3 Load Miss-Rate
The rate in which misses occur in the third-level cache, obtained by the

ratio of misses and total cache references, concerning only memory
reads.

L3 Store Miss-Rate
The rate in which misses occur in the third-level data-cache, obtained

by the ratio of misses and total cache references, concerning only
memory writes.

Load Page-Walks
The number of initiated page walks that happen as a result of misses in

virtual-address translation, across all TLB levels. The misses are
counted only for memory reads.

Store Page-Walks
The number of initiated page walks that happen as a result of misses in

virtual-address translation, across all TLB levels. The misses are
counted only for memory writes.

CPI

The number of CPU cycles spent in executing an instruction, on
average. Usually obtained by dividing the number of CPU-cycles spent
executing a process, including stall cycles, and the number of retired

(completed) instructions for that process.

Table 4.1: Metrics used to quantify the behavior of the Cache Gadget.

streaming writes and cache-flushing [19, 20], offered by x86 implementations in the form of
native instructions of the Instruction Set (IS). The first functionality enables memory writes
that do not go through any of the caches, presumably because the affected items in memory
will not be used soon after, whereas the second one enables us to flush entire cache-lines
from the caches in ways that reduce overall locality. Conveniently, we make deliberate use of
these functionalities, forcing misses across the cache hierarchy as well as significant latencies.
For instance, we can perform a streaming write in some memory location, and then try
to read that data immediately after. Because we bypass the cache during the write, the
data that was written to memory will not be present in the caches, and so the subsequent
read will suffer from cache misses. Similarly, we can repeatedly flush cached data, and
immediately after attempt to read that data. Such a read will cause misses in the caches and
will have to go to the main memory.

The Saturation feature also makes use of locality ideas, though it achieves its purpose
without using any intrinsic instructions of x86 systems. Its aim is to generate workloads
that exceed the cache sizes progressively, which will enable two things: 1) the caches will
suffer from misses, and 2) prefetching at the hardware level will be rendered sub-optimal.
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Figure 4.4: A histogram of frequency distributions for samples of values of L1 Load Miss-Rate, L2

Load Miss-Rate and CPI. The number of bins used was set to 20 as it better captured
the overall pattern of the distribution. The measurements were performed in a reference
architecture, which we introduce during evaluation Chapter 5.

The first situation occurs due to multiple factors that also relate to the use of Translation
Lookaside Buffers (TLBs). To begin with, the misses occur because we make deliberate use
of little to no locality, and repeatedly access data that are not cached. At the same time, the
caches are saturated as they attempt to maintain as many data items as possible to increase
the likelihood of hits, hence the name of the feature. In addition, we deliberately access data
spanning different pages of memory which naturally forces many misses in the TLBs and
increases latencies. To some extent, we also attempt to simulate cases of the aliasing effects
we mentioned in Chapter 2, considering how virtually all modern x86 implementations
rely on set-associative caching and the fact that some Intel systems map memory addresses
to sets in a somewhat fixed manner, allowing us to impact the same sets repeatedly. The
second situation then occurs due to an inherent limitation in how virtual address translation
is handled. Specifically, the limitation consists in a fixed boundary on the (virtual) addresses
that the prefetcher component of a Central Processing Unit (CPU) can use, which is usually
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Knob Values Description

WSS_SCALER {1, 2, 4, 8, 16}

WSS denotes the size of the memory region
touched on one iteration of the internal

workload loop of the gadget. WSS_SCALER
simply multiplies the value of WSS using one
of the values shown on the left. The effect of

this knob varies with the variants, but it
usually tends to reduce the rate of TLB

misses, which improves CPI.

OPS_SCALER {10n|n ∈ {1, 2, 3, 4}}

OPS denotes the overall number of iterations
performed by the internal workload loop of
the gadget. The default number can be scaled

up using this knob. We opt to use only
multiples of ten so as to have noticeable

effects when tuning this knob.

ALLOC_SCALER {1, 2, 4}

The gadget typically allocates memory
sections before applying a workload. This

knob helps change the allocation size, which
can contribute to a slightly different rate of

misses in the caches, in relation to the default
allocation size. This is mostly useful when
the overall allocation size needs to exceed
that of a given cache by more than a small

percentage.

Table 4.2: Knobs used in the Cache Gadget for fine-tuning of impacts.

restricted to a single page (4096 bytes) in many Intel x86 systems [20]. In simple terms,
this means that prefetching cannot be performed for data items that reside more than a
page-size away from currently cached data, in terms of the respective memory addresses.

In either scenario, the effects can be felt progressively through all levels of caches. For
instance, we can tune certain parameters so as to impact only the Level-1 data cache. Tuning
these parameters further can result in both Level-1 data and Level-2 caches incurring high
miss-rates. To obtain a case in which we incur high miss-rates at Level-2, but not at Level-1,
we introduce the L1-Amortization feature which improves the locality behavior at the
Level-1 data cache, though this is only possible for read-heavy workloads in our current
implementation. Using a similar approach, when we opt to impact Level-3 caches in a
write-heavy workload we can significantly decrease the number of writes made in the same
memory page while still performing the same amount of writes overall, thus incurring
even higher TLB miss-rates and much higher CPI as a result of an increased numbers of
page-walks (cf. Chapter 2). This last idea is captured by the Write-spilling feature.

To depict all these aspects, we use the Reference Impact-Mapping (IMref), introduced in
Chapter 3. A partial example for a gadget variant is shown in Figure 4.4, using only some
of the relevant metrics. We specifically plot a histogram of the values of the targeted metrics
for a specific variant, and knob assignment.
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BP gadget

Access Pattern

Bad Sort Stack Abuse Brute Force Normalized

Randomization

PRNG

Custom Native

True Randomness

CPI Amortization

Constraints:

Normalized ⇒ (True Randomness ∨ Native)

Brute Force ⇒ (True Randomness ∨ Custom)

CPI Amortization ⇒ (Normalized ∨ Stack Abuse)

Figure 4.5: Complete feature-model for the Branch Prediction Gadget. Constraints should be read as
logical implications.

Lastly, we present the knobs of Cache Gadget together with their value domains in
Table 4.2. We also describe their intended use; overall, the knobs of the Cache Gadget serve
to scale the applied workload. These knobs are available for each variant, and they can
usually alter the behavior of each such variant. In any case, our implementation includes
safeguards that try to prevent knobs from altering the behavior of a variant to the extent
that would make the same variant attain a behavior that is too similar to that of another
variant. In other words, for each variant we try to maintain some distinct profile, and knobs
should not affect this.

4.2.3 The Branch Prediction Gadget

While the Cache Gadget provides us with a way of synthesizing scenarios of bad cache
locality or aggressive memory usage, we can also target computational components of an
architecture. Most x86 implementations provide counters regarding the overall performance
of a program w.r.t. the CPU, especially in terms of the pipeline bubbles and the ensuing stalls.
On this basis, we developed a gadget that deliberately introduces stalls, by focusing on the
workings of the BPU. In particular, we attempted to synthesize workloads that attain a high
level of branch-mispredictions, given their importance in the performance of software in
modern processors [33, 34]. As a result, we managed to design the feature-model depicted
in Figure 4.5.

The feature-model has two main parts, denoted by the abstract features Access Pattern
and Randomization. The Access Pattern implies the manner in which a workload accesses
caches and memory. However, in this context the feature refers more to the way instructions
are accessed from the Level-1 instruction cache. Furthermore, we have several, mutually
exclusive choices in terms of access patterns: Bad Sort, Stack Abuse, Brute Force and
Normalized. The Bad Sort feature corresponds to a badly implemented sorting algorithm,
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Metric Description

Branch Misprediction-Rate
The ratio of branch mispredictions and overall branching

instructions. Branching instructions can be conditional (if-else
types) or simple jumps (goto types).

Conditional Branch
Misprediction-Rate

The ratio of branch mispredictions and overall branching
instructions, considered only for conditional branching

instructions.

Front-end Boundedness
Shows the ratio of stalls that occur due to front-end bubbles,

over total stalls.

Bad Speculation
Shows the percentage of unsuccessful speculative executions

after a branch prediction. The higher the percentage, the more
effort is wasted by the CPU due to a misprediction (on average).

CPI

The number of CPU cycles spent in executing an instruction, on
average. Usually obtained by dividing the number of CPU-cycles
spent executing a process, including stall cycles, and the number

of retired (completed) instructions for that process.

Table 4.3: Metrics used to quantify the behavior of the Branch Prediction Gadget.

which performs multiple redundant passes over elements in an array without actually
sorting correctly, resulting in unnecessary branch mispredictions. The Stack Abuse feature
corresponds to a tail-recursive implementation that presents a specific challenge to the BPU,
in that the return path of a recursive function call contains branches that can be easily
mispredicted, mostly because the return path is too long and many return addresses are
not kept in the call-stack, thus becoming difficult to predict.

The other two access patterns are a bit more involved, as they include the use of deliberate
randomization strategies, which is why we have an abstract Randomization feature in
the feature-model. This feature is broken down into two possible implementations of
the Random Number Generators (RNGs) that can be used. The first implementation is
a Pseudo-Random Number Generator (PRNG), whereas the second one makes use of a
specific x86 instruction that obtains random numbers from an RNG that is seeded with
hardware-level entropy. The PRNG implementation usually involves the use of the default
standard-library implementation. However, we provide a custom Linear (Congruential)
Random Number Generator (LRNG) implementation, since the standard implementation
appeared a bit inconsistent during our initial tests. With the help of randomization, we were
able to implement access patterns that incur high branch-misprediction rates. This was made
possible due to the fact that we execute the same branch instructions repeatedly, and in each
execution the branch decision is random, thus making the prediction difficult for the BPU.
Indeed, the goal is for the BPU to not be able to figure out a recurring sequence of decisions
w.r.t a given branch instruction, and for it to resort to simple guesses. When such guesses are
wrong, bubbles can form in the pipeline, causing significant latencies. Both the Brute Force
and Normalized features incorporate this idea, but the former also incorporates deliberate
loop-unrolling so as to reduce the number of non-conditional branches (e.g. branches that
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Figure 4.6: A histogram of frequency distributions for samples of values of Branch Misprediction
Rate, Conditional Branch Misprediction Rate and CPI is shown. The number of bins
used was set to the large value of 50, since lower values smoothen the overall shape
significantly. The measurements were performed in a reference architecture, which we
introduce during the evaluation in Chapter 5.

are not if-else conditions), thus providing us with a distinct behavior. Non-conditional
branches are always "taken", and their predictability relates to the target prediction idea
discussed in Chapter 2. Besides the randomization ideas, these two patterns are effective
due to an imminent exhaustion of the capacity of Branch Target Buffer (BTB). We ensure
this saturation by incorporating a large number of branches, and ensuring that the same
branch instruction is not re-executed too soon (i.e. we reduce temporal locality w.r.t. the
BTB). Having a saturated BTB implies that additional latencies can be accrued because the
prediction cannot make use of any Pattern History Table (PHT) entries, which can also lead
to bubbles.

