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I was born not knowing and have had only a little time to change
that here and there.

— Richard Feynman

Dedicated to my family.





A B S T R A C T

In the analysis of software, researchers are often interested in specific
code regions, for example, a region that corresponds to a feature of
a program. However, identifying these regions is challenging and in-
creases implementation effort. Analysis developers have to find all
source-code regions corresponding to a certain region criterion, ex-
tract the important parts, and process regions before they can analyze
them.

To support developers in these tasks, we propose and integrate the
concept of an “interest region” into the LLVM compiler infrastructure.
To this end, we implemented a framework, called VaRA, that separates
the detection of desired regions from the analysis process via an ab-
stract interface. The separation enables users to write their own anal-
yses and to use any region detection that is offered by our framework.
In addition, we enable the reuse of existing analyses when creating a
new region-detection technique.

In this work, we describe the concept of “interest regions” in detail
and describe how we implemented the concept in the LLVM compiler
infrastructure. Furthermore, we demonstrate the applicability of our
approach by implementing a region detection that extracts software
features, meaning code that depends on configuration options, and
by writing an analysis that detects control-flow interactions among
regions. We then combine the region detection and the interaction
analysis to detect interactions between different features.
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We live in a society exquisitely dependent on science and technology,
in which hardly anyone knows anything about science and technology.

— Carl Sagan
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1
I N T R O D U C T I O N

Nowadays, programs often have millions of users and all of them
have different expectations about how a program should support or
even solve its tasks. Some users would have designed the user in-
terface differently, others require new functionality to perform a cer-
tain task. To suit the needs of all users, developers add variability
to their programs, allowing users to configure the program to their
needs. This variability is often added by introducing a configuration
knob that controls a certain feature, meaning a code region that im-
plements a particular functionality of the software. For example, the
office suite LibreOffice did a redesign of their graphical user interface,
but because some users might not like the new one, they added func-
tionality to stay at the old design1. A user can use the old interface or
activate a knob in the settings to switch to the new design.

However, during software evolution, more and more of these con-
figuration knobs get added to make the program customizable, de-
spite that the growing complexity makes testing harder and in the
end programs more error-prone [12]. This complexity arises from pos-
sible interactions among code regions, which belong to knobs, that
cause misbehaviour [5]. For example, code that manages the old user
design can interact with another code region that handles the display-
ing of different fonts, which causes the font to be drawn incorrectly.
However, testing all different interactions that could occur among
knobs is impractical, because only 10 different knobs would require
more than 210 independent tests. Since many knobs may not interact,
actually testing all interactions independently is not required [10, 11].
The problem is that developers do not have sufficient tools to as-
sist them by determining which configurations need to be tested and
which ones do not. Furthermore, there are other problems, such as the
impact of new code changes, where developers do not know which
parts of the code are affected by a change. Developing such tools and
analyses is complex and gets even more difficult when researchers
want to support different programming languages.

1.1 goals

Our goal is to provide a framework within the LLVM compiler in-
frastructure that allows researchers to build language-independent
analyses, such as an interaction analysis or a change-impact analy-
sis [2]. We aim to reduce the overhead researchers have during the

1 LibreOffice redesign: https://heise.de/-3613125, source: Heise (2017-02-07)
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analysis-development process, such as identifying interesting regions
in source code or implementing utility data structures. That is why
our framework provides debugging utilities, data structures, and of-
fers abstract interface boundaries to separate parts of the analysis,
allowing each part to be reused by other analyses.

Furthermore, since we use LLVM as a basis, developed analyses
can easier be integrated into the compilation process or into LLVM
libraries, which can be used to build tools.

1.2 contributions

The contributions of this thesis are an extension to the LLVM-based
C/C++ compiler clang that allows researchers to extract code regions
that represent feature implementations. Furthermore, we contribute
the implementation of the basic structure of our framework, which in-
clude analysis/region abstractions, utility data structures, and graph
visualizers for debugging. In addition, we also implemented a tech-
nique to detect code regions that relate to software features, and a
language-independent interaction analysis.

This thesis forms the foundation of our analysis framework, which
we plan to enhance for future software-engineering research.

1.3 overview

We divided this thesis into four main parts. First, we introduce back-
ground knowledge to familiarize the reader with feature-oriented
software, the concepts of data-flow analysis, and internals of LLVM.
Second, in our main part about feature extraction, we describe how
we modified clang to extract features from source code, present the
structure and the concept of our framework, and explain how we
implemented our feature-region detection within LLVM. Third, we
evaluate our framework by implementing a language-independent in-
teraction analysis with our framework. We use this analysis to detect
interactions among features and, thus, demonstrate that the separa-
tion, between regions and analyses, of our framework works. Last,
we summarize our work and present ideas how we can further en-
hance our framework.
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B A C K G R O U N D

In this chapter, we introduce three areas in more detail to give ad-
ditional background information: We begin by explaining what a
feature is from the feature-oriented software point of view and ex-
plain feature-related problems and terms. Then, we give an introduc-
tion into data-flow analysis and explain the schema behind it. At the
end of this chapter, we give an introduction into the LLVM compiler
framework, where we explain the later used intermediate representa-
tion in more detail.

2.1 feature-oriented software

Often, a program is seen as a monolith, which solves a single task,
but, if we look closer, it is actually a set of different functionalities
that work together to perform a series of varying tasks. We call these
different functionalities, which are located in different parts of a pro-
gram, some spread over the whole code base, features.

In the following section, we introduce the concept of a feature in
more detail. Furthermore, we discuss the problem of feature interac-
tions and describes software product lines.

2.1.1 Features

During software development, developers often introduce variability
because they want to enable the user to customize behaviour. Devel-
opers offer the user ways to, for example, select different algorithms,
choose different implementations, or an option to enable logging. All
these different functionalities, implementations or configuration op-
tions can be combined under the term feature. To make it more precise
we define a feature as follows, defined by Apel et al. [3]:

Definition 1. A feature is a characteristic or end-user-visible behaviour
of a software system. Features are used in product-line engineering to
specify and communicate commonalities and differences of the prod-
ucts between stakeholders, and to guide structure, reuse, and varia-
tion across all phases of the software life cycle.

The motivations why developers introduce features differ, some
just add new functionality to the software, others want there software
to be more customizable. These user-controlled features, represent
knobs that can be can be switched on and off, are also referred to as
configuration options.

3
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Listing 1: Example of a feature code region that is controled by a macro.

1 #define COLOR

2

3 ...

4 #ifdef COLOR

5 ... color code ...

6 #endif �
In general, there are different implementation mechanisms to add

configuration options to a program; two examples are compile-time
variables and load-time parameters. In the following sections, we
shall introduce compile-time and load-time configuration options in
more detail. We describe how features are located in source code and
how features can interact with other features, potentially creating un-
expected program behaviour. Furthermore, we discuss how too many
features can make software unreliable and impact usability.

2.1.1.1 Compile-time configuration options

Compile-time configuration options give an user the possibility to
configure a software during compile time. Build systems, such as
make or ant, offer options to use different files for compilation, al-
lowing for a very coarse-grained way to change the behaviour of a
program. Another very common way in programming languages of
the C-family is the preprocessor, that allows conditional compilation.
That is, it fades in parts of the source code based on certain variables.
Listing 1 shows a macro (#define) that is used to implement variabil-
ity. The feature code in Line 5 is only present if the variable COLOR is
defined, meaning the feature “COLOR” is enabled. The user config-
ures the program by defining the needed configuration variables in
a special header file, creating his own program variant. A program
variant is one valid program configuration out of the configuration
space, the set of all, possible program configurations.

2.1.1.2 Load-time configuration options

Another kind of configuration options are load-time configurations
options.

These options change the execution behaviour of the program by
providing environment variables or program arguments. A user exe-
cutes, for example, the Linux command ls, but he wants to use the
long listing format: so, he passes the -l argument to the program. At
the beginning of the programs, there is dedicated code to parse these
arguments and to set configuration variables that change the execu-
tion behaviour of the program by changing the control flow. In our
example, ls prints the desired output, but formats it to a structured
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list when passing -l on the command line. Load-time configuration
options allow the user to utilize one program in different ways, ad-
justing it to different situations without having to recompile it.

2.1.1.3 Presence conditions

Introduced configuration options change configuration variables and
these influence control flow. For load-time configuration options this
is usually implemented with if blocks, that can activate feature code
if the condition holds. In our terminology, the condition of an if that
decides whether the feature code gets executed, because its condition
includes, at least, one configuration variable, is called presence condi-
tion. Figure 1 shows two examples of if blocks. The conditions of

1 if (COLOR) {

2 // color feature code

3 } �
1 if (COLOR && (LIST || READABLE)) {

2 // mixed feature code

3 } �
Figure 1: Example of two presence conditions.

the if statements are the presence conditions of the corresponding
blocks. In the left Listing, there is a simple if block that gets activated
in the case that the COLOR variable is set. The right example contains
a more complex presence condition for which COLOR must be set and,
at least, one of LIST or READABLE. These presence conditions determine
the presence of the feature code, meaning they control whether the
color-feature’s code is executed.

2.1.1.4 Feature Interactions

Different features implement different functionality and sometimes
they need to interact with each other. Sometimes, features still influ-
ence each other, although they do not explicitly interact. For example,
to the -l option, ls also offers -h to print size parameters in a human-
readable style. If both options are specified, the code that structures
the line output takes different input from code that formats the size.
So, the features interact to create the user-expected behaviour. Such
interactions are not visible when we consider only one feature at
a time. Furthermore, such interactions are not always known or in-
tended by the programmer. For example, regions in the source code
that implement features can influence control flow or change the cur-
rent state of the program in an unintended way, which then can lead
to unexpected [12] or erroneous behavior in other parts of the code
or impact program performance [14, 15]. Apel et al. [3] define feature
interactions as follows:

Definition 2. A feature interaction between two or more features is an
emergent behaviour that cannot be easily deduced from the behav-
iors associated with the individual features involved.
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An inadvertent feature interaction occurs when a feature influences the
behaviour of another feature in an unexpected way (for example, re-
garding the expected control flow, program or data state, or visible
behaviour).

As follows from the definition, interactions are not limited to two
features. But even when all possible feature combination that are
composed out of two features work, such as (COLOR + LIST, COLOR +

READABLE, LIST + READABLE), combining three features can result in a pro-
gram crash. Interactions among an unspecified number of features
are called n-way interactions or higher-order interactions, where n is
the number of features involved. Apel et al. [3] define n-way interac-
tions as follows:

Definition 3. If n features interact, but none of their strict subsets,
this is called a n-way interaction.

Feature interactions, in particular, the unknown and unexpected
ones, can cause errors in programs and are hard to detect. We shall
explain this problem in more detail in the next section.

2.1.1.5 Problems introduced by feature interactions

Very often software developers do not know which features interact.
If these unknown interactions cause defects, debugging becomes very
hard, because the developer often cannot infer what causes the bug or
which other features have an impact. Furthermore, software develop-
ers often add new functionality and make their software adaptable,
which increases the amount of features, making the problem even
worse. In case the developer wants to check all pairs of features to
locate his bug, he has to evaluate f(f− 1)/2 different program runs,
where f is the number of features. Real world software projects tend
to use many features [13], for example, the Linux kernel with 6320

features [4]. And testing all possible configurations, which is infea-
sible for larger projects, would only checks for 2-way interactions.
To find higher-order interactions, we would have to evaluate all n-
way interactions, where each n could lead to

(
f
n

)
interactions [3]. The

number of features and feature interactions lead to an combinatorial
explosion that cannot be managed by developers. Furthermore, the
combinatorial explosion also impacts the analysis of programs, mak-
ing classical analysis techniques impractical. Tools such as iGen [11]
use randomness to mitigate this problem, finding a small set of con-
figurations that contain “many” interactions but have no guarantee
to find all. Another approach is use variability-aware analyses that
exploit similarities among different variants [10].

