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Abstract

Software Product Line (SPL) are the answer to the rising demand for configurable
and cross-platform systems. For such a system with just 33 configurable features,
there are already more possible derivable variants than humans on our planet. Main-
taining and analyzing these highly configurable software systems can be a difficult
task. It is not uncommon that performance-related issues, especially in the main-
tenance phase, are a major risk to the longevity of a project. Variability encoding
is the transformation of compile-time variability into load-time variability and is a
technique that can be applied to for further analysis. This work introduces the
combination of performance measuring functions and variability encoding in order
to gain performance related information for individual features and compositions
of features. We also propose a method to make performance predictions program
configurations by utilizing the previously mentioned feature data that was obtained
through analyzing other configurations.






AST Abstract Syntax Tree
CNF Conjunctive Normal Form
CPP C Preprocessor
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1. Introduction

Performance is often a very important factor for software systems, especially for em-
bedded systems [Hen08]. A well optimized software system has less restrictions to-
wards the required hardware components and saves (battery) power. Often, the cus-
tomer uses these design parameters to rank the different service or software providers
according to their results. “93 percent of the performance-related project-affecting
issues were concentrated in the 30 percent of systems that were deemed to be most
problematic” [WV00]. Furthermore pinpointing the parts of a software system, that
are most suitable for conducting performance related improvements, can be difficult.

These concerns increase in complexity for the Software Product Line (SPLl) domain.
are highly configurable systems that can be customized in different aspects, e.g.,
to deploy a product for different platforms. However in the domain of C the
variability is implemented in the form of preprocessor directives which are oblivious
to the underlying programming language. In order to use the code or reuse existing
verification tools these preprocessor annotations have to be resolved. The amount of
derivable variants for a scales exponentially with the amount of configuration
options and, as a consequence traditional analysis methods applied to each derivable
variant is not feasible [SRK™11].

In order to tackle these issues new analysis methods have been explored, so called
family-based analysis [TAKT12, [LvRK™13, KvRE™12]. Their research demonstrates
that family-based or variability-aware analysis are able to produce results in the
fraction of time compared to sequential analysis of each variant. Furthermore, the
variability-aware results are complete, in contrast to other analysis methods that
only look at a small subset of the whole configuration space.

Post et al. introduce the idea of variability encoding as a method to reuse MI-
CROSOFT’S STATIC DRIVER VERIFIER for device drivers that are implemented as
[PS08]. They lay out rules to transform the compile-time variability into
run-time variability, e.g., configuration-dependent execution of a statement is trans-
formed into a standard C IF statement. The preprocessor configuration options are
encoded as global variables and used as conditions in the previously mentioned IF
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approach

Variability
encoding



1. Introduction

Performance
measuring

Performance
prediction

statements. The output of variability encoding is a so called meta product or simu-
lator and these simulators are able to find bugs in existing systems [vR16} [PS08].

Looking back at the initial problem, we now want to manipulate the variability en-
coding process to automatically conduct performance measurements for the differ-
ent configuration options. Since variability encoding already transforms conditional
preprocessor directives into standard IF statements it seems reasonable to add per-
formance measuring functionality at that point. The results can then be analyzed
to judge the impact that the selection of a configuration option has on the product
as a whole, which can be very useful during development or maintenance or even for
the users.

The results of these performance measurements are gained by executing the simu-
lator in a certain configuration, or in multiple configurations. This data can also be
used to make performance predictions for one of the remaining configurations. The
accuracy of these predictions depend on the compatibility of the configurations or
the code-coverage of the initial data set. A perfect example scenario is a [SPL] that
consists of optional and independent configuration options that all add functionality.
Conduct performance measurements for the configuration with all options turned
on and use these results to make accurate predictions for all the other combinations
of selectable options. This saves a lot of effort for medium and large scale
compared to individually analyzing each derivable variant.

1.1 Objective of this Thesis

The main objective of this thesis is to introduce the concept of combining variability
encoding with performance measuring. Since this is a novelty approach in the C
domain, we highlight the potential shortcomings of our methods to discuss
possible improvements. Next, we explain how to utilize the measured performance
data for one or multiple [SPI] configurations to predict the performance of another
configuration.

We implemented this approach in the HERCULES project, which is an extension to
the variability-aware parsing framework TYPECHEF (see [Chapter 2). We decided
to use two different case studies to apply our performance analysis and to conduct
different performance predictions. One of our test systems is a small basic model
of an elevator and the other one is the real-world [SPL] SQLITE. These two vastly
diverse target systems will help us answer the following research questions:

RQ1 What is the ideal scenario for our approach towards performance measure-

ments for [SPTk?

RQ2 How is the execution time distributed? Does the annotation-free code base
use up most of it?

RQ3 What efforts have to be made in order to make accurate performance predic-
tions?

RQ4 How do different groups of configurations perform in predicting other config-
urations?



1.2. Structure of the Thesis

1.2 Structure of the Thesis

first introduces different concepts in the preprocessor-based domain
in order to properly explain variability encoding. then highlights how we
use the variability encoding process to weave in performance measuring functions.
These functions are easily exchangeable so it is important to explain their current
implementation in detail to nurture ideas for improvements. focuses on
the results of applying our approach to different case studies. Finally [Chapter 5]
[Chapter 6| and [Chapter 7| complete our thesis with a conclusion, as well as future
work and related work.
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2. Background

In this section we will briefly introduce different concepts and terminology. First we
explain Software Product Lines (SPLk) and other concepts that are related to them.
Last we establish the core asset that the thesis is based on, variability encoding.

2.1 Software Product Lines

Clements et al. [CNT99]: ”A software product line is a set of software-
intensive systems that share a common, managed set of features satisfy-
ing the specific needs of a particular market segment or mission and that
are developed from a common set of core assets in a prescribed way.”

The above definition from Clements et al. describes the important aspects of [SPL.
Their goal is to reduce development and maintenance efforts by applying strategic
reuse of core aspects of a product and to offer customization in order to be able to
market variants of the product to different customer groups or different hardware
systems.

We will now specify this general explanation of for our context of preprocessor-
based C[SPLEK. On the one hand the common set of core assets equates to the shared
code base of the product line which is basically the preprocessor-free code. On the
other hand the code segments that are part of conditional preprocessor directives
resemble the code parts that belong to these optional program features. A program
feature is a unit that encapsulates program functionality, more in [Section 2.3] Com-
piler arguments or build tools can then be utilized to decide the selection status of
each individual feature and derive a variant of the software product line.

2.2 Introduction of our Example SPL: Calculator

Throughout this thesis, we will explain different topics and provide specific examples
on the basis of a hypothetical Calculator [SPIl The general concept and goals of
this product line are to implement a basic calculator. The most basic variant of the
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Calculator is only able to display numbers and operations like addition and division
are implemented as features. This Calculator product line will be constantly used
for demonstrations in this thesis. However, these examples and snippets from the
Calculator system are not supposed to be complete or represent functional code.
Instead they are used as basic examples and reduced to the parts that are necessary
for the explanations.

2.3 Features and Feature Models

In the previous section we already mentioned features in the context of software
product lines and will now introduce them. First we will look at different definitions
for features that can be found in publications:

Zave [Zav99, [Bat05]: A feature is an increment in program function-
ality.

Kang et al. [KCHT90]: A prominent or distinctive user-visible aspect,
quality, or characteristic of a software system or systems.

Kistner et al. [KA13]: A feature is a unit of functionality of a software
system that satisfies a requirement, represents a design decision, and
provides a potential configuration option.

These are three different ways to characterize features in the software domain. The
first two definitions focus on features as general concepts in the software domain
whereas the third definition is much more specific and applicable to our use of the
term feature.

Since we are mostly working on the source code level the term feature in the context
of this thesis will be used when we talk about the conditions inside the conditional
preprocessor directives. These conditions can either be just basic feature names as
in #ifdef 0S_UNIX or feature expressions which utilize boolean operators, e.g. #if
defined (0S_WIN) || defined (OS_OTHER). We will refer to these conditions as
either feature (expression), context or presence condition. Selecting a feature in
the compilation process will then include all the different preprocessor directives
scrambled across the whole code base that this feature selection satisfies.

Most product lines have limitations and restrictions for the feature selection process,
the so called Feature Model (EM]). A [FM]is a structure that defines valid feature
combinations. Visual representations of [EMk are tree-like structures [Bat05]where
the nodes can have different relationships to each other. Example relations:

e Mandatory and optional relation between parent and child nodes.
e Requires and exclude relation between any two nodes.

o Alternative or select at least 1 group relation between parent and its child
nodes.
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Calculator

'PlusMinus|  MultDivide ‘Memory  File  TwoDecimals  ShowErrors|
. . . ) mandatory
MultDivide requires PlusMinus
History requires Memory optional
=~ atleast1
< alternative

Figure 2.1: Feature model for the Calculator SPL

These are just a few example relations and the visualizations and relations can differ
greatly between different publications. In we briefly illustrated the [FM] of
the Calculator In order to generate a valid Calculator variant we have to fulfill
the requirements of the [FM] for example, we have to select all mandatory features,
we can only choose one of the features Memory or File or the selection of the feature
MultDivide also requires PlusMinus to be selected.

The previously explained visualization of the [FM| can also either be developed as
a propositional formula instead or turned into one. Each feature corresponds to a
boolean variable where true indicates that the feature has been selected or enabled
and false otherwise. This propositional formula can be used for automated checks
and tasks related to the feature model [MWC09, MWCCOS8, [TBK09|. Checking if

a chosen configuration A is valid for a[FM|M for example requires o1 Histor
a satisfiability check isSat(M && A). This propositional for- | . 5 i, Y
mula can be saved in various different formats. The variability- | ¢ 3 Memory
aware parsing framework TYPECHEFD we are using is able to | ...
parse [EM] descriptions in the piMacs format which is basi- |¢ 12 ShowErrors
cally a list of terms followed by clauses & expressions in the E;Ei 125
Conjunctive Normal Form (CNE) format. The DIMACS excerpt | _o _3

shows how the formulas for the optional feature History look |2 3

like when taking into account that History requires Memory

and Memory is part of an alternative group together with the

feature File. DIMACS excerpt

Thttps://github.com /ckaestne/TypeChef
2http:/ /www.domagoj-babic.com/uploads/ResearchProjects/Spear /dimacs-cnf.pdf
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2.4 Variability in C SPL

In this thesis our focus lies on variability in C[SPL]implemented

with the C Preprocessor (CPPl). The is a powerful text-based preprocessing
tool that extends the capabilities of the standard C programming language. The
has seen widespread usage since it’s launch over 4 decades ago. However, since
the annotations are oblivious of the underlying structure of the programming
language, it is difficult for developers and analysis tools to cope with directives
[SC92, [EBN02, LKA, [Pad09, VB03]. Code that uses nested #ifdef statements for
conditional compilation can be very hard to understand and maintain and existing
analysis and verification tools for C software are not able to handle preprocessor
directives. The consequences of the latter is that in order to use these existing tools
the code has to be preprocessed in all possible variants or new variability-aware tools
have to be developed from scratch. Deriving all possible products however is not
feasible for most software systems.