The last feature in the feature-model is CPI Amortization. This feature provides us with
added variety in terms of the behaviors we obtain, though it simply helps reduce the overall
latencies that are accrued by mispredictions. Note that the feature-model also incorporates
several constraints for some features. Notably, the use of Normalized or Brute Force patterns
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Knob Values Description

OPS_SCALER {10n|n ∈ {1, 2, 3, 4}}

OPS denotes the overall number of iterations
performed by the internal workload loop of
the gadget. The default number can be scaled

up, using this knob. We opt to use only
multiple of tens so as to have noticeable

effects when tuning this knob.

ALLOC_SCALER {1, 2, 4}

The gadget typically initializes simple arrays
with specific sizes. This knob helps change
the array size, which simply increases the
overall number of instructions, potentially
providing better resolution (less noise) in

terms of the metrics that we need to measure.

LOPSIDE {0, 1, 2}

In cases when Randomization is used, the
amount of randomness the conditional

branching instructions have to endure can be
varied using this knob. Value 0 corresponds

to full randomization, in which a given
conditional branch has an approximate 50%
chance of being predicted correctly. Values 1
and 2 correspond to the approximate cases of

25% and 12.5%, respectively.

Table 4.4: Knobs used in the Branch Prediction Gadget for fine-tuning of impacts.

implies the activation of the Randomization feature, by design. In addition, the Brute Force
feature can only use the custom LRNG implementation because the customizability of the
LRNG can be beneficial in case the overall workload results in very high latencies.

While the access patterns described earlier largely follow the same ideas, we have managed
to ensure that different variants of the gadget can lead to distinctly varied behaviors. Based
on our approach, we make use of the metrics shown in Table 4.3 to verify this. The overall
rationale in choosing these metrics is that we want to see not only high misprediction
rates, but also distinguish between conditional-branches and non-conditional branches.
Furthermore, characterizing the types of bubbles we observe is also compelling, which is
why we try to distinguish between bubbles that happen in relation to the front-end of the
CPU, as opposed to the back-end (cf. Chapter 2). In Figure 4.6 we provide a partial example
of the IMref for a specific variant.

Lastly, the Branch Prediction Gadget also incorporates knobs, as shown in Table 4.4. The
use of knobs in this case is mostly analogous to that of the Cache Gadget, though slight
differences exist. One difference is that some knobs are more variant-specific; for instance,
the Lopside knob is only useful for variants of the gadget that include the Normalized
feature, whereas for other variants it simply reverts to a default value without making any
difference. To give a better idea of how knobs can help, we provide an example in Figure 4.7,
where we can see that the knob can help us manipulate the rate of mispredictions in a
meaningful way. Specifically, we make use of a variant of the Branch Prediction Gadget
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Figure 4.7: A bubble plot indicating the effect of the Lopside knob. We perform 10 rounds of
measurements. In each round, we take a measurement for each of the three knob values.
The measurement rounds are shown in the y-axis. The size of each bubble (data point)
indicates the value of the CPI obtained in the same round, relative to the other bubbles.
The observed behavior is consistent with the description in Table 4.4.

and try out different values for the Lopside knob. After having taken a measurement for
each value of that knob, we repeat the overall process. In total, we make 10 repetitions. The
reason for doing this in rounds, rather than taking 10 measurements at a time for each knob
value, is that across rounds, the system-wide CPU utilization is varied so that we can see the
knobs at work in different conditions6.

4.3 configurable system templates

To facilitate the actual synthesis for benchmarks, we rely on configurable systems that serve
as templates for the injection of gadget variants. The code artifacts of these templates are
augmented with injection points by design. These injection points can be moved to different
locations, but we insist on specifying them in a careful manner and considering them as
an integral part of the design of a template system. This way, if the ISG has to be modified
for a template system, we should simply change the way injection points map to gadget
variants. Furthermore, each template system has its own binding layer through which we can
obtain different variants thereof; this is something that the Weaving component handles,
similarly to how the Gadget Manager handles the gadget SPLs. Moreover, while we can

6 We isolated the gadget variant only in the first round.
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obtain variants of a template system, any such template will not be functional unless the
processes described in Figure 3.3 are executed. Specifically, the gadget variants need to be
derived first, and then weaving has to be performed on the basis of an (ISG) that clearly
maps the injection points to gadget variants.

An important aspect regarding the template systems we have implemented is that they
can help us test and evaluate the overall approach, but can also be of direct use to researchers.
However, the templates cannot be assumed to be representative of existing systems, which
means that we do not claim that our approach can induce faults in actual systems, though
this is something we intend to pursue in future work (cf. Chapter 7). Our templates typically
have some workload that allows us to obtain pre-injection measurements which can be used
as baselines. In addition, the templates typically indicate different yet low levels of CPU-
or Memory-boundedness for different variants, by design7. For instance, we have built a
template called Scrambler that performs mathematical operations such as Discrete Fourier
Transforms, while operating on scrambled inputs which it stores in and reads from memory.
Focusing on mathematical operations means that the template’s inherent workload could
be CPU-bound if intended, in the sense that the latency accrued for that workload could
be made to depend on the frequency of the CPU, rather than memory-related latencies.
Similarly, we have implemented a template called Memo that could be made memory-bound
by emphasizing memory access latencies. However, we make sure that by default, neither of
these templates comprises variants that indicate such characteristics.

4.4 limitations and details

Our implementation realizes the approach we outlined in Chapter 3. However, it has several
limitations and is largely a work in progress. Some important limitations are as follows.
Firstly, we have inadvertently tailored the gadgets to x86 implementations, and in particular
Intel ones. The primary reason for this is that x86 implementations provide an extensive
instruction set which we take advantage of for things such as cache bypassing. In addition,
we have relied mostly on Intel-specific manuals and literature to inform the design of
our gadgets, and are cognizant of the fact that our gadgets might not work well in x86

implementations such as AMD. Secondly, in our implementations we deliberately disable
any compiler optimizations, as they interfere with our implementation in very significant
ways. For instance, we found that the use of any form of vectorization by the compiler
removes much of the impact that the Cache Gadget is supposed to attain.

On the level of the framework, the main limitation relates to the fact that both gadgets and
template systems are exclusively implemented in C++, with no support for other languages.
Furthermore, extending the framework with more gadgets is not trivial because of the need
for careful consideration of the binding layer introduced earlier, as well as namespacing
issues that need to be accounted for during the weaving process8. Furthermore, the overall
workload mixing that can be attained by injecting gadget variants has only been considered
in terms of a sequential execution flow, and it is entirely static. We intend to improve on
this aspect in future work (cf. Chapter 7).

7 Please refer to Appendix A for the feature-models of the two template systems.
8 These issues are documented in the code repository.



52 implementation

Lastly, an important limitation exists in terms of the semantics of gadgets. Considering
that what is injected into a template is an already derived gadget variant, that inherently
means that there is no way of dynamically tuning the gadget at runtime. Nevertheless,
this can make each injected variant an atomic unit of workload, which helps in the overall
synthesis of behaviors in the context of the template systems.
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E VA L UAT I O N

In this chapter, we evaluate the approach presented in Chapter 3, on the basis of our
implementation of the core elements, namely the gadgets and the weaving framework.
Specifically, we outline two research questions that relate to the core premises of our
approach: ensuring stability in the behaviors of gadgets and providing a practical way of
creating synthetic benchmarks that can be helpful to researchers.

5.1 research questions

To evaluate our work, we answer the following research questions:

• RQ1: Do gadgets provide stable behaviors and thus enable us to precisely and easily
define their Ground-Truths?

– RQ1.1 (Consistency): How consistent is the behavior of a gadget, when used in
isolation?

– RQ1.2 (Reproducibility): Do the gadgets indicate the same behavior across
different environments?

• RQ2: Does our approach enable us to produce useful synthetic benchmarks on the
basis of gadgets?

– RQ2.1 (Inter-Gadget Influences): Do different gadget variants, when executed
together, influence the impacts of one another in ways that alter their individual
impacts?

– RQ2.2 (Weaving): Is our weaving approach effective in altering the existing
performance profile of a configurable system template?

5.1.1 Research Question 1

Our primary concern is to have the gadgets act as reliable building blocks for synthetic
benchmarks. For that reason, we outline RQ1 through which we evaluate whether the
gadgets can have a known and stable behavioral profile out-of-the-box. In the same vein,
we want to see how feasible it is to define a precise Ground Truth (GT) for each gadget,
which is essential to our approach for reasons of stability and transparency, and to see
whether we can do so without manually obtaining Impact-Mappings (IMs) for every possible
environment (cf. Chapter 3).

To that end, our initial concern is with regard to the behavioral profile of each gadget
variant when it executes in isolation, i.e. unaffected by other processes (RQ1.1). In Chapter 3

we presented the notions of an IM and Reference Impact-Mapping (IMref), which help us
discern whether the gadgets have consistent impacts with regard to specific resources,

53
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indicated through metrics that were specified accordingly. We presented the relevant metrics
for each of the two gadgets we have built in Chapter 4. Thus, we now focus in obtaining a
more descriptive view of the IMref for each of our gadgets. As introduced in Chapter 3, the
IMref comprises a series of aggregate values for each metric of interest, obtained for each
variant of a given gadget and for a specific knob assignment, in a reference environment
that we choose. Having a high level of consistency in these values can directly help in
achieving overall stability, and consequently in being able to pinpoint the GT of each gadget.