However, not just the interactions but also the large number of fea-
tures itself make it harder for users to configure their software [6] and
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can lead to errors due to invalid configuration. Xu et al. show in their
work that a lot of the configuration parameters are not needed and
their amount can be reduced without impacting users too much [16].

Handling a large number of features is difficult for developers and
for users, because of the combinatorial explosion of the configuration
space. That is why tool support is needed that can not only detect
interactions between features but also make them manageable.
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2.2 data-flow analysis

Control-flow graphs are a graph representation of a program. We
describe how we use them to write a data-flow analysis. Furthermore,
we introduce the terms interprocedural and context-sensitive in the
context of data-flow analysis.

2.2.1 Control-flow graph

Plain source code is not a suitable program representation for our
data-flow analysis, because we are interested in the relation between
parts of the code and flow of information. These informations can be
better represented in a graph that integrates them into its structure, a
control-flow graph (CFG).

A CFG represent all possible paths within the program. Each graph
node, called basic block (BB), is a block of instructions without any
branches or jumps, except for the last instruction, the terminator.
Only the terminator instruction can divert control flow from this BB to
other BBs. Hence, the terminator defines the successors of a BB, either
if it jumps to another BB or if another block directly follows [1]. Take,

a = 1

if(x < 42) : goto BB4

b = a

BB1

BB2

BB3

BB4

a = 243

goto BB2

(p1)

(p2)

(p3)

(p4)

(p5)

(p6)

(p7)

(p8)

(p9)

Figure 2: Control flow graph [1]

for example, the CFG for a simple program snippet in Figure 2. We
begin the program by assigning 1 to the variable a, placing it within
BB1. Then we follow the control-flow edge from BB1 to BB2, where
the program continues execution and checks if x is smaller than 42.
At the end of BB2 the control flow can either go to BB3 or to BB4,
dependent on the terminator instruction. In case of BB3 we get into a
loop structure, where we execute the block and jump back to BB2. In
case of BB4 we continue with the rest of the program.
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Representing the program as a graph gives us the possibility to
reason about control flow. How we can use this structure for data-
flow analysis is described in the next section.

2.2.2 Data-flow analysis

Data-flow analysis is a technique to gather informations about a pro-
gram, which integrates control-flow paths into the analysis to collect
more precise information by relating it to specific locations in the pro-
gram. The analysis inspects every instruction and aggregates informa-
tion along the control flow. Hence, we need a fixed state between each
instruction that represents the information.

Therefore, we define a program state as a finite number of facts (n)
about the program. We place program states between each instruction
and number them as p1,p2, . . . ,pn, (1 6 i 6 n). For example, we find
9 different states in our program in Figure 2. Each instruction then
represents a transformation from one state to the next, meaning if pi

is the state before the instruction, pi+1 is the state after it. In order
to set these states in relation, every data-flow analysis assumes there
exists a data-flow value that is an abstraction of the set of all possible
program states for that state. This allows us to define two set, for each
instruction; IN, a set of data-flow values before the instruction, OUT,
a set of data-flow values after the instruction. Furthermore, we create
for each instruction two sets: gen, which represent the information
generated by the instruction, and kill, which represents the deleted
information. Then we define the transfer function as follows, taking
IN as input and calculating OUT.

f(x) = gen∪ (x− kill)

This allows us to define the relation between IN and OUT sets within
a BB. The OUT set of an instruction is the IN set of the following
instruction. So, we can aggregate the information flow between in-
structions within a BB, by defining the IN and OUT sets of a BB. Its
OUT set is the OUT set of the last instruction and its IN set is the
IN set of the first instruction. After we have defined the information
flow of a BB we now define how the sets of BBs relate. We calculate
the IN set of a BB by combining all its predecessors (P) OUT sets with
an analysis specific meet operator

∧
.

IN[B] =
∧
p∈P

OUT [p]

The well defined relations between instructions and BB allow us to
propagate data-flow values through the program, which allows us to
analyze it in more detail. However, we always have to consider that
assumptions within our analysis can lead to incorrect results. So, we
should interpret our results conservatively [1].
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2.2.3 Interprocedural and context-sensitive analysis

Accuracy of the information gathered by an analysis depends heav-
ily on properties such as scope and context. We can analyze every
function separately but this makes our results imprecise, because by
ignoring the relation between caller and callee we loose important
information. The information difference arises from processing a call
instruction by the transfer function. It can either incorporate the infor-
mation from the OUT set of the other function or not. If the informa-
tion is lost the data-values after the call are imprecise or just wrong.
Hence, it can be necessary to analyze the whole program and pre-
serve the connections between functions, creating an interprocedural
analysis.

Another influence factor is the context in which a function is called,
because the function behavior depends on the call site. If we want to
eliminate this imprecision, introduced by not distinguishing between
call sites, we have to analyze each function for every different call
context, making our analysis context-sensitive.

However, making an analysis interprocedural and context-sensitive
impacts the run time of the analyze and could make the processing
of large software projects difficult. Hence, it is important to balance
the precision and feasibility of an analysis.
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2.3 the llvm framework

The following section introduces the design and concepts of the LLVM
compiler framework. It describes the overall design and explains how
the different components interoperate. Then we give an introduc-
tion to the intermediate representation (IR) used inside LLVM, called
LLVM-IR. Afterwards, we describe the pass infrastructure and the
C/C++ frontend clang.

2.3.1 Design

We begin our introduction to LLVM with an overall structure, shown
in Figure 3. LLVM is split into three main components: frontend, op-
timizer, and backend.

First, the frontend reads a source file, parses it into an AST and per-
forms language specific optimizations, such as type-alias analysis or
constant folding. Afterwards, the frontend uses the AST to emit LLVM-
IR, LLVM’s intermediate representation that is used as common in-
terface between the different components. As a second step, the op-
timizer takes the IR code from the frontend and performs language-
independent optimizations. This is done by running different trans-
formation passes over the IR code, such as constant propagation, loop-
invariant code motion, and others. After all optimizer passes pro-
cessed the IR code, it gets forwarded to the third component, the back-
end. The architecture-specific backend performs the target-specific
optimizations and translates the IR code into machine instructions,
for example, X86 or ARM.

Figure 3: LLVM’s three-phase design, showing a separation between fron-
tend, optimizer, and backend [9].

As shown in Figure 3 the LLVM-IR decouples each component,
by providing a common interface, allowing different front-/backends
to be combined, and therefore, providing good modularization. This
enables reuse not only for the front-/backends but also for the opti-
mizer, meaning the structure of LLVM is language independent. For
example, we can write a frontend for our own language that emits
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LLVM-IR code and can immediately benefit from the implemented
optimizations and different backends.

Language independence and a well designed IR together make
LLVM an adaptable and thought-out compiler framework [8, 9].

2.3.2 LLVM-IR

LLVM-IR makes LLVM and all its passes language independent. In
this section we give a deeper introduction into the IR, explaining ba-
sic concepts and the IR structure. We focus on how metadata is em-
bedded and instructions that are particular important for our later
implementation. In the end, we show how CFGs represent IR within
LLVM.

2.3.2.1 Introduction to LLVM-IR

LLVM-IR serves as an internal representation of code for the compiler,
allowing mid-level language-independent analysis and transforma-
tions but also aiming at being human readable to ease debugging.

The IR has a well-defined semantic, where instructions are repre-
sented in three-address form, meaning they have up to two operands
and write there result in a different register. Take, for example, the
two Listings 2 and 3, where Listing 2 represents the original source
code in C++ and Listing 3 is the same in LLVM-IR. In our C++ ex-

Listing 2: C++ example

int main() {

int var;

var = 41;

var += 1;

return 0;

} �

Listing 3: IR representation of the example.

1 define i32 @main() #0 {

2 entry:

3 %retval = alloca i32, align 4

4 %var = alloca i32, align 4

5 store i32 0, i32* %retval, align 4

6 store i32 41, i32* %var, align 4

7 %0 = load i32, i32* %var, align 4

8 %add = add nsw i32 %0, 1

9 store i32 %add, i32* %var, align 4

10 ret i32 0

11 } �
ample program, we create a variable, store 41 in it, add 1 to it, and
return 0 from the main function. Listing 3 shows the same code in
LLVM-IR, but is divided up in more instructions. Lets discuss the
statically-typed IR in more detail:

In the first line, similar to C++, we define the main function, ex-
pressing the return type after the “define” with i32. LLVM-IR repre-
sents integers with arbitrary bit width, following the representation
i{N}, where N is the number of bits in a range from 1 to 223 − 1. Line
two is the label for the following BB “entry”. At the start of the BB,
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Lines 3-4, two “alloca” instructions allocate memory on the stack for
the variables %retval and %var. Then two “store” instructions write the
initial values into the variables. For example, the “store” in Line 6

represents the assignment in the original program. The add instruc-
tion on Line 8 takes two operands, %0 from the variable load in the
line above, reading the current value from %var, and 1. Then, it adds
both together and writes the result to a new temporary variable %add.
We have to consider here that LLVM-IR is in static single assignment
form (SSA), meaning that every value is defined before used and only
assigned once. LLVM-IR implements this by using an unbounded set
of temporaries that are numbered sequentially. Take, for example, the
result of the “load” in Line 7, which is written to %0. To complete the
+= operation, the “store” instruction in Line 9 persists the result of
the addition, which is stored in the temporary %add, in the variable
%var. Finally, we complete the function by returning 0 from the main
function in Line 10 [7, 9].

2.3.2.2 Metadata

Another important part of the LLVM-IR is its extensible metadata for-
mat, because it allows us to attach instructions with user-designed
information. A metadata node is often used to encode debug infor-
mations, which can assist an analysis. Take, for example, Listing 4

with our “store” instruction from the previous example. A ! indicates
metadata, and the “FOO” identifier marks a named metadata node.
The “!0” is used to reference the actual node containing the informa-
tion, which can be found at the end of the file. The actual node is split
from the instruction to allow reuse and save space. In our example
the node itself is a string containing the word BAR.

Listing 4: Example of a metadata node in LLVM-IR.

1 store i32 %add, i32* %var, align 4, !FOO !0

2 ret i32 0

3 }

4

5 !0 = !{!"BAR"} �
In order to create a metadata node and attach it to an instruction

LLVM offers a well defined interface. Each metadata object is created
by a factory, which tracks all nodes and tries to reuse them if a new
one would contain the same information. If we want to create our
BAR string from the example, we could use code as shown in List-
ing 5. We create an array MA[] of Metadata *, which contains an MDString.
Then we create an MDNode * that holds the MDString, which then can be
attached to an instruction with setMetadata(StringRef Kind, MDNode *Node).
The StringRef Kind represent the name of the metadata node "FOO".
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Listing 5: Creating a metadata node containing a string.

1 llvm::Metadata *MA[] {

2 llvm::MDString::get(LLVMContext, "BAR");

3 };

4 Instruction->setMetadata("FOO", llvm::MDNode::get(LLVMContext, MA)); �
This composition scheme, composing higher-level metadata objects
out of pointers to other metadata objects, allows us to build flexible,
but at the same time lightweight, metadata representations, which we
later use to add information about features.