The allows developers to utilize several new tools in their software systems:
text substitution with #define macros, conditional compilation with #ifdef di-
rectives and file inclusion with #include directives. The variability-aware parsing
framework TYPECHEF parses the source code and deals with these preprocessor di-
rectives accordingly. The #define and #include directives are resolved by textual
substitution of their macro or file contents before TYPECHEF starts the parsing pro-
cess. TYPECHEF will then create a variability-aware Abstract Syntax Tree (AST]) in
which the variability expressed via conditional preprocessor directives #if, #elif,
#else, #ifdef #ifndef, #else is preserved by utilizing Choice and Opt nodes.

void divisionByZero(
#ifdef TWODEC
float

#else FunctionDef

double /I\
#endif eee

o divByZero Parameters Stmt-Block
dividend) { | /

TranslationUnit

if ( divisor if eeoo

#ifdef SHOWERROR _— T

1 Specifiers Condition Then-Block
#telse /\ / YY)
0 Opt(TD) Opt(!TD) Choice (SE)

#endif | | N

)y { short long 1 0
displayError(
dividend) ;
}

throwError () ;

Figure 2.2: Expressing variability in the AST
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Developers can now implement new variability-aware analyses which utilize this[AST]
data structure. Kenner et al. developed TYPECHEF as a framework for variability-
aware type checking [KKHLI10] however their framework has been used for other
variability-aware tasks, as well. Liebig et al. have developed MORPHEUS, a refactor-
ing tool for preprocessor based [SPIJ [LJG™15] and presented results of type checking
and liveness analysis [LvREK™13].

Going back to our Calculator [SPI] depicts a code snippet on the left
side and the complying variability-aware [AST] representation on the right side. This

example shows how variability is preserved by TYPECHEF [AST] generation process.
The function parameter dividend in line 7 has two different specifiers float and
double, which depend on the selection of the feature TWODEC. In the [AST] the two
possible specifiers are represented by Opt nodes. Opt nodes are basically tuples with
2 entries: a feature expression and an[AST]element, e.g. Opt<!TD, LongSpecifier>

Besides Opt nodes TYPECHEF also uses Choice nodes to express variability. The
general concept of the choice calculus was presented by Erwig et al. in his publi-
cation “The Choice Calculus: A Representation for Software Variation” [EW11]. In
TYPECHEF these Choice nodes are implemented as a tree-like data structure that
has 3 data fields: a feature expression and two child nodes. If the feature of the
feature expression is selected then the first child node will be evaluated, otherwise
the second child node will be chosen. The two child nodes can either be Choice
nodes or One nodes, where the One node is a terminal node that only holds a leaf
[AST] element. This makes it possible to have nested Choice nodes.

2.5 Variability Encoding

The following section introduces the most important core aspect for our performance
measuring process: variability encoding. We will talk about the general concept of
variability encoding and go into details specifically when applied to the C program-
ming language by providing examples. At last we will highlight shortcomings and
problematic aspects we encountered as we applied variability encoding on real-world
product lines.

2.5.1 Introduction

As we have seen in the previous sections, C heavily utilize external language
tools like the to express variability. These annotations however have to
be resolved before compilation since they are not a part of the standard C language.
The objective of variability encoding is to transform these annotations, that the
programming language itself is oblivious to, into standard programming constructs
without changing the behavior of the software system. These transformations create
a new meta product which encapsulates the behavior of all different variants of the
software product line. This meta product is also called product simulator.

2.5.2 Approach

Our general approach towards variability encoding in the domain of C software sys-
tems is to first rename or rename & duplicate top level declarations inside #ifdef
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directives and second transform the remaining #ifdef statements in functions to
C-conform IF statements. The first practical advances have been made by Post et
al. [PSO§| in their paper Configuration Lifting: Verification meets software config-
uration where they manually execute the transformation process on a small LINUX
sound driver. Based on their idea we have developed the tool HERCULES| under
guidance and in heavy collaboration with (but not limited to) Jorg Liebig, Alexan-
der von Rhein and Christian Késtner. HERCULES is implemented as an extension
to the variability-aware parsing framework TYPECHEF and automates the trans-
formation from compile-time variability expressed via CPP directives to run-time
variability by utilizing renamings, duplications and IF statements. The [FM]is used
in order to avoid unnecessary code duplications by checking satisfiability of every
computed variant that has to be created by the duplication process. The feature se-
lection state is encoded in the form of global variables, one for each distinct #IFDEF
NAME.

#ifdef TWODEC l|{float _TD_result;
float 2| double _NTD_result;
#telse 3\ // ...
double 4/if (opt.SHOWERROR) A
#endif 5/ if (opt.TWODEC) {
result; 6 displayError (_TD_result);
/. 7|} else {
#ifdef SHOWERROR 8 displayError (_NTD_result);
displayError (result); 9 }
#endif 10|}
a) Original source code b) Meta product code

Figure 2.3: Code before and after variability encoding

2.5.3 Example

Taking a look at we can see how the transformation of this example looks
like. The original source code is on the left side and the result of our variability
encoding can be found on the right side. The variable result in a) lines 1-6 has
two derivable variants, one with the specifier float and the other one with specifier
double. As we previously mentioned dealing with variable declarations requires us
to duplicate code and the example shows that there are now two new definitions
float _TD_result and double _NTD_result in b) lines 1-2. On the other hand
the optional function call of displayError is embedded into an IF statement which
uses our feature selection variable opt.SHOWERROR. As a consequence of replacing
the original declaration of result with two new declarations we also have to create
new IF statements every time result has been used in the original source code, see

lines 5 and 7 b).

3https://github.com /joliebig/Hercules
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2.5.4 Goal

The newly created meta product can be used with traditional verification tools,
which are not variability aware, and the current configuration can be switched on
the fly by changing the global feature variables. To give an example, model checking
tools can potentially analyze the result of variability encoding and explore the whole
configuration space at once [vR16].

2.5.5 Behavior Preservation

The crucial property of the variability encoding transformation has to be behavior
preservation. In order to draw meaningful conclusions about the properties of the
original [SPIl by analyzing its meta product the behavior must not change. Alexander
von Rhein [vR16] has developed a formal correctness proof for the behavior preserv-
ing properties of variability encoding for the language FEATHERWEIGHT JAVA, a
functional subset of the JAVA programming language. Since the C programming
language includes complex language mechanics such as switch-case statements,
goto statements, enums and structs a formal correctness proof is not feasible.
However, we were still able to utilize HERCULES and apply transformations to real-
world product lines such as BusyBox, SQLITE and a few LINUX drivers.

2.5.6 Shortcomings

As previously mentioned, we were able to apply variability encoding with HERCULES
to real-word product lines. However, we have also found problematic cases were our
approach fails. Sometimes these cases can be fixed by manually rewriting the source
code and sometimes the amount of derivable variants for a certain programming
constructs makes the transformation infeasible. If HERCULES encounters an extreme
pattern with many possible variants it will not transform that element and manual
intervention, if possible, is required.

static const char * const azCompileOpt[] = {
#define CTIMEOPT_VAL (opt) #opt
#define CTIMEOPT_VAL(opt) CTIMEOPT_VAL_(opt)
#ifdef SQLITE_32BIT_ROWID
» 39BIT_ROWID” |,
#endif
#ifdef SQLITE 4 BYTE ALIGNED_MALLOC
74 BYTE ALIGNED_MALLOC” ,
sendif
#ifdef SQLITE_CASE_SENSITIVE_LIKE
"CASE_SENSITIVE_LIKE” |
#endif
#ifdef SQLITE CHECK PAGES
"CHECK PAGES”
sendif
#ifdef SQLITE COVERAGE TEST
"COVERAGE.TEST” |
#endif
// 100 additional #ifdef directives

Listing 2.1: Exponential explosion of variability in SQLite
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We encountered these patterns in product lines like BusyBox and SQLite [LvRK™13].
depicts an example for this pattern that was taken from SQLITE: a vari-
able declaration that contains a total of 105 different #ifdef directives. This leads
to an exceptional large number of variants of azCompileOpt[] even when taking
into account that some variants are not valid according to the [FM] of SQLITE. To
make things worse all usages of azCompileOpt[] have to be duplicated as well.
But in this case we were able to create a function that assigns the correct content to
azCompileOpt [] by using 105 IF statements that append the content of the comply-
ing #ifdef statement to the current contents, similar to a StringBuilder. However,
this solution cannot be applied to enums and structs which can theoretically be
implemented in similar fashion with an explosion of variants.

TyYPECHEF and HERCULES are still work in progress and there are still signifi-
cant limitations that prevent applying them to real-world systems [KKHLI0, vR16].
HERCULES can only start the transformation process if TYPECHEF is able to parse
the source code and there are no type errors. Any type error found by TYPECHEF
would immediately propagate into the meta product created by the variability en-
coding process and as a consequence the meta product cannot be compiled. Most
real-world systems do not provide a thorough [FM] and if features are not compatible
together TYPECHEF will immediately find these type errors. In this case the [EM]
has to be forged and tweaked manually.



3. Approach

In this section we talk about our approach towards performance measuring for C
Software Product Lines (SPLk) by utilizing variability encoding.

3.1 Overview

TypeChef variability-aware
parser framework
sifdef A include directories
#define X 4 l +
#els? variability-aware variability-aware /\ variability-aware
e L *ﬁ/"\ A
2*3+X
partial configuration 2 3 45
7 ~
Hercules va riability variabilityAaware'
further analysis
|
gcc compile & execute injection of performance
different conﬁgurationJ measuring functions
]
Feature | Time collect measured data &
BASE | 45 predict performance
A 12 for other configurations

Figure 3.1: Overview for our Performance Measuring Process

depicts our general idea behind our performance measuring and prediction
process. The top part breaks down the different steps that TYPECHEF has to execute
in order to generate the variability-aware Abstract Syntax Tree (AST)) [KKHLI(].
Next, the bottom half shows how HERCULES utilizes the [AST] to generate the so
called meta product or product simulator through variability encoding and the next
steps that are needed for generating performance measurements. For the remainder
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of this thesis we will refer to the result of variability encoding as product simulator
and to the result of the injection of measuring functions as performance simulator.
The following sections provide a detailed explanation of these individual procedures.

3.2 Combining Variability Encoding with Perfor-
mance Measuring

shows how code can be manipulated to transform compile-time variability
to run-time variability. One of the code transformation techniques is to transform
optional or variable statements to IF statements. This is where the performance
measuring process starts. Every time one of these statements is turned into a new IF
statement we add two function calls, one at the beginning of IF and one at the end.
We can now measure the difference in the timestamps between these two function
calls, which resembles the execution time for this IF statement. The injection of
these functions is pretty straight forward for most of the affected transformations.
In we will briefly talk about our approach towards dealing with more

complex programming structures.