Informed by the results of RQ1.1, we then try to evaluate whether the gadgets have
behaviors that can be reproduced in other x86 microarchitectures (RQ1.2). Reproducibility
would indicate that the behaviors of gadgets can generalize to different environments, which
implies that a gadget’s GT could possibly be defined without doing measurements in every
environment. However, an important issue arises due to the resource-specific nature of the
gadgets, whereby minor differences between microarchitectures can potentially render their
implementation impotent in some environments. Naturally, we rely on the IMref from RQ1.1
to get some initial expectations, though what we evaluate specifically is whether the IMs we
get in different environments resemble one another.

5.1.2 Research Question 2

While we can evaluate the behaviors of gadgets in isolation, our ultimate goal is to produce
synthetic benchmarks. To that end, we outline RQ2 with the aim to evaluate the runtime
semantics of our gadgets and their usefulness in the weaving process that we outlined in
Chapter 3. Firstly, we are interested in knowing whether unexpected behaviors arise when
multiple gadget variants are combined in the same execution, i.e. combined in a single
running process (RQ2.1). The motivation for this stems from the fact that we want our
(presumably) stable gadget behaviors to persists in the context of the larger benchmarks we
build, so that the benchmarks themselves are stable (cf. Chapter 3). To that end, a cause for
concern regarding this case arises from the fact that we have targeted subsystems related to
caching and branch-prediction. The inherent intricacies in how these subsystems function
pose challenges to the usefulness of our implementations, especially considering that we
want to use gadgets as building blocks for the derivation of synthetic benchmarks and thus
have no unintended inter-gadget influences.

Notably, we are wary of the hardware prefetching strategies that could be employed by
x86 microarchitectures for the caches, as well as the use of global history tables in modern
Branch Prediction Units (BPUs). Hardware prefetchers can employ a variety of algorithms,
many of which are proprietary and hence undisclosed [20]; regardless, advanced techniques
are likely to be used [26], which can be cause for concern in our context. In addition, the
use of global histories by the BPU means that correlations between different branching
instructions in an executing process are exploited for more accurate predictions [34, 45]. On
this basis, we need to evaluate whether any gadget variants experience any reduction in
their impacts when combined with other variants in the same execution, as well as to see
whether the execution order of multiple gadget variants can be a confounding factor with
regard to this issue.

As the last part in our evaluation, we aim to put everything in context and thus try to
evaluate the usefulness of our approach through RQ2.2. Informed by the results of RQ1
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and RQ2.1, we try to make use of the gadgets to build synthetic benchmarks with distinct
behavioral profiles and to discuss what limitations exist. In doing so, we aim to indicate
how the notion of an Injective System-Gadget Mapping (ISG), presented in Chapter 3, is
useful in obtaining benchmarks with varied behaviors.

5.2 operationalization

To address the questions outlined above we need to perform measurements and experiments,
using different subject systems as test environments. With regard to measurements, we
described the overall idea of resource-specific metrics in Chapter 3, and the measurements
techniques of counting and profiling in Chapter 2. Relying on the counting of performance
events, we are able to measure the impact of each gadget variant and thus obtain series of
values for each resource-specific metric that the variant targets, as specified by the ▷-relation
(cf. Chapter 3). This is made possible by counting Performance-Monitoring Unit (PMU)
events using Model-Specific Registers (MSRs), and then aggregating the event counts to
obtain values for our specified metrics. Overall, we focus on 16 variants of our gadgets in
total1, 7 of which correspond to the Branch Prediction Gadget, and the rest to the Cache
Gadget. These variants are listed in Table 5.1.

Importantly, we make sure to account for any potential issues with the precision of the
counting of events by isolating the gadgets during execution. We achieve that by setting
a high affinity to a random Central Processing Unit (CPU) core so that the counting is not
affected by inter-core process migrations2, as well as by relying on a controlled cluster
environment that makes use of cgroups and guarantees that any other process running in
the system does not affect the gadget process(es)3. Overall, we make use of five different
environments, four of which are Intel implementations that correspond to generations 4-7
of the Intel processors. For completion, we also make measurements in an AMD system.
All the concerned environments are described in Table 5.2, where we also highlight our
reference environment.

Remark (Relaxed Impact Mappings)
In Chapter 3, we discussed in detail how an IM relates variants of the gadgets to metrics
through the targeting relation, while accounting for different knob assignments. In order to
simplify our evaluation, for every measurement or experiment we use maximal assignments
of values for the knobs, such that we obtain the maximal possible impacts for each gadget
variant. The rationale for doing this is that knobs provide a useful yet not critical utility, since
they do not alter the behaviors of gadget variants that much by design. That means that for
our research questions, it is enough to maintain the same knob assignments throughout
measurements and experiments as if they were a fixed part of the functional design of each
gadget variant. Indeed, we make sure to use the same assignment of values to the knobs
for any gadget variant across different measurements and environments. In any case, we
intend to evaluate their implications in future work (cf. Chapter 7).

1 We have omitted select variants due to correctness issues we encountered during our work.
2 There have been certain issues in the past relating to imprecise counter values, in the context of hyperthreading.

Patches exist but are not integrated in all Linux kernels. An example is given in https://lore.kernel.org/

lkml/1416251225-17721-7-git-send-email-eranian@google.com/.
3 cgroups are a Unix-system utility that enables performance isolation based on user permissions.

https://lore.kernel.org/lkml/1416251225-17721-7-git-send-email-eranian@google.com/
https://lore.kernel.org/lkml/1416251225-17721-7-git-send-email-eranian@google.com/
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Gadget Vnt. Selected Features

BP
Gadget

v1
BP Gadget, Access Pattern, Normalized,

Randomization, PRNG, Native

v2
BP Gadget, Access Pattern,

Stack Abuse

v3
BP Gadget, Access Pattern, Normalized,

CPI Amortization, Randomization, PRNG, Native

v4
BP Gadget, Access Pattern, Stack Abuse,

CPI Amortization

v5
BP Gadget, Access Pattern, Brute Force,

Randomization, PRNG, Native

v6
BP Gadget, Access Pattern, Normalized,

Randomization, True Randomness

v7
BP Gadget, Access Pattern, Brute Force,

Randomization, PRNG, Custom

Cache
Gadget

v1
Cache Gadget, Workload Generation, Read-Skewing,

Access Pattern, Saturation, L1d

v2
Cache Gadget, Workload Generation, Read-Skewing,

Access Pattern, Locality Reduction

v3
Cache Gadget, Workload Generation, Read-Skewing,

Access Pattern, Saturation, L1d, L2

v4
Cache Gadget, Workload Generation, Read-Skewing,
Access Pattern, Saturation, L1d, L2, L1 Amortization

v5
Cache Gadget, Workload Generation, Read-Skewing,

Access Pattern, Saturation, L1d, L2, L3

v6
Cache Gadget, Workload Generation, Read-Skewing,

Access Pattern, Saturation, L1d, L2, L3, L1 Amortization

v7
Cache Gadget, Workload Generation, Write-Skewing,

Access Pattern, Saturation, L1d, L2, L3

v8
Cache Gadget, Workload Generation, Write-Skewing,

Access Pattern, Locality Reduction

v9
Cache Gadget, Workload Generation, Write-Skewing,
Access Pattern, Saturation, L1d, L2, L3, Write Spilling

Table 5.1: Gadget variants and the corresponding feature-selections. The feature-models for each
gadget were introduced in Chapter 4.

Therefore, for any gadget g ∈ G, we will only use the relaxed forms of IM and GT, introduced
in Chapter 3:

IMB
g : (Vg ▷Mg) → R+n

0 (5.1)

GT B
g : E × (Vg ▷Mg) → R+n

0 (5.2)

where B ⊆ Ag is a set of maximal assignments, in the sense that for each variant v ∈ Vg, it
includes an assignment for which we can obtain the highest values possible w.r.t. the metrics
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# Microarchitecture CPU Caches
Main

Memory

1

Intel Skylake - 6th
Generation

2.60 GhZ,
6-core, 64-bit

L1d: 32 KiB, per-core.
L2: 256 KiB, per-core.
L3: 12 MiB, shared.

64 GiB, DDR4

2

Intel KabyLake - 7th
Generation

3.20 GhZ,
4-core, 64-bit

L1d: 32 KiB, per-core.
L2: 256 KiB, per-core.

L3: 6 MiB, shared.
16 GiB, DDR4

3

Intel Broadwell - 5th
Generation

3.10 GhZ,
10-core, 64-bit

L1d: 64 KiB, per-core.
L2: 512 KiB, per-core.
L3: 50 MiB, shared.

256 GiB,
DDR3

4

Intel Haswell - 4th
Generation

3.30 GhZ,
4-core, 64-bit

L1d: 32 KiB, per-core.
L2: 128 KiB, per-core.

L3: 6 MiB, shared.
16 GiB, DDR4

5 AMD Zen3
4.10 GhZ,

8-core, 64-bit

L1d: 32 KiB, per-core.
L2: 512 KiB, per-core.
L3: 64 MiB, shared.

256 GiB,
DDR5

Table 5.2: Subject systems used as test environments for our measurements and experiments. The
green-shaded row denotes the reference environment. Note that the L1d and L2 caches
sizes are shown as individual (per-core) sizes. The overall L1d and L2 capacities can be
found by multiplying the given values with the number of cores.

that v targets. From now on, we imply the use of the relaxed form whenever mentioning IM,
IMref and GT. The knob assignments are thus implied in all cases.