2.3.2.3 Important instructions

In this section, we describe parameter attributes and the instructions,
“alloca”, “load”, “store”, “br”, and “call” of LLVM-IR in more detail,
because we use them later in our analysis. Listing 6 shows all instruc-
tions that we introduce in a small example program.

Listing 6: Program with example instructions.

1 %var = alloca i32, align 4

2 %array = alloca [5 x i32], align 16

3 store i32 5, i32* %var, align 4

4 %0 = load i32* %var, align 4

5 %1 = icmp ne i32 %0, 0

6 br i1 %1, label %then, label %else

7

8 %2 = load i32* %var, align 4

9 %call = call double @_Z3fooi(i32 %2) �
parameter attributes

LLVM-IR uses parameter attributes to attach additional information
to function parameter types and return types. The following list de-
scribes a subset of attributes, that can be attached to some of the later
described instructions.

byval: indicates that the attributed parameter, which is of type
pointer, should actually be passed by value, for example, to pass
an array or struct by value. This attribute is restricted to LLVM
pointer arguments and we have to assume that it belongs to the
caller not the callee.

sret: hints that the accessed pointer points to the address of a
structure that is later returned from the function. This attribute
cannot be placed at return types.
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align <n>: guides the optimizer to assume that the given pointer
value is <n> byte aligned.

instruction : alloca

<result> = alloca <type> [, <ty> <NumElements>] [,align <n>]

Allocation instruction, or short “alloca”, reserves memory on the stack
of the current function, which shall be automatically released at the
end of the function. We set the memory size by providing a <type>

and the number of elements, which is by default one, specifying that
sizeof(<type>) ∗ <NumElements> bytes should be allocated. The <result> of
the instruction is a pointer to the address of the allocated memory of
type <type> * [7]. For example, Line 1 in Listing 6, allocates space for
a 32-bit integer with a 4-byte alignment, that means, the stack pointer
shall be on a 4 byte aligned address. In Line 2 we allocate an array of
5 integers, so 5 ∗ sizeof(i32) = 20 bytes.

instruction : load

<result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>]

Load instruction, or short “load”, loads a value from the specified
memory address and puts it in a new temporary variable(<result>).
In cases were the load is marked volatile the compiler cannot change
the order of execution of the volatile loads. As an example we can
look at the “load” in Line 4, which loads the value at the address of
the variable %var into the temporary %0.

instruction : store

store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>]

Store instruction, or short “store”, writes a <value> to a memory lo-
cation specified with a <pointer>. Important to remark here is that
<value> and <pointer> need to have the same first class type (<ty>). The
same compiler constrains that apply to volatile “loads” apply also to
volatile “stores”. In our example in Listing 6, we use the store in Line
3 to write 5 into the variable saved at the address %var.

instruction : br

br label <dest>

br i1 <cond>, label <iftrue>, label <iffalse>

Branch instruction, or short “br”, diverts the control flow from one
BB to another BB, marked with the correct label. Control flow shall be
discussed in more detail in the next section. The branch can either
be unconditional, always resulting in a jump to the <dest> block, or
conditional. Every conditional branch checks whether <cond> is 1. In
case it is the control flow is diverted to <iftrue>, otherwise to <iffalse>.
The last three lines of our example in Listing 6 show how a branch
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works. First, in Line 4 we load a value from %var. Second, we make
an integer compare between the loaded value and zero, writing the
result to %1. Third, the branch instruction checks whether the compare
returned one or zero and branches accordingly.

instruction : call

<result> = call <ty>|<fnty> <fnptrval>(<function args>)

Call instruction, or short “call”, represents a call to another function,
meaning it diverts the control flow to the other function and marks
the continuation point after the function returns. The first two param-
eters represent certain types of the function; <ty> represents the type
of the call instruction and the return value of the function, where
<fnty> is the signature of the function that is called, which is only re-
quired if the function has variable arguments. Next <fnptrval>, is a
pointer to the function that shall be called. Then the parameters list
<function args> follows, specifying the values that are passed to the
function. Furthermore, the provided parameters have to match the
signature of the function even if not specified. In our example 6 we
call a function @Z3_fooi in line 9. As parameter we pass and 32-bit in-
teger %2, the value loaded in the line above. The result of the function
call will be of type double and stored in the local register %call.

2.3.2.4 Control-flow in LLVM

After we introduced a few special instructions, we now turn our focus
to the overall structure of the LLVM-IR. On the highest level LLVM
defines the term module to represent a translation unit. Translation
unit is the whole input c/cpp file, after the preprocessor has been
executed, which is then given to the compiler to be compiled into an
object file. A module consists of symbol-table entries, global variables,
and a list of functions. Each function is composed out of BBs, which
are a list of instructions without a branch in-between, meaning that
only the last instruction, the so called terminator, can divert control
flow. The function defines an entry BB, where control flow starts when
the function is called. Every BB has a set of successor blocks where
the control flow can go; this is defined by the terminator. Take, for
example, a branch instruction. It has two possible BBs it can jump to,
the then or the else block, making them a possible successor of the
BB. Another terminator instruction is “ret”, the return instruction,
marking the end of a control-flow within a function and returning to
the callers control flow.

This structure of a function is at the same time the control-flow
graph, because it represents the control flow through the function.
To visualize the graph, we use the predefined graph printers which
LLVM offers through the option -dot-cfg. We use the example in
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Listing 6 from before to generate via the opt-tool the control-flow
graph, shown in Figure 4. The first BB of our graph contains the same

CFG for 'main' function

%entry:
 %var = alloca i32, align 4
 %array = alloca [5 x i32], align 16
 store i32 5, i32* %var, align 4
 %0 = load i32, i32* %var, align 4
 %add = add nsw i32 %0, 42
 %arrayidx = getelementptr [5 x i32], [5 x i32]* %array, i64 0, i64 2
 store i32 %add, i32* %arrayidx, align 8
 %1 = load i32, i32* %var, align 4
 %2 = icmp ne i32 %1, 0
 br i1 %2, label %then, label %else

T F

%then:
 %3 = load i32, i32* %var, align 4
 %4 = add nsw i32 %3, 1
 store i32 %4, i32* %var, align 4
 br label %else

%else:
 ret i32 0

Figure 4: Example control-flow graph.

instruction sequence as shown in Listing 6. In the end of this BB, we
can take two control-flow edges, either to the %then block or %else.

If the branch condition is true, the next block is %then, where %var

is increased by 1, in case it is false, or after we exit the %then block,
we branch to the %else block. When the control flow reaches the last
instruction of the %else block, zero is returned and we switch the
control flow back to the caller.

2.3.3 Pass Infrastructure

The LLVM optimizer is the middle component of the compiler, which
aims to make the IR representation of the program more efficient.
These optimizations are applied in different passes, where each pass
does transformations or computes information. For example, the dead
instruction elimination (-die), which removes instructions that are
never executed, or the promote memory to register pass (-mem2reg),
which changes memory references to register references by making
memory accesses local. In general, there are two categories of passes:
analysis passes, computing higher-order information about the pro-
gram (for example, information about pointer aliasing) or transfor-
mation passes, which transform the IR code to make it more effi-
cient. Each pass can specify other passes that should be run before
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it, because it depends on the calculated information or assumes that
some transformations were run before it. This creates dependencies
between passes and can make it necessary to run passes more than
once, because some passes may invalidate the information computed
by another pass. Each pass specifies if it “preserves” the computed
information or if not, requiring the reexecution of the pass that calcu-
lated it. This is why passes are registered with a Passmanager, which
manages the dependencies and schedules passes.

Let us take a closer look at how a pass works and how we can create
our own pass within LLVM, so we can later write our own analysis.
First, we have to define on which levels we want our pass to run, for
example, each function or each BB. We specify this by inheriting from
one of the different pass classes, for example, a llvm::ModulePass

runs once on every module where a llvm::LoopPass processes ev-
ery loop of a program independently. Second, we implement the
basic interface by creating a static variable ID and overwriting the
runOn* function, for a module pass this would be: bool runOnModule(

Module &M)override. Last, we now register our new pass with the LLVM
Passmanager by instantiating the register template: static RegisterPass

<OurPass> X("OurPass name", false, false). In addition, we could imple-
ment the getAnalysisUsage method to specify our dependencies to other
passes. With only a few steps, we create our own pass and place it in
the LLVM pass infrastructure, allowing us to write a powerful analy-
sis without much engineering effort.

2.3.4 Frontend clang

After we explained the LLVM-IR and the LLVM pass infrastructure
within the optimizer, we now turn to the language dependent part
of the LLVM frontend. Regarding frontends, we introduce clang1

in more detail, but other frontends work in similar ways. Clang is
LLVM’s frontend for parsing C based languages, supporting C, C++,
Objective C/C++, and OpenCL C. The main task of the frontend is to
translate the source code into LLVM-IR.
Clang processes the code in three steps. First, the preprocessor

resolves #include directives and does expansions of #define and #ifdef

macros. Second, the clangsemantic engine, internally called Sema,

creates the abstract syntax tree (AST). The language-dependent AST is
composed out of many different nodes, which are grouped into three
base classes: (1) declarations, such as variable declarations (VarDecl),
(2) statements, such as a BinaryOperator, and (3) types. Take, as exam-
ple, the C++ code in Listing 7, which corresponds to our IR example
from before. We generate a visualization of the AST by calling clang

with -Xclang -ast-dump. Figure 8 shows a section of the AST dump,
omitting unimportant typedefs. On the top level is a FunctionDecl for

1 http://clang.llvm.org/index.html

http://clang.llvm.org/index.html
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Listing 7: C++ source code corresponding to our previous IR example.

1 double foo(int a) {

2 return 0.0;

3 }

4

5 int main() {

6 int var = 5;

7 int array[5];

8

9 if (var)

10 foo(var);

11

12 return 0;

13 } �
our main function. Two nodes deeper into the AST we find a DeclStmt

for our variable declaration in Line 2 of the source file. Both sub nodes
describe the declaration in more detail, the VarDecl describes the vari-
able and the IntegerLiteral represents our initial value of 5. Another
interesting node is the IfStmt, which represents our if in Line 6. After
the two <<<NULL>>> lines, we find the condition (ImplicitCastExpr), the
then block of the if (UnaryOperator) and the last <<<NULL>>> represents
the non-existent else statement. Third, after the frontend created the
AST, it traverses the AST to create corresponding LLVM-IR code. After
code generation, clang passes the code to the optimizer.
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Listing 8: Example AST produced by clang.

