
University of Passau

Department of Informatics and Mathematics

Master’s Thesis

Experiments on Type Checking of
Software Product Lines

Author:

Claus Hunsen

July 05, 2013

Advisors:

Dr.-Ing. Sven Apel

Software Product-Line Group

Christian Lengauer, Ph.D.

Chair for Programming

Hunsen, Claus:
Experiments on Type Checking of Software Product Lines
Master’s Thesis, University of Passau, 2013.

Abstract

Type checking of software product lines is a great challenge, because they
inherit variability. There are several strategies that can be pursued in order
to type-check a whole software product line: product-based, feature-based or
family-based as well as any mix of those strategies. We present our imple-
mentation of the bytecode-based strategy—it performs feature composition
on bytecode level and bytecode verification for type-checking purposes. Ad-
vantages and drawbacks of the bytecode-based strategy are identified and
potential challenges are discussed. Furthermore, we compare three strate-
gies (product-, bytecode-, and family-based) in terms of performance. We
conducted three type-checkers to a set of 12 feature-oriented product lines
implemented in Java as a benchmark. We present and discuss the measure-
ment results that clearly identify the family-based type-checking as the signif-
icantly fastest approach. The product- and bytecode-based implementations
bare some critical drawbacks apart from their advantages.

Contents

1 Introduction 1
1.1 About This Thesis . 2

2 Methodology 5
2.1 Type-Checking Strategies . 5
2.2 Type-Checking Strategy Implementations 7
2.3 Experimental Setup . 9
2.4 Testing Environment . 11

3 The Bytecode-Based Type-Checking 13
3.1 Stub Generation and Feature Compilation 14
3.2 Feature Composition and Type Check 14
3.3 Challenges with Bytecode Composition 15

3.3.1 Anonymous Nested Classes 15
3.3.2 Conflicting original-Calls 16
3.3.3 Fields Initializations 18

3.4 Bytecode Verification and Type Checking 20
3.4.1 The Verification Process 21
3.4.2 Implementation of the Verification Process 23

3.5 Summary . 23

4 Results and Evaluation 25
4.1 GUIDSL . 26
4.2 Prevayler . 27
4.3 EPL . 29
4.4 Overall Picture . 29
4.5 Which Strategy to Choose . 33
4.6 Threats to Validity . 34

5 Related Work 37

6 Conclusion 41

List of Abbreviations 43

vi Contents

List of Figures 46

List of Tables 47

A Appendix 49
A.1 Run-Time Measurements . 49
A.2 Plots for the Other Product Lines 52

A.2.1 GPL . 52
A.2.2 Graph . 53
A.2.3 Notepad . 54
A.2.4 PKJab . 55
A.2.5 Raroscope . 56
A.2.6 Sudoku . 57
A.2.7 TankWar . 58
A.2.8 Violet . 59
A.2.9 ZipMe . 60

Bibliography 61

1. Introduction

A software product line (SPL) is a family of related software products. These
products have a common base and differ in terms of features which represent
domain artifacts, implement stakeholder requirements or offer configuration
options. [AKGL10] This way, the developer designs and provides a family
of products but is also able to provide each customer a tailor-made prod-
uct. A specific product is constructed by selecting a combination of desired
features—setting the configuration—and composing these features afterwards
to synthesize the desired product. [TBKC07] For a SPL, probably not all fea-
ture combinations are desired, so that the developer usually provides a feature
model which describes constraints on feature combinations. This way, only
configurations are allowed that are consistent with the feature model—with
other words, are valid configurations. Moreover, the feature model is able to
define a hierarchy of the features so that a pair of two features may be labeled
as alternatives, for example.

With the SPL design and implementation approach, some already solved
problems of software engineering arise again. New ways have to be found to
apply already existing code analysis techniques such as type-checking, model
checking or data-flow analysis to variable programs such as SPLs. The ex-
isting analyses have to be adapted to be feature-aware, because they are not
applicable to whole SPLs. For example, the product line may be organized
in a different way than a classical program or contain additional language
constructs—such as in feature-oriented programming (FOP). Analysis of all
individual products is impractical in most cases as the number of products
may exponentially grow with the number of features. An independent analysis
of each product does not scale in this case. [TAK+12]

2 1. Introduction

“Product line developers also face the problem of safe composition – whether
every product allowed by a feature model is type-safe when compiled and
run.”[DCB09] Type checking with respect to a given type system is the anal-
ysis of well-typedness, so that type checking of a product line ensures safe
composition of all valid configurations. [TBKC07] [TAK+12] [Pie02] This way,
the optional feature problem can be identified, for example—that is, detection
of references to undefined elements (such as classes, methods, and variables).
[TBKC07] [TAK+12]

In this thesis, three different strategies for type checking of software prod-
uct lines are evaluated in terms of performance by conducting representative
type-checker tools to a benchmark set of 12 product lines. All product lines
are implemented using feature-oriented programming (FOP) and the Java
language. FOP “organizes programs around features rather than objects”
[LKF05] and constitutes a paradigm for program design of software product
lines that describes products as stacks of features. With each feature, its
implemented functionality is added to the previously added one, so that dif-
ferent compositions of features produce different products. The features are
implemented in form of modules that only define refinements to other features
or the base program. [BO92]

Although, there are 12 benchmark product lines, all challenges and exam-
ples in this thesis are explained by means of the imaginary Editor product
line. This product line implements a simple editor for text files and con-
sists of the following three feature modules: The mandatory feature module
Base provides the basic program window in the form of a tabbed-based edi-
tor pane and offers a toolbar which can be filled programmatically by refining
the proper methods within other feature modules. New files can be created
by using the feature NewFile that adds an appropriate button to the tool-
bar. The tabbed editor interface can be splitted into two views to enable the
user to show two files side-by-side if the feature SplitView is selected. As
the features are totally independent, there are four possible configurations
of this product line: {Base}, {Base, NewFile} {Base, SplitView}
{Base, NewFile, SplitView}. We use this example to highlight dif-
ferences and challenges for each strategy.

1.1 About This Thesis

In this thesis, we compare three different strategies—product-based, bytecode-
based and family-based—and their respective implementations regarding run-
time for a type-check of a complete product-line. All strategies support detec-
tion of all occurring typing errors, but each strategy has specific advantages
and drawbacks which are evaluated in this thesis. We give a short overview on
the result of an benchmark conducted on example product lines and propose

1.1. About This Thesis 3

provisional hypotheses on the approach best fitted with respect to circum-
stances and research goals.

We contribute an implementation of the bytecode-based strategy in terms of
the FeatureBite toolchain. FeatureBite is a feature-oriented composer
that composes feature modules to products on Java bytecode level. It per-
forms type-checking after composition by means of bytecode verification as
well. The toolchain is evaluated with respect to type checking completeness
and challenges that occur due to the presence of bytecode.

The thesis is structured as follows:
In Chapter 2 “Methodology”, we give an overview on the different strategies
and their considered implementations. Moreover, the experiment setup and
run-time measurement procedure for the performed benchmark are outlined.
In Chapter 3“The Bytecode-Based Type-Checking”, the bytecode-based strat-
egy is described—that is, composition and type-checking of Java bytecode.
The toolchain of FeatureBite is presented as well as challenges and pecu-
liarities which are illustrated by means of the Editor product line.
In Chapter 4 “Results and Evaluation”, the results of the benchmark are eval-
uated by detailed description of three product lines followed by conveyance
of an overall picture for all product lines. Afterwards, we give advice what
strategies are preferable for certain circumstances.
An overview on related work is given in Chapter 5. Finally, we conclude
this thesis and outline potential future work regarding the bytecode-based
strategy in Chapter 6.

4 1. Introduction

2. Methodology

In this chapter, we explain different type-checking strategies and their re-
spective implementations that are compared in terms of performance. Next,
the experimental setup, the benchmark set of product lines, the measurement
procedure, and the testing environment are presented.