5.2.1 Research Question 1

In order to tackle RQ1, we perform different experiments or measurements for each of
its sub-questions. Regarding RQ1.1, we perform measurements for each gadget variant;
specifically, we obtain independent samples of values for the metrics that are targeted by the
variant. For completion, we also obtain values for metrics that are not targeted by a variant,
as long as these metrics correspond to the gadget overall. However, targeted metrics are in
our main focus. In any case, we ensure the independence of these samples by introducing
short wait-times between executions. In each execution, we are able to obtain one aggregated
value for each targeted metric. That means that across multiple executions, we are able to
get entire samples of values for each such metric, conforming to the notion of IM.

Naturally, the metric values we obtain are aggregated from counts of PMU events that we
measure (count) for each specific variant, during its execution. In order to count a sufficient
number of PMU events, it is important that we allow the gadget variants to run for an
adequate amount of time - otherwise, since there is a limited number of MSRs that can be
used for counting, certain events might be under-counted. The maximal knob assignments
are particularly helpful in this regard. To verify the correctness of our measurements we
also perform profiling for each variant, making use of Precise Event-Based Sampling (PEBS),
a feature offered by most x86 implementations through which event counts are measured
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with high precision and combined with trace data. After obtaining accurate event counts, we
aggregate the results and obtain values for our target metrics based on simple calculations
that use the event counts. In the context of RQ1.1, we rely on our reference environment for
these measurements and thus obtain an IMref for each of our two gadgets.

Practically, any IM yields a superset of frequency distributions - for each gadget variant,
we have multiple frequency distributions (one for each targeted metric). Since the IMref

is intended as an important description of a gadget’s design, we make it more tangible
by reporting both the means and the Coefficient of Variation (CoV) of each frequency
distribution. Moreover, considering that the frequency distributions can present varying
levels of skew or kurtosis, we derive bootstrapped confidence-intervals on the basis of
resampling [46]. The bootstrapping incorporates bias-correction analysis, which accounts for
high levels of skew in the distribution and improves the accuracy of the confidence-intervals.
In addition, we perform goodness-of-fitness test regarding the normality of the frequency
distributions using the Shapiro-Wilk method [47].

To address RQ1.2, we obtain an IM in each of the environments listed in Table 5.2. An
important limitation we faced is the fact that the underlying PMU counters we use in Intel
systems have significantly different semantics than those in AMD systems (cf. Section 5.5).
In spite of this, we are still able to perform exact comparisons among the Intel environments.
After having obtained the IMref in RQ1.1, we obtain an IM in each of the other three Intel
environments, for each gadget. We then attempt to evaluate whether statistically significant
differences exist with regard to the (shapes of) frequency distributions in the IMs obtained
across all four environments, for each gadget. We rely on the Kruskal-Wallis test [48]; using
a non-parametric test is important due to the normality results we obtained beforehands,
which we also obtain for the non-reference, Intel environments.

5.2.2 Research Question 2

The second question we intend to address relates directly to the practical use of our
benchmark-producing framework (RQ2). To that end, we firstly design an experiment
that helps us address RQ2.1. Specifically, we make use of a configurable system template
that has no intrinsic workload of its own, called the Empty Template. We introduce two
injection-points in this system in order to combine pairs of gadget variants in the same
execution. Notably, we only consider pairs of variants that belong to the same gadget due
to the fact that our rationale for this sub-question stems from ideas that apply either to
the caches or the BPU, as described previously. The Experiment component introduced in
Figure 4.1 has been designed to produce appropriate ISGs for this case. Overall, the goal of
the experiment is to determine whether the impacts obtained by a given pair deviates from
predefined expectations that are calculated from the impacts of each variant in isolation (cf.
RQ1.1).

For each such pair, we perform measurements similarly to the ones described for RQ1.1.
However, an important detail for this experiment is that we consider the intersection of the
metrics that are targeted by the injected gadget variants. The reason is that we want to
define clear expectations for the values these metrics can take, which would not be the case
if one of the variants does not explicitly target a given metric while the other does. In fact, if
a metric is not targeted by a variant, that variant can obtain highly-varied values w.r.t. that
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metric (cf. Chapter 3). Moreover, we only consider rate (percentage) metrics. With these in
mind, for any two variants v1 and v2 of the same gadget, we can calculate an expected value
for a metric that is targeted by both variants by looking at the counters used to calculate the
values for those metrics in RQ1.1. For instance, for a metric like L1 Loads Miss-Rate we can
note down the average counts of misses and hits in the Level-1 data cache, for either of the
two variants (assuming both variants target the metric), across multiple executions of each.
The expected value for that metric, in the context of a paired execution, is then obtained by:

Mean_L1_missesv1 + Mean_L1_missesv2

(Mean_L1_missesv1 + Mean_L1_missesv2) + (Mean_L1_hitsv1 + Mean_L1_hitsv2)
(5.3)

Overall, we obtain independent samples of values for each of the metrics that are targeted
by both variants in a pair, across multiple combined executions. Then, we perform a one
sample t-test for each such sample, using the calculated expected values as the theoretical
means to test against. Naturally, we only perform the test when the normality assumption
of the t-test is fulfilled - again, we rely on the Shapiro-Wilk method to assess this. Moreover,
we take special interest in verifying whether there exist pairs of variants (v1, v2) that obtain
significantly different impacts from the corresponding, reordered pair (v2, v1). Essentially,
if our t-tests provide differing verdicts for such pairs, we perform additional verification
using ANOVA [49], whereby we compare the samples of the reversely-ordered pairs against
one other, provided that the normality assumption holds for the samples of each pair.

To validate the overall, weaving-based approach (RQ2.2), we design another experiment
in which we can derive variants of our template configurable systems, wherein the same
variant of the template can incorporate different combinations of gadget variants in its own
structure. As such, we make full use of the decoupling between the template configurable
system and the gadgets that the ISG facilitates. Specifically, we introduce a weaving mode in
our Experiment component that allows us to get multiple ISGs for the same set of injection
points, making use of uniform random sampling [5] to select a random group of gadget
variants as injection candidates. Subsequently, we perform measurements for our template
system, for each ISG, whereby we obtain multiple samples of values for several metrics. Note
that in this case, we are interested in the union of metrics that are targeted by the injected
gadget variants, since we want to evaluate every possible impact that can be enabled by
any of the variants. The template system we use in this case is the Scrambler, introduced in
Chapter 4. This template system comprises workloads with minimal impacts on resources,
for each of its variants, which is useful to us for the purpose of having a real (no-injections)
baseline against which we can compare the scenarios where we have multiple injections of
gadgets for that same variant of the template.

5.3 results

In this section we provide the results of the experiments and measurements we described
previously. We do so by focusing on each question and sub-question in turn. As such, we
present technical details regarding sample sizes, statistical tests, hypotheses and any issues
that we have encountered. These results will enable our discussion in the next section.
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5.3.1 Research Question 1

5.3.1.1 Consistency

The results of our measurements with regard to RQ1.1 are presented as follows. In Table 5.3
and Table 5.5 we present a statistical view of the IMrefs of the Cache Gadget and Branch
Prediction Gadget, respectively. We make use of all the metrics in the Mcg and Mbpg sets,
previously described in Table 4.1 and Table 4.3. For each variant, we provide the mean
values and CoVs for all metrics in the respective sets. Notably, we have opted not to omit
values for the metrics that are not explicitly targeted by the gadget variants, though we have
emphasized the targeted metrics with the color green. The size of each sample that we have
used to calculate each mean and CoV value was set to 50.

Besides the values for the targeted metrics, we wanted to provide a better idea of what it
means for a metric to not be targeted. Specifically, for non-targeted metrics we would ideally
have minimal values of the mean, whereas the CoV can vary. We specifically see that this is
the most often the case, though some exceptions exist which we highlight in red to indicate
them as potential side-effects. In this context, we see side-effects as unintended cases in
which some gadget variant obtains a high and/or stable impact w.r.t. a metric that it does
not target by design. To further augment our results, we provide bootstrapped confidence-
intervals on the basis of resampling, the confidence level being 90%. The bootstrapping is
done by resampling 1000 times while also performing bias-correction-analysis [46], which
is important when the samples do not resemble a normal distribution. These results are
presented in Table 5.4 and Table 5.6, for each of the two gadgets.

One particular issue arises with regard to the Load Page-Walks and Store Page-Walks
metrics in this case: we have omitted these metrics from the calculation due to there being
multiple values in the original event counts that contained zero-values, which made the
calculation of the confidence-intervals impossible. In addition, we have introduced some
Not-Available (NA) entries for the L3 Loads Miss-Rate and L3 Store Miss-Rate for the same
reason, and followed the same approach for Frontend-Boundedness and Bad-Speculation.

5.3.1.2 Reproducibility

Regarding RQ1.2, we have performed a multitude of Kruskal-Wallis tests, each involving
four groups. Specifically, we have compared samples obtained for each variant-metric pair,
in each of the four Intel environments listed in Table 5.2. The overall goal of these tests is to
verify whether the samples indicate statistically significant differences in terms of the shapes
of their respective frequency-distributions. Our choice of the Kruskal-Wallis was specifically
informed by multiple goodness-of-fit tests that ruled out the possibility of using parametric
methods such as ANOVA. As mentioned previously, we have used the Shapiro-Wilk test
to check whether the samples obtained for the same variant-metric pair constitute normal
distributions. The results for these normality tests are presented in Table 5.7 and Table 5.8.
We have labeled each test environment using capital letters: S(kylake), K(abylake), H(aswell),
B(roadwell).