FunctionDecl 0x164d221 <example.cpp:1:1, line:10:1> line:1:5 main 'int (void)'

`-CompoundStmt 0x164d748 <col:12, line:10:1>

|-DeclStmt 0x164d3c8 <line:2:3, col:14>

| `-VarDecl 0x164d348 <col:3, col:13> col:7 used var 'int' cinit

| `-IntegerLiteral 0x164d3a8 <col:13> 'int' 5

|-DeclStmt 0x164d4b8 <line:3:3, col:15>

| `-VarDecl 0x164d458 <col:3, col:14> col:7 used array 'int [5]'

|-BinaryOperator 0x164d610 <line:5:3, col:20> 'int' lvalue '='

| |-ArraySubscriptExpr 0x164d560 <col:3, col:10> 'int' lvalue

| | |-ImplicitCastExpr 0x164d548 <col:3> 'int *' <ArrayToPointerDecay>

| | | `-DeclRefExpr 0x164d4d0 <col:3> 'int [5]' lvalue Var 0x164d458 'array'

'int [5]'

| | `-IntegerLiteral 0x164d4f8 <col:9> 'int' 2

| `-BinaryOperator 0x164d5e8 <col:14, col:20> 'int' '+'

| |-ImplicitCastExpr 0x164d5d0 <col:14> 'int' <LValueToRValue>

| | `-DeclRefExpr 0x164d588 <col:14> 'int' lvalue Var 0x164d348 'var' 'int

'

| `-IntegerLiteral 0x164d5b0 <col:20> 'int' 42

|-IfStmt 0x164d6d8 <line:6:3, line:7:8>

| |-<<<NULL>>>

| |-<<<NULL>>>

| |-ImplicitCastExpr 0x164d678 <line:6:7> '_Bool' <IntegralToBoolean>

| | `-ImplicitCastExpr 0x164d660 <col:7> 'int' <LValueToRValue>

| | `-DeclRefExpr 0x164d638 <col:7> 'int' lvalue Var 0x164d348 'var' 'int'

| |-UnaryOperator 0x164d6b8 <line:7:5, col:8> 'int' postfix '++'

| | `-DeclRefExpr 0x164d690 <col:5> 'int' lvalue Var 0x164d348 'var' 'int'

| `-<<<NULL>>>

`-ReturnStmt 0x164d730 <line:9:3, col:10>

`-IntegerLiteral 0x164d710 <col:10> 'int' 0 �
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D E T E C T I N G F E AT U R E S I N L LV M - I R

In this chapter, we explain how we use our framework to extract fea-
tures from source code and make them available in LLVM. First, we
describe how we modified the C/C++ frontend clang to extract fea-
tures from source code and annotate them in LLVM-IR during com-
pilation. Second, we explain our framework called VaRA (variability-
aware region analyzer) in more detail and highlight what makes it
adaptive to create new analyses and existing analyses reusable. Third,
we present our feature detection as an example for a detection analy-
sis that can be written with VaRA.

3.1 feature extraction with clang

Before we can analyze features, we first have to locate them in the
source code and mark their locations in LLVM-IR. In Section 2.1.1, we
introduced features in software and explained that load-time options
are represented by if conditions. In this section, we locate these if

blocks in the AST of a program and transfer them into a data structure,
representing presence conditions. We then describe our metadata for-
mat and demonstrate how we create it out of the presence condition.
Furthermore, we explain how we attach metadata to LLVM-IR BBs to
track features. We implement our feature extraction for C/C++ pro-
grams by modifying clang, but the general idea can be implemented
in all LLVM frontends.

3.1.1 Locating features in C/C++ ASTs

Previous to the extraction, clang has to load a configuration file that
contains the names of the configuration variables. Currently, this con-
figuration file is just a list of names; however, we implemented an
interface for accessing the configuration that allows us to replace the
simple file format with a more detailed one. During the initialization
of the CodeGenModule which handles the generation of code for a mod-
ule, clang initializes our CodeGenFD. The CodeGenFD, which is short for
code generation feature detection, automatically loads the configura-
tion file and is meant to track the found feature occurrences.

To locate features, we hook into clangs code generation, especially
the function EmitIfStmt within the CodeGenFunction class which handles
the code generation (CG) of a function. Listing 9 shows a code snipped
we want to process, which corresponds to the AST in Listing 10.
EmitIfStmt is called to generate the IR code for an IfStmt AST node,

21
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Listing 9: Code example with two features.

1 if (FOO) {

2 if (BAR) {

3 // feature code

4 a += 42;

5 }

6 } �
for example, the two in Listing 10 (Line 1, 7). Therefore, it is a good

Listing 10: Clang produced AST for Listing 9

1 IfStmt 0x2140c98 <line:8:3, line:13:3>

2 |-<<<NULL>>>

3 |-<<<NULL>>>

4 |-ImplicitCastExpr 0x2140b48 <line:8:7> '_Bool' <LValueToRValue>

5 | `-DeclRefExpr 0x2140b20 <col:7> '_Bool' lvalue Var 0x2140650 'FOO' '_Bool'

6 |-CompoundStmt 0x2140c78 <col:12, line:13:3>

7 | `-IfStmt 0x2140c40 <line:9:5, line:12:5>

8 | |-<<<NULL>>>

9 | |-<<<NULL>>>

10 | |-ImplicitCastExpr 0x2140b88 <line:9:9> '_Bool' <LValueToRValue>

11 | | `-DeclRefExpr 0x2140b60 <col:9> '_Bool' lvalue Var 0x2140718 'BAR' '
_Bool'

12 | |-CompoundStmt 0x2140c20 <col:14, line:12:5>

13 | | `-CompoundAssignOperator 0x2140be8 <line:11:7, col:12> 'int' lvalue '+=

' ComputeLHSTy='int' ComputeResultTy='int'

14 | | |-DeclRefExpr 0x2140ba0 <col:7> 'int' lvalue Var 0x2140a88 'a' 'int'

15 | | `-IntegerLiteral 0x2140bc8 <col:12> 'int' 42

16 | `-<<<NULL>>>

17 `-<<<NULL>>> �
extension point to determine if the IfStmt is related to feature code.
First, we call the function CodeGenFD::getHeadFeatureMD, forwarding the
IfStmt. The function tries to create a PresenceCondition, our abstraction
to represent presence conditions, for the IfStmt, which is only suc-
cessful if the statement contains at least one configuration variable.
We traverse all variables in the condition of the IfStmt and check if
a variable name matches with one we previously loaded from the
configuration file. In the example, we find a DeclRefExpr within the
first IfStmt, where the used variable name (FOO) matches with a con-
figuration variable. Thus, we create a PresenceCondition based on the
IfStmt. Furthermore, the found if block needs to be annotated with
feature information, hence we push the PresenceCondition onto a stack
to keep track of it. Keeping a stack is important because, if we have
two nested ifs, the presence condition of the inner one must also sat-
isfy the outer condition, meaning that we have to combine them with
a logical and (&&). Listing 9 shows two nested if blocks. Here, the
presence condition of the outer if is FOO, where the presence condition
of the inner one is FOO && BAR, different from its actual condition BAR.
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In the other case, we find no matching variable and therefore do not
create a PresenceCondition. We just return a nullptr, which gets ignored
from the rest of the code, and are done with processing this IfStmt.

Before we continue to explain how we annotate feature related BBs

we describe our metadata format in the next section.

3.1.2 Feature metadata

We want to annotate each BB related to a feature with metadata that
provides information about the feature block, which are either expen-
sive to be recalculated or would get lost during the transformation
to LLVM-IR. CodeGenFD offers a function getCurrFeatureMD, which creates
a llvm::MDNode from the PresenceConditions on the stack. The metadata
node is based on the grammar represented in Listing 11, beginning
with start symbol 〈 FMDNode〉. Every 〈 FMDNode〉 is composed out of

Listing 11: Metadata grammar

〈 FMDNode 〉 : : = 〈 FBlock 〉 | 〈 FBlock 〉 "&" 〈 FMDNode 〉
〈 FBlock 〉 : : = " [ " 〈 Type 〉 " , " 〈 PC 〉 " ] "
〈 PC 〉 : : = 〈 Var 〉 | 〈 Var 〉 〈 Op 〉 〈 PC 〉 | " ( " 〈 PC 〉 " ) "
〈 Var 〉 : : = " { " 〈 VarName 〉 " } " | 〈 Neg 〉 " { " 〈 VarName 〉 " } "
〈 Type 〉 : : = "H" | "T" | "E"
〈 Op 〉 : : = "&&" | " | | "
〈 Neg 〉 : : = " ! "
〈 VarName 〉 : : = $VARNAME �

at least one 〈 FBlock 〉 , which corresponds to one feature block. Each
〈 FBlock 〉 consists of a 〈 Type 〉 and the presence condition of the block

( 〈 PC〉). The presence condition of each 〈 FBlock 〉 is a sequence of vari-
able names that can be surrounded with brackets, negated, and are
joined by different operands — either and (&&) or or (| |). 〈 Type 〉
indicates the part of our feature block; "H", meaning this is part of
the header/condition, "T" representing the “then” part, and "E" repre-
senting the “else” part of the if. For example, we create the metadata
string [H,{FOO}] for the BBs corresponding to the if condition in lines
four and five of Listing 10. Regard to the nested if we produce two
〈 FBlocks 〉 and join them by an and (&), resulting in [T,{FOO}] & [H,{

BAR}]. For this case, we used only one & to make parsing the string
easier, meaning one & joins different 〈 FBlock 〉 where two are used
within presence conditions.

Currently, our metadata node is implemented to produce a llvm::

MDString, but this can later be replaced by adding a special MDNode to
LLVM. A special llvm::FeatureMDNode would preserve the semantics be-
hind our grammar and reduce the complexity of parsing feature meta-
data.
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3.1.3 Annotating LLVM-IR with feature metadata

We continue with the execution of EmitIfStmt after we created the
PresenceCondition. Now, we need to mark each BB that is related to
a feature with a metadata node, but BBs themself cannot be annotated
with metadata. Thus, we use the terminator of a BB to attach our
metadata. Because there are different terminator instructions and we
have no direct access to the inserted instructions in the EmitIfStmt func-
tion, we separate the insertion of the metadata node from EmitIfStmt.
At every location a terminator is created, we add code to insert our
metadata. Listing 12 shows the code we added to the EmitBranch func-
tion. The first line of our change tries to create a metadata node by

Listing 12: Annotating branch instructions with metadata.

...

auto BInst = Builder.CreateBr(Target);

+ llvm::MDNode *Feature = CGM.getCurrFeatureMD();

+ if (Feature)

+ BInst->setMetadata("Feature", Feature);

} �
calling getCurrFeatureMD. In case this is successful, we add the node to
the instruction created earlier; otherwise we do nothing. Besides the
branch instruction, we also have to add this code to other terminators
such as return, unreachable or switch instructions.

However, separating the insertion of metadata requires us to track
in which branch of the if we currently are. To achieve this, we add
the state to the PresenceConditions on the stack. The state tracks which
branch of the IfStmt, corresponding to the PresenceCondition, was al-
ready processed. During the execution of EmitIfStmt, we call three
functions, provided by CodeGenFD, to update the state. First, finishHead
after the code for the if condition was emitted. Second, finishThen

after we processed the “then” block. Last, we call closeFeature to re-
move the PresenceCondition from the stack. This allows us to precisely
add metadata information to every instruction we want and still keep
track of the metadata we have to generate.

With all these adjustments we can automatically locate, create, and
annotate LLVM-IR with feature metadata. Listing 13 shows part of the
generated IR code from our example in Listing 9. We see at the end
of the entry block, the feature metadata for the condition of if (FOO).
Another example is !Feature !3 that marks the “then” block of the
inner if (BAR). It has two conditions FOO and BAR, resulting in the com-
bined presence condition FOO & BAR.
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Listing 13: LLVM-IR with feature metadata for the code in Listing 9.

1 entry:

2 ...

3 br i1 %tobool, label %if.then, label %if.end3, !Feature !1

4

5 if.then:

6 ...

7 br i1 %tobool1, label %if.then2, label %if.end, !Feature !2

8

9 if.then2:

10 ...

11 br label %if.end, !Feature !3

12

13 if.end:

14 br label %if.end3, !Feature !4

15 ...