2.1 Type-Checking Strategies

There basically exist three different type-checking analysis strategies besides
from sampling and their mixed forms. The family-based strategy applies type-
checking to the whole product-line, the product-based one analyzes all individ-
ual products separately and the feature-based analysis performs type-checks
on all features individually. The feature-product-based strategy is an exam-
ple for a mixed strategy: Its feature-based type-checking analysis is comple-
mented with a product-based analysis.[TAK+12]

All strategies have their individual advantages and drawbacks and it is vital
for users to choose the right strategy in accordance to their needs. Thüm et
al. [TAK+12] describe the advantages and disadvantages of the type-checking
strategies as follows:
The product-based strategy needs all products to be generated and type-
checked individually. The main difficulty is to generate and check all products
in a brute-force-like manner as the repeatedly parsing and type-checking con-
sumes a considerable amount of time. This approach may not scale for large
product lines with many independent features and thus, a large set of possi-
ble products. The set of valid products grows exponentially with the number
of independent features. Moreover, there are many redundancies during the
type-checking process due to the similarities of the individual products as

6 2. Methodology

some are composed from partly the same feature modules. For the feature con-
figurations {Base, SplitView} and {Base, SplitView, NewFile}
of the Editor product line, the features Base and SplitView are type-checked
in both configurations, although this is not necessary. More importantly, the
product-based strategy is sound and complete in respect to type checking
and standard type checkers can be used to check the single products, because
these products do not contain any variability during type checking. This way,
all existing errors in the product-line code-base can be found. Although, the
erroneous feature module can not be identified, because the single products
do not contain variability information anymore. If the features’ code base
changes, only affected products—that is, products that embody any changed
feature—need to be type checked again.
The family-based strategy analyzes one single “meta-product” that contains
the information about all products and is able to incorporate the variability
information into the type-checking process, this way. This analysis strategy
parses and composes all feature modules and integrates the information from
the feature model into the composition process. This way, a more efficient
analysis may be achieved, because no products have to be generated and the
whole product line is taken into account in one single type-check run. The
performance is generally independent of the number of valid feature combi-
nations and solely depends on the number of features and their interactions
as well as the size of the code base. The analysis can be optimized by the
usage of caching algorithms for solving the feature interactions. This strategy
is able to identify all type errors and can track them down to the causing fea-
ture module and inconsistencies in the feature model. On the downside, new
algorithms have to be implemented to perform a family-based type-check.
Considering that all feature modules are considered as a whole, the complete
analysis has to be repeated when there are changes to the features’ code base
or the feature model. This can lead to high memory consumption and, po-
tentially, time-expensive analysis repetition.
The feature-based strategy considers only the feature modules: The feature
modules are independently type-checked in isolation, that is, without knowl-
edge about other modules and the feature model. In contrast to the family-
based strategy, a feature-based analysis supports open-world scenarios: not
all features have to be known at analysis time.[LKF02] [LKF05] The draw-
back is that this strategy is incomplete, because type-checking is usually a
non-compositional analysis technique as considers each feature independently.
This is due to the fact that single feature modules are mostly only refinements
to implementations of other feature modules or the base program. Thus, only
errors that are locally restricted to a feature module—the feature-local errors
such as typing errors caused by typos—can be found during a feature-based
type-check. Dangling references to other feature’s classes are not detected,

2.2. Type-Checking Strategy Implementations 7

for example. As the features are checked apart from each other, only small
repetitions are needed when a feature’s code base is changed, only affected
features have to be re-checked. Feature-based type-checking can be performed
by already existing tools. But due to its incompleteness, the feature-based
analysis can complemented with a product- or family-based analysis in order
to cover feature interactions and to detect all type-check errors in the whole
product line—examples for resulting mixed strategies are the feature-product-
based and feature-family-based strategies.
An overview on this description can be found in Table 2.1.

Technique Errors Erroneous Feature Tool Reuse

product-based all no yes

family-based all yes no

feature-based
feature-

local
yes yes

feature-product-based all no yes

feature-family-based all yes partly

Table 2.1: Overview on the three basic type-checking analyses and two
mixed strategies with respect to their capabilities regarding error detection,
erroneous feature blaming and tool reuse.

2.2 Type-Checking Strategy Implementations
The mentioned type-checking strategies can be implemented in many differ-
ent ways. In this thesis, the product-based and the family-based strategy are
implemented using the Fuji compiler.1 Moreover, FeatureBite—which
is a tool implemented by us—performs a feature-product-based type-check.2

The pure feature-based strategy is skipped in order to compare three different
implementations that are able to find all errors, especially those that occur
as part of feature interactions (cf. Table 2.1).
These three implementations are compared later in terms of performance by
measuring the analysis parts setup, composition and type-check. (cf. Sec-
tion 2.3)

For the product-based-strategy implementation, all valid products are gener-
ated and type-checked using Fuji. (cf. Figure 2.1) Fuji is an extensible
compiler for FOP in Java that is able to compose a selection of features to a
single product as source code. Afterwards, this product is type checked using
the Java type rules. The procedure is then repeated for each product.

1http://fosd.de/fuji/
2http://fosd.de/featurebite/

http://fosd.de/fuji/
http://fosd.de/featurebite/

8 2. Methodology

Feature Modules

Fuji

Setup Type-Check
Product

Composition

Error Log

Figure 2.1: Analysis steps for the product-based strategy that have to be
performed once per product.

The family-based strategy is implemented in the form of a tool called Family-
Based Type-Checker.3 (cf. Figure 2.2) This tool is an extension to Fuji
that makes use of Fuji’s ability to construct a “meta-product” from all fea-
tures containing all variability information within the abstract syntax tree
so that each node of the syntax tree knows which feature it belongs to. The
type-checker implements algorithms on top of this“meta-product”mechanism
to perform a family-based type-check which only has to be done once for the
whole product line.

Feature Modules

Family-Based Type-Checker

Setup Type-Check
Meta-Product
Composition

Error Log

Figure 2.2: Analysis steps for the family-based strategy that have to be
performed once per product line.

Applying the mixed feature-product-based strategy, initially, the feature mod-
ules are independently compiled to bytecode, then these compiled feature-
modules are composed and type checked on bytecode instruction level. This
sequence is performed using the three tools FeatureStubber, Fuji and
FeatureBite. FeatureStubber4 is a tool that enables isolated compila-
tion of individual feature modules. The tool identifies and generates all lack-
ing type-information for each feature that is needed for the feature compila-
tion similar to mock-objects known from unit testing. Fuji complements the
underlying feature-modules with this generated information—the stubs—and
compiles them both to one single bytecode module. During feature compila-
tion, a feature-based type-check is done by the compiler. Then FeatureBite
can handle those bytecode feature modules and applies a composition mech-
anism that uses the same composition rules as Fuji, but may be faster than
the product-based type-checking implementation, because it does not work
on basis of an AST. The resulting product is then type-checked again using
bytecode verification.5 This is repeated for all possible products to type-check
the whole product line.

3See http://fosd.de/fuji/ for details on the Family-Based Type-Checker.
4See http://fosd.de/featurebite/ for details on FeatureStubber.
5The complete toolchain is described more precisely in Chapter 3.

http://fosd.de/fuji/
http://fosd.de/featurebite/

2.3. Experimental Setup 9

The implementation of the FeatureBite toolchain is very similar to the
definition of the feature-product-based strategy described by Thüm et al.
[TAK+12]. Though, it does not fully match the definition presented there due
to the fact that the type-checking results from the feature-compilation step
are ignored completely during bytecode verification and some type-checks are
repeated, thereby. Consequently, the strategy that is actually used is referred
to as bytecode-based.

Feature Compilation

Stub Generation Feature Compilation

FeatureStubber Fuji

Feature Modules
with Stubs

Feature Modules Bytecode
Feature Modules

Bytecode-Based Type-Checking

FeatureBite

Setup Bytecode Verification
Product

Composition

Error LogBytecode
Feature Modules

Figure 2.3: Analysis steps for the bytecode-based strategy: (top) feature
compilation has to be performed once per feature module, (bottom) bytecode-
based type-checking has to be performed once per product.