It is important to highlight that our current implementation for these performance
measuring functions is easily interchangeable and can be manipulated to add further
improvements because their definition is part of a separate file that is loaded via
#include. We will now explain their implementation:

Algorithm 1: Implementation of the performance measuring function perf_before

Stack<String> context_stack;
Stack<Integer> time_stack;
Stack<Boolean> is_new_context;
Hashmap<String, Integer> context_times;

function perf_before (contezt);

Input : String representation of associated context

Integer before_outer = getTime;

time_stack.push(before_outer);

if context ¢ context_stack then
context_stack.push(context);
is_new_context.push(TRU E);

else

| is_new_context.push(FALSE);

end

Integer before_inner = getTime;

time_stack.push(before_inner);

The first function, inserted at the start of each IF statement that was created by
variability encoding, is called perf_before and is responsible for multiple things. This
function requires a char* argument that resembles the representation of the context
that is also part of the IF condition. The general overview can be seen infalgorithm ]
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Calling perf_before first generates an immediate time stamp before_outer, that
is used to measure the measurement overhead itself later on. Next, it puts the
label of the previous #ifdef statement on top of the context stack of #ifdef labels
but only if the context is not already present in the current context stack, see lines
8-13. This is to avoid recursive function calls or loops to unnecessarily affect the
context_stack. An example for this is optional code in context X64 calls a function
that also has optional code parts under context X64. In the same lines we also keep
track of the information whether the context is a new addition to context_stack,
or not by adding it to is_new_context for later use. In a scenario of nested #ifdefs
we are able to produce the absolute context of the current statement by combining
all #ifdef labels from the context stack with the boolean & operator. The last step
is to generate a second time stamp before_inner and throw both before time stamps
onto the time_stack so we can use this information for our second function perf_after.

Algorithm 2: Implementation of the performance measuring function perf_after

Stack<String> context_stack;
Stack<Integer> time_stack;
Stack<Boolean> is_new_context;
Hashmap<String, Integer> context_times;

/] .

function perf_after;

Integer after_inner = getTime;
Integer context_time = after_inner - time_stack.pop;
Integer new_context_time = context_time;
String assembled_context = getContext(context_stack);
if is_new_context.pop then
‘ context_stack.pop;
end
if assembledContext € context_times then
‘ new_context_time += context_times.get(assembled_context);
end
context_times.put(assembled_context, new_context_time);
Integer before_outer = time_stack.pop;
Integer after_outer = getTime;
Integer measurement_overhead = (after_outer - before_outer) - context_time;

algorithm 2| shows the general idea behind the perf_after implementation. The first
obligation of the perf_after function in line 16 is to also generate a time stamp
called after_inner. This time stamp is used with before_inner to compute the elapsed
time between the end of perf_before and the beginning of perf_after in the very next
line. context_time then resembles the execution time of the statements between our
injected function calls. This information is put into a Hashmap[String,Double],
where we add the current time for the combination of features in our time_stack
to previously measured execution time for this feature combination. The last step
is once again to take a time stamp after_outer. These outer time stamps are used
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during post processing to account for the execution time of our injected performance
measuring functions.

We also injected similar functions at the start and end of the MAIN function which
measure the time for the context BASE. This way the program itself generates a
hashmap, which contains the sum of all execution times for each context and com-
bination of nested features of statements that have been executed in the given con-
figuration. Each different configuration generates a different hashmap, unless two
configurations have exactly the same executable code. However, in that case the
execution times should still be different because they fluctuate. This hashmap has
to be post processed to account for multiple nested measurements as explained in

Section 3.6l We will refer to this hashmap as the Feature-Time Hashmap (ETH]).

3.3 Example Software Product Line

Before we go into details about how we utilize the information in the resulting [F'THI
let us take a look at what actually happens to the code in our calculator product
line.

shows how the code for multiplication looks after variability encoding
and injection of our performance measuring functions perf_before and perf_after.
The #ifdef and #else directives from (a) Line 5 and 11 have been
transformed to IF statements, (b) Line 5 and 11 respectively. Addition-
ally the performance functions have been inserted at the start and end at each of
the generated IF statements.

Execution of the calculator product line with features TWODEC and HISTORY selected
will now automatically measure the time the code of each of these features needs
to be executed when calling function multiply. shows how the context
stack progresses during the execution of the program. # is used as a separator
between features or feature expressions in nested #ifdef directives and M# is an
abbreviation for MULTDIVIDE#. The following line numbers are in reference to
b). Since the function multiply itself is defined in an #ifdef directive
with identifier MULTDIVIDE the function call also has to be inside a similar #ifdef
directive. This is why the initial state of the context stack already contains the
information for the feature MULTDIVIDE. Each execution of our perf_before function
then adds a new feature or logical combination of features to the context stack.
The first execution in line 7 pushes TWODEC on the stack. On the other hand calling
perf_after removes the last feature of the context stack. In line 11 the feature TWODEC
is discarded and in line 14 the new feature HISTORY is added.
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3.3. Example Software Product Line

#ifdef MULTDIVIDE 1
double multiply(double a, 2/double multiply(double a,
double b) { 3 double b) {
double res = axb; 4 double res = axb;
double rf; 5 double rf;
#ifdef TWODEC 6| if (opt.twodec) A
// 2 decimal places 7 perf_before(twodec);
rf = 100.0; 8 rf = 100.0;
res = round(resx*xrf) 9 res = round(resx*rf)
/ rf; 10 / rf;
11 perf_after ();
#endif 12| %
#ifdef HISTORY 13|  if (opt.history) {
14 perf_before(history);
saveResult (res); 15 saveResult (res);
16 perf_after ();
#endif 170}
return res; 18 return res;
+ 19
#endif 20

a) Original source code b) Performance measuring code

Listing 3.1: Injection of performance measuring functions

One of the requirements of successfully generating performance measurements is
that each call of perf_before is followed by the corresponding call of perf_after
because otherwise the information inside the context stack would be corrupted. This
will be discussed in further detail in Section 3.4

The end result of executing our program is a hashmap, ['TH| which accumulates
the execution time of statements tied to their context in the form of features or
combinations of features. shows what the hashmap looks like after one
multiplication with the calculator product line and features MultDivide, TWODEC
and HISTORY enabled. It is important to note that the time measured for MultDi-
vide includes the execution time of the other two features, which are nested inside
the #ifdef directive from the function call of multiply.

After line 1 After line 7
M#TWODEC feature | time (seconds)
MULTDIVIDE MULTDIVIDE MULTDIVIDE 10
M#TWODEC 2
After line 13 After line 16 M#HISTORY 4
M#SAVEHIST '
MULTDIVIDE MULTDIVIDE Table 3.1: Feature time hashmap

Figure 3.2: Context stack progression
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3.4 Dealing with Control Flow Irregularities

When applying our approach to real world product lines we quickly noticed that it’s
not as simple as inserting a function to start the measurement and a corresponding
function to end that measurement. In we mentioned that it’s necessary
that each performance measuring starting function is at some point followed by its
corresponding measuring ending function in order to avoid corrupting the context
stack. However, the C programming language contains multiple programming con-
structs that make it possible to skip the corresponding measurement ending function
call: break, continue, goto, return statements. These statements cause con-
trol flow irregularities meaning that they have the ability to prevent the execution of
a time measurement ending function after its corresponding measurement starting
function has already been called.

In order to tackle this issue we add additional measurement ending calls as neces-
sary before these statements. This is done in a top down traversal of the [AST] of
the program after applying variability encoding where we have to keep track of the
number of currently active time measurements when encountering certain program-
ming elements. A measurement is considered as active after calling the function
perf_before and before its corresponding perf_after function is called. Multiple
active measurements happen when the original source code contained nested #ifdef
directives.

// Case statements and breaks
case 29:
if (lomit_pragma && !omit_pager_pragmas) {
perf_before("!omit_pragma && !omit_pager_pragmas");
if ((! zRight)) {
returnSinglelInt (pParse, "synchronous", (pDb->safety_level - 1));
} else {

if ((! db->autoCommit)) {
sqlite3ErrorMsg (pParse, "Safety level may not be changed
inside a transaction");
} else {

(pDb->safety_level = (getSafetyLevel(zRight, 0, 1) + 1));
setAllPagerFlags (db);
}
}
perf_after ();
break;
perf_after ();
} else {
// more code
}
break;
case 30:

// more code

Listing 3.2: Handling control flow irregularities in SQLite: break

For return statements we calculate the difference between active time measurements
before executing the return call and active time measurements when entering the
body of the function that the return belongs to. Afterwards an additional amount
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of perf_after function calls is added in front of the return statement. The ex-
act amount depends on the previously mentioned difference. goto statements are
handled in a similar way and for continue and break statements we keep track
of the difference in active measurements to the associated loop (or case statement
for break). This way we ensure that previously started measurements are properly
finalized before jumping to a different part of the program code.

and depict examples from our SQLITE case study. Code

parts which were not relevant to the following explanation were left out. The injected
performance measuring functions from are annotated with numbers, e.g.,
line 4 and 18 are annotated with the same number which indicates that
these are corresponding performance starting and ending functions. The additional
performance ending function calls from are annotated with the letters
XyZ.

First, we take a look at where parts of a switch statement can be seen.
The IF statement in line 3 is generated from an #ifdef directive in the original
source code. The next line then starts the performance measuring process and it is
considered active from line 5 to line 18 where the if statement ends. However, since
there is a break statement in line 17 the corresponding perf_after function will
never be executed. This is why according to our previous explanation we are adding
one additional perf_after call to properly terminate the performance measuring for
the feature lomit_pragma €€ lomit_pager_pragmas because there is one additional
active measurement when executing the break statement compared to the start of
the case statement in line 2.

// Functions and return
static int btreeCreateTable (Btree *p , int *piTable , int createTabFlags ) {
int rc;
// more code
if (!omit_autovacuum) {
perf_before ("OMIT_AUTOVACUUM");
rc = allocateBtreePage (pBt, (&pPageMove), (&pgnoMove), pgnoRoot, 1);
// more code
if (rc == 0) {
perf_after ();
return rc;
}
if (((id2i_sqlite_coverage_test ) )) {
1@ id2iperf_time_before_counter ("SQLITE_COVERAGE_TEST", 628);
if (rc '= 0) {
releasePage (pRoot);
@ perf_after(); perf_after();
return rc;
}
perf_after ();
}
perf_after ();
}

Listing 3.3: Handling control flow irregularities in SQLite: return
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In our other example the focus is on return statements. There are two
places in which variability encoding generated if statements, lines 30 and 38. Before
executing the return in line 36 there is 1 active time measurement from line 31 and
so we have to add one perf_after call annotated with @. The return statement
in line 42 the situation is different. Both measurements from lines 30 and 38 are
considered active and this is why we have to add two perf_after function calls in
line 42@ before executing the return statement.

3.5 Feature Interactions

We have already mentioned examples where we feature interactions occur but did not
explain them yet. Feature interactions in the context of this thesis describes either
a direct nesting of conditional preprocessor directives in the code itself or a nesting
via function calls. We use a delimiter symbol # to differentiate between nesting
of #ifdefs and the preprocessor expressions themselves. The so called Feature-
Interaction Degree ([EIDI) for a given feature combination in the context stack equals
the amount of # that occur in the combination.