16

17 !1 = !{!"[H,{FOO}]"}

18 !2 = !{!"[T,{FOO}] & [H,{BAR}]"}

19 !3 = !{!"[T,{FOO}] & [T,{BAR}]"}

20 !4 = !{!"[T,{FOO}]"} �
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3.2 variability-aware region analyzer

This section introduces the idea and the structure of our variability-
aware region analyzer (VaRA). We begin by defining the concept of a
region within VaRA. Then, we explain the interface offered by VaRA in
more detail and introduce our generic visualizer.

3.2.1 Region concept behind VaRA

The general idea behind VaRA is to extend LLVM with an interface
that allows researchers to write arbitrary analyses, based on LLVM-
IR. For example, we could write an analysis pass that tries to detect
interactions between features, to combat the problem mentioned in
Section 2.1.1.5. Furthermore, we aim to make our analyses reusable,
so that we can use the same analysis on different sections of the code.
Hence, we have to decouple the analysis from the type of region that
is analysed. To this end, we define the concept of an iregion, which
represents a section in the code we are interested in for analysis. For
our interaction example, we would define an iregion as a code section
belonging to a feature.

We implemented this concept in VaRA in the class vara::IRegion.
IRegion provides an abstract interface for handling different kinds of
regions, which shall be explained in the next section in more detail.
The developer creates his own region class that represents a section
relevant to him and inherits from IRegion. This provides him with a
default implementation that eases debugging, such as graph printers,
and speeds up development due to pre-implemented data structures.
Furthermore, IRegion sets a clear interface for analyses already imple-
mented in VaRA. This means that the developer can use these analyses
on his regions, by only implementing the interface. In addition, this
also helps analysis writers, because they can use different regions to
run their analysis on. To complete our example, we implement a re-
gion class that is based on IRegion and we implement an analysis that
detects interactions between IRegions. This enables us to find feature
interactions, but also allows us to combine features with other analy-
ses and find interactions between other types of regions.

3.2.2 IRegion interface of VaRA

After we explained the concept behind an IRegion, we now focus on
the technical part. We describe some implementation details and high-
light how they allow us to use VaRA. Listing 14 shows part of the
IRegion interface. We first notice that IRegion is actually a class template,
which can be specified by providing a type for PART. This is necessary
because of two reasons; first, different types of regions can have dif-
ferent types of parts. Second, an IRegion manages the parts it consists
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Listing 14: IRegion interface

1 class IRegionBase {

2 public:

3 unsigned int getID();

4 };

5

6 template <typename PART>

7 class IRegion : protected IRegionBase {

8 public:

9 std::string getName();

10 unsigned int getID();

11

12 IRegionKind getKind() const;

13

14 virtual void dump(bool full = false);

15

16 bool isTopLevel() const;

17 void addSubRegion(IRegion *IR);

18 llvm::SmallVector<IRegion *, 4> getSubRegions();

19

20 SubIRegionIter SubRegion_begin();

21 SubIRegionIter SubRegion_end();

22

23 IRegionIter begin();

24 IRegionIter end();

25

26 bool contains(PART *BB) const;

27 virtual bool isInPosPart(PART *BB) const;

28 virtual bool isInNegPart(PART *BB) const;

29

30 template <typename PART>

31 class IRegionDetection : public FunctionPass {

32 public:

33 virtual llvm::SetVector<IRegion<PART> *> getRegions() = 0; �
of for the user and therefore needs the type of a part. For example,
one user needs regions based on llvm::BasicBlocks, whereas another
wants to group llvm::Functions together. Furthermore, IRegion also has
a base class (IRegionBase) that, despite different template instantiations,
provides an unique ID for every IRegion.

We now focus on the public methods of IRegion. There are different
getters for utility informations, such as name or ID, but also a special
getter getKind. IRegionKind is an enum that is used for LLVMs own run-
time type information (RTTI), to allow for more efficient down cast-
ing. This works similar to calling the instance-of operator in Java be-
fore casting. We provide this interface to be compatible to LLVM and
to allow the user to utilize the llvm::dyn_cast<> macro, which allows
him to cast an IRegion to a sub type. Next, the IRegion interface offers
methods to add sub regions and to iterate over them, which is use-
ful to nest regions. Furthermore, there are methods such as contains



28 detecting features in llvm-ir

to interact with the parts of a region and iterators to iterate over all
parts.

However, before we can analyze IRegions, we first have to create
them. To achieve this, VaRA offers the IRegionDetection base class that
itself is based on LLVM passes like llvm::FunctionPass explained in
Section 2.3.3. Every detection pass that inherits from IRegionDetection

provides a virtual getRegions function to access its found regions.
The IRegion interface combined with own detection passes com-

pletes our structure to analyze generic types of regions. It makes the
designer of analyses and regions independent of each other, allowing
reuse of existing implementations. Currently, this interface was suffi-
cient for our implementations, but we plan to enhance it further to
offer more support to analysis developers.

3.2.3 IRegion visualizer

As an example, we describe IRegionCFG, a visualizer for CFGs that high-
lights regions. VaRA offers other support, such as special data struc-
tures and debugging utilities, too. The IRegionCFG eases debugging
during the development of new region classes. It shows a CFG of
a function and simply highlights the regions that are currently de-
tected, so that the developer can easily see if all BBs are correctly
grouped. To use the IRegionCFG the developer only needs to create a
IRegionFunction, initialize it with the function he wants to draw, and
add IRegions to it. Then he can call viewCFG to show the full CFG with
details, or viewCFGonly to get a small version of the graph. Listing 15

shows how to draw an IRegionCFG and Figure 5 shows an example
graph.

Listing 15: Code to view IRegionCFG

1 llvm::Function F;

2

3 IRegionFunction IRF = IRegionFunction(F);

4 IRF.addIRegion(/* pass IRegion*/);

5 IRF.viewCFG();

6 IRF.viewCFGonly(); �
In order to draw such a graph, VaRA uses GraphTraits provided from

LLVM. IRegionFunction is a decorator around a llvm::Function that pro-
vides region information. In essence, it is a struct that holds the
functions and pointers to all regions. We then specialize the two
graph templates GraphTraits<> and DOTGraphTraits<> for our decorator
IRegionFunction. GraphTraits<> specifies how our graph is connected
and how we can iterate over the nodes. IRegionCFG is based on the CFG

provided by LLVM. Therefore, we inherit the relations from GraphTraits

<llvm::BasicBlock *> and provide our own entry node and node itera-



3.2 variability-aware region analyzer 29

IRegionCFG for 'main' function

{FOO} ID: 0

{BAR} ID: 1

entry:
 %retval = alloca i32, align 4
 %argc.addr = alloca i32, align 4
 %argv.addr = alloca i8**, align 8
 %a = alloca i32, align 4
 store i32 0, i32* %retval, align 4
 store i32 %argc, i32* %argc.addr, align 4
 store i8** %argv, i8*** %argv.addr, align 8
 store i32 0, i32* %a, align 4
 %0 = load i8, i8* @FOO, align 1
 %tobool = trunc i8 %0 to i1
 br i1 %tobool, label %if.then, label %if.end3, !Feature !1

T F

if.then: 
 %1 = load i8, i8* @BAR, align 1
 %tobool1 = trunc i8 %1 to i1
 br i1 %tobool1, label %if.then2, label %if.end, !Feature !2

T F

if.end3: 
 ret i32 0

if.then2: 
 %2 = load i32, i32* %a, align 4
 %add = add nsw i32 %2, 42
 store i32 %add, i32* %a, align 4
 br label %if.end, !Feature !3

if.end: 
 br label %if.end3, !Feature !4

Figure 5: Visualization of the example code in Listing 9.

tor. We simply forward them to the iterators of the function stored in-
side the IRegionFunction, because we want the same relations between
the BBs. The second template we have to specialize is DOTGraphTraits that
specifies how the contents of a “.dot” file is created. To get a ba-
sic functionality, we inherit from DOTGraphTraits<Function *> and over-
write only methods where we want different contents. For example,
we overwrite getEdgeSourceLabel to change which branch edges are
drawn and addCustomGraphFeatures. This method is used to adapt the
graph above-anticipated modifications by allowing write access to
the GraphWriter, meaning we can directly write to the “.dot” output
file. The “.dot” file specification allows us to cluster nodes into sub-
graphs and fill the cluster with a specified color. Hence, to color our
regions, we create a string that describes a region as a subgraph and
write it directly to the “.dot” file.
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The developer can now automatically print a CFG that highlights
its specified regions as a “.dot” file and thus visualize the internal
structure, for example, by converting it to a “png” file1.

1 dot -T png /PATH/iregioncfg:main.dot -o iregioncfg.png
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3.3 feature extraction in llvm

After the introduction of the generic structure of VaRA, we explain
how we use it to create a feature extraction. This continues after clang
generated LLVM-IR code, as describe in Section 3.1.3, and passed it
to the optimizer. First, we describe the overall structure of features
within VaRA and how they fit into the region concept. Second, we
explain how we recreate features from the annotated metadata left by
clang.

3.3.1 The feature structure within VaRA

We implemented the concept of a feature and their source code re-
gions within VaRA. The following section explains the different classes
used to make VaRA feature aware.

3.3.1.1 Feature

A feature is represented by two classes: one is the FeatureVariable that
encapsulates the configuration variable. Every FeatureVariable has an
unique identifier and a name, corresponding to the name of the con-
figuration variable. Furthermore, every feature variable stores a list
of FeatureRegions that belong to it, because they are influenced by the
encapsulated configuration variable. The second class, FeatureRegion

that is based on vara::IRegion<llvm::BasicBlock>, is a group of llvm::

BasicBlocks that relate to the feature code. More precisely, the base
class IRegion keeps track of all BBs in the regions, where the
FeatureRegion itself groups the blocks into head/then/else to differenti-
ate the parts of an if block. Hence, FeatureRegion implements the differ-
ent methods to fulfill the IRegion interface, such as contains and classof

(for RTTI), but also offers special methods to get more detailed infor-
mation about a feature like if a block belongs to the condition part or
a branch. Furthermore, each FeatureRegion has a PresenceCondition and
a list of pointers to PresenceConditions from surrounding regions.

3.3.1.2 Presence conditions

PresenceCondition represents the condition under which the BBs in the
“then” group of a FeatureRegion are executed. We structured our
PresenceCondition class similar to the 〈 PC〉 non-terminal in the gram-
mar shown in Listing 11. Therefore, PresenceCondition is an abstract
base class and can be either a PresenceConditionValue (PCValue) or a
PresenceConditionNode (PCNode). A PCValue represents a single Feature-

Variable, where a PCNode is a conjunction of two PresenceConditions. PCNode
corresponds to a node in a binary tree, because it has a left- and a

right-child node that are joined by an operator, which can be either
and or or.
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3.3.1.3 FeatureManager

FeatureManager is the core component of the feature support for VaRA,
not only because it manages features and provides an interface to ac-
cess features, but also because it serves as a mapping between LLVM
data structures and VaRA. Because our feature classes have a lot of
relationships among each other, we need a component to ensure that
certain invariants, which we assume between our data structures, are
preserved. For example, a FeatureRegion can have multiple presence
conditions, due to surrounding regions, which themself can have
multiple FeatureVariables, such that a FeatureRegion belongs to different
FeatureVariables and each of these FeatureVariables needs a connection
back. Furthermore, we need mappings from LLVM classes to VaRA

classes, such as the mapping from llvm::Functions to FeatureRegions.
Hence, we restrict the creation of FeatureRegions to the FeatureManager,
which is done by making the constructor private and declaring the
FeatureManager as a friend, and let him manage all FeatureVariables. This
allows us to assume certain invariants: they hold for the empty set,
FeatureManager can ensure that they hold after modification, and other
modifications are excluded. In addition, we can use the FeatureManager

to handle memory management.
Furthermore, the FeatureManager offers an interface. For example,

getFRsForFunction returns all regions belonging to a function or
getVFFromString returns all FeatureVariables within a string, which can
be helpfull for parsing metadata.