2.3 Experimental Setup
To measure performance of each strategy, a set of 12 SPLs is chosen for
application of the implemented tools and toolchains described before. For
comparison, the measurement procedure is divided in several sub-steps to
identify expensive or cheap analysis parts, respectively.

Benchmark Set

In order to compare the implementations of the described strategies in terms
of performance, type-checking time for 12 software product lines is measured.
The SPLs are implemented in Java using feature-oriented programming. They
are widely used throughout the SPL community and are distributed with
the Fuji compiler. They were also used in several studies before. [AB11]
[AKL+12] [KBK09] [LHB01] These product lines belong to different domains
and differ in number of lines of code (LOC), features and products. Table 2.2
on the following page shows a full list of the SPLs, their number of features,
products and LOC.

For the product- and bytecode-based strategies, the list of all configurations
per product line is generated using FeatureIDE. [TKB+13] The resulting files
were sequentially passed to the composition tool during the experiment.

10 2. Methodology

The Violet product line has approximately 289 valid products as the features
are totally independent. In this thesis, only 40 random products are checked
for the product- and bytecode-based strategies, because checking all 289 prod-
ucts is not possible in reasonable time. The Family-Based Type-Checker
is able to check the whole product line, though.

SPL Domain #f #p LOC

EPL expression evaluation 12 425 126
GPL graph library 27 156 2,951
Graph graph library 5 16 596
GUIDSL configuration tool 28 24 15,988
Notepad text editor 13 512 2,732
PKJab chat client 8 48 5,000
Prevayler persistence framework 6 32 5,938
Raroscope compression library 5 16 438
Sudoku game 8 64 2,130
TankWar game 37 2,458 5,604

Violet* model editor 89 ∼ 289 (40) 11,006
ZipMe compression library 13 24 5,096

Table 2.2: Overview on the benchmark set of product lines. (* Violet would

have approximately 289 products, but only 40 were type-checked because of time

issues.)

Measurement Procedure

To measure the strategies’ performance on the benchmark, there are three
time intervals of the whole type-checking process that are measured for each
analysis run: setup, composition and type-check. Setup includes all working
steps any implemented analysis tool needs to take in order to prepare for the
later steps: for example, the initialization of auxiliary data structures and
parsing of configuration files. Composition includes steps that are necessary
to construct a structure such as an AST to perform the type checking on.
For the product- and bytecode-based analyses, this is the time to compose
the particular product that is to be type-checked later; for the family-based
approach, the composition yields the “meta-product”. Lastly, the time for
the actual type-check of a single product or the meta-product of the family-
based analysis and any time needed for error logging is measured. During
measurement, no times for code generation are collected, so that access rate
for disk writings does not have any impact on the results. In contrary, the
read-in of the code is measured, because it is not always separable from the
API. It rather is an essential part of the experiment as becomes clear when
analysing the measurement results.

2.4. Testing Environment 11

The to-be-measured time used for the bytecode-based strategy also includes
the time needed for compilation of individual features. This time slot is
called feature compilation.6 During feature compilation, the features undergo
a partial feature-based type-check by the compiler.

As implied by the definition of the product-based and feature-product-based
strategy, measurements of the three time intervals of the bytecode- and product-
based analyses have to be repeated for all possible valid configurations. The
sum of all these measurements is the time for type checking the whole product
line. The family-based analysis is performed only once for the whole product
line. A formal description for all analyses can be found in Figure 2.4.

There are upper bounds to the number of runs for each of the strategies which
apply when analyzing all products of a product line—as denoted in Figure 2.4,
too. A SPL with n independent features has 2n possible feature combinations.
In this context, 2n runs have to be performed for the product-based strategy
as well as the bytecode-based one. Additionally, the bytecode-based analysis
compiles all features (n) once. The family-based analysis needs exactly one
run and thus, one measurement, because it checks only one single meta-
product containing all information about all products. Usually, there are
fewer than 2n feature combinations due to constraints in the feature model.
The run-times which are to be measured and the results about the fastest
strategy and most accurate one can not be estimated with these formulas as
they model just the number of runs for each strategy. These formulas are
used, for example, to identify potential drawbacks that a strategy can have.
The actual run-time depends on the number of selected features per product,
the size of these features, and, eventually, on the feature composition order.
The three strategies are compared in Chapter 4.

2.4 Testing Environment

The measurements were carried out under a x64 GNU/Linux OS, using Open-
JDK Runtime Environment (IcedTea6 1.12.5, Java 1.6.0 27). The testing
machine was a Dell Optiplex 7010 workstation with Intel R© CoreTM i7-3770
(eight cores, 3.4 GHz), 16.7 GB DRR3 RAM (1600 MHz) and 1.0 TB Se-
rial ATA harddisk.

The time intervals stated before (cf. Section 2.3) were measured using the
class ThreadMXBean7 and its method getCurrentThreadCpuTime(). The time
for JVM start-up is left out of the comparison, because it is difficult to ex-
actly measure the times for JVM start-up, garbage collection or any other
automatic Java background service.

6See Section 3.1 for details.
7java.lang.management.TreadMXBean is part of the standard Java API since Java 1.5.

12 2. Methodology

product-based

2n ∗ [setup + composition + type-check] (2.1)

bytecode-based

n ∗ [feature-compilation] + 2n ∗ [setup + composition + type-check] (2.2)

family-based

1 ∗ [setup + composition + type-check] (2.3)

Figure 2.4: Formal description of measured time intervals for all imple-
mented type-checking strategies for a product line with n independent fea-
tures. (cf. Figure 2.1, Figure 2.2 and Figure 2.3)

The output during the runs is kept minimal: Error messages and warnings for
the current composition as well as the measured times are logged to plain-text
files, all other debug messages are turned off. This way, the log files can be
parsed easily for evaluation and the negative impact on the performance of
the analysis is limited to a minimum.

The sequential process of measuring all implemented type-checking analyses is
done by a self-built bash script that also manages data and generation output.
The script analyzes all sample product-lines from Table 2.2 sequentially and
dumps the relevant log for later evaluation.8

8See digital copy of this thesis for a functional measurement setting and Chapter 4 for
measurement results.

3. The Bytecode-Based
Type-Checking

In this chapter, we give a detailed overview of the bytecode-based strategy.
It explains how stub generation and feature compilation exactly work. After-
wards, bytecode-based feature-composition is described and some challenges
concerning the bytecode-based composition are discussed. Finally, bytecode
verification and the very implementation within FeatureBite are described.

Considering that the pure feature-based strategy only finds feature-local er-
rors, consequently, it is complemented with a product-based strategy in this
thesis. The resulting mixed strategy achieves the same level of full inter-
feature error detection for the whole product line as with the other two type-
checking strategies. The described mixed strategy is similar to the feature-
product-based strategy described by Thüm et al. [TAK+12], but does not pass
any type-checking information from the feature-based part to the product-
based one as required by the definition. This is why this approach is called
bytecode-based in this thesis.
Feature compilation and the inherited feature-based type-check are extended
with a composition and type-checking process on per product basis. The fea-
ture compilation makes the independent feature modules compilable by using
stub-generation and produces modules consisting of bytecode files. After-
wards, feature composition is done by FeatureBite. It works on bytecode
files and composes the bytecode modules as Fuji or FeatureHouse do it
with source files. FeatureBite is used to generate all valid products of the
product-line and performs a bytecode-verification process on each single prod-
uct which is actually a type check with some additional checks on data-flow,
for example.

14 3. The Bytecode-Based Type-Checking

3.1 Stub Generation and Feature Compila-

tion

Feature modules cannot be compiled independently out of the box, because
they are often only fragments of classes that depend on other features’ code.
Therefore, stubs have to be generated or provided by the developer. (cf.
Hyper/J [TOS02] and AHEAD tool suite [TBKC07]) Stubs are a bundle of
Java interfaces and classes containing member declarations that are needed
from the other features. They exactly fit together with the particular feature
that they were generated for, so that the feature module can be compiled. In
this thesis, the stubs were generated using FeatureStubber.