The results of the Kruskal-Wallis tests themselves are presented separately, in Table 5.9
and Table 5.10. Again, we use the labels mentioned previously for the environments, and
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Variant L1 Load Miss-Rate L2 Load Miss-Rate L3 Loads Miss-Rate L3 Store Miss-Rate Load Page Walks Store Page Walks CPI

µ CoV µ CoV µ CoV µ CoV µ CoV µ CoV µ CoV

v1 99.66% 0.00 0.00% 0.46 4.11% 2.08 0.00% 0.00 5.27e+06 0.08 0.40 9.90 0.25 0.01

v2 8.62% 0.35 99.99% 0.00 99.99% 0.00 52.30% 1.59 2.21e+10 0.27 11.92 2.41 17.10 0.27

v3 99.99% 0.00 88.11% 0.07 0.00% 4.99 0.00% 0.00 7.97e+09 0.08 6.00 1.68 0.38 0.01

v4 24.33% 0.00 94.49% 0.00 0.00% 0.40 0.00% 0.00 1.61e+10 0.01 1.50 8.66 0.38 0.01

v5 99.96% 0.00 99.99% 0.00 80.69% 0.00 0.00% 0.00 1.78e+10 0.01 2.89 3.60 1.18 0.01

v6 24.41% 0.01 99.99% 0.00 80.34% 0.00 0.00% 0.00 2.35e+10 0.00 55.40 1.18 0.93 0.00

v7 0.00% 1.19 52.43% 0.66 0.97% 26.20 80.41% 0.01 2.55e+09 0.01 5.16e+07 0.01 1.19 0.09

v8 0.00% 0.46 6.07% 1.50 0.00% 0.00 100.00% 0.04 3.21e+09 0.16 3.81 0.00 14.49 0.16

v9 3.21% 0.58 32.88% 0.73 91.82% 0.17 99.99% 0.00 2.60e+10 0.01 1.03e+08 0.01 58.87 0.01

Table 5.3: Descriptive statistics (µ, CoV) for the IMref of the Cache Gadget. The green-shaded cells
indicate targeted metrics, whereas the red-shaded cells indicate potential side-effects.
Values are rounded to two decimal points.

Variant L1 Load Miss-Rate L2 Load Miss-Rate L3 Loads Miss-Rate L3 Store Miss-Rate CPI

min max min max min max min max min max

v1 99.9664% 99.9668% 0.18e-03% 0.2e-03% 2.92% 5.87% NA NA 0.251 0.252

v2 8.13% 9.13% 99.995% 99.999% 99.998% 99.999% 38.03% 65.82% 16.31 17.85

v3 99.9993% 99.9994% 88.02% 88.23% 0.09e-06% 0.52e-06% NA NA 0.379 0.380

v4 24.31% 24.34% 94.42% 94.56% 0.12e-05% 0.14e-05% NA NA 0.383 0.384

v5 99.9681% 99.9687% 99.995% 99.999% 80.63% 80.74% NA NA 1.186 1.190

v6 24.37% 24.45% 99.9963% 99.9964% 80.32% 80.36% NA NA 0.925 0.926

v7 0.20e-03% 0.30e-03% 46.47% 57.90% 0.00% 4.99% 80.24% 80.62% 1.18 1.21

v8 0.0010% 0.0012% 4.75% 7.85% NA NA 99.96% 100.00% 14.09 14.88

v9 2.92% 3.54% 29.21% 37.03% 88.37% 93.96% 99.98% 100.00% 58.83 58.93

Table 5.4: Bootstrapped 90% Confidence-Intervals for the IMref of the Cache Gadget. Values are
rounded to at least two decimal points, and to as many decimal points as needed to make
the interval boundaries noticeable.

we report the p-values obtained from each respective test. As such, for each variant-metric
pair we have used the following null hypothesis:

Hk0 : The concerned gadget variant has the same impact in each of the four subject
environments, with regard to a specific metric.

Notably, we use a significance level of p = 0.01. The reason for this value is that we wanted
to increase the possibility of retaining the null hypothesis even for values that are slightly
smaller than 0.05, since we believe that rank-based comparisons are too sensitive, especially
if the sample sizes are large or if they concern sub-decimal values. In addition, each of the
samples used for these tests has a size of 30 values. Moreover, for this part we have opted to
not report any p-values for metrics that are not targeted.
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Variant
Branch

Misprediction-Rate
Conditional Branch
Misprediction-Rate

Front-end
Boundedness

Bad Speculation CPI

µ CoV µ CoV µ CoV µ CoV µ CoV

v1 13.21% 0.01 19.78% 0.01 53.94% 0.02 77.53% 0.01 2.22 0.13

v2 11.10% 0.00 0.01% 1.01 95.50% 0.02 0.01% 1.01 0.79 0.01

v3 13.16% 0.01 19.72% 0.01 51.63% 0.03 67.87% 0.01 1.75 0.01

v4 11.15% 0.02 0.01% 0.32 81.78% 0.05 0.23% 4.62 0.65 0.03

v5 9.09% 0.01 30.39% 0.06 5.43% 0.05 37.33% 0.05 266.71 0.00

v6 15.07% 0.01 22.59% 0.01 75.88% 0.00 73.65% 0.00 2.31 0.01

v7 9.48% 0.01 42.52% 0.01 99.09% 0.02 43.90% 0.01 1.35 0.01

Table 5.5: Descriptive statistics (µ, CoV) for the IMref of the Branch Prediction Gadget. The green-
shaded cells indicate targeted metrics, whereas the red-shaded cells indicate potential
side-effects.Values are rounded to two decimal points.

Variant
Branch

Misprediction-Rate
Conditional Branch
Misprediction-Rate

Front-end
Boundedness

Bad Speculation CPI

min max min max min max min max min max

v1 13.19% 13.25% 19.74% 19.82% 53.73% 54.15% 77.37% 77.62% 2.22 2.23

v2 11.100% 11.104% 0.0068% 0.0070% 95.47% 95.53% 0.06% 0.08% 0.785 0.787

v3 13.14% 13.17% 19.69% 19.73% 51.39% 51.85% 67.80% 67.91% 1.75 1.760

v4 11.12% 11.19% 0.0057% 0.0063% 81.14% 82.48% 0.06% 0.41% 0.647 0.653

v5 9.088% 9.091% 29.86% 30.57% 5.40% 5.50% 37.31% 37.35% 266.65 266.75

v6 15.05% 15.09% 22.55% 22.62% 75.82% 75.93% 73.62% 73.67% 2.30 2.31

v7 9.48% 9.50% 42.49% 42.55% 98.77% 99.29% 43.86% 43.93% 1.351 1.354

Table 5.6: Bootstrapped 90% Confidence-Intervals for the IMref of the Branch Prediction Gadget.
Values are rounded to at least two decimal points, and to as many decimal points as
needed to make the interval boundaries noticeable.

To add more context to our results, in Table 5.9 and Table 5.10 we have highlighted (in
red) two cases when we observed a total loss of effect for a given variant-metric pair, in one
of the environments. Similarly, we have highlighted (in yellow) several cases when the test
would not reject the null hypothesis if the test were performed using only two environments,
namely Skylake and Kabylake. For completion, we include descriptive statistics for the
samples obtained in the three non-reference environments (Kabylake, Haswell, Broadwell),
in Section A.2. Lastly, we provide separate results for the AMD environment listed in
Table 5.2, in Table 5.11. For this environment, we have only included three metrics overall,
due to differences in the semantics of the underlying counters that we would have to use to
obtain these metrics, explained in Section 5.5.



5.3 results 63

Variant L1 Load Miss-Rate L2 Load Miss-Rate L3 Load Miss-Rate L3 Store Miss-Rate CPI

S K H B S K H B S K H B S K H B S K H B

v1

v2

v3

v4

v5

v6

v7

v8

v9

Table 5.7: Results for the normality tests regarding the IMref and other IMs of the Cache Gadget, shown
for each of four test environments: S=Skylake, K=Kabylake, H=Haswell, B=Broadwell. Each
checkmark indicates that the corresponding sample is likely obtained from a normally-
distributed population.

Variant Branch Misprediction-Rate
Conditional

Branch Misprediction-Rate
CPI

S K H B S K H B S K H B

v1

v2

v3

v4

v5

v6

v7

Table 5.8: Results for the normality tests regarding the IMref and other IMs of the Branch Prediction
Gadget, shown for each of four test environments: S=Skylake, K=Kabylake, H=Haswell,
B=Broadwell. Each checkmark indicates that the corresponding sample is likely obtained
from a normally-distributed population.
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Variant L1 Load Miss-Rate L2 Load Miss-Rate L3 Loads Miss-Rate L3 Store Miss-Rate CPI

v1 0.12 NT NT NT NT

v2 NT 0.82 ≪ 0.01 NT ≪ 0.01

v3 0.03 ≪ 0.01 NT NT NT

v4 ≪ 0.01 ≪ 0.01 NT NT NT

v5 ≪ 0.01 ≪ 0.01 ≪ 0.01 NT NT

v6 ≪ 0.01 ≪ 0.01 ≪ 0.01 NT NT

v7 NT NT NT ≪ 0.01 NT

v8 NT NT NT 0.52 ≪ 0.01

v9 NT NT ≪ 0.01 ≪ 0.01 ≪ 0.01

Table 5.9: Results of the Kruskal-Wallis tests regarding the Cache Gadget, obtained for the four
Intel environments. Green-shaded cells indicate cases when the Hk0 would be retained.
Yellow-shaded cells indicate cases when the hypothesis is rejected but would be retained
if we had used only the Skylake and Kabylake environments in the test. Red-shaded cells
indicate cases when a total loss of impact was observed in one of the four environments.
NT=Non-Targeted.

Variant Branch Misprediction-Rate
Conditional

Branch Misprediction-Rate
CPI

v1 ≪ 0.01 ≪ 0.01 NT

v2 ≪ 0.01 NT NT

v3 ≪ 0.01 ≪ 0.01 NT

v4 ≪ 0.01 NT NT

v5 ≪ 0.01 ≪ 0.01 ≪ 0.01

v6 0.13 ≪ 0.01 NT

v7 ≪ 0.01 ≪ 0.01 NT

Table 5.10: Results of the Kruskal-Wallis tests regarding the Branch Prediction Gadget, obtained for
the four Intel environments. Green-shaded cells indicate cases when the Hk0 would be
retained. Yellow-shaded cells indicate cases when the hypothesis is rejected but would
be retained if we had used only the Skylake and Kabylake environments in the test.
Red-shaded cells indicate cases when a total loss of impact was observed in one of the
four environments. NT=Non-Targeted.
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Gadget Variant Branch Misprediction-Rate
Conditional

Branch Misprediction-Rate
L1 Load Miss-Rate CPI

BP Gadget

v1 0.44% 0.00% NA 0.46

v2 1.89% 0.00% NA 0.36

v3 0.04% 0.00% NA 0.37

v4 1.39% 0.00% NA 0.29

v5 8.97% 0.00% NA 9.06

v6 0.00% 0.00% NA 0.41

v7 4.90% 0.00% NA 1.13

Cache Gadget

v1 NA NA 25.08% 0.36

v2 NA NA NT 41.0

v3 NA NA 20.36% 0.25

v4 NA NA 2.28% 0.18

v5 NA NA 61.45% 1.93

v6 NA NA 9.09% 1.03

v7 NA NA NT 1.09

v8 NA NA NT 47.93

v9 NA NA NT 3.26

Table 5.11: Partial results regarding the IM of each gadget, in the AMD Zen3 environment. NA=Not-
Available. NT=Non-targeted.