3.3.2 Recreating feature regions from metadata

In Section 3.1.3, we used clang to annotate LLVM-IR with metadata.
This IR code is then passed to the optimizer where we want to analyze
feature regions. Thus, we first need a LLVM pass that extracts the
metadata and creates FeatureRegions, providing them to other analysis
passes.

3.3.2.1 Feature detection

The FeatureDetection pass is based on the vara::IRegionDetection pass,
which is a function pass. Therefore, the FeatureDetection processes
each function by itself. It initiates the FeatureManager and initializes a
PresenceConditionMap, which acts as a cache so we do not have to recre-
ate PresenceConditions for metadata string we have seen before. Then,
the FeatureDetection iterates over all BBs, and checks whether the block
has feature metadata. In case it has metadata and this BB was not pro-
cessed before, that is, it is not in the visitedBBs set, the FeatureDetection

starts to extract a FeatureRegion.
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3.3.2.2 Creating a presence condition

Before we continue with the extraction, we first need to describe how
we convert the metadata representation of a feature into a
PresenceCondition. The method cPCFS()2 strips the header information
from the string, by removing the parts that do not belong to the pres-
ence condition, and tries to create a PCNode from the string. To create
a PCNode, we call the function createPresenceConditionNodeFromString that
searches for junctions, for example, (&&) or (| |); furthermore, it tries
to find enclosing brackets. We compute substrings based on whether
we found a conjunction or brackets and there locations. Then, we
either recursively call createPresenceConditionNodeFromString twice, one
with the substring for right-hand side(rhs) the other with the sub
string for left-hand side(lhs), or we call cPCVFS()3. In the latter case,
a PresenceConditionValue is created and returned; by checking for if we
need to create brackets or negation (!) markers, extracting the name of
the feature variable from the string, fetching the FeatureVariable from
the FeatureManager, and assembling a new PresenceCondition. In the re-
cursive case, we combine the return values of rhs and lhs into a new
PresenceConditionNode and return it. At the end, we recursively put to-
gether a PresenceCondition that represents the presence condition in the
metadata.

3.3.2.3 Creating a feature region

As input to the constructor of a FeatureRegion, we get the created
PresenceCondition, the entry block of region, and a set of BBs that have
already been visited (visitedBBs). To create the region we have to find
all BBs that belong to it, therefore, we create a queue that tracks all
BBs we need to check and initialize it with the entry block. Then, we
process every BB in the queue, skipping those we have processed be-
fore, so that they are in the set of visited BBs. We start by adding the
BB into the set of visited BBs and check if the metadata of the BB de-
scribes the same or a subblock of the current presence condition. In
the case it does, we get the group type (head/then/else) from meta-
data and add the BB into the corresponding group. Next, we queue
every successor block of the BB to the queue for processing and con-
tinue with the next BB. After the queue is empty, the creation of the
FeatureRegion is finished.

3.3.2.4 Extracting a new feature region

We begin the extraction of a FeatureRegion by fetching the metadata
from the BB and converting it into a list of PresenceConditions. Cor-
responding to the nesting, the metadata string is split into differ-
ent blocks; each of them is then converted into a PresenceCondition.

2 createPresenceConditionFromString()

3 createPresenceConditionValueFromString()
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Since there are many equal blocks and we do not want to convert
the same string twice, we use a cache to look up previously cre-
ated PresenceConditions. Then we forward the list of PresenceConditions,
the BB we are processing, and a list of visited BBs (visitedBBs) to the
createFeatureRegion method of the FeatureManager. This function creates
a new FeatureRegion and updates the data structure in the FeatureManager.
First, a pointer to the new regions gets added to every region that sur-
rounds it. Second, we add a mapping of from the llvm::Function, the BB

belongs to, to FeatureRegions into a map. Third, the new FeatureRegion

gets added to every FeatureVariable that occurs in its PresenceCondition.
At the end we return a pointer to the new FeatureRegion.

3.3.2.5 Visualizing feature regions

After we have extracted all regions that correspond to features and
created FeatureRegions for them, we now use VaRA’s visualizer to show
a simple CFG that highlights the found regions, as shown in Figure 6a.

IRegionCFG for 'main' function

{FOO} ID: 0

{BAR} ID: 1

entry

T F

if.then

T F

if.end3

if.then2

if.end

(a) Visualization of the example code
in Listing 9.

FeatureCFG for 'main' function

PC:{FOO}

PC:{FOO} && {BAR}

entry

T F

if.then

T F

if.end3

if.then2

if.end

(b) FeatureCFG for the example code
in Listing 9.

However, we can also adapt the code of the visualizer to create our
own FeatureCFG, that contains a better representation for features. For
example, we can add the full presence condition of the feature to the
top of region, as shown in Figure 6b.
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In this chapter, we evaluate our framework VaRA by implementing
a language-independent interaction analysis. We show how VaRA al-
lows our analysis to only work on abstract regions by implementing
the analysis only based on the IRegion interface. After that, we also
evaluate whether our interaction analysis produces correct results by
analysing and verifying certain example programs.

4.1 feature-interaction analysis

In the previous chapter we made the claim that VaRA allows devel-
opers to write analysis that run on LLVM-IR without considering on
which kind of region they operate. To prove this, we demonstrate our
feature-interaction analysis that we developed with VaRA. The analy-
sis is only based on IRegions and finds interactions between them. For
example, we shall use FeatureRegions to find interactions between dif-
ferent features. We begin with an explanation of the analysis-graph
structure that is later used. Then we explain how we detect interac-
tions based on IRegions but use it to find feature interactions.

4.1.1 Analysis graph structure

Our interaction analysis runs as a module pass in LLVM and requires
two other passes as dependencies. DominatorTreeWrapperPass provides
us with dominator information about BBs, meaning we can query
if BB A dominates BB B. LLVM implements the relationship “domi-
nates” as follows: BB A dominates B if and only if every control-flow
path that leads to B must go through A. The other pass we depend
on is FeatureDetection that provides us with region information, but
here we could use any IRegionPass. For each function we only run the
FeatureDetection and access it through the IRegionPass interface with
getRegions, to get a list of all IRegions. This list is then forwarded to the
top-level node of our analysis structure, which consists of ModuleNodes,
FunctionNodes, and BBNodes.

4.1.1.1 ModuleNode

ModuleNode encapsulates a module and manages all relationships be-
tween functions. We add a function to the ModuleNode with the method
addFunction(Function *F, Set<IRegion> Regions) that takes the function to-
gether with a set of IRegions as inputs. The ModuleNode then creates a

35
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FunctionNode to represent the function and keeps a mapping between
function and FunctionNode. In addition the ModuleNode also tracks all
found interactions with an InteractionStore, allowing him to output
all found interactions at the end or draw a graph to visualize the
analysis structure. After we added all functions to the ModuleNode we
call analyze. The method starts by pushing all functions onto a work
queue and then starts to process the queue. For every interaction
we pop the first function from the queue, lookup the corresponding
FunctionNode, and call its analyze method. After the queue is empty
the analysis of this module is finished.

4.1.1.2 FunctionNode

FunctionNode is a wrapper around a function that manages the rela-
tionships between the BBs. It creates a BBNode for every BB and holds a
mapping between the nodes and BBs. Analog to the data-flow analy-
sis schema from Section 2.2.2 every FunctionNode has an IN and a OUT
set. These sets contain all Accesses that flow into or out of the function.

An Access is an abstraction of an memory operation that sums up
information about the memory access like; which instruction accessed
memory, in which region was the access, and did the operation read
or write. Furthermore, it tracks a history of changes, meaning if the
contents of location a was stored to b and b is then stored to c the
history of the write Access to c includes this change, allowing us to
track the data flow back to a.

Thus, IN is a set of Access object that represent an access to one
of the variables that get passed into the function as a parameter and
OUT is a set of Accesses that relate to the variable which is returned
from the function. Similar to the ModuleNode the FunctionNode provides
an analyze method that handles the analysis of the function. The work
queue of a FunctionNode is initialized with every BB of the function and
processes every BB by calling its analyze method. After the queue is
empty the method checks if its OUT set has changed and in case it
did all functions that depend on this one are added to the queue of
the ModuleNode.

4.1.1.3 BBNode

BBNode is a small wrapper around a llvm::BasicBlock that also has an
IN and a OUT set. However, it also has a third set of Accesses (Own-
Accesses) that are created by the instructions of the BB. The relation-
ships between BBs and there successors are handled as described in
Section 2.2.2 with the union (∪) as meet operator. How the analyses
of a BB works is explained in detail in the next section.
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4.1.2 Detecting data-flow dependencies between features

In this section, we describe the interaction detection. To find inter-
actions we need to find data flow from one region to another, that
means in general one region writes a value that later is used by an-
other region or influences the regions control flow. In particular the
three instructions “load”, “store”, and “call” are important to detect
interactions, where the “call” instruction is only used to propagate
access information between function calls.

The analyze method of the BBNode needs to compute and propa-
gate variable accesses encapsulated by Access. This corresponds to
the schema from the data-flow analysis Section 2.2.2; in our case
we take the Accesses from the IN set, generate new Accesses from our
“store” instructions (gen), delete accesses if we overwrite their infor-
mation (kill), and forward the union of the IN set minus the deleted
Accesses to the OUT set. The analyse method processes every instruc-
tion of the BB in the order they would be executed.

4.1.2.1 Processing a “load” instruction

In case the instruction is a “load” we check whether its operand
<pointer> reads from a variable that is marked by an Access, either
contained in the IN set or the set OwnAccesses. If it does and the BB

belongs to a region we found an interaction, for which we create an
Interaction object that we store in the InteractionStore of the ModuleNode.
The Interaction class stores all important informations about the inter-
action, like which regions interact or the BB.

4.1.2.2 Processing a “store” instruction

If the instruction is a “store” and the BB is within a region we create a
new Access to mark the write to the variable used in operand <pointer>.
However, operand <pointer> might be a “load” from another location,
therefore, we have to traverse the chain of “load” instructions to find
the corresponding stack allocation, which we then use to mark the
access. Next, we delete all Accesses from the IN set and the OwnAc-
cesses set that are overwritten by the new Access. Then we need to
check whether the “store” used an input that is marked by an Access,
meaning operand <value> reads from a previously accessed value. In
case we find an Access we create another separate new Access and pre-
serve the information from the other access by adding it to the history
of the new Access. This allows us to ensure the transitive access rela-
tionship, meaning if a is written within region FOO, then the value
of a is read and stored in b, and after that b is used as an input for
an instruction in region BAR, we get an interaction between FOO and
BAR. Listing 16 shows an example of a transitive access relationship.
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Listing 16: Transitive flow of information between feature regions.

1 if (FOO) { // Feature Region FOO

2 a = 41;

3 }

4 b = a + 1;

5 if (BAR) { // Feature Region BAR

6 if (b == 42) {

7 // ...