Listing 3.4| presents different cases of feature interaction. First of all, lines 12-13 are
nested #ifdefs and therefore the performance measurement in line 14 has a[FIDlof 1.
Second, line 4 is a preprocessor directive and executes a function call in line 6. Hence
the performance measurement for line 22 also has a of 1: PLUSMINUS#HISTORY.
In contrast, the feature expression inside the random function in line 27 et seqq.
has of 0 since it is not a feature interaction by itself. These interactions are
generated automatically during execution of the performance simulator by checking
the context stack.

int first, second, result; int add(int a, int b) { 19
switch (op) { int result = a + b; 0
#ifdef PLUSMINUS #ifdef HISTORY 1
case ‘+’: archiveInHistory(result); |22
result = add(first, #endif 3
second) ; return result; 4
break; } 5
#endif 6
/] ... int random () { 7
} #ifdef TWODEC && HISTORY 8
#ifdef SHOWERRORS seed = getNewSeed (); 9
#ifdef TWODEC #endif 0
errors = round(errors); // 1
#endif } 2
showErrors (errors);
dendif b) add function implementation
}

a) Calling add

Listing 3.4: Feature interaction example
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3.6 Post Processing of Measurements

The previously generated [FTH| has to be processed to yield useful information.
The C implementation of our performance measuring functions is intended to be
very basic to not affect the overall program run time too much by introducing
complex time measuring and collecting al-

gorithms. Since we are working with time feature ‘ time (seconds)
stamps and nested performance measure- MULTDIVIDE 4
ments we need to subtract the time of an M#TWODEC 2
inner measuring from its direct predeces- M#HISTORY 4

sor. Therefore, we use a delimiter sym-
bol that allows us to differentiate between
a nesting of feature #ifdef A in feature
#ifdef B from their composition #if de-
fined A && defined B. Looking back at generated from the code in
the final numbers for MultDivide changes and the resulting [F'TH| after post

processing can be seen in [Table 3.2]

This information by itself can already provide some useful insight into how the pro-
gram execution time is divided between the different features that were executed in
the run under the given program configuration. In order to generate performance
predictions for the other possible program configurations we can use the previously
generated [FTH| and filter out all the features that are incompatible with the new
configuration. Feature A and feature B are considered incompatible when their com-
position A && B is not satisfiable in the context of the feature model for that product
line. The [FTH| only provides valuable information after post processing its informa-
tion. For that reason in the remainder of this thesis the usage of [FTHl implies it has
already been post processed.

Table 3.2: FTH from [Table 3.1] after
Post Processing

3.7 Collection of Prediction Information

Since it is very unlikely that one configuration can cover the whole code basis because
of restrictions in the Feature Model (EM]) or mutually exclusive code parts from
#ifdef and #else preprocessor directives, we implemented a way to collect the
information from multiple [FTHb generated over several program runs, each with
a different program configuration. If configuration one includes the performance
measurements for feature x64 and configuration two includes the mutually exclusive
measurements for x86 we can combine the data from both runs to gain information.

However, these [FTHk can contain the same feature entries with different execution
times across different configurations. This can happen when there are data-flow
dependencies across the different features. It is important to note that this data
dependence between two features occur when one feature manipulates data inside
its preprocessor directive and another feature accesses that data in its own directive
without being nested in the previous one. If the same feature entries have different
measured times across multiple [FTH, we compute the average of these execution
times, the standard deviation, and populate a new summarized [FTH| with these
values. If a feature entry is unique to a configuration it is added to the summarized
[FTH| without further changes. We anticipate that users with insightful knowledge
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about the configuration options of their product line can come up with a small subset
of configurations which can be used to create a solid basis for multiple prediction

scenarios.

Table 3.3: Combining information of multiple F'THs

feature time (seconds)

config 1 | config 2 | config 3 | avg. | std dev.
MULTDIVIDE 4 - 5 4.5 0.5
TWODEC - 2.2 2.4 2.3 0.08
HISTORY 1 1.1 4.2 2.1 1.29

shows how we combine performance measurement information from mul-
tiple ETHL In this example there are 3 different configurations that were used and
they all have different times for features in their [FTHL Most of the feature times
are similar however HISTORY in config 3 needs a lot more execution time compared
to the two previous configurations. This is the case because there is a dataflow
dependency between HISTORY if TWODEC and MULTDIVIDE are both selected. This
causes HISTORY to have a very high standard deviation of 1.29 seconds, which is
about 61% of its average time 2.1 seconds. Using this data set as a basis to compute
performance predictions for other configurations can lead to a high variance because
of the uncertainty in the feature HISTORY.

67
p:
>

if e € SAT (e&cd& fm)

, otherwise
where:
P = predicted data
e = entry in [F'TH]
F  =[FTH
SAT = function to check satisfiability of a boolean expression
c = configuration to generate prediction for
fm =[EM

Figure 3.3: Generating prediction data

In order to make predictions we utilize the data from the combination of multiple
[E'THE, as seen in [Figure 3.3] Although the predicted data consists of two different
numbers, the average and the deviation. In the end both are just the sum of all
entries in [FTH] that are still considered satisfiable when combined with the [FMl and
the new configuration that is to be predicted.

3.8 Limitations and Problematic Aspects

Now that we have explained our general approach towards performance measuring
& prediction for software product lines it is time to look at potential shortcomings:
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First of all the meta product of a product line encapsulates the properties of all
derivable variants. A widespread usage of the C Preprocessor ([CPP)) is implementing
code for different hardware architectures, e.g. to choose between different types for
variables like int and long. In order to utilize these variable types in the meta
product we have to resort to code duplications. But these code duplications can
cause an increase in memory consumption and negatively affect the performance of
the meta product compared to the original product line, see

The time measurements are injected in every former #ifdef directive even when the
number of statements inside the #ifdef directive is low or the execution time of the
code is completely negligible. These measurements cause additional measurement
overhead which can negatively affect the accuracy of our predictions. Even when
accounting for the measurement time by using inner and outer timestamps there will
always be a call to free for variables after the last outer time stamp is generated.
The execution time of these performance concluding statements like free is not part
of the calculated measurement overhead. Instead they are included in the time of a
previous outer measurement.

The next potential problem is that our approach can only measure the execution
time of actually executed code in one configuration at a time. The consequence
is that mutually exclusive code from #ifdef and #else directives can never be
measured in a single program run. In these cases it is important to come up with a

sound list of configurations and combine their results as mentioned in

When dealing with multiple configurations the time measured for equal features
can differ greatly. The consequence is a high standard deviation for that particular
feature in the [F'TH| and as a consequence an increased variance for the performance
prediction. The reason for the difference in observed execution time of the same
features across different configurations can be data dependency: if feature A affects
the upper limit of a computational loop that is used by feature B in an unrelated
preprocessor directive, then the time of feature B is increased in configurations where
feature A is also selected.

The last two paragraphs show that the selection of configurations which are measured
and used as basis for the prediction is crucial. In the next section we will take a
thorough look at a few different prediction scenarios we selected and how they affect
the result of our prediction.

meta product
performance
difference

no
granularity
control

mutually
exclusive
code

variance
because of
data
dependency
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4. Evaluation

As previously mentioned, the data we get from measuring the performance in a
configuration can be used in many different ways. The results display the measured
execution times for each feature and combinations of features, that are nested in
conditional preprocessor directives. We can also collect the information of one or
several different configurations and use that data to predict the performance for
other configurations. In the following section we take a look at two different case
studies and present possible answers to the research questions that were posed in
the introduction.

4.1 Test System Specifications

Our experiments were conducted by one of the following computer setups:

DS The desktop system is a personal desktop machine that is powered by an Intel
i7-4790K@4.0GHz with 4 cores & 8 threads, 16Gb DDR3 RAM that runs on
Ubuntu 14.04.

CS The cluster system consists of 17 nodes, each with an Intel Xeon E-5 2690v2@3.0
GHz with 10 cores, 20 hyper-threads, 64 GB RAM that run on Ubuntu 16.04.

4.2 Elevator Case Study

The ELEVATOR or LIFT system has been designed by Plath and Ryan[PR01] as a ba-
sic model of an elevator that can be extended by different features, e.g. TWOTHIRDS-
FULL will not accept new elevator calls after reaching over % of its capacity since it is
unlikely to be able to accept more passengers. This software system has been used
in research to reason about feature properties, interactions, analysis strategies and

more[AvRW 13| [SvRAT4].

The ELEVATOR system has 6 features and the feature model can be seen in
ure 4.1] The feature Base is mandatory, all other features are optional except for
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Overloaded requires Weight © mandatory
TwoThirdsFull requires Weight

optional

Figure 4.1: Elevator FM visualized

((Overloaded => Weight) && (Tworthirdsfull => Weight)) && Base

Figure 4.2: Elevator FM as propositional formula

two implications for the features Overloaded and TwoThirdsFull. The proposi-
tional formula for this Feature Model (EM]) can be seen in [Figure 4.2] According to
this [FM] there are 20 valid configurations for the ELEVATOR system. All times were
measured on our system DS.

This case study is very close to the ideal scenario for our approach and will help
us answer RQ1. ELEVATOR does not contain any feature interactions in the form
of nested #ifdefs in the code or via function calls. All regular features are imple-
mented in isolated conditional #ifdefs without any mutually exclusive code parts
and it is possible to select all features together, which covers the whole code base.
These are the perfect terms for our approach. The only downside of the ELEVATOR
case study is the code that belongs to the features has a very low execution time.

void enterElevator (int p) {
enterElevator__before__weight (p);
#ifdef WEIGHT
usleep (100);
weight = weight + getWeight (p);
#endif
}
// ... other Code
void leaveElevator__before__empty(int p) {
leaveElevator__before__weight (p);
#ifdef WEIGHT
weight = weight - getWeight(p);
#endif

Listing 4.1: Implementation for feature Weight in ELEVATOR
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feature time (ms)
feature time (ms) | NoM  ExecutiveFloor 79.332507
ExecutiveFloor | 80.038330 | 2500  Weight 30.962723
Weight 30.349609 | 400 Empty 20.771696
Empty 20.287354 | 200 Overloaded 1.498675
Overloaded 0.209473 | 1302  TwoThirdsFull -0.245845
TwoThirdsFull | 0.070557 | 1202  Overloaded&ExecutiveFloor | -1.822054
Base 6.579589 1 TwoThirdsFull&Overloaded | 0.420249
Base 0.473498
Figure 4.3: Performance Measuring
results in ELEVATOR’s allyes Figure 4.4: SPLCONQUEROR results
configuration using all configurations

shows the implementation for the Weight feature. We have artificially
increased the execution time for this feature by adding a sleep call in line 4. If not
for the sleep call the feature only performs a simple addition or subtraction and this
causes increased fluctuations in measured execution times. This also reduces the
effect that the measurement overhead has on the overall observed execution times.