5.3.2 Research Question 2

5.3.2.1 Inter-Gadget Influences

Regarding RQ2.1, we have conducted an experiment as outlined in Section 5.2.2. Considering
that we have performed a multitude of one-sample t-tests, the results we present here are
aggregated and organized in a breakdown of important findings, shown in Table 5.12. Each
test concerns a sample of values obtained for a metric that is targeted by both gadget
variants in a given pair, with the sample size being set to 20 and the significance level being
p = 0.01. Overall, our tests rely on the following null hypothesis and one-sided alternative
hypothesis:

Ht0 : The mean of a sample of values obtained for a metric that is
targeted by both gadget variants in a combined execution is the same as the
expected value we manually calculate.

Hta : The mean of a sample of values obtained for a metric that is
targeted by both gadget variants in a combined execution is less than the
expected value we manually calculate.

One key aspect that we aimed to show in Table 5.12 is that there are indeed cases when,
for some pairs of gadget variants, the means of the collected samples of values for some
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Retains Rejects Non-Normal
Gadget Pair Type

# δµ # δµ #

BP Gadget
All 36 0.08% 14 0.29% 24

Same Variant 7 0.14% 1 0.16% 4

Cache Gadget
All 45 0.30% 17 1.35% 48

Same Variant 7 0.06% 3 3.39% 10

Table 5.12: The breakdown of our one-sample t-tests regarding our experiment with manually defined
expected values. # indicates counts, whereas δµ indicates the mean of the differences
obtained by subtracting the manually defined expected-value from the mean of each
sample for which we perform a test, and then taking the average value of these differences.
The δµ is a percentage because the concerned metrics are also percentages (e.g. L2 Miss-
Rate).

metrics do not meet the respective expected values that were defined by us. In addition,
we distinguish between cases when the pairs constitute two identical variants as opposed
to when they include different variants (of the same gadget). In that regard, we note that
identical-variant pairs are less prone to rejecting Ht0 .

Overall, the number of tests we performed is 112, out of which 31 resulted in Ht0 being
rejected in favor of Hta . We can also see that the Cache Gadget is more prone to rejections of
the null hypothesis. To further contextualize our results, we provide a statistic we call the
mean of the differences: δµ. Firstly, differences are calculated by subtracting the manually-
defined expected value from the mean of each sample of values. Then, the mean of the
differences is simply the average value of all the calculated differences. This statistic should
provide a rough idea of how much these values deviate from the expected value. Indeed,
we see that the values of δµ are larger for the cases when the null hypothesis is rejected.

Besides the panel of one-sample t-tests, we also report cases when the sample correspond-
ing to some pair (v1, v2), presents a different verdict for Ht0 than its reordered counterpart
(v2, v1), with regard to the same metric. These cases are summarized in Table 5.13. For each
such case, we have performed additional verification by taking the samples of metric values
for each of the pairs and comparing them using ANOVA (cf. Section 5.2.2), with the null
hypothesis being as follows:

Ha0 : The means of the two samples of values obtained for a pair and its
reordered counterpart with regard to a specific metric, are the same.

Our results indicate that all the disagreeing pairs we identified based on our t-tests, also
reject Ha0 . We provide the respective p-values in Table 5.13 (again, using a significance level
of p = 0.01), where we also name the concerned metric.

5.3.2.2 Weaving

As the last part of our results, we present our findings regarding the use of injection points in
a given template configurable system (RQ2.2). The results are shown in Table 5.14. The table
shows different combinations of variants that were generated by uniformly and randomly
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Gadget Pair p-value Culprit

BP Gadget

(v1, v6) 2.09e-13 Branch Misprediction-Rate

(v2, v6) 1.28e-57 Branch Misprediction-Rate

(v2, v7) 2.08e-53 Branch Misprediction-Rate

(v3, v6) 2.40e-16 Branch Misprediction-Rate

(v4, v6) 2.15e-24 Branch Misprediction-Rate

(v5, v7) 7.45e-63 Branch Misprediction-Rate

(v6, v7) 2.72e-45 Conditional Branch Misprediction-Rate

Cache Gadget

(v3, v5) 6.30e-38 L2 Load Miss-Rate

(v5, v6) 2.70e-07 L3 Load Miss-Rate

(v6, v9) 2.39e-07 L3 Load Miss-Rate

Table 5.13: The results for the ANOVA-based verification regarding cases when pairs provide differ-
ent effects than their reordered counterparts.

sampling the set of gadget variants listed in Table 5.1, and how the impact of a specific
variant of our Scrambler template system fares when these gadget variants are injected
in some statically-defined locations in the code of the template system that corresponds
to the features of that (template) variant. This effectively provides us with multiple ISGs

and consequently multiple synthetic benchmarks. The table also shows how the selected
variant of the template fares when no gadget variants are injected, which provides us with
a baseline view of the template’s variant itself.

For each ISG we obtain samples of metric values of size 20. We focus mostly on the metrics
that are targeted by at least one of the gadget variants participating in the ISG, as explained
in Section 5.2.2. As such, we highlight these metrics with either green or yellow, whereas
values for non-targeted metrics are also included. The green cells indicate cases when,
compared to the baseline, the ISG has been effective in altering the performance profile of
the template variant. The yellow cells indicate the same thing, but with the small difference
that the alterations of the impacts are relatively small compared to the baseline. Lastly, the
red cells indicate non-targeted metrics for which we saw unexpectedly high impacts - this
echoes the potential side-effects idea mentioned previously for RQ1.1.
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Gadget Variants
Branch

Misprediction-Rate
Cond. Branch

Misprediction-Rate
L1 Load

Miss-Rate
L2 Load

Miss-Rate
L3 Load

Miss-Rate
L3 Store

Miss-Rate
CPI

Baseline 0.00% 0.00% 0.00% 16.39% 13.41% 38.17% 0.44
(CacheGadget, v7),
(CacheGadget, v5),
(BPGadget, v2)

10.00% 0.00% 1.48% 96.33% 78.69% 80.00% 0.85

(CacheGadget, v9),
(CacheGadget, v8),
(CacheGadget, v2)

0.06% 0.00% 3.08% 99.45% 99.98% 99.89% 15.60

(BPGadget, v5),
(BPGadget, v4),
(BPGadget, v7)

14.02% 20.09% 0.38% 72.76% 97.41% 12.45% 6.03

(CacheGadget, v4),
(CacheGadget, v6),
(BPGadget, v2)

7.29% 0.00% 3.80% 93.08% 28.25% 2.18% 0.71

(BPGadget, v4),
(BPGadget, v6),
(BPGadget, v3)

13.94% 20.72% 0.17% 5.89% 2.69% 30.83% 1.99%

(CacheGadget, v5),
(CacheGadget, v1),
(CacheGadget, v6)

0.00% 0.00% 49.89% 49.58% 80.49% 20.47% 0.75

(CacheGadget, v2),
(BPGadget, v7),
(CacheGadget, v6)

2.98% 6.20% 11.85% 99.99% 82.53% 89.03% 1.68

(BPGadget, v3),
(BPGadget, v3),
(BPGadget, v4)

9.16% 12.23% 0.19% 5.98% 0.29% 3.03% 0.95

(CacheGadget, v4),
(CacheGadget, v9),
(BPGadget, v6)

7.26% 11.45% 9.08% 91.74% 0.00% 100.00% 1.31

(BPGadget, v3),
(CacheGadget, v4),
(CacheGadget, v1)

0.42% 0.73% 32.88% 45.09% 0.00% 20.52% 0.36

Table 5.14: Results on several benchmarks, generated on the basis of multiple ISGs that are obtained
using uniform random sampling of all gadget variants, and a single variant of a template
system. The green-shaded cells indicate cases when the metric is targeted by at least one
of the injected gadget variants and the measured impact is significantly higher than the
baseline. Yellow-shaded cells indicate cases when the metric is targeted by at least one
injected gadget variant but the measured impact is only slightly higher than the baseline.
The red-shaded cells indicate non-targeted metrics for which we see a potential side-effect
in terms of the measured impact.

5.4 discussion

In this section we interpret the results we presented previously. Our interpretation is focused
on directly answering the two research questions that we introduced at the beginning of the
chapter, though we also try to put things in context by pointing out how our findings relate
to the overall approach, and ultimately to the goals that we outlined early in the thesis.

5.4.1 Research Question 1

The results presented with regard to RQ1.1 provide sufficient evidence in favour of the
gadgets being highly consistent. This is clearly visible by examining the reported values of
CoV, for either of the two gadgets. In fact, we do not observe a single case when the CoV is
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above 0.5, which we consider to be a threshold that would indicate a significant dispersion
of values around the mean in our context. The consistency of gadgets can be further seen by
looking at the bootstrapped confidence-intervals. All the reported intervals are very narrow,
with the overall ranges being sub-decimal in relation to the interval boundaries. We believe
that this level of stability is a direct result of our resource-focused approach through which
we were able to tune the impact of each gadget variant.

Turning our attention to the second part of RQ1, we notice that there is a challenge in
being able to carry the highly consistent impacts measured in our reference environment, to
other environments. This is evidenced by the results of our cross-environment normality
and Kruskal-Wallis tests, which indicate that there is, in most cases, a statistically significant
difference in the values we obtain across four environments. This is the case even though
the four environments we chose represent subsequent generations of Intel processors. As
such, this clearly validates our suspicion regarding microarchitectural differences being too
important to ignore. The problem is further noticed when looking at the results obtained
in the AMD Zen3 environment, where we see many gadget variants losing their impacts
entirely, although that is something we had anticipated given the fact that we focused mostly
on Intel-based literature during implementation.