FeatureStubber uses a closed-world approach for generating stubs for each
feature module. The tool scans the references and introduces files that are gen-
erated by Fuji and that contain information about which feature introduces
which classes, methods and files and what types are referenced. This way, it
is possible to identify what stubs need to be generated in order to compile
each feature.

FeatureStubber generates stubs in a way that they model new feature
modules that are refining the corresponding original feature modules. The
fields and methods within a stub class are marked with the annotation @Stub,
so they may be easily identified and removed during bytecode composition.
Fuji is able to compose a feature module and its stubs and compile them
together into one single feature module consisting of bytecode files.

The straight-forward application of stub generation and bytecode composition
may result in errors due to the Java language specification. (cf. Section 3.3.2)

3.2 Feature Composition and Type Check

The feature composition is accomplished by FeatureBite. It is a feature-
oriented composer for Java bytecode that composes the feature modules using
the same composition rules as Fuji.

The composition mechanism of FeatureBite is divided into three parts:

1. renaming of anonymous inner classes (cf. Section 3.3.1),

2. composition using the same rules as applied by Fuji and removal of the
stubs annotated with @Stub,

3. type checking or rather bytecode verification (cf. Section 3.4).

3.3. Challenges with Bytecode Composition 15

Within FeatureBite, Java bytecode is handled using the ASM bytecode
framework.9 It handles the bytecode classes via the visitor pattern and in
a string-based manner. Class, field and method names as well as any other
information are generally handled via String objects so that modification of
this information is easy to implement.10 Though, the bytecode verification is
done using the BCEL JustIce verifier framework11. Reasons for usage of
another bytecode framework are explained in Section 3.4.

3.3 Challenges with Bytecode Composition

There are some challenges that arise during feature compilation and compo-
sition of bytecode feature modules. The main three investigated difficulties
are discussed below by means of the Editor product line to illustrate com-
position process and semantics.

3.3.1 Anonymous Nested Classes

During the compilation process, anonymous classes become an independent
class file. These classes are not named, so that the standard compiler pro-
vides class names using numbers. As shown in Figure 3.1, the method
getFileChangedListener() within feature Base returns an anonymous class in-
stance of the interface ActionListener and getFileComparator() within feature
NewFile an anonymous Comparator instance. As a result, two class files are
produced for each feature during feature compilation: For the Base feature,
the files Editor.class for the main class Editor and Editor$1.class containing
the anonymous ActionListener implementation are generated; for the feature
NewFile, also a file named Editor.class and Editor$1.class are produced where
the latter one consists of the anonymous Comparator implementation.

In the following, the generated class files for each feature must be indepen-
dently treated with a renaming process, because it is not guaranteed that
Editor$1.class within feature module Base and Editor$1.class within NewFile
embody the same class. It is generally more likely to assume that the second
class file contains a totally different class—as in this example, where the class
files are not implemented for the same purpose. In order to differentiate the
two classes during the composition process, they must be renamed.

FeatureBite accomplishes the renaming by appending the feature’s name
to the number of the anonymous class file, similar to the process of re-
naming original-calls. Editor$1.class from feature Base is renamed to Edi-

tor$1Base.class, the class from feature NewFile to Editor$1NewFile.class, ac-
cordingly. Not only the class file’s name is changed, the class’ name itself

9http://asm.ow2.org/
10See http://fosd.de/featurebite/ for implementation details.
11http://commons.apache.org/proper/commons-bcel/

http://asm.ow2.org/
http://fosd.de/featurebite/
http://commons.apache.org/proper/commons-bcel/

16 3. The Bytecode-Based Type-Checking

Feature Base

1 public class Editor {
2 ActionListener getFileChangedListener() {
3 return new ActionListener() {
4 @Override
5 public void actionPerformed(ActionEvent ae) {/*...*/}
6 };
7 }
8 }

Feature NewFile

9 public class Editor {
10 Comparator<File> getFileComparator() {
11 return new Comparator<File>() {
12 @Override
13 public int compare(File file1, File file2) {/*...*/}
14 };
15 }
16 }

Figure 3.1: Example for anonymous classes in different features but the
same outer class Editor: (lines 1–8) Method getFileChangedListener() returns
an ActionListener instance; (lines 9–16) Method getFileComparator() returns
a Comparator instance.

is altered, too. Therefore, all references in the main class file Editor.class to
the now-renamed class have to be adjusted for each feature independently.
Otherwise, the linking would break.
The renaming mechanism used by FeatureBite guarantees unique class
names after renaming, because class names starting with a number are for-
bidden by the Java Language Specification [GJSB13, Section 3.8] and the
feature names are unique.

3.3.2 Conflicting original-Calls

With bytecode composition, original-calls are another challenge. The call of
the original-method expresses a call to the refined method implementation.
Because this method with the name original does not exist, the method must
be generated by the feature-stub generator in order to be able to compile a
feature on its own (cf. Section 3.1). If the original-method-call is used several
times within a refining class, one generic stub-method must be generated for
all calls together in order to not endanger type safety. An example for the
Editor product line using the features Base and SplitView is explained in
the following.
All methods getCurrentFileText(), getCurrentFileTabIndex() and getToolbar()
in Figure 3.2 (lines 1–14) use an original-call but with different return types
(String, int and JToolBar). Normally, the stub-generator FeatureStubber
produces all correspondent stub methods with the method name original. (cf.

3.3. Challenges with Bytecode Composition 17

Figure 3.2, lines 15 ff.) As the original-methods’ signatures conflict with each
other with respect to the Java Language Specification [GJSB13, Section 8.4.2],
the feature compilation will fail with these specific stubs.

Feature NewFile

1 class Editor {
2 String getCurrentFileText() {
3 String s = original();
4 // ...
5 }
6 int getCurrentFileTabIndex() {
7 int originalId = original();
8 // ...
9 }

10 JToolBar getToolbar() {
11 JToolBar originalToolbar = original();
12 // ...
13 }
14 }

Stubs for feature NewFile

15 class Editor {
16 @Stub String original() {
17 return null;
18 }
19 @Stub int original() {
20 return 0;
21 }
22 @Stub JToolBar original() {
23 return null;
24 }
25 }

Figure 3.2: Example for conflicting original calls: (lines 1–14) Class Editor
of feature NewFile has original-calls with different return types; (lines 15–25)
Generated stubs for the Editor class that conflict with each other.

To solve the problem, a stub with the generic signature Object original() and
the return value null can be created. The return values must be down-casted
from Object when used, which causes small modifications to the underlying
code base of the feature modules. (cf. Figure 3.3) These changes generally
should be avoided, but for this problem, they enable bytecode-based compo-
sition and analysis for the affected product-line in the first place.
Especially, primitive types cause problems with this generic original-method
returning Object. The primitive return type of the method that is calling origi-
nal must be altered to the corresponding wrapper type, otherwise there will be
a conflict within bytecode later after composition. The signature int getCur-
rentFileTabIndex() in Figure 3.2 implies that the return type of the method
that the pseudo-method original symbolizes is int. But the generic original-

18 3. The Bytecode-Based Type-Checking

Feature NewFile

1 class Editor {
2 String getCurrentFileText() {
3 String s = (String) original();
4 // ...
5 }
6 Integer getCurrentFileTabIndex() {
7 int originalId = (Integer) original();
8 // ...
9 }

10 JToolBar getToolbar() {
11 JToolBar originalToolbar = (JToolBar) original();
12 // ...
13 }
14 @Stub Object original() {
15 return null;
16 }
17 }

Figure 3.3: Class Editor of feature NewFile contemplated with its stubs
which are fixed with the wrapper-type workaround. (Relevant code is under-

lined. See Figure 3.2 (lines 1–14) for comparison.)

method suggested above returns a class reference or rather an instance of
Object instead. The downcast depicted in Figure 3.3 (lines 3, 7 and 11) is
not problematic, because autoboxing resolves the conversion from primitive
to wrapper type automatically but the corresponding JVM instructions for
the return values are not compatible.12 So, the return type of the method
getCurrentFileTabIndex() must be changed to Integer—here and in all other
feature modules that implement or refine this particular method. Otherwise,
the composed bytecode will not be runnable.