4.2.1 Performance Measuring

We have applied our performance measuring approach and created a variant simu-
lator that is able to produce different Feature-Time Hashmap (ETH]). The configu-
ration for the variant simulator can be exchanged by editing the values of the global
feature variables in the external configuration file. For this case study the allyes
configuration, where all 6 features are selected, covers all parts of the source code.

There are data dependencies across the features, e.g. Weight changes the value
for the elevator and Overloaded uses this information to judge if the elevator is
too crowded. However, these dependencies occur in all valid configurations where
Overloaded is selected since according to the it requires feature Weight. Addi-
tionally, the fact that Weight changes an int value that is used in a comparison by
Overloaded does not affect the execution time of that comparison.

The results after post processing can be seen in [Figure 4.3/ Although

only the BASE feature has undergone changes since all the other features do not
have any nested features inside them. A total of 5605 measurements (see column
NoM). Looking at the Base feature we immediately notice that the execution time
is significantly higher compared to the other features Overloaded and TwoThirds-—
Full although none execute any sleep statements. This is one of the downsides of
our approach, since all measurements outside of the Base feature are nested inside
the measurement for Base the last free call that is executed at the end of every
measurement is included in the overlying BASE feature.

We have measured each configuration of ELEVATOR 10 times and computed their
average execution times. Using these numbers in SPL CONQUEROREL a machine-
learning library for measuring and predicting performance, we can generate a de-
tailed breakdown of how features and feature combinations affect the performance

Thttp://www.infosun.fim.uni-passau.de/se/projects/splconqueror/
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of the ELEVATOR system, seen in [Figure 4.4, Comparing these results, which were
generated by executing 20 variants, to our performance measuring results in
which was generated in a single execution of the allyes configuration, we
can see that the times for the first three features are very close. The other times
however are not comparable, possibly because of data dependencies or inaccuracy
for measurements below 2 ms.

4.2.2 Overhead calculation flaws

As the results for the BASE feature in show, there is a flaw in our
approach that affects the performance measurements. Looking back at
in this flaw is not included. As our performance measuring functions
are implemented in C, we have to deallocate a variable after conducting the final
measurement that computes the internally calculated overhead.

void perf_after () {
double after_inner = getTime ();
time_struct* t = (time_struct*) pop(&time_stack);
// Omitted code
double measurement_overhead = getTime ()
- before_outer - context_time;
// store overhead
free(t);
+

Listing 4.2: Deallocation in perf_after affects preceding measurements

The code in is a more accurate representation of our implementation.
Line 5 executes the final measurement for that feature and calculates the internal
overhead. But the time_struct* t has to be deallocated and the time needed for
this deallocation (4 storing overhead) is attributed to the preceding measurement.
Starting the measurement for BASE is the first statement inside the main function.
All of the other performance measurements are nested inside BASE or other features.
Consequently all measurements, except for BASE, are attributed additional execu-
tion time from their nested successor measurements. We will talk about potential

solutions for this flaw in [Chapter 6|

4.2.3 Performance Prediction

We can now utilize the numbers generated from a single execution of the allyes
configuration from the previous section to make predictions about the performance
of other configurations. We already computed the variant times for all 20 con-
figurations of ELEVATOR in the previous section in order to generate results for
SPLCONQUEROR.

shows the 20 different configurations using abbreviations for the features
and their execution times compared to the predicted time using our performance
prediction approach. To account for incorrectly assigning a free call to our time
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configuration variant time | predicted time | percent error
B 0.460100 0.460100* -
B&EM 20.7212925 20.747454 0.13%
B&W 31.0513020 30.809709 0.78%
B&W&T 31.131196 30.880266 0.81%
B&W&T&O 32.6761007 31.089739 4.86%
B&W&O 32.7689886 31.019182 5.34%
B&W&EM&T 52.3653030 51.167620 2.29%
B&WE&EM 52.7860880 51.097063 3.20%
B&WE&EM&O 53.693986 51.306536 4.45%
B&W&EM&T&O 54.4927120 51.377093 5.72%
B&EX 80.3105116 80.498430 0.23%
B&EM&EX 100.610495 100.785784 0.17%
B&WE&ET&EX 110.584903 110.918596 0.30%
B&W&EX 110.721207 110.848039 0.11%
B&WE&T&EX&O 110.799599 111.128069 0.30%
B&WE&EXE&O 110.803103 111.057512 0.23%
B&W&E&EM&T&EX 130.88851 131.20595 0.24%
B&W&E&EM&T&EX&O 131.033087 131.415423 0.29%
B&WE&E&EM&EX&O 131.037807 131.344866 0.23%
B&W&E&EM&EX 131.394696 131.135393 0.20%

Table 4.1: Comparing all variants to our prediction

for the Base feature we will instead use the time that was observed for the BASE
configuration as is stated in the first data row and noted with a “*’. There are 6
outliers with a Percent Error (PEP| of over 1% but overall the numbers are pretty
similar. Reasoning about the distribution of execution times between features and
the shared code base according to RQ2 does not make sense for this case study,
since we artificially tinkered with these execution times. The majority of the time
is spent inside optional features.

The effort that is required for this approach is applying variability encoding to the
source code and then executing a configuration or multiple configurations in order
to generate data used for the prediction of other configurations. For ELEVATOR the
efforts according to RQ3 are as follows: ~600 ms for variability encoding and 133
ms for executing the performance simulator in the allyes configuration. If we add
up the execution times of the 20 variants that alone amouints to over 1500 ms. Case
studies with more features and many more derivable variants will further increase
this gap. However, with more features and possible feature interactions it is possible
that measuring one allyes configuration will not produce good predictions for all
configurations.

4.3 SQLite Case Study

Our next case study is the real-world software system SQLITHY| It is a highly-
configurable database product line and is considered the most widespread database

2
|predicted value — expected value|

percent error =
expected value

3https://www.sqlite.org/
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system worldwide [LJGT15]. SQLITE has 93 different configuration options in its
amalgamation version 3.8.1 and can be tested by its extensive TH3 test suitd]

Our variability approach has been examined for SQLITE towards behavior preser-
vation and the amount of overhead in the form of additional Abstract Syntax
Tree ([AST]) nodes in the meta product vs the original source code [vR16]. The gen-
eral conclusion is that SQLITE is highly compatible for variability encoding with a
few restrictions.

The SQLITE case study combined with the TH3 test suite are considered black box
systems. Without any further insider knowledge and because of the sheer complexity
we argue that this software system is not an ideal scenario according to RQ1.

4.3.1 SQLite TH3 Test Suite Setup

We will now explain the setup we used for testing our approach with the SQLITE
case study. The execution times were generated on our cluster system CS as average
times from 10 runs.

6 test 25 TH3 85 SQlLite
directories configurations configurations
TH3 TH3/cfg SQLite/cfg
. bugs = 64k.cfg = 23 feature-wise

covl g cl.cf N
% dev X o Cz_cfg X £}~ 11 pair-wise
: : % 50 random
[~ session = wall.cfg 51 1 allyes

6% 25% 85 =12.750 test scenarios

Figure 4.5: SQLITE TH3 test setup

First, we need to explain how the TH3 test suite operates. At its core is a script
that converts one .test file or multiple files in a given directory into a C file that
executes all given tests if linked with SQLITE. The SQLITE amalgamation version’]
is a concatenation of all the source files required to embed SQLITE. After our mod-
ifications to the test suite setup (see we are left with 6 test directories,
and each consists of 1 to 355 .test files.

Second, the TH3 test suite itself is configurable. In order to avoid confusion of
SQLITE and TH3 configurations we will refer to the latter as TH3 configs. There
are 25 different TH3 configs in our modified setup and each defines a set of different

4https://www.sqlite.org/th3/
Shttps://www.sqlite.org/amalgamation.html
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properties (P). The previously mentioned .test files declare a set of REQUIRED (R)
and DISALLOWED (D) properties and during execution these tests are skipped for a
property ¢ if € PA¢ € Dorif ¢ ¢ PN ¢ € R and executed otherwise.

Last, are the configurations of SQLITE itself. Since it is infeasible to analyze all
possible configurations and because we had no thorough [FM], we decided to focus
on a subset of 23 features, the focus features. We then created four different groups
of configurations for these features:

Feature-wise Each configuration consists of one enabled focus feature and as little
as possible other features, which can be required according to the [EM|l This
leaves us with 23 different feature-wise configurations.

Pair-wise These configurations have been generated with the SPLCA tool’l The
basic idea is to generate all possible pairs for the focus features and generate
configurations, which cover multiple pairs at the same time. SPLCA has
generated 11 pair-wise configurations.

Random We generated 50 different configurations by mapping randomly generated
binary numbers between 0 and 223 to a configuration. Duplicate and invalid
configurations according to the [EMl have already been discarded during the
generation process.

Allyes We have already mentioned the allyes configuration in previous sections.
For this configuration we simply enabled all 23 focus features.

4.3.2 Test Setup Modifications and Restrictions

After establishing the general concept of the TH3 test suite we now talk about the
details for the modifications and restrictions that were applied. It is very important
to note that the numbers in the following section are comparisons in execution times
between our meta product from variability encoding and our meta product after
integrating the performance measuring functions. We decided to compare these two
because the meta product itself has already a very different performance compared
to the software variant that is tested. We will talk about this further in[Section 4.3.6]

During our testing approach we noticed that one of the 26 TH3 configs never ex-
ecutes any test cases. This configuration is responsible for testing a DOS related
filename scheme and is not compatible with our UNIX setup, so we excluded it.
We also excluded two .test files because one contains an array declaration that is
loaded with over 100 #ifdefs across nearly 3000 lines of code and the second test
file performs time and date tests for which we cannot verify the behavior preserva-
tion between variant and meta product. For us to verify behavior preservation, we
require a binary test result success or failure. Some tests however deviate from this
scheme by utilizing information that is not constant for different test executions,
e.g. current system time or memory consumption.

Shttp://martinfjohansen.com /splcatool /
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Next, the TH3 test suite originally consists of 10 folders that contain .test files.
We have excluded the stress folder since it contains tests with a very high run time.
These stress tests can verify robustness by loading a corrupted database, simulate
a power-failure in the middle of a transaction and more. After excluding the stress
folder we ran into SQLITE out of memory errors during execution of our meta
product in two directories. We decided to create partitions for these two folders and
thus reduce the amount of .test files per folder. One directory was partitioned once
and the other one had to be partitioned twice. We further excluded 3 more folders
which only consist of 1-2 .test files each because their execution time is too low
(<2 ms) to be useful. In summary we excluded four folders and created three new
folders to balance out the test load.

Last, to generate compatible test scenarios across the different SQLITE configura-
tions we excluded all .test files that are not executed in all our SQLITE config-
urations for a given combination of TH3 config & test directory and added them
to a list of shared tests. With 12 test directories and 25 TH3 configs this equals
300 different shared test lists. We reason that comparing execution times from test-
ing different SQLITE configurations does not make sense when both configurations
perform different test cases.