Overall, we cannot say that the gadgets provide strictly reproducible behaviors across
different environments. However, based on the metric values we have obtained for each
of the four Intel environments, we see that gadget variants obtain large impacts that, for
practical purposes, can allow researchers to rely on our gadgets in these environments. To
better address the issue of reproducibility, we present an additional perspective in Figure 5.1.

Based on the figure, we observe that the shapes of the frequency distributions for the
values we obtain (w.r.t. a specific gadget variant and a specific metric) differ significantly
between two environments, even though the impacts remain large in both. In the context of
Kruskal-Wallis, this is important because the test typically picks up on differences in terms
of the shapes of distributions. For instance, it observes how the data is spread around the
median, and our violin plot clearly indicates that the spread of data (violin width) around
the median (white dot) can vary across environments. If the shapes of distributions are
deemed largely similar, the test then simply compares the median values to decide whether
the two distributions are significantly different.

In addition to the shape differences, we also see that the interquartile-ranges can also
differ significantly, as indicated by the embedded black box-plots. Moreover, besides the
overall shapes, the two distributions do not overlap in terms of their values and thus have
different medians, though the differences are relatively small for practical purposes.

Regardless, in spite of not being able to claim reproducibility of behaviors across en-
vironments, we can at least confirm that our gadgets are practically useful in at least
four Intel microarchitectures4, considering that they obtain large and consistent impacts
in each of them. This idea is particularly important regarding our definition of GT - based
on these results, we can only define the GT of our gadgets experimentally, unless truly
microarchitecure-independent techniques are identified and utilized in our gadgets (cf.
Chapter 7).

4 Please refer to Section A.2 for the aggregated data for Haswell, Broadwell and Kabylake
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Figure 5.1: Violin plots, with embedded box-plots, for two of the four Intel environments. The violins
are constructed using Kernel-Density Estimation (KDE), with a density parameter of 20.
The white-dot in each box-plot indicates the median. Each violin corresponds to a sample
of values of L1 Load Miss-Rate for v1 of the Cache Gadget.

Research Question 1 - Verdict:
The gadgets provide us with highly consistent behaviors across multiple executions of
their variants in the same environment, but the exact reproducibility of these behaviors
can not be guaranteed for arbitrary environments. In particular, our results indicate that
we can only define the ground-truths of gadgets by experimentally obtaining impact-
mappings in each environment of interest.

5.4.2 Research Question 2

with regard to RQ2, our first experiment helped us confirm that there can be cases when
two variants influence one-another. This finding confirms our suspicion regarding potential
inter-gadget effects due to the way caching and branch-prediction works, though further
research is needed to explicate the precise reasons for such effects. Furthermore, we have
also found that there can be ordering effects, as evidenced by our ANOVA tests, which adds
a dimension to our work that we had not foreseen. Such ordering effects can complicate
the design of benchmarks, though the large number of potential ISGs we can have for the
same template variant implies that it is possible to obtain benchmarks that will not suffer
from such effects. In any case, we aim to address inter-gadget influences in future-work (cf.
Chapter 7).
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Regardless of the discovery of potential inter-gadget influences, we have been able to
verify that, relative to a given baseline, gadget injections can effectively alter the behavioral
profile of an existing system. This provides us with a clear path towards, for instance,
synthesis of outsized impacts in cases when two features of some configurable (template)
system interact structurally - indeed, that is simply a matter of placing the injection points
in locations where "glue" code exists to facilitate such an interaction between two features,
as shown in Listing 5.1. This clearly validates the usefulness of our weaving approach in
synthesizing programs with properties and behaviors of interest. Having put this approach
in place, all that is left is to build templates with predefined injections such as the ones
shown in the code snippet, which would allow us to obtain Software Product Lines (SPLs)
of benchmarks as explained in Chapter 3. We have already done this for two miniature
templates (cf. Chapter 4), but we did not explicitly dive into specifics here because our focus
was on validating the overall approach.

#ifdef MULTPLICATION

void config_mul(layout* l, representation r) {...}

#endif

.

.

void setup(layout* l){

.

r = get_default_representation();

#ifdef MULTIPLICATION

#ifdef SCIENTIFIC

//Interaction with manipulated profile

#IP_1

#IP_2

#IP_3

r = get_binary_representation();

#endif

config_mul(l, r);

#endif

.

}

Listing 5.1: The feature-interaction example introduced in Chapter 2, but now with injection points.
Injecting gadget variants at these points will make the feature-interaction have a distinct
profile w.r.t. the metrics that the injected gadgets target.

On a less positive note, an important consideration w.r.t. our results is the fact that there
might be "side-effects" in the behavior of some gadget variants. Such side-effects can be
noticed both when the variants are used in isolation, and more importantly, when they are
injected in a template system. Moreover, these effects can potentially happen in two ways.
Firstly, a gadget variant can have a larger-than-intended impact concerning a metric that it
does not explicitly target. Secondly, a gadget variant can obtain sizeable impacts in terms
of metrics that the gadget does not include in its definition, but which are included in the
definition of the other gadget. Either of the two cases can manifest in and affect the stability
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of the behaviors that the resulting benchmarks have. As such, further work is needed to
address this lacking aspect of our approach (Chapter 7).

Research Question 2 - Verdict:
Our approach is effective in producing synthetic benchmarks on the basis of gadgets,
although potential issues might exist for some gadget variants or combinations thereof,
which can reduce their individual contributions to the behaviors of these benchmarks.

5.5 threats to validity

Our results can be impacted by some internal biases in how we perform measurements
and experiments. Therefore, we identify several potential threats to the validity of our
findings, both internal and external. In terms of internal threats, we observe that our
measurements for RQ1.1 could be impacted by some level of carry-over effects in between
executions, which can amplify the values we observe overall. Furthermore, the choice of the
reference environment was arbitrary; the approach we followed was such that during the
implementation phase we needed to tune and specify the impact of our gadgets through
trial-and-error. This might have led us to tailor our gadgets too much to that environment,
although we tried to implement gadgets using techniques that we deemed to be, to some
extent, microarchitecture-independent.

Internal threats could exist w.r.t. our experiment in RQ2.1, which can suffer from bias
because the way we defined the expected values depended on the samples we had obtained
for RQ1.1, when using the gadgets in isolation. As such, any sampling errors could impact
our expected values. Moreover, the choice of the variant of the Scrambler template in RQ2.2
could present a case in which the baseline profile is too "mild" in terms of the concerned
metrics, which makes it easy for the injected gadgets to alter the impact of the template
variant. Regardless, we believe that the random sampling idea we used in picking different
gadget variants for injections shows that most gadget variants will be highly successful,
which gives us confidence w.r.t. other template variants.

Other important threats we identify are of an external nature. Firstly, we acknowledge that
the choice of our environments in RQ1.2 is not ideal for assessing reproducibility. Indeed,
we would need to have larger variety in the environments we choose by including more
AMD systems and newer Intel ones. This became obvious to us during experimentation
as we struggled with the semantics of some PMU counters, thus realizing the gravity of
microarchitectural differences among environments. In particular, obtaining values for a
metric like L1 Loads Miss-Rate requires us to obtain counts for the misses and hits that
occur in that level of caching; however, in Intel systems, the available counters typically
count prefetching-induced references, whereas in AMD they not always do. In addition, in
Intel systems several cache-misses can be buffered between the first two levels of caching
and are thus combined into single events (from the perspective of counting), whereas for
AMD this is not transparent. These reasons forced us to include only partial results for the
fifth environment in Table 5.2. Moreover, for some variants of our gadgets we have relied
on the use of intrinsic instructions offered in x86 systems, which make the evaluation of
our work impossible in other types of microarchitectures. Regardless, choosing subsequent
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generations of Intel x86 microarchitectures helps us ensure that we have a set of similar
environments in which our gadgets work relatively well.

Lastly, we also acknowledge that our choice of the Scrambler template system for RQ2.2
might make the results for that question less generalizable, although we have previously
acknowledged that injecting gadgets in arbitrary systems is something we should pursue in
the future.





6
R E L AT E D W O R K

6.1 computer architecture

The benchmarks we implemented in this thesis required a solid understanding of a system’s
hardware and logical components. To gain a better understanding of these components we
relied on the seminal work of Drepper [19] which scoped several potential performance
improvements that can be performed in high-level code, focusing specifically on memory
units and subsystems. Furthermore, in [23, 24, 30, 50] we found details relating to locality
ideas and prefetching strategies employed by the caches and inherent limitations. We also
relied on the works of Denning [24], Smith and Sohi [31], Fog [33], and Seznec [45] to obtain
a better understanding of the limitations that exist in current superscalar architectures.
Notably, Fog compiled a microbenchmark-based survey of branch-prediction behaviors for
Intel systems. Based on our survey of all these works, we were able to make use of many
of their findings to produce performance regressions in our designs. We also relied on
official manuals such as [20], especially regarding the use of intrinsic x86 instructions that
help in bypassing caches, and details regarding the Performance-Monitoring Unit (PMU).
From a performance-monitoring perspective, we followed the methodology outlined in [28],
and the findings of Ameller et al. [37] and Berger and Guo [51] to perform and interpret
measurements.