The usage of wrapper types is the workaround that is used for this the-
sis, because it was the quickest solution for all affected product-lines to fix
the issue and enable bytecode composition. One general fix to avoid the
return-type change to wrapper types in the source files demands interven-
tion on bytecode level and adjustment of the bytecode instructions. An-
other one would be the extension of the name original to a pattern such as
"original(_\$_(\w*?))??"

13.

3.3.3 Fields Initializations

Constructors are composed by adding an original-call to the refining feature’s
constructor that calls the base’s constructor and does not have to be inserted

12The bytecode instruction ireturn pushes an int value onto the stack, areturn a object
reference.

13Denoted as Java pattern construct. See http://docs.oracle.com/javase/6/docs/api/java/
util/regex/Pattern.html for details.

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

3.3. Challenges with Bytecode Composition 19

explicitly by the developer. For bytecode validity, the base’s constructor is
transformed into an unique private method, similar to the renaming of an
original-call or anonymous class’ files. (cf. Section 3.3.1)
This mechanism results in a problem with field initializations that is caused
by the compilation process and the stub-generation as denoted in Section 3.1.
The reasons for the following problem are attributable to the fact that feature
compilation is performed before feature composition.

During compilation, all non-static field initializations from the field definitions
are transferred to the beginning of the constructor, following the order for
creating new class instances given by the Java Virtual Machine Specification.
[LY13, Section 2.17.6, points 4 and 5] In the product-based approach on
the one hand, the explicit constructor statements are composed first and
then the field initializations from the declaration area are prepended. In the
bytecode-based approach on the other hand, firstly, the initializations in the
declarations are prepended to each feature’s constructor during the feature’s
compilation. Secondly, the single constructors are composed using a non-
explicit original-call as described above. This results in a changed order of the
constructor statements for the bytecode-based composition compared to the
product-based one. Hence, the bytecode-based composition output may have
a different semantic behavior or even cause a NullPointerException.
Figure 3.4 illustrates such error-prone feature modules on basis of the Editor
product line, relevant lines are colored. The class Editor from feature Base
defines a hook method named generateToolbar(). This method can be used to
fill the editor toolbar with actions by refining it within other feature modules.
The feature module NewFile refines this method and just adds a “New File”
button to the toolbar.

Feature Base

1 class Editor {
2 JToolBar toolbar = new JToolBar();
3 Editor() {
4 generateToolbar();
5 }
6 void generateToolbar() {
7 }
8 }

Feature NewFile

9 class Editor {
10 Button newFileButton = new NewFileButton();
11 // constructor not defined explicitly!
12 void generateToolbar() {
13 original();
14 this.toolbar.add(this.newFileButton);
15 }
16 }

Figure 3.4: Class Editor within the feature modules Base � and NewFile �
where NewFile refines Base.

20 3. The Bytecode-Based Type-Checking

When composing a product with both feature modules Base and NewFile
on source-code level using Fuji (cf. Figure 3.5), the field newFileButton is
initialized before the method generateToolbar() is called within the constructor
and, as a result, a functional button is added to the toolbar by executing
the generateToolbar() method—as intended by the developer of the NewFile
feature module.

Product {Base �, NewFile �}

1 class Editor {
2 JToolBar toolbar;
3 Button newFileButton;
4 Editor() {
5 this.toolbar = new JToolBar();
6 this.newFileButton = new NewFileButton();
7 generateToolbar();
8 }
9 void generateToolbar_$_base() {

10 }
11 void generateToolbar() {
12 generateToolbar_$_base();
13 this.toolbar.add(this.newFileButton);
14 }
15 }

Figure 3.5: Composed class Editor using Fuji with configuration
{Base �, NewFile �}.

When using FeatureBite for product generation (cf. Figure 3.6), the ini-
tialization for the field newFileButton is shifted from line 6 to line 7 in com-
parison to the Fuji composition in Figure 3.5. Thus, the bytecode-based
composition results in a different order of the constructor’s statements. As a
consequence, the field newFileButton is used in the generateToolbar() method
before it is initialized. A null-pointer is added to the toolbar, because the
according field is not initialized yet. Thus, the toolbar button appears but it
is non-functional and the application becomes partly unusable due to thrown
NullPointerException instances.
Now, it is simple to think of scenarios where more serious unintended side
effects occur that are able to break the program or cause data loss. Thus, it is
recommended to generally call generating methods, such as the described gen-
erateToolbar() method, after completion of the constructor using a separate
method call.

3.4 Bytecode Verification and Type Checking

Generally, bytecode verification according to the Java Virtual Machine Speci-
fication [LY13] is necessary, because there is no assurance for the Java Virtual
Machine (JVM) that the bytecode it is about to load is valid. Classes or rather

3.4. Bytecode Verification and Type Checking 21

Product {Base �, NewFile �}

1 class Editor {
2 JToolBar toolbar;
3 Button newFileButton;
4 Editor() {
5 this.toolbar = new JToolBar();
6 generateToolbar();
7 this.newFileButton = new NewFileButton();
8 }
9 void generateToolbar_$_base() {

10 }
11 void generateToolbar() {
12 generateToolbar_$_base();
13 this.toolbar.add(this.newFileButton);
14 }
15 }

Figure 3.6: Composed class Editor using FeatureBite with configuration
{Base �, NewFile �}. (Excerpt decompiled from bytecode.)

their implementations can be changed while introducing several versions dur-
ing implementation progress. It is possible to exchange a bytecode file that
was used to compile a product with another one with the same name, while
it is not guaranteed that those versions are compatible in any way or the new
class was changed by an attacker in order to exploit the JVM.
Due to these problems, the JVM has to verify the bytecode before executing
it to ensure following properties for safety reasons: (i) there are no operand
stack overflows or underflows, (ii) the usage and storage operations of all local
variables are valid, and (iii) all arguments passed to JVM instructions are of
valid types. [LY13]
Especially, the last two points are necessary for the type-checking research
done in this thesis. The bytecode verification actually inherits a type check,
but performs some additional checks such as a data-flow analysis for secu-
rity reasons. So, verification of a class file guarantees type safety and thus,
satisfies the requirements of the executed experiment stated in Chapter 2.

In order to show how many checks the bytecode verification does, the verifi-
cation process is outlined below. Afterwards, the particular implementation
for FeatureBite is described.

3.4.1 The Verification Process

The so-called class file verifier is language-independent, because many differ-
ent programming languages can be compiled into bytecode. [LY13, Section
7] The verifier performs four passes on the bytecode to verify the constraints
mentioned before. By performing these four passes in order, it becomes clear
that the bytecode verification replaces a full type-check.

22 3. The Bytecode-Based Type-Checking

Pass 1 of the verification process is applied on loading a class file. It ensures
that the loaded file satisfies the basic format of a class file. Any class file
has to begin with the Java-specific magic-number 0xCAFEBABE. This pass
generally checks for basic class file integrity, so that there are no truncated
data, extra bytes or other unrecognizable information. This is necessary for
any interpretation of the class file.

Pass 2 performs additional verification, when the loaded file is linked. It
checks for final modifiers and that this modifier is respected when used. This
pass also ensures that any class (except Object) has a direct superclass. After
this, the constant pool is checked for its validity as well as that field and
method references within the constant pool have valid names. Pass 2 does
not check classes, fields and methods for their existence, it checks only for
well-formedness.

Pass 3 is the most complex pass of the verification process and consists of
two consecutive runs. In the first run, pass 3 checks whether all instructions
within the current method are disciplined and are used with an appropriate
type. Truncation and improper exception handling is detected and reported.
After this run, the verifier knows about the current contents of the local vari-
ables table and the stack at each single instruction. Accordingly, the types
of all used and needed variables and objects are known. In the second run
and on top of the information from the first run, a data-flow analysis is per-
formed. For each instruction, its effect on stack and local variables is modeled.
This way, the verifier is able to guarantee that local variables and fields are
accessed with proper types and methods are invoked with appropriate argu-
ments. If any condition for the current instruction is missing—wrong type
while assigning a field value or missing parameter for a method invocation,
for example—, the verification fails. Otherwise, the analysis is then continued
at the instruction’s successors.
During this pass not all classes are necessarily loaded and checked. A class is
only loaded if one of its methods is called with other types than implied by its
signature. By passing a subtype object as parameter—as allowed by object-
oriented polymorphism within Java [GJSB13, Section 5.3]—, the called class
will get loaded and checked, otherwise not. All remaining non-loaded classes
are loaded in pass 4.
If the data-flow analysis does not report a failure, the method under consid-
eration is verified by pass 3 of the bytecode verifier.