We revalidated the results after applying these restrictions and filtered one more
folder where the execution time was very low (<2 ms), this is mostly because no
test cases or just a few quick test cases remained. We also had to remove two
folders which produced a lot of TH3 test suite errors. In summary we are left with
6 test directories, 25 TH3 configs and 85 SQLITE configurations, as presented in
All of these three can be combined in any arbitrary way and thus there

are 12750 different test scenarios.

4.3.3 Statistics for the Measuring Process

First, we start by presenting various statistics about our approach before the next
sections illustrate our results from analyzing the performance of SQLITE.

1 1 1
0 50000000 100000000 150000000
Total number of
measurements

Figure 4.6: Amount of function calls to our measuring functions in SQLITE

The injected function perf_before tracks the amounts of measurements that have
been started for each context. We will now take a look at the total amount of mea-
surements that have been performed across all of the 12750 different test scenarios.
shows that these numbers vary greatly and take on anywhere between
180 to 180712831 measurements. The red dot resembles the mean amount of mea-
surements at 23005422. This is something that has to be kept in mind, we already
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saw that the ELEVATOR product line was influenced greatly by the overhead the
BASE feature.

1 1 1 1 1
500000 1000000 1500000 2000000 2500000
Run time (ms)

o -

Figure 4.7: Runtime distribution for performance measuring in SQLITE

Second, we will look at the distribution of the execution times for performance
measuring across all test scenarios, seen in The average time is just over
55 seconds and the longest run took about 41 minutes. This time does not include
the overhead for the data and time stamp management that we subtract during the
execution.

1 1 1 1
0% 100% 200% 300%
Proportion of overhead to remaining execution time

Figure 4.8: Percentage of overhead compared to the previous execution time in

SQLITE

shows the percentage of internally calculated overhead vs the remaining
execution time of the TH3 test code. As we already saw in the previous paragraphs
the performance functions are called up to hundred million times and this fact is
reflected in[Figure 4.8 In the majority of cases the execution of a test scenario needs
more time for the measurements then for the execution of the test code itself.

4.3.4 Performance Results

In order to answer RQ2 we have gathered data about feature interactions for every
test scenario and generated different figures to show how the execution times are
distributed for the different groups of Feature-Interaction Degrees (FIDk).

The maximum amount of across all test scenarios is 6 and a concrete example for
this case can be seen in [Figure 4.9, This interaction occurred through a combination
of nested #ifdefs and function calls inside #ifdefs. However, shows
that a of 3 or more interactions take up a very insignificant proportion of the
total execution time. On the other side interactions of degree 2 have a wide margin
of impact on the total execution time.



34

4. Evaluation

feature interaction stack

VDBE_PROFILE
ISQLITE_OMIT_SUBQUERY
ISQLITE_OMIT_OR_OPTIMIZATION
SQLITE_OMIT_FOREIGN_KEY
ISQLITE_.COVERAGE_TEST
ISQLITE_OMIT_EXPLAIN
SQLITE_ENABLE_FTS4 || SQLITE_LENABLE_FTS3

Figure 4.9: Example feature interaction degree of 6 in SQLITE
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Figure 4.10: Execution time distributed among different degrees of feature
interactions

Grouping up the previous data by our four different configuration groups in
shows that the configurations have a great effect on the distribution. The
allyes configuration group consists of one configuration and is very stable across all
TH3 configurations and test directories. Most of the run time is spent in context
without any interactions (EID]of 0), followed by one interaction (EIDIof 1) and the
BASE code. The BASE code is not part of any and is categorized separately.

This changes drastically for the feature-wise configurations, which are very incon-
sistent across all [FIDk. There are quite a few cases where the vast majority of the
execution time is used up by a[FID]|of 2 and this also occurs in the pair-wise and ran-
dom configurations. The latter two also have a very identical distribution. Removing
4 specific TH3 configs from the data set removes most outliers for interaction de-
gree 2. depicts how this removal affects the pair-wise configurations. It
seems that the tests related to these configurations focus on testing computationally
intensive code in feature interactions of second degree.
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Figure 4.11: Execution time distributed among degrees of
feature interactions, grouped by configuration mode
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In the end the data can be grouped in various ways but without in-depth knowledge
about SQLITE, TH3 and their configurations these data remain observations. To
answer RQ2, it is interesting that the annotation-free code is on average in third
place ranked by proportion of total time consumed. Context without interactions
and context with one interaction consume more time for SQLITE.

4.3.5 Prediction Results

For this section the data generated during our performance analysis is used to gener-
ate performance predictions. Since we already generated detailed numbers for each
of our 85 SQLITE configurations the next step is to make cross predictions for the
different configuration modes. These results will show which configuration group is
suited for prediction other configurations, see RQ4 and also which groups are not
compatible and produce predictions that are off the mark.

In order to get more accurate numbers we compared the time of a prediction for
configuration ¢ to the time that the performance simulator actually takes when
executed in configuration ¢. In practice the goal has to be to compare the prediction
to the actual execution time of that variant, but since our measurement process
assigns deallocation calls to the preceding time measurement, this is a compromise.

See for possible improvements.

displays the different cross predictiond’} The[PI¥ is computed by taking
the average prediction time and comparing it to the actual time that the performance
measuring of that configuration needs. The result of a prediction for a configura-
tion group with multiple configurations is then again the average for all individual
predictions of that group. A [PEl of 0 indicates a perfect prediction. The different
modes show diverse compatibility to each other. The allyes configuration makes the
worst predictions, especially allyes predicts feature-wise. A reason for this is that
the allyes configuration enables the feature SQLITE_NO_SYNC, which is only enabled
in one of the 23 feature-wise configurations. Further these 22 configurations that
have disabled SQLITE_NO_SYNC all have an execution time of over 3100 ms, whereas
the remaining feature-wise configuration has a run time of ~ 90 ms. The allyes
configuration with about ~170 ms execution time does not have any measurement
information for the SQLITE_NO_SYNC feature and thus all of its predictions for con-
figurations that include this feature are off the mark.

now displays the same information from the previous paragraph but it
includes the deviation that is computed for the predictions. Since we have access
to the actual results the performance error including deviation is computed as seen
in |[Figure 4.15. Examples for this calculation can be seen in [Figure A.1l Especially,
example b) highlights how a high variance instantly produces a perfect result which
is not applicable if you do not know the expected values. The results for random
predicts have improved substantially by including the deviation because they have
the highest deviation when compared to the average time. As a result they can-
not be considered good candidates for predictions. Their high deviation leads to

an inaccurate prediction result. See for predictions grouped by test
directory.

"We excluded one combination of TH3 config and test directory since it can produce a percent-
age error of ~6 and messes up the y scale of the boxplots
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4.3.6 Comparing Execution Times

already mentioned that the performance can vary between the meta prod-
uct (without performance measurements) and the derivable variants. |[Figure 4.16
shows the [PE] when comparing the execution times. Overall the times are relatively
close but there are some outliers which deviate by nearly 90%. We reason that these
differences vary between different case studies and depend on the way that the con-
ditional preprocessor directives are utilized. The closer this overall number is the
better the prediction results. As a consequence, we suggest avoiding case studies,
where the meta product performance deviates a lot from the software variants.
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PE(a+v), ifatv<r
PEV(a,v,7) =< PE(a—v), ifa—v>r
0, otherwise, since r € Ja — v, a + v|
where:

PE = function to compute [PE

a = predicted average
d = predicted deviation
r = actual result

Figure 4.15: Taking deviation into consideration for calculation of PE
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Figure 4.16:

Comparing execution times:

meta product vs variant



5. Conclusion

The amounf of derivable variants for a configurable systems scales exponentially
with its number of configuration options. Thus they pose to be a tough problem to
solve for analysis and verification tools. In this thesis we present the combination of
performance measuring and variability encoding in order to analyze the performance

of Software Product Lines (SPLk).

Our case studies show that the results vary. For the ELEVATOR case study we
are able to provide very accurate results by analyzing just one configuration in our
simulator. ELEVATOR helps us to characterize the properties that represent a good
target for our approach:

e No mutually-exclusive conditional preprocessor directives.

e Feature Model (EM]) with very few restrictions, which allows us to select all
features and gather a lot of information from a single execution.

e The different features do not have any grave performance-altering data depen-
dencies.

The second case study, SQLITE, shows that our approach is applicable even to
complex systems. SQLITE in its amalgamation version has 93 configurable features
spread over 180.000 lines of code [sql]. RQ2 posed the question of time distribution
and SQLITE has shown, that in contrast to our expectations, the most execution
time is used by features with a Feature-Interaction Degree (EID) of zero or one and
the shared code BASE only comes in third place. On the other hand it has shown
that the code inside preprocessor directives with a of 2 or more does not have
a significant impact on the performance.

As far as performance prediction in SQLite is concerned we received varying results.
The allyes configuration is the worst configuration for predicting the performance
of other configurations. We found out that a certain group of features in the form
of SQLITE_OMIT_SOMETHING contain a lot of executable routines whenever they are
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turned off. Using the randomly generated configuration set yields the best prediction
data when taking the deviation into account. However, the random configuration set
consists of 50 different configurations which is more than all the other configuration
groups combined. Consequently the random configuration predictions require the
most effort and also have a high variance. Overall the predictions for SQLITE vary,
but to make final verdict about its compatibility with our performance measuring
approach, further knowledge about its configurations and test suite is required.



6. Future Work

The possibilities for future work are manifold. First of all we measure the perfor-
mance of every preprocessor directive, even if it only contains one negligible calcula-
tion. The effort to perform the measurement for such a statement is multiple orders
of magnitudes higher than the statement execution itself. This further increases the
run time of the performance simulator and as SQLITE has shown with an average of
23 million performance measurements the internally calculated overhead is already
surpassing the execution time of the remaining code. Adding different metrics for
granularity control to avoid unnecessary performance measurements can potentially
reduce the overhead without affecting the accuracy of the measurements.

Second, in order to lessen the effect that these performance measurements have on
the remaining execution we advise revisiting their implementation and conduct these
measurements in a separate processor thread. Our internal overhead calculations do
not take the very last memory deallocation from a free call into account, instead it’s
execution time is assigned to the execution time of the preceding measurement. For
features without any Feature-Interaction Degree (EIDI) this preceding measurement
is the measurement for BASE. The ELEVATOR case study has already shown that
the numbers for the features are very accurate but the numbers for BASE are off
by about ~6 ms because it includes 5604 free calls from its nested performance
measurements.

Third, making accurate predictions requires the execution times for a feature ¢ to
be constant across all configurations that include ¢. We already mentioned data
dependencies as a possible example, where the time measured for a feature ¢ is
affected by a different feature y, e.g. x increases the upper limit of a loop. If
this manipulation in y is part of an unrelated (not nested) preprocessor directive
the measurements for ¢ is affected. If a Software Product Line (SPL) utilizes the
conditional preprocessor directives in this way, our approach is not able to generate
accurate predictions.