8 }

9 } �
4.1.2.3 Processing a “call” instruction

The handling of “call” instructions is split into two parts, handling
the propagation to a function and forwarding the access returned
from the function: first, we need to determine which Accesses get
propagated to the function. We match the call parameters, the values
passed to the function, to the function parameters, the values symbol-
izing the parameter within the function, and create new Accesses for
the new variables, to preserve the relations to the old Accesses. List-
ing 17 shows an example where we pass the variable callvar to the
function foo for the function parameter funcvar. This means we need

Listing 17: Difference of call and function parameter

1 void foo(int funcvar) { /* code */ }

2

3 {

4 int callvar = 42;

5 foo(callvar);

6 } �
to create a new Access whose value is based on the allocation of the
function parameter, fully preserving the history of previous accesses
to the variable behind the call parameter. These new Accesses then get
added to the IN set of the function we want to call. Furthermore, we
register the function as dependent function with our FunctionNode and
queue the function in the ModuleNode to be analyzed if the IN set of the
other FunctionNode changed. Second, we need to forward the Accesses

that are returned from the function into the current context of the
BBNode. We iterate over the OUT set of the function and create new
Accesses, preserving the history, in case the returned value is used.

4.1.2.4 Completing the analysis

After all instructions of the BB are processed we propagate all Accesses
from the OUT set of this BBNode to its successors IN sets. In case this
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changed the IN set of the successor we queue for reanalyzing at the
FunctionNode. The analysis finishes when each queue is empty and we
do not have to reanalyze anything, meaning our analysis has reached
a fix point regarding the information collected with Accesses. At the
end of the analysis, we print all found Interactions that are stored in
the InteractionStore of the ModuleNode.

To implement this feature-interaction analysis we did not have to
use any FeatureRegion specific methods. Hence, our interaction analy-
sis is independent of the type of region and we could use any region
that is based on the IRegion interface.

4.1.3 Current limitations

In this section, we describe current limitations of our analysis. We
discuss two problems that arises from the current implementation
of our analysis structure. Furthermore, we explain the problem our
analysis has when analysing pointers.

4.1.3.1 Context-sensitivity

The first problem is that the analysis currently is context insensitive,
because we do not distinguish between different call locations and
group them into one FunctionNode, making the results not wrong but
imprecise. This can be solved by creating a FunctionNode for every call
side of a function but this also impacts the speed of the analysis.
Therefore, we need to develop a method to make the analysis context-
sensitive without increasing the run-time too much.

4.1.3.2 Inter module dependencies

Another problem is that our analysis can only operate on a mod-
ule level, meaning we cannot analyze function calls that call func-
tions from another module, again making our analysis imprecise.
This problem can partially be solved by reanalyzing these functions
during link-time, but this works only if the function comes from an-
other module of the program. If the function is dynamically liked we
cannot analyze the other function.

4.1.3.3 Handling of pointers

The handling of pointers is only partially supported by our analysis.
On the one hand we detect when the stack allocation of the pointer
variable is accessed, meaning we notice that something was read from
or written to the location behind the pointer. Furthermore, we can
trace if a location is forwarded to another pointer, for example, passed
to a function. But on the other hand we cannot fully follow the loca-
tion, because it could change with pointer arithmetic during run-time.
Furthermore, if a computation or control-flow decision is based on
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the value behind the pointer we cannot infer anything. The results of
this analysis could be partially correct by adding dynamic run-time
information about the pointers, but theoretically this problem unde-
cidable.

4.2 evaluation of our interaction analysis

In this section, we show how we visualize the analysis structure to
understand control flow between different regions. Furthermore, we
give an overview of the test cases and we explain two test cases in
more detail, using our visualization.

4.2.1 Visualizing interaction analysis

In order to better understand and debug our analysis we also imple-
mented special GraphTraits to draw a CFG annotated with the informa-
tion of a FunctionNode. The InteractionAnalysisCFG shows in each node,
corresponding to a BBNode, the three sets IN, OwnAccesses, and OUT
separated by −−−. Each set contains the Accesses displayed with the
triple (Type | variable, RegionID). Figure 6 shows an example graph
for the function main, the corresponding C++/IR code can be found in
appendix A in Listings 19, 20. In the example graph, we see a write
Access in the “if.then” block, that is propagated to the following BBs.
This Access generates an interaction when the value gets used in the
block “if.then.3” of Figure 6. If we compare the identified interaction
with the code in Listing 19 we see that it corresponds to the read of
the variable a, in the feature BAR that was previously written in the
feature FOO. The automatic graph generation allows us to inspect the
results and the state of our analysis, which eases debugging and later
allows the user to examine interactions.

4.2.2 Evaluating the interaction analysis

In the previous section we presented our interaction analysis and how
we automatically create graphs to ease debugging. We now evaluate
if our analyses works as intended by verifying the generated graphs
and comparing the results with our expectations. For this purpose we
create different test cases that focus on specific cases like forwarding
information to a function. All our test cases can be found in the VaRA

repository at github1. This section gives an overview of our test cases
and then describes the evaluation of two in more detail.

1 https://github.com/vulder/VaRA/tree/master/examples/FeatureDetection

https://github.com/vulder/VaRA/tree/master/examples/FeatureDetection
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InteractionCFG: main

entry

----------
Accesses:

----------

if.then

----------
Accesses:

(R | a, 0), (W | a, 0), 
----------

(W | a, 0)

if.end

(W | a, 0)
----------

Accesses:

----------
(W | a, 0)

if.then3

(W | a, 0)
----------

{conf_var_FOO} ID: 0 => {conf_var_BAR} ID: 1 @ if.then3
Accesses:

(R | a, 1), (W | b, 0), (R | b, 1), (W | b, 1), 
----------

(W | a, 0), (W | b, 0), (W | b, 1)

if.end5

(W | a, 0), (W | b, 0), (W | b, 1)
----------

Accesses:

----------
(W | a, 0), (W | b, 0), (W | b, 1)

Figure 6: Interaction-analysis CFG for the function main.
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4.2.2.1 Test scenarios

For the evaluation of our analysis we constructed different test sce-
narios where each focuses on a particular scenario our interaction
analysis has to handle. The following list shows the different cases
we extracted during development:

• Basic functionality:

– simple data flow between two regions

– multiple nested presence conditions

• Handling of function calls:

– data flow between function using references/pointer se-
mantics

– data flow between function using copy by value semantics

– data flow from value returned by a function

• Local relations:

– blocking data flow with local overwrite

– data flow through transitive relation

• Special cases:

– data flow within a loop

– data flow within recursive function

– different levels of pointer indirection

For each test case, we create a small program that has some kind of
data flow from one region to another, potentially causing an interac-
tion. We check whether the created Accesses get propagate correctly
through our graph and if the analysis can detect the interaction cor-
rectly. The first two test cases check the basic functionality; parsing
presence conditions, creating Accesses, and propagating them through
the graph. Then we check whether the analysis can handle function
calls correctly and forwards all relevant Accesses to the IN set of the
function, also testing if functions get reanalysed when their IN sets
change. In addition, we also verify if we can detect an interaction in
case a Access is returned from a function. Furthermore, we duplicate
all our test cases to test value semantics as well as pointer/reference
semantics, for example, when calling a function. Next we test if our
analysis correctly deletes Accesses in case the variable is overwritten,
meaning the previous Access is overwritten and the region would not
influence the other region. Then we created test cases to check if a
transitive Access correctly causes an interaction. In addition we also
create examples for, some special cases, to handle loops and recur-
sive function calls, which is important because in these cases we have
cycles. Last we also created a larger test case that uses different levels
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of pointer indirection. Currently we correctly detect interactions in all
our test cases, meaning we only find intended interaction.

We use the created test suite to ensure the correctness of our analy-
sis and will expand it with further scenarios. In addition we also plan
to evaluate our analysis on real world programs which currently can-
not be done because our clang extension does not support all kinds
of AST nodes.

4.2.2.2 Testing interaction between different functions

It is important for our analysis to correctly handle interactions be-
tween different functions. This means we have to detect an interaction
in case that a value that was written within a feature region is used in
another region within a different function. Figure 8 shows the inter-
action graph for the function bazz, from our test case. The code of the
test case can be found in appendix A in Listing 21 and the graphs for
the main function in Figure 7. At the beginning of the main function

InteractionCFG: main

entry

----------
Accesses:

----------

if.then

----------
Accesses:

(R | a, 2), (W | a, 2), 
----------

(W | a, 2)

if.end

(W | a, 2)
----------

Accesses:

----------
(W | a, 2)

Figure 7: Interaction-analysis CFG for function main

the variable a is initialized and then incremented within the feature
region conf_var_FOO, represented by the write Access in the “if.then”
block of the main function, Figure 7. Later this variable is passed by
reference to the two function baz and bazz. Within the function bazz the
passed variable a is mapped first to the parameter z and then to the
local reference allocation z.addr, therefore, we create a new Access to
z.addr, representing the previous Access to a, and put it in the IN set of
the FunctionNode. Later the variable z.addr is read, meaning the value
of a influences some value within the feature region of conf_var_BAR.
Hence, our analysis detect an interaction when then “if.then” block
in graph, Figure 8, reads the Access to z.addr.
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InteractionCFG: _Z4bazzRiS_

entry

(W | z, 2)
----------

Accesses:
(W | z.addr, 2), 

----------
(W | z, 2), (W | z.addr, 2)

if.then

(W | z, 2), (W | z.addr, 2)
----------

{conf_var_FOO} ID: 2 => {conf_var_BAR} ID: 1 @ if.then
Accesses:

(R | z.addr, 1), (R | c.addr, 1), (W | c.addr, 1), (W | c.addr, 2), 
----------

(W | z, 2), (W | z.addr, 2), (W | c.addr, 1), (W | c.addr, 2)

if.end

(W | z, 2), (W | z.addr, 2), (W | c.addr, 1), (W | c.addr, 2)
----------

Accesses:

----------
(W | z, 2), (W | z.addr, 2), (W | c.addr, 1), (W | c.addr, 2)

Figure 8: Interaction-analysis CFG for function bazz

Listing 18: TC: Overwriting previous Access.

1 void bazz_over(int &z, int &c) {

2 if (conf_var_BAR) {

3 z = 42; // detecting local overwrite

4 z = 2 + z;

5 }

6 } �
4.2.2.3 Testing overwriting accesses

Another important case is overwriting an Access, this means, if a vari-
able gets overwritten we have to delete the previous Access to it, be-
cause further accesses no longer get influenced by this Access. To test
this we extend the previous example 21 with a new function bazz_over,
shown in Listing 18. The difference between bazz and bazz_over is only
in Line 3, here 42 is assigned to a, which leads to overwriting the pre-
vious access to a within feature conf_var_FOO. The rest of the program
runs exactly as before, but if we now analyze bazz_over we should not
find an interaction. In Figure 9, we show the InteractionAnalysisCFG for
bazz_over. Our analysis detects the access as before and forwards a
write Access to the IN set of function bazz_over, correctly transforming
it to an Access to z.addr. However, although we have a read Access to
z.addr withing the “if.then” block there is no interaction found. Hence,
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our analysis correctly identified an overwrite to z and invalidated the
previous Access.