Pass 4 is a virtual pass that is performed by specific JVM instructions during
code invocation. It loads all referenced types that have not been loaded before
and checks whether the executing type is allowed to reference the type in
regard to access and visibility. Referenced methods and fields are checked for

3.5. Summary 23

their existence in the given class, the right signature and visibility. This way,
dangling references can be identified.

3.4.2 Implementation of the Verification Process

There are two different libraries for bytecode verification that were considered
for implementation into FeatureBite: ASM and BCEL JustIce.
ASM carries a built-in class-file visitor called CheckClassAdapter whose static
method verify is able to perform a pass 3 verification. Some errors cannot
be found with this single pass—such as non-existing classes and fields. (cf.
Section 3.4.1)
A more complete library is implemented in BCEL.14 The BCEL verifier is
called JustIce and checks class files according to the specification of JavaSE
1.4. This yields some problems with classes that are compiled with a newer
version of the Java compiler. The consequence are some false-positives that
correspond to newer versions of bytecode instructions, for example, that are
now able to handle additional types on the stack.

For this thesis, the BCEL framework is used, because it performs a more
complete verification compared to ASM. It can identify dangling references,
for example, because pass 4 of the verifier is implemented. Overall, it mod-
els the type-check and its temporal extent more accurately, although some
false-positives are expected as the classes are compiled with a newer version
of Java than 1.4 (cf. Section 2.4).
A downgrade to Java 1.4 is not possible, because generics which are first intro-
duced in Java 1.5 were used for the chosen product lines quite extensively, for
example. Also autoboxing which is used to fix the field-initialization problem
(cf. Section 3.3.3), the enum keyword and the enhanced for-loop (also called
foreach-loop) were introduced with Java 1.5.

3.5 Summary

As we showed before, the bytecode-based composition and type-checking ap-
proach implemented by us is not flawless. There are several points regarding
the composition of bytecode that the developer must have an eye on and
that sometimes need manual action. (cf. Section 3.3) The products com-
posed products may become unusable, especially, if they exhibit the field-
initialization problem (cf. Section 3.3.3), but this is no problem for the type-
checking process. Furthermore, bytecode verification performs checks that
are not necessarily needed for type-checking, such as the extensive data-flow
analysis, but are needed for security reasons. Nevertheless, the used imple-
mentation of the verifier, BCEL JustIce, is considered as a good indicator

14http://commons.apache.org/proper/commons-bcel/

http://commons.apache.org/proper/commons-bcel/

24 3. The Bytecode-Based Type-Checking

in respect to run-time for a full Java verifier as it exists within the javac
tool.
Altogether and apart from the challenges, the bytecode-based composition
and type checking can be a full substitute for the product-based implemen-
tation.

4. Results and Evaluation

In this chapter, an evaluation of the product-based, the bytecode-based and
the family-based analysis is discussed. Firstly, the results for the GUIDSL,
Prevayler and EPL product lines are described with use of appropriate
diagrams. (cf. Section 4.1 and Section 4.2) Afterwards, we discuss all re-
sults in an overall picture in Section 4.4. Finally, a short advice based on
this experiment and the used type-checker implementations which analysis is
preferable under which circumstances is given. (cf. Section 4.5)

We evaluate the considered strategies by application of implemented tools and
toolchains to the 12 product lines mentioned in Section 2.3. The measurement
results are presented in Table 4.3 on page 36. For each benchmark product-
line and type-checking analysis, the setup time, the composition time, the
type-checking time, and the sum of all these measured times is presented. For
the bytecode-based strategy, the time for feature-compilation is also listed.

In the following, these measurement results are visualized by three different
types of diagrams for each SPL illustrating different aspects and questions.
A stacked bar plot (sum) (cf. left plot of Figure 4.1) shows the total run-time
for all products or the whole product line by pointing out the different stages
through the type-checking process. The sum-labeled diagrams show the gen-
eral comparison which strategy takes the longest for the current product line.
Differences in the whole type-checking process can not be identified, such as
single products can not be recognized in this plot. The order of the stacked
bar plot is from bottom to top: feature-compilation (�, if present for strat-
egy), setup (�), composition (�) and type check (�).
The second bar plot (avg, cf. right plot of Figure 4.1) illustrates the mea-
sured run-times for type checking an average product of a product line. It
indicates if any strategy’s implementation needs much upfront investment.

26 4. Results and Evaluation

Those approaches may have a high total run-time for checking an average
product. For example, this applies for the feature compilations as it has to
be done completely before using the bytecode-based composition. The avg-
labeled diagram is not applicable for the family-based type-checking strategy
as it always checks the whole product line and can not be utilized for only a
few products. Hence, the run-times for the whole family-based type-checking
process are presented here. Colors and stack order for this kind of diagram
are the same as for the sum diagram.
The cumul graph (cf. Figure 4.2) is a line plot and visualizes the cumulative
run-time by the number of products for each product line. The measurement
of the family-based analysis is presented as a point at the maximum num-
ber of products, because all products are type-checked at once. This point
is complemented with a horizontal line to illustrate the measurement in re-
lation to the other strategies and to make comparison easier. This kind of
graph is for identification which approach is suitable for how many products.
By incrementing the number of products while cumulatively summing up the
needed run-time, intersections between the different lines can be found where
the break-even point is reached at which one strategy becomes superior to
another.

4.1 GUIDSL

The left plot of Figure 4.1 shows the sum results of the different type-checking
strategies for the GUIDSL product line. It is clear that the family-based
strategy is the fastest for this product line, because the run-time for type-
checking all 24 products is the shortest. It only takes 3.26 seconds, wheras
the bytecode-based analysis (49.74 s) needs almost twice the time that the
product-based one uses (28.86 s). Thus, the family-based type-checking anal-
ysis is 8.85 times faster than product-based and even 15.26 times faster than
the bytecode-based one. The feature compilation alone takes 12.94 seconds
which is around 26% of the whole bytecode-based strategy’s run-time and
almost 4 times the amount of time the family-based analysis needs for type-
checking the whole product line.
The right plot of Figure 4.1 (avg) supports the assumption that feature com-
pilation is a great upfront investment to the bytecode-based technique, es-
pecially, when analysing a small number of products. It takes nearly 90%
(12.94 of 14.473 seconds) of the total run-time for an average product. Also
as assumed, the product-based strategy needs less time (1.203 s) than the
family-based (3.26 s), though no average product can be calculated for the
latter one.

Figure 4.2 shows the cumul diagram in which the break-even point (3 prod-
ucts) for the family-based strategy is indicated here by the intersection of the

4.2. Prevayler 27

 0

10

20

30

40

50

tim
e

(s
ec

on
ds

)

pb bb fb

feature compilation setup composition typecheck

 0

 2

 4

 6

 8

10

12

14

16

pb bb fb

Figure 4.1: Plots for the run-time measurements results (in seconds) of
GUIDSL: (left) sum diagram, (right) avg diagram. (pb = product-based,

bb = bytecode-based, fb = family-based)

corresponding line with the product-based one. When type-checking three
or more products, consequently, the family-based technique is superior to the
other ones. (cf. Table 4.2 on page 33) The bytecode-based strategy is the slow-
est for any number of products that are checked. Referring to Table 4.3, setup
and composition together are faster than for the product-based strategy, thus,
the cause for the long overall run-time of the bytecode-based strategy lies in
the feature compilation and the type-check. The table of measurements also
indicates that the type-check in particular is the longest step of the bytecode-
based strategy (28.40 s), just slightly shorter than the whole type-checking
process of the product-based strategy (28.86 s). The huge amount of time can
be explained by the relatively large code base of GUIDSL that makes the
bytecode verification and especially its extensive data-flow analysis expensive.