Fourth, in order to measure the whole code base in regards to mutually exclusive
preprocessor directives we advise finding a small set of configurations that covers all

Granularity
control

Measure-
ments in
separate

thread

Deviations in
feature times

Code
coverage
conf. set
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6. Future Work

More case
studies

parts of the source code. The so called code coverage set of configurations should
be the best candidate to generate performance data for predictions. The closer this
heuristic is to generating the minimal set of configurations the less effort has to be
made for performance predictions.

Last, in order to properly judge our approach it needs to be applied to more case
studies. Liebig et al. showed that SQLITE is one of the very few exceptions, in an
analysis of 40 SPL] where the code inside the preprocessor directives exceeds 50% of
the code base. SQLITE is a complex software system and with that degree of vari-
ability, we categorize it as a suboptimal target for our performance measuring and
prediction approach. However, new case studies have to fulfill certain requirements
before they can be utilized. The parsing framework TYPECHEF has to be able to
not only successfully parse these new [SPLE, but also to type check them without
any errors. Though, providing a detailed Feature Model (EM]) is able to solve most
of these issues. The next step is for HERCULES to generate compilable C code, that
does not have any active, un-terminated performance measurements at the end of
the program execution.



7. Related Work

Our thesis is influenced by prior work from Post et al. about configuration lifting
[PSO8] and the paper of Siegmund et al. “Family-Based Performance Measure-
ment” [SYRAT4]. While configuration lifting is the motivation behind variability en-
coding, the collaboration with Siegmund et al. has started the idea of performance
measuring in the context of C Software Product Lines (SPLk). The background
for the work of Siegmund et al. are JAvA and their tool chain is based FEA-
TUREHOUSH'] a software-artifact composition framework [AKL09]. In contrast to
our approach, the variability occurs only on a function level, whereas C Preproces-
sor directives can be used in any arbitrary way. Siegmund et al. apply their
approach to 5 different test systems and obtain a prediction accuracy of 98%, on
average. They also verify, that their approach requires only fraction of the effort,
that a brute-force approach requires. One of the crucial results is that the time saved
by using of family-based performance measurements increases with the number of
features in a [SPLl but also decreases with the amount of configurations, that are
required to gain 100% code coverage.

Regarding family-based analysis methods, in general they are an exciting devel-
opment that displays promising results [TAKT12, [SvRA14, [LvRK™13, IKvRE"12,
NKN14]. The exact implementation for these approaches differs from the software
domain and analysis context that they are applied to. However, the core concept
remains the same: employ the similarities between the different products in order to
save analysis efforts, since the shared code base (ideally) takes up the vast majority
of the source code.

An empirical study by Ernst et al. analyzes 26 packages with 1.4 million lines
of C code [EBN02] and shows that conditional preprocessor directives, on average,
account for 4% of the total code. Liebig et al. analyzed the preprocessor usage in
40 different [LALT10]. They come to the conclusion that variability correlates
with the size of the project and the #ifdef nesting is used sparsely.

Thttp://www.infosun.fim.uni-passau.de/spl/apel /fh/
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7. Related Work

Finally, performance related publications can be split up into different categories.
First, the machine-learning or data-set training approach|[GSKA16, [SKO01], which
benefits immensely from domain knowledge as Grebhan et al. show |GSKAT6].
Using this knowledge reduces the training efforts, however, they stress that this
knowledge needs to be precise or the results lose accuracy. Second, the measurement-
based approach, that is used by Siegmund et al. [SRK™11, ISKK™12]. They gather
performance data per feature by measuring the influence of each feature and all
related deltas. Deltas are a way to express the influence that a feature A has on
another feature B. The feature-specific data and appropriate deltas can then be
used to calculate the performance for different configurations. Weyuker et al. dis-
cuss their experience with performance testing [WV00]. They stress the importance
of performance-related testing and argue, that performance is a very important
and project-affecting property. Further, they mention that the test case genera-
tion or generation strategies for measuring performance is a crucial criteria for all
measurement-based approaches.



A. Appendix

A.1 Percent Error calculation example

This is just a brief example that did not fit into for a calculation of
the Percent Error (PE) with deviation.

Example a) Example b)
p = 65.3ms + 7.7ms p = 29.3ms + 19.0ms
r = 75.0ms r =47.4ms
PEV(65.3,7.7,75.0) = PE(73.0,75) PEV(29.3,19.0,47.4) = 0%
|73.0 — 75
= —— = 2.6
75 %

Figure A.1: Example calculations for PE with deviation

A.2 Prediction results continued

The following and present the results from for
the cross predictions grouped by TH3 test directory.

A.3 Prediction result table excerpt

Table A.1|is an excerpt of data gained from the prediction process. The IDs range
from 0 to 299 because the initial numbering included all 12 TH3 test directories and
together with its 25 configs we generated 300 different test scenarios. The unusable
results were omitted afterwards.

Since we did not only predict the performance, but also measure the performance
of all configurations, we are able to generate a lot more data about the differences
between our prediction and the result. E.g., MPSFD displays the impact of the
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difference in measured times for the shared features between the prediction Feature-
Time Hashmap (ETH]) and the result [FTHl as a proportion of the total difference
between the predicted time and the actual time. The figures in previous sections
about performance predictions for SQLITE have been generated from this table.
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A.3. Prediction result table excerpt

UOIJRIADD SUIPN[OUL SOPOUT UOIJRINSUOD JUSIOPID
9} 10J SuOIoIpaId SSOID UL I0LI0 JUSDIDJ €'Y 9INSI

aweN Jap|od 1sal

2 2o o, 2 Zon on g, 2 % N,
%, &\é Q@ B 4 % “, @9@ Q@c B 2 9, %, s, Q«ey B 4 %
3 > 3
1 1 1 1 - 1 [ 1 1 1 1 1 [ 1 1
D_H__“_m_uﬂ_ —_——————— Emem e %0
- %08
- %00T
- %0ST
asimured s)aipaid wopues asimainies) sjaipaid wopuel saA|e s1oipaid wopues
% o, 2 <% 2 %
AR 2o 4 o g 2 % (2N o, 2 2 (N N g
% Sy T, B Y, T T ) %0, N T T 0, %
| | | | - | [ | | | | [ | |
ORI AN s T2 T
- %08
- %00T
- %0ST
wopuei syoipaid asimired asimainies) sjoipaid asimired saAe s1oipaid asimured
26 2o N, 2 o 2o o on g,
G Ty e 5 T % Ty e T T % T T e TR Y,
% > >
| | | | [ | [ | | | | | [ | |
SHO=TO ﬂ =[] =h
D m - %05
. b - %00T
- %0ST
wopues s)oipaid asimainyea) asivured s)aipaid asimainies) sake sioipaid asimainyes)
2 %, 4 0y % 2 %, N g Y 5 5 %, Y g TN g
Y T, % &a,v % N %, % ﬁog % O N % ﬁs@ %%
| | | | - | [ | | | | [ | |
3 : - %0
- %00T
- %0ST
wopuel s)1paid sahje asivured sjoipaid sakjje asimainies) s1ipaid safje

aoueleA Bulpnjoul Joug Jusdiad

SOPOW UOTRINSYUOD JUIIOPIP

asivured sjaipaid wopuel

2 % <on
&, o 4 8
% 2y 9

24
% 2 %
O oy

f mﬂuaﬂ

wopue s)oipaid asimired

2 2o <on
&, S R}
2,9
% 0, %

SHETe

24
O
O e

wopue s)oipaid asimaines)

2 v
2 &, N g N g
4, %, ) 2 %
v e P B

040

wopues syoipaid sakjje

aweN Jap|od 1saL

2 b, Yo Yy g

% 2
2 s 2 Y
Yy T, B %

. H

.

asimainies) sjoipaid wopues

2 o qu B
5 0 . %
% o, %

T

asimainres) syoipaid asimired

N
N

P
% 2
% %
%

»
2 2% lon &
%, %, %

(4

s

asivired sjoipaid asimainies)

2 <
Py %, x&\ o LN
Yy

HOLOR T

asimired saipaid sakje

4m4muﬂ§

o1} I10J sUOIPOIPaId SSOID UL 101D JUIDIDJ 7'y oInJI

2 %o, Yo o,
% @\6 O& KA ﬁoc %
[T T T B T
D ﬂDL\oo
. - %08
- %00T
- %0ST

saf|[e s1oipaid wopues

2 L2
2 %, N 4 0N s
%, 22
Y % R %y %

= %085
- %00T

- %0ST
saA|e sioipaid asimired

2 2o o,
% T e %
0 ]

- %0

- %00T
- %0ST
saf|[e sioipaid asimainies)
2 %, Y 4 o %,
S Uy T, » &Oo e
'
— %0

- %00T

- %0ST

asimainies) sjoipaid sakjje

10113 JUddIad



A. Appendix

ryep uonoIpald o) wogf 3dIeoXy 1Y 9[qR],

{UOTJRIADD '[OUL 9OULISYIP 2INjed] paleys Jo afejuadiod ueowl ((JAASAIN  ‘QOUSISHIP 2Injed] pareys jo ogejusoiad ueowl ((IASJIIN
‘nsar utr AJuo awiry jo o8ejuedtod urewl ‘Y ILJIN  uonorpaxd ur A[uo auiry jo a8ejuedied ueow | J.IJIN

‘uoryeraop ‘poul 1oi1d juadtad ((qHJ ‘1ol quedtad g ‘epout jowpaid (N g ‘epour ndur AT

‘o8ejueorod uoryeIAdp Jq
{66¢-0 WOIJ (] OLIRUdDS 159% (O]

48

6.E0T0°0 | €€8LE00 | O 0 LE6670°0 | L08G00°0 | ¥ESLED'Q | oSImalnjes) | wWOpUeR.L 9.
9ELVTO0 | 99¢680°0 | 989T00°0 | ¥60000°0 | ¥ETICC 0 | €66800°0 | T8G060°0 | oSlmo.dnies] | WOpPUR.L <7
¢8¢600°0 | Ge¥eIV'0 | ¥¢98T0°0 | 8OOVD'0O | ¥I0TEGH 0 | ¢E000°0 | 8CLVTPP 0 | oSlmoalnjead) | WOpURI 4
PrG097°0 | ¥0200S°0 | 60000070 | L808¢0°0 | T6LG€0°0 | P8TOEV0 | 600ELY'0 | WOpURL OSIMOINYES] | LET
20LEE0°0 | 9998€0°0 | TGT900°0 | YOSVLLIO | #P69T0°0 | 6FTI98T 0 | G9EK6T1°0 | Wwopuel OSIMAINYEd] | 9T
GI8YED0 | 86C6E0°0 | 96¢900°0 | 9ETELT0 | 6V8610°0 | €6E6GT'0 | 8GEILT0 | WOPURL OSIMOINYES] | GET
I8€ER0°0- | 9¢€9L0°0- | ¥¥8000°0 | €CVIO0 | €68VIT0 | O CIL680°0 | soAqre ostmared ¢l
9G0S7T°0- | €LLV9T°0- | S09TO0'0 | GSOPTO0 | €09¥C0°0 | €6TET'0 | €CVLLTO | SPATT® ostaared IT
GT89L1°0- | GVLEGT'0- | 8SFT00°0 | 86800 | TO6¥0'0 | 6ZESIT0 | P8ILOG 0 | SPATre ostmared 0T
adddsdN | ddSdIN | HLdIN dLdIN dd add dd INd NI dar