InteractionCFG: _Z9bazz_overRiS_

entry

(W | z, 3)
----------

Accesses:
(W | z.addr, 3), 

----------
(W | z, 3), (W | z.addr, 3)

if.then

(W | z, 3), (W | z.addr, 3)
----------

Accesses:
(R | z.addr, 1), (W | z.addr, 1), (W | z.addr, 3), 

----------
(W | z, 3), (W | z.addr, 1), (W | z.addr, 3)

if.end

(W | z, 3), (W | z.addr, 1), (W | z.addr, 3)
----------

Accesses:

----------
(W | z, 3), (W | z.addr, 1), (W | z.addr, 3)

Figure 9: InteractionAnalysisCFG for function bazz_over.





5
C O N C L U D I N G R E M A R K S

We conclude the thesis by summarizing the presented framework
VaRA and also our two analyses that detect features in LLVM-IR and
find interactions between regions. Furthermore, we present future
work, in which we describe how to solve existing problems with our
analyses, and how we want to enhance our framework by providing
even more support for researchers.

5.1 conclusion

In this thesis, we have shown that the interfaces offered by VaRA en-
able the detection of specific code regions. In our example, we used
the C/C++ frontend clang to extract code regions that correspond to
software features and to annotate them in the intermediate represen-
tation using metadata. Then, we used the infrastructure of VaRA to
create regions out of metadata that can be used by different analyses.
Furthermore, we demonstrated that we could write an analysis that
operates on these abstract regions. Our language-independent analy-
sis could detect interactions among different regions. In our working
example, we used VaRA to find feature interactions, information that
could be used by developers to determine which features need to be
tested together.

Supporting developers with tools and analyses to make debugging
easier and software less error-prone is important as well as reducing
work for researchers to develop new analyses. With VaRA, we have pre-
sented a framework that makes writing language-independent anal-
yses easier and decouples them from the regions they work on. This
allows us to run an analysis on different regions, enabling us to reuse
analyses to investigate different problems. Furthermore, because we
integrated VaRA into the LLVM compiler infrastructure, using the
analyses inside the compiler or building tools gets easier.

47
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5.2 future work

In Section 4.1.3, we mentioned some problems that arise regarding
our interaction analysis. The first problem mentioned is a trade-off
between the precision and the run-time of the analysis. We can ei-
ther run the analysis context insensitively and consequently get more
false-positives (meaning, we find interactions that are not present in
any call context of the code base), or we analyze every function de-
pendent on its call context (which makes our analysis very slow). This
problem cannot be universally answered; scientists prefer accurate re-
sults and can handle longer analysis times, where compiler vendors
need to keep the compile-time low, that is, an analysis has to be fast to
be practical. Hence, we need to find a hybrid solution where we can
tune the precision of the analysis. We plan to improve the analysis by
making it context-sensitive. Additionally, we plan to reduce run-time
by grouping similar call-contexts and by adding a threshold to limit
the amount of contexts. This approach allows us to tune our analy-
sis by selecting the amount of different call-contexts, either making it
more precise or faster.

Another problem is that our analysis is designed as a module pass
and can currently only process a single module at a time. We could
address this problem in two ways: one solution is to do the analysis
during link-time where we have the whole program there to analyze,
but this means we have to reanalyze the complete module every time
the IN set of a function within it changes, which could be very expen-
sive. Another solution is to extend the current analysis to use further
inputs beside the source code. We would analyze every module sepa-
rately, but persist IN/OUT values to an information store from which
the analysis can later obtain the values again, either in case it ana-
lyzes another module or in case it analyzes the same module again.
For example, our analysis would store the OUT set of some function
bar and, later, during the analysis of another module, use the stored
information to handle analysis of the function call to bar.

Furthermore, we want to add dynamic informations to our ana-
lysis, such as call-contexts, to enhance the precision of our analysis,
which can be combined with our second solution to the module-pass
problem and provided from the same store. The information store
could also contain run-time information about the program, such as
pointer information, and provide it during analysis. For example, we
annotate the program with measurement code that tracks the values
of call parameters and stores this information. Then, during the next
analysis of the program, we use this information to weigh which call-
contexts should be analyzed. The information store acts as a cache
and provides incrementally more information that could be gathered
about the program, making the analysis more precise without increas-
ing run-time significantly.
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Another area where we see future work is extending the support
VaRA offers to developers. We plan to add additional data structures,
further analysis base classes (such as a llvm::BasicBlock pass) and we
aim at enabling data sharing among analysis passes during optimiza-
tion and analysis passes during link-time. In addition, we also want
to provide generic analysis schemes, like a data-flow analysis, that
can be specialized by researchers. For example, to create a data-flow
analysis, a researcher would only have to specify which information
is gathered and how different parts join their information. Further-
more, we are currently developing a way to analyze any arbitrary
region within a program without implementing a new region type,
allowing researchers to instrument the regions with markers that are
automatically transformed into IRegions.





A
A P P E N D I X : C O D E

In this appendix, we show the extended source code to our small
simplified examples.

a.1 code examples for interaction graph .

Listing 19 shows the source code for our feature interaction exam-
ple. The example has two code region that depend on the features
(conf_var_FOO and conf_var_BAR). In the first region (FOO), 1 is added to
the variable a. The variable a is later read within the other region (BAR),
resulting in an interaction of the two features.

Listing 19: Example code for feature interaction between FOO and BAR.

1 #include <cstdio>

2

3 volatile int conf_var_FOO = 1;

4 volatile int conf_var_BAR = 1;

5

6 int main(int argc, char *argv[])

7 {

8 int a = 0;

9 int b = 0;

10

11 if (conf_var_FOO) {

12 a += 1;

13 }

14

15 b += 1;

16

17 if (conf_var_BAR) {

18 b = a + 1;

19 }

20

21

22 printf("%d\n", a);

23 printf("%d\n", b);

24 return 0;

25 } �
Listing 20 shows the complete LLVM-IR code that is generated for

the code in Listing 19. In contrast to our previous LLVM-IR examples,
Listing 20 is not simplified to reduce the burden on the reader and
make it easier to understand. For our other examples, we removed de-
tails like target datalayout and various attribute annotations, because
they are not important to understand our work. However, we include

51
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Listing 20: IR code for the example shown in Listing 19

1 ; ModuleID = 'SmallFlowExample.cpp'
2 source_filename = "SmallFlowExample.cpp"
3 target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
4 target triple = "x86_64-unknown-linux-gnu"
5

6 @conf_var_FOO = global i32 1, align 4
7 @conf_var_BAR = global i32 1, align 4
8 @.str = private unnamed_addr constant [4 x i8] c"%d\0A\00", align 1
9

10 ; Function Attrs: norecurse uwtable
11 define i32 @main(i32 %argc, i8** %argv) #0 {
12 entry:
13 %retval = alloca i32, align 4
14 %argc.addr = alloca i32, align 4
15 %argv.addr = alloca i8**, align 8
16 %a = alloca i32, align 4
17 %b = alloca i32, align 4
18 store i32 0, i32* %retval, align 4
19 store i32 %argc, i32* %argc.addr, align 4
20 store i8** %argv, i8*** %argv.addr, align 8
21 store i32 0, i32* %a, align 4
22 store i32 0, i32* %b, align 4
23 %0 = load volatile i32, i32* @conf_var_FOO, align 4
24 %tobool = icmp ne i32 %0, 0
25 br i1 %tobool, label %if.then, label %if.end, !Feature !1
26

27 if.then: ; preds = %entry
28 %1 = load i32, i32* %a, align 4
29 %add = add nsw i32 %1, 1
30 store i32 %add, i32* %a, align 4
31 br label %if.end, !Feature !2
32

33 if.end: ; preds = %if.then, %entry
34 %2 = load i32, i32* %b, align 4
35 %add1 = add nsw i32 %2, 1
36 store i32 %add1, i32* %b, align 4
37 %3 = load volatile i32, i32* @conf_var_BAR, align 4
38 %tobool2 = icmp ne i32 %3, 0
39 br i1 %tobool2, label %if.then3, label %if.end5, !Feature !3
40

41 if.then3: ; preds = %if.end
42 %4 = load i32, i32* %a, align 4
43 %add4 = add nsw i32 %4, 1
44 store i32 %add4, i32* %b, align 4
45 br label %if.end5, !Feature !4
46

47 if.end5: ; preds = %if.then3, %if.end
48 %5 = load i32, i32* %a, align 4
49 %call = call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([4 x i8], [4 x i8]* @.str, i32 0, i32

0), i32 %5)
50 %6 = load i32, i32* %b, align 4
51 %call6 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([4 x i8], [4 x i8]* @.str, i32 0, i32

0), i32 %6)
52 ret i32 0
53 }
54

55 declare i32 @printf(i8*, ...) #1
56

57 attributes #0 = { norecurse uwtable "correctly-rounded-divide-sqrt-fp-math"="false" "disable-tail-calls"
="false" "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-
leaf" "no-infs-fp-math"="false" "no-jump-tables"="false" "no-nans-fp-math"="false" "no-signed-
zeros-fp-math"="false" "no-trapping-math"="false" "stack-protector-buffer-size"="8" "target-cpu"=
"x86-64" "target-features"="+fxsr,+mmx,+sse,+sse2,+x87" "unsafe-fp-math"="false" "use-soft-float"
="false" }

58 attributes #1 = { "correctly-rounded-divide-sqrt-fp-math"="false" "disable-tail-calls"="false" "less-
precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-
fp-math"="false" "no-nans-fp-math"="false" "no-signed-zeros-fp-math"="false" "no-trapping-math"="
false" "stack-protector-buffer-size"="8" "target-cpu"="x86-64" "target-features"="+fxsr,+mmx,+sse
,+sse2,+x87" "unsafe-fp-math"="false" "use-soft-float"="false" }

59

60 !llvm.ident = !{!0}
61

62 !0 = !{!"clang version 4.0.0 (git@github.com:vulder/vara-clang.git 526
e9d51d2dfb8699c02faa767393123cd063ecd) (git@github.com:vulder/vara-llvm.git
f791d9d8c5e28c2f9be5d3b3a55eba4fa829a93a)"}

63 !1 = !{!"[H,{conf_var_FOO}]"}
64 !2 = !{!"[T,{conf_var_FOO}]"}
65 !3 = !{!"[H,{conf_var_BAR}]"}
66 !4 = !{!"[T,{conf_var_BAR}]"} �
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one complete example in the appendix to show the full extend of an
LLVM-IR file.

a.2 code examples for test cases

Listing 21 shows an example test case we use to test our feature ex-
traction and interaction analysis. This test case in particular checks
if our analysis correctly forwards the collected information to other
function calls. All other test cases can be found in our repository1.

Listing 21: TC: Interaction between different functions.

1 #include <cstdio>

2

3 volatile int conf_var_COMP = 1;

4 volatile int conf_var_FAST = 1;

5 volatile int conf_var_RECU = 1;

6 volatile int conf_var_FOO = 1;

7 volatile int conf_var_BAR = 1;

8

9 void baz(int &a, int &c) {

10 if (conf_var_BAR) {

11 c = a + 1;

12 }

13 }

14

15 void bazz(int &z, int &c) {

16 if (conf_var_BAR) {

17 c = z + 1;

18 }

19 }

20

21 int main(int argc, char *argv[])

22 {

23 int a = 0;

24 int b = 0;

25

26 if (conf_var_FOO) {

27 a += 1;

28 }

29

30 b += 1;

31

32 baz(a, b);

33

34 bazz(a, b);

35

36 printf("%d\n", a);

37 printf("%d\n", b);

38 return 0;

39 } �
1 https://github.com/vulder/VaRA/tree/master/examples/FeatureDetection

https://github.com/vulder/VaRA/tree/master/examples/FeatureDetection
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