4.2 Prevayler

The sum diagram of Figure 4.3 illustrates that the bytecode-based strategy is
the slowest and the family-based analysis is the fastest for Prevayler. Type
checking of all 32 valid products (generated on basis of 6 features) using
the family-based analysis strategy is even faster (1.94 s) than the feature
compilation of the bytecode-based analysis for itself (3.58 s). The feature
compilation can take extremely long—though the time for it only makes up
around 9% of the whole run-time for the bytecode-based strategy. The type-
check itself as a bytecode-verification with BCEL JustIce can get expensive,
because the methods within the single feature modules are complex and long
in terms of LOC (6 feature modules and 5,938 lines of code) which induces

28 4. Results and Evaluation

0 5 10 15 20

0
10

20
30

40

products

se
co

nd
s

product−based
bytecode−based
family−based

Figure 4.2: Run-time (in seconds) of each strategy by the number of type-
checked products for the GUIDSL product line (cumul diagram).

an extensive data-flow analysis in step 3 of the bytecode verification and a
high cost of those additional checks it performs. Therefore, the type-check
itself of the bytecode-based analysis for Prevayler takes more time (37.79 s)
than all time intervals of the product-based analysis (36.04 s). Also, the type
check takes around 76% of the total time. The avg diagram for Prevayler in
Figure 4.3 confirms the huge upfront investment with the feature compilation
which makes up approximately 70% of the time to analyze an average product.

 0

10

20

30

40

50

60

tim
e

(s
ec

on
ds

)

pb bb fb

feature compilation setup composition typecheck

0

1

2

3

4

5

6

pb bb fb

Figure 4.3: Plots for the run-time measurements results (in seconds) of
Prevayler: (left) sum diagram, (right) avg diagram. (pb = product-based,

bb = bytecode-based, fb = family-based)

Referring to the cumul plot for Prevayler (cf. Figure 4.4), the same conclu-
sions can be drawn as from the GUIDSL product line. The bytecode-based
strategy is not faster than both other strategies for any number of products,
mostly due to the feature-compilation upfront investment. The break-even

4.3. EPL 29

for the Family-Based Type-Checker against pure Fuji is at the second
product.

0 5 10 15 20 25 30

0
10

20
30

40
50

products

se
co

nd
s

product−based
bytecode−based
family−based

Figure 4.4: Run-time (in seconds) of each strategy by the number of type-
checked products for the Prevayler product line (cumul diagram).

4.3 EPL

Thoughm, the sum-labeled diagram (cf. left plot of Figure 4.5) shows that
the family-based strategy is the fastest approach, the bytecode-based strategy
outperforms the product-based one for the EPL product line. Exactly, the
bytecode-based strategy performs 1.27 times faster than the product-based
one, the break-even point is at 52 of total 425 products. (cf. Figure 4.6)
The bytecode-based strategy takes 88.52 seconds and the product-based one
112.47 seconds, although the family-based one takes just half a second (530
ms). Especially, the setup and composition of the bytecode-based strategy is
by far faster (around 4 times) than the product-based equivalents. The setup
and composition is so slow for the product-based strategy, because the amount
of initialization is too high for this very small product line (126 LOC). Most
of the needed time (69%) for bytecode-based analysis is needed for bytecode
verification, instead.
The upfront investment in terms of feature compilation, however, is still ap-
parent in the avg-plot of Figure 4.5. The single products are too small to
justify bytecode-based analysis for only a small set of products.

4.4 Overall Picture

There are several observations that can be made by analysing the run-time
measurements of all product lines of the benchmark set. Consulting Table 4.3
on page 36 and without comparison between the strategies, the bytecode-
based and product-based strategies are fastest for Graph and slowest for

30 4. Results and Evaluation

 0

 20

 40

 60

 80

100

120

tim
e

(s
ec

on
ds

)

pb bb fb

feature compilation setup composition typecheck

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

pb bb fb

Figure 4.5: Plots for the run-time measurements results (in seconds)
of EPL: (left) sum diagram, (right) avg diagram. (pb = product-based,

bb = bytecode-based, fb = family-based)

0 100 200 300 400

0
20

40
60

80
10

0

products

se
co

nd
s

product−based
bytecode−based
family−based

Figure 4.6: Run-time (in seconds) of each strategy by the number of type-
checked products for the EPL product line (cumul diagram).

Notepad and TankWar. The family-based strategy is fastest for Raro-
scope and Graph instead and slowest for Violet and TankWar. When
comparing the three strategies, the family-based strategy is clearly the winner.
It outperforms both other strategies for each product line: the product-based
strategy by factor 5 (Violet) to 714 (TankWar), and is about 11 times
(Violet) up to 911 times (TankWar) faster than the bytecode-based strat-
egy. (cf. Table 4.1)

Besides the family-based strategy clearly outruns the other two strategies as
it is fastest for each product line, the significance is proved using statistical
tests. The Shapiro-Wilk test implies rejection of the null hypothesis that the
measurement data is normally distributed, so the significant difference of the

4.4. Overall Picture 31

benchmark results can be justified with an two-sided Wilcoxon test for which
the p-value for each data comparison is less than 0.05.

SPL product-based family-based
w.r.t. w.r.t.

bytecode-based bytecode-based product-based

EPL 0.79 167.38 212.21

GPL 1.15 51.63 45.02

Graph 1.11 13.09 11.84

GUIDSL 1.72 15.26 8.85

Notepad 1.06 215.99 202.84

PKJab 1.49 33.74 22.70

Prevayler 1.39 25.78 18.58

Raroscope 1.24 16.49 13.26

Sudoku 1.21 49.02 40.47

TankWar 1.28 911.14 714.10

Violet 2.06 11.07 5.38

ZipMe 1.67 25.00 14.97

Table 4.1: Speedups for the product-based strategy with respect to the
bytecode-based strategy and speedups of the family-based strategy with re-
spect to both other strategies.

Product-Based Strategy

A product-based type-checker has to parse, compose and type-check repeat-
edly. This leads to poor scalability. For example, the read-in of files of the
code influences the performance badly, because the read-in is performed re-
dundantly for some or even all files. This fact becomes obvious when compar-
ing the corresponding measurement result for setup and composition of the
product-based and family-based strategies: Although both type-checkers use
Fuji as basis, the family-based time intervals are extremely shorter. Using
these product-based—or just partly product-based—type-checkers induce too
much redundant work to perform on huge product lines efficiently, so that the
Violet product line could not be checked completely at all. Although, the
number of products is no indicator for performance estimation. For example,
GUIDSL and ZipMe have the same number of products (exactly 24), but
performance of the product-based type-checker is slower for GUIDSL. The
reason for the slow performance is that this product line is almost thrice as
big in terms of lines of code as ZipMe and consists of more feature modules.
For product lines with a similar number of features and products as well as a
similiar size of the code base (such as Graph and Raroscope), the needed
time for type-checking is nearly the same.

32 4. Results and Evaluation

Bytecode-Based Strategy

The bytecode-based analysis actually incorporates even more redundancy
than the plain product-based strategy, because the results from the feature-
based type-check during feature compilation are ignored. As a result, the
bytecode-based type-checking implementation is the slowest of all three, the
product-based implemenation is 1.06 (Notepad) up to 2.06 times faster
(Violet). (cf. Table 4.1)

The only exception here is the EPL product line for which the bytecode-
based strategy outperforms the product-based one (cf. Section 4.3), because
the bytecode verification is not that expensive for this very small product line
(126 LOC). As recognizable for Raroscope (438 LOC) and Graph (596
LOC), this effect even amortizes for slightly bigger product lines, although
the bytecode-based and the product-based strategy are nearly equally fast for
these small product lines. In total, bytecode verification is the most expensive
part of the bytecode-based implementation as it makes up 46% (Violet) up
to 82% (TankWar) of the whole run-time. (cf. Table A.2)

In contrast to the bytecode verification, FeatureBite accomplishes compo-
sition and setup faster than Fuji. Nevertheless, feature compilation poten-
tially takes longer with increasing number of features and bytecode verifica-
tion involves additional checks such as data-flow sanity-checks. With higher
numbers of products to be generated and type-checked, however, the relative
amount of time needed for feature compilation in the bytecode-based type-
checking process decreases. But even for SPLs with a small number of features
(Graph, Prevayler, Raroscope, Sudoku), the feature compilation still
takes more time than the whole family-based process to analyze the whole
product line. For product lines with a similar size (number of features and
products as well as size of code), the bytecode-based strategy needs a similar
time for type-checking—such as the product-based strategy.