Bibliography

[AKL09)]

[AVRW*13]

[Bat05]

[CN*99]

[EBNO2]

[EW11]

[GSKA16]

[Hen0g]

[KA13]

Sven Apel, Christian Kastner, and Christian Lengauer. Featurehouse:
Language-independent, automated software composition. In Proceed-
ings of the 31st International Conference on Software Engineering,
pages 221-231. IEEE Computer Society, 2009. (cited on leg(‘

Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Gréflinger,
and Dirk Beyer. Strategies for product-line verification: Case studies
and experiments. Proc. of ICSE. IEEE, 2013.  (cited on Page[25)

Don Batory. Feature Models, Grammars, and Propositional Formulas,
pages 7-20. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. (cited

on Page )

Paul Clements, Linda Northrop, et al. A framework for software prod-
uct line practice. SEI Interactive, 2(3), 1999. (cited on Page [

Michael D. Ernst, Greg J. Badros, and David Notkin. An empirical
analysis of ¢ preprocessor use. Software Engineering, IEEE Transac-
tions on, 28(12):114671170, 2002.  (cited on szgoand 43)

Martin Erwig and Eric Walkingshaw. The choice calculus: A repre-
sentation for software variation. ACM Transactions on Software En-
gineering and Methodology (TOSEM), 21(1):6, 2011.  (cited on Page [J]

Alexander Grebhahn, Norbert Siegmund, Harald Kostler, and Sven
Apel. Performance prediction of multigrid-solver configurations. In
Software for Erxascale Computing-SPPEXA 2013-2015, pages 69-88.
Springer, 2016. (cited on Pago

Thomas A Henzinger. Two challenges in embedded systems design:
predictability and robustness. Philosophical Transactions of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences,
366(1881)23727*3736, 2008.  (cited on Page E[)

Christian Késtner and Sven Apel. Feature-oriented software develop-
ment. In Generative and Transformational Techniques in Software En-
gineering IV, pages 346-382. Springer Berlin Heidelberg, 2013. (cited

on Page [6



50

Bibliography

[KCH*90]

[KKHL10]

[KvRE12]

[LAL*10]

[LIG+15]

[LKA11]

[LvRK*13]

IMWC09]

[IMWCCO08]

[NKN14]

Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and
A Spencer Peterson. Feature-oriented domain analysis (foda) feasibility
study. Technical report, DTIC Document, 1990. (cited on Page|d)

Andy Kenner, Christian Késtner, Steffen Haase, and Thomas Leich.
Typechef: toward type checking# ifdef variability in c. In Proceed-
ings of the 2nd International Workshop on Feature-Oriented Software
Development, pages 25-32. ACM, 2010.  (cited on Page[)] [12] and [13)

Christian Késtner, Alexander von Rhein, Sebastian Erdweg, Jonas
Pusch, Sven Apel, Tillmann Rendel, and Klaus Ostermann. Toward
variability-aware testing. 2012.  (cited on l’ﬂge and {43

Jorg Liebig, Sven Apel, Christian Lengauer, C Kastner, and Michael
Schulze. An analysis of the variability in forty preprocessor-based soft-
ware product lines. In Software Engineering, 2010 ACM/IEEE 32nd
International Conference on, volume 1, pages 105-114. IEEE, 2010.

(cited on Page )

Jorg Liebig, Andreas Janker, Florian Garbe, Sven Apel, and Christian
Lengauer. Morpheus: Variability-aware refactoring in the wild. In Pro-

ceedings of the 37th International Conference on Software Engineering-
Volume 1, pages 380-391. IEEE Press, 2015. (cited on Page |9] and )

Jorg Liebig, Christian Késtner, and Sven Apel. Analyzing the discipline
of preprocessor annotations in 30 million lines of ¢ code. In Proceed-
ings of the tenth international conference on Aspect-oriented software
development, pages 191-202. ACM, 2011. (cited on Page[§)

Jorg Liebig, Alexander von Rhein, Christian Késtner, Sven Apel, Jens
Dorre, and Christian Lengauer. Scalable analysis of variable software.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Soft-
ware Engineering, pages 81-91. ACM, 2013.  (cited on Page
and {43

Marcilio Mendonca, Andrzej Wasowski, and Krzysztof Czarnecki. Sat-
based analysis of feature models is easy. In Proceedings of the 15th In-
ternational Software Product Line Conference, pages 231-240. Carnegie
Mellon University, 2009. (cited on Page

Marcilio Mendonca, Andrzej Wasowski, Krzysztof Czarnecki, and Don-
ald Cowan. FEfficient compilation techniques for large scale feature
models. In Proceedings of the 7th international conference on Gen-
erative programming and component engineering, pages 13-22. ACM,
2008.  (cited on Page

Hung Viet Nguyen, Christian Késtner, and Tien N Nguyen. Exploring
variability-aware execution for testing plugin-based web applications.
In Proceedings of the 36th International Conference on Software Engi-
neering, pages 907-918. ACM, 2014.  (cited on Page [13)



Bibliography

o1

[Pad09)

[PRO1]

[PS08]

[SC92]

[SK01]

[SKK*+12]

[sql]

[SRK*11]

[SVRA14]

[TAK*+12]

[TBKO9]

[VBO3]

Yoann Padioleau. Parsing ¢/c++ code without pre-processing. In Com-
piler Construction, pages 109-125. Springer, 2009.  (cited on Page[§)

Malte Plath and Mark Ryan. Feature integration using a feature con-
struct. Science of Computer Programming, 41(1):53-84, 2001.  (cited

on Page

Hendrik Post and Carsten Sinz. Configuration lifting: Verification
meets software configuration. In Automated Software Engineering,
2008. ASE 2008. 23rd IEEE/ACM International Conference on, pages

347-350. TEEE, 2008. (cited on Page and

Henry Spencer and Geoff Collyer. # ifdef considered harmful, or porta-
bility experience with ¢ news. 1992. (cited on Page

Martin Shepperd and Gada Kadoda. Using simulation to evaluate pre-
diction techniques [for software|. In Software Metrics Symposium, 2001.
METRICS 2001. Proceedings. Seventh International, pages 349-359.
IEEE, 2001. (cited on l)age

Norbert Siegmund, Sergiy S Kolesnikov, Christian Késtner, Sven Apel,
Don Batory, Marko Rosenmiiller, and Gunter Saake. Predicting perfor-
mance via automated feature-interaction detection. In Software Engi-
neering (ICSE), 2012 34th International Conference on, pages 167-177.
IEEE, 2012. (cited on Page )

The SQLite amalgamation. |https://www.sqlite.org/amalgamation.
html. Accessed: 2017-03-14.  (cited on Page 39)

Norbert Siegmund, Marko Rosenmuller, Christian Kastner, Paolo G
Giarrusso, Sven Apel, and Sergiy S Kolesnikov. Scalable prediction of
non-functional properties in software product lines. In Software Prod-
uct Line Conference (SPLC), 2011 15th International, pages 160-169.
IEEE, 2011. (cited on Page [l|and

Norbert Siegmund, Alexander von Rhein, and Sven Apel. Family-based
performance measurement. ACM SIGPLAN Notices, 49(3):95-104,
2014. (cited on Page |25/ and

Thomas Thiim, Sven Apel, Christian Késtner, Martin Kuhlemann, Ina
Schaefer, and Gunter Saake. Analysis strategies for software product

lines. School of Computer Science, University of Magdeburg, Germany,
Tech. Rep. FIN-004-2012, 2012.  (cited on Pngoan(l

Thomas Thum, Don Batory, and Christian Kastner. Reasoning about
edits to feature models. In Proceedings of the 31st International Confer-
ence on Software Engineering, pages 254-264. IEEE Computer Society,
2009.  (cited on l)age

Laszl6 Vidéacs and Arpéd Beszédes. Opening up the ¢/c++ preprocessor
black box. In Proceedings of the Eight Symposium on Programming
Languages and Software Tools (SPLST), 2003.  (cited on Page |3


https://www.sqlite.org/amalgamation.html
https://www.sqlite.org/amalgamation.html

52

Bibliography

[VR16] Alexander von Rhein. Analysis Strategies for Configurable Systems.
PhD thesis, Universitdat Passau, 2016. (cited on Page and

[WV00] Elaine J Weyuker and Filippos I Vokolos. Experience with performance
testing of software systems: issues, an approach, and case study. IFEFE
transactions on software engineering, 26(12):1147-1156, 2000.  (cited

on Page [1] and [44))

[Zav99] Pamela Zave. Faq sheet on feature interaction. Link: http://www.
research.att.com/ pamela/faq.html, 1999. (cited on Page )


http://www.research.att.com/~pamela/faq.html
http://www.research.att.com/~pamela/faq.html

Eidesstattliche Erklarung:

Hiermit versichere ich an Eides statt, dass ich diese Masterarbeit selbstdndig und
ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt
habe und dass alle Ausfithrungen, die wortlich oder sinngeméf {ibernommen wur-
den, als solche gekennzeichnet sind, sowie dass ich die Masterarbeit in gleicher oder
dghnlicher Form noch keiner anderen Priifungsbehorde vorgelegt habe.

Name

Passau, den 15. Méarz 2017



	Contents
	List of Figures
	List of Tables
	List of Code Listings
	List of Code Listings
	1 Introduction
	1.1 Objective of this Thesis
	1.2 Structure of the Thesis

	2 Background
	2.1 Software Product Lines
	2.2 Introduction of our Example SPL: Calculator
	2.3 Features and Feature Models
	2.4 Variability in C Software Product Lines
	2.5 Variability Encoding
	2.5.1 Introduction
	2.5.2 Approach
	2.5.3 Example
	2.5.4 Goal
	2.5.5 Behavior Preservation
	2.5.6 Shortcomings


	3 Approach
	3.1 Overview
	3.2 Combining Variability Encoding with Performance Measuring
	3.3 Example Software Product Line
	3.4 Dealing with Control Flow Irregularities
	3.5 Feature Interactions
	3.6 Post Processing of Measurements
	3.7 Collection of Prediction Information
	3.8 Limitations and Problematic Aspects

	4 Evaluation
	4.1 Test System Specifications
	4.2 Elevator Case Study
	4.2.1 Performance Measuring
	4.2.2 Overhead calculation flaws
	4.2.3 Performance Prediction

	4.3 SQLite Case Study
	4.3.1 SQLite TH3 Test Suite Setup
	4.3.2 Test Setup Modifications and Restrictions
	4.3.3 Statistics for the Measuring Process
	4.3.4 Performance Results
	4.3.5 Prediction Results
	4.3.6 Comparing Execution Times


	5 Conclusion
	6 Future Work
	7 Related Work
	A Appendix
	A.1 Percent Error calculation example
	A.2 Prediction results continued
	A.3 Prediction result table excerpt

	Bibliography