6.2 configurable software systems

In order to develop a synthesis process for our synthetic benchmarks, we relied on notions
of systematic reuse found in Software Product Line (SPL) literature. We initially turned
our attention to literature surveys such as [13, 14], and the field-defining work on Feature-
Oriented Software Development (FOSD) by Apel and Kästner [15]. These works enabled
us to get a better understanding of the best practices in the field. Specifically, Svahnberg,
Van Gurp, and Bosch [13] and Galster et al. [14] examined the semantics of SPL and collected
information on current practices and limitations across tens of other published works.
Furthermore, the work of Apel and Kästner [15] structured the discussion around feature-
orientation in software engineering, which helped our work directly. The works of Umar
and Khan [36], Ameller et al. [37], Fadul [38], and Berger and Guo [51] then helped us make
a conceptual transition from non-functional properties to low-level metrics in our approach.
From a more practical standpoint, the ideas presented by Schulze and Fenske [52] informed
us on the inherent limitations of compile-time configurability techniques such as the use of
preprocessor directives.
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6.3 benchmarks and fault injection

Our benchmarking concept stands on a fault-line between benchmarking systems and fault-
injection frameworks. Ziade, Ayoubi, Velazco, et al. [41] created a taxonomy of the types of
faults that software systems experience, and gave credence to the notion of performance
faults. In addition, Natella et al. [42] provided a more focused look at the semantics of
a fault, highlighting the importance of specifying not only the type, but also the in-code
location of a faulty code segment, in order for fault-injection to be reliable. Based on these
notions, we developed the idea of injected code-fragments that map to variants of a con-
figurable system and represent tunable performance faults. Furthermore, the early work
on microbenchmarks presented by McVoy, Staelin, et al. [10] and Kopytov [12] provided
us with an initial understanding of synthetic benchmarks. These benchmarking systems
constitute largely representative workloads that can help identify bottlenecks in the sys-
tem, especially regarding memory considerations. However, they fall short in regards to
achieving maximal "stress" on a target system. The notable works of Joshi et al. [9] and
Van Ertvelde and Eeckhout [53] introduced us to more advanced benchmarking concepts
such as statistical simulation, performance cloning and microarchitectural-independence
considerations when constructing synthetic workloads. Both these works aimed to replicate
real-world systems through a set of predefined code-fragments that supposedly apply
microarchitecutre-independent workloads. Moreover, these code-fragments were typically
weaved and combined through statistically generated flow-graphs, with the aim of repli-
cating (cloning) the performance of a given real-world system. As such, our approach has
major similarities but also crucial differences to these works.

Firstly, our solution incorporates code-units (gadgets) that are more coarse-grained and
not microarchitecture-independent per se, but also configurable and hence tunable. Fur-
thermore, we do not incorporate any sophisticated techniques for the mixing of these
units; instead we focus on achieving specific goals related to software analysis by manually
crafting execution templates, and provide a framework that allows the user to inject these
units in a systematic and flexible manner in these templates. Therefore, we are able to fully
decouple the design of these units from the synthesis process. On the other hand, our gad-
gets are not truly microarchitecture-independent in the sense that they do not have precisely
reproducible impacts across different microarchitectures, which is something that the afore-
mentioned works typically try and manage to address to a considerable extent. Nevertheless,
we believe that our approach fully lends itself to automated synthesis as in the aforemen-
tioned works, as well as improvements in terms of microarchitecture-independence ideas.
To be precise, while our approach constitutes neither statistical simulation nor performance
cloning, it can serve as a foundation for novel approaches of this kind (cf. Chapter 7).

On similar notes, Van Ertvelde and Eeckhout [53] utilized execution traces from existing
programs to automatically extract code-fragments that can then be re-weaved into simulated
traces which, if executed, would produce similar performance profiles to the original
program but with much less code. The extraction process is based on predefined predicates
that largely resemble the programming techniques we used in our gadgets.
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C O N C L U S I O N

In this section, we provide a summary of the thesis goal and our findings. To further
improve our contribution, we also outline potential future work directions based on ideas
that we encountered at different stages of our work.

7.1 future work

7.1.1 Potential Improvements

Some important aspects of this work that we intend to address in future work relate to the
side-effects and ordering-effects that we identified in Chapter 5. As a first step, we would
need to come up with a precise definition of side-effects; this is not trivial because for a
given workload of a gadget variant, we need to have a very intimate understanding of
microarchitectures to be able to say whether some resource is impacted unduly or not. This
issue becomes especially important when we consider that our benchmarks can use gadgets
of different kinds; naturally, we would want to have gadgets behave in a mutually-exclusive
way so that the behavioral profiles of the resulting benchmarks are easier to understand and
interpret. Besides side-effects, we were able to identify that the execution order of gadget
variants, in the context of a template system, could present some challenges. Therefore, we
intend to verify this aspect in more detail, potentially by experimenting with a much larger
number of gadget variants.

Additionally, there are two aspects that we wish to study further with regard to the
reproducibility of the impacts of gadgets, across different microarchitectures. The first
part is that we would like to make our gadgets less Intel-specific, potentially by drawing
new programmatic techniques out of AMD-specific literature and manuals. This also
implies that our resource-focused approach must be made more generic by accounting for
AMD-specific architectural resources and performance counters. Secondly, we believe that
the knobs and features of each gadget can be designed with the purpose of overcoming
microarchitectural differences. For instance, we can have features that can be enabled only
in specific environments, and which make use of some intricate aspect of that environment
to achieve a sizeable impact. Similarly, we can potentially design and implement knobs that
adapt the applied workloads to different environments, so as to make our gadgets work in
a more microarchitecture-independent manner.

Lastly, one facet that can be added to our work on the basis of gadgets is that of incor-
porating multi-threaded techniques. This is interesting to pursue especially in the context
of the Cache Gadget, where the coherency-protocols applied by the Central Processing
Unit (CPU) in relation to the caches could be directly subjected to synthetic workloads.
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7.1.2 New Avenues

From a broader perspective, our work on developing the Software Product Line (SPL)
approach that was presented in Chapter 3 and detailed in Chapter 4 can potentially lead
to improvements that make the overall weaving framework more efficient and helpful
for researchers. For instance, we can use reconfigurability ideas [13, 54]. Specifically, we
can conceptualize a weaving process that is performed while a given template system is
executing. This would allow researchers to dynamically alter the behavioral profile of a
program. A technique that could enable this is the use of user-defined tracepoints [28],
which could potentially allow us to modify the execution trace of a program at runtime.
Alternatively, we could transpose our framework into a simulation framework; for instance,
we could be able to maintain some state for a running configurable system, based on
which we could dynamically interrupt the execution of that system, re-inject desired gadget
variants and resume execution. Having dynamic capabilities of this kind can prove useful
when analysing programs that rely on runtime-configurability, or when trying to simulate
and/or detect intermittent (short-lived) performance faults.

Another compelling direction is that of performing proper fault-injections. In our approach
we made use of notions of injections, albeit to a minimal extent. Potentially, we could improve
on the design of the gadgets and try to alter the behavioral profile of large, real-world
systems. This would also require a proper taxonomy for different types of faults, as well as
some semantic considerations regarding the delineation of faulty vs. non-faulty behaviors.
In any case, the use of a modular component akin to our gadget can prove helpful in
inducing abrupt impacts in a given existing system.

Lastly, we observe that the overall contribution of this thesis is the laying of groundwork
towards configurability-based synthesis of workloads. In our case, the synthesis itself is
largely static, since the injection points are predefined for each template system. A potential
improvement in that regard is to define injection-points dynamically, and perhaps have
some statistical input as to where the injection points should be placed. This would bring
our implementation closer to the statistical simulation ideas discussed in Chapter 6, and
therefore enhance the capability of getting fine-tuned, synthetic behaviors.

7.2 summary

In this work, we set out to provide a novel way through which researchers can generate
synthetic benchmarks that help them in validating and improving their software analysis
methods, in the context of configurable software systems. To achieve this, we followed a
resource-focused approach. This approach then guided us to programmatic techniques
through which we could design programs with stable, and consequently transparent
behaviors, w.r.t. computer systems’ resources. In addition, we relied on Feature-Oriented
Software Development (FOSD) concepts to collate these techniques into feature-oriented
designs that we call gadgets. A direct consequence of a gadget’s feature-oriented design
is the variety we can obtain in terms of synthetic workloads, while reusing the same
code artifacts. Based on such notions of reuse, we then developed and implemented a
two-level SPL concept. To realize this concept in practice, we crafted a framework that
produces synthetic benchmarks by injecting variants of gadgets in the source-code of
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existing, configurable software systems that act as execution templates, and thus provide
a way of mixing the workloads that the gadgets entail. Based on this framework, and
the gadgets’ properties, we can construct benchmarks with varied, stable and transparent
behaviors. To that end, in our evaluation we focused heavily on the gadget concept and
scrutinized multiple aspects thereof. Notably, we assessed the stability of the gadgets’
behaviors in at least four Intel systems. Moreover, we validated the usefulness of our
approach as a whole, and showed that it provides researchers with the necessary ingredients
for generating meaningful synthetic benchmarks.
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a.1 template feature-models

a.1.1 The Scrambler template

Scrambler

FakeCompute

DFT Fibonacci

Mixing

PiGenerator Factorial

Legend:

Abstract Feature
Concrete Feature
Or Group

Alternative Group

Figure A.1: Complete feature-model for the Scrambler template. DFT and Fibonacci provide series
of computations, in tandem with the scrambling that is generated from the Mixing
elements. For instance, Fibonacci uses a recursive implementation that generates the
corresponding series, and uses the elements in the series to generate the numbers of π
using a Taylor series formula. Alternatively, a Factorial can be taken for each element in
the Fibonacci series.

a.1.2 The Memo template

Memo

FsUsage MemoryBounding

AllocWorkload CacheWorkload

MemoizedCompute

Legend:

Abstract Feature
Concrete Feature
Mandatory

Or Group

Figure A.2: Complete feature-model for the Memo template. FsUsage indicates a functionality that
performs file operations. Memoized Compute refers to a memoized implementation of a
simple computation task. AllocWorkload and CacheWorkload perform close-to-optimal
memory allocations and cache acceses.

a.2 reproducibility results
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Figure A.3: Mean values for the gadget variants, in the Kabylake environment.
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Figure A.4: Mean values for the gadget variants, in the Haswell environment.
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Figure A.5: Mean values for the gadget variants, in the Broadwell environment.
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Figure A.6: CoV values for the gadget variants, in the Kabylake environment.
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Figure A.7: CoV values for the gadget variants, in the Haswell environment.
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Figure A.8: CoV values for the gadget variants, in the Broadwell environment.
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