Family-Based Strategy

The family-based type-checker is the fastest, because it parses the code and
the feature model only once and needs exactly one type-checking run. The
advantage of no redundancy within the family-based analysis is clearly visible
on the example of Violet which has 89 independent features and accordingly
about 289 valid products. The repeatedly performed type-checking analysis
of the other strategies cannot be done in reasonable time. The overhead
for repetitive parsing and composition grows with the number of valid prod-
ucts. Even for 40 random products, the family-strategy—which checks the
whole product line and not just 40 products—is 5.38 times faster than the
product-based one and 11.07 times faster than the bytecode-based. The fea-
ture compilation for 89 features alone takes 32.84 seconds and is 4.5 times

4.5. Which Strategy to Choose 33

slower than the Family-Based Type-Checker needs for the whole type-
checking process of the complete product line.
The needed time for the analysis part of type-checking makes up around 42%
(Raroscope) up to 91% (Violet) of the whole run-time, but the real run-
times are extremely shorter than for the bytecode-based analysis where the
relative amount is similarly high, but type-checking times become critically
long.

As Violet indicates, the variability-aware family-based analysis of large
product lines clearly outperforms even very limited sampling approaches in
terms of analysis time: the break-even for the family-based analysis (see Ta-
ble 4.2) is at very low numbers of products for each product line.15 Even,
product lines with a small number of features and a small code base (Graph,
Raroscope) as well do not doubt the outranking performance of the family-
based strategy.

name #p break-even

EPL 425 2

GPL 156 4

Graph 16 2

GUIDSL 24 3

Notepad 512 3

PKJab 48 3

name #p break-even

Prevayler 32 2

Raroscope 16 2

Sudoku 64 2

TankWar 2,458 4

Violet ∼ 289 (40) 8

ZipMe 24 2

Table 4.2: Break-even points for the family-based type-checking strategy
with respect to both other strategies. (#p = number of products)

4.5 Which Strategy to Choose

As the results of the benchmark show, the implementation of the family-based
type-checking strategy is the fastest one for checking the complete product line
and its derivated products. It is able to provide useful error messages that
enable the user to track down errors even in the feature model. [KvHA13]
The other two type-checker implementations do not provide such granularity
as they are not able to blame the erroneous feature causing an error due to
the missing compile-time variability. The only exception here are the feature-
local errors that can be detected during feature compilation. As the break-
even for each product line—when family-based type-checking becomes faster
than both product- and bytecode-based strategies—is low with respect to the
number of features per SPL, a family-based type-checking analysis is always
preferable.

15That was also found in previous studies. [LvK+12]

34 4. Results and Evaluation

When the developer of an SPL wants to check on certain feature interactions
and resulting errors, application of a sampling or product-based strategy is
appropriate on basis of a small set of products to be checked. This way,
the very feature-interactions can be examined and evaluated. Also, if stan-
dard type-checkers have to be used, a product-based or sampling strategy is
applicable.

Furthermore, during development of a new feature, a feature-based type-check
is advisable, because it detects feature-local errors as soon as possible in the
development process, although features may only consist of class refinements
and no fully type-safe classes.

If all features and their corresponding stubs already exist in bytecode, a
bytecode-based analysis is preferable, because it also checks for more than
type-safety, especially for a sane data-flow and correctness of bytecode to re-
duce vulnerability of the run-time system. Other studies show that there are
product-based type-checkers that are slower regarding performance than the
chosen implementation and even type-checking using FeatureStubber and
FeatureBite. [KvHA13] In this case, the bytecode-based analysis is prefer-
able if the family-based one cannot be considered for some reason—such as
sampling-based type-checking. Although, it may be a major drawback due to
the amount of time that feature compilation and bytecode verification take
for a higher number of features or huge and complex features, respectively.
The identified challenges (cf. Section 3.3 and Section 3.3.2, especially) may
also add to the amount of work for feature compilation.

Based on the tools used and evaluated in this thesis, the Family-Based
Type-Checker is the most preferable due to its advantages of short run-time
and accurate error detection. Both Fuji and FeatureBite are the runner-
ups that are favored in context of sampling, depending on the requirements
and goals of the particular analysis.

4.6 Threats to Validity

The choice of tools that were used as a representative of a particular strat-
egy threatens the internal validity. Other tools may have needed shorter or
respectively longer run-times for the same product line and its products. (cf.
[KvHA13]) Particularly, the Family-Based Type-Checker does not im-
plement all type checks that are necessary for the Java language, but only
a representative part—in contrast to FeatureBite which performs more
checks than necessary. It is safe to assume that the overall picture will not be
influenced much by new type-checking rules for the Family-Based Type-
Checker as this tool is so much faster than the other implementations in
this thesis and has several more advantages, such as direct blaming of an

4.6. Threats to Validity 35

erroneous feature.
The external validity is threatened by the choice of product lines. The sam-
ples, all implemented using FOP, may only consist of language constructs and
patterns or large feature modules that are not beneficial for certain strategies.
Also, no conclusions about other product line implementation techniques such
as C preprocessor or aspect-oriented programming (AOP) can be made.

36 4. Results and Evaluation

S
P
L

p
ro

d
u
c
t-b

a
se
d

b
y
te
c
o
d
e
-b

a
se
d

fa
m
ily

-b
a
se
d

se
tu

p
c
o
m
p

ch
e
ck

su
m

fc
se
tu

p
c
o
m
p

ch
e
ck

su
m

se
tu

p
c
o
m
p

ch
e
ck

su
m

E
P

L
9.03

86.80
16.6

4
112.47

3
.14

13.05
11.13

61.39
88.71

0.08
0
.17

0.28
0.53

G
P

L
4.20

45.61
19.0

7
68.88

6
.82

7.17
14.54

50.47
79.00

0.09
0
.29

1.15
1.53

G
ra

p
h

0.30
3.6

2
1
.17

5.09
1
.46

0.41
0.52

3
.24

5.63
0.06

0
.19

0.18
0.43

G
U

ID
S

L
0.94

13.15
14.7

7
28.86

12
.94

3.33
5.07

28.40
49.74

0.10
0
.49

2.67
3.26

N
o
tep

ad
1
0.82

1
6
6
.0

3
1
3
5
.5

2
312.37

6
.68

18.11
39.45

268
.39

332.63
0.08

0
.26

1.20
1.54

P
K

J
ab

1.86
21.11

23.3
3

46.30
4
.31

3.11
5.97

55.44
68.83

0.09
0
.35

1.60
2.04

P
revay

ler
1.24

13.14
21.6

6
36.04

3
.58

3.13
5.51

37.79
50.01

0.09
0
.42

1.43
1.94

R
arosco

p
e

0.31
4.0

4
1
.35

5.70
1
.55

0.51
0.63

4
.40

7.09
0.05

0
.20

0.18
0.43

S
u

d
ok

u
1.25

24.34
17.7

1
43.30

3
.73

2.67
5.34

40.71
52.45

0.05
0
.29

0.73
1.07

T
a
n
k
W

a
r

5
6.44

8
5
3
.1

1
7
9
0
.0

1
1,699.56

11
.93

107.96
276

.20
1
,772

.42
2,168.51

0.07
0
.30

2.01
2.38

V
io

let
*

2.03
16.42

20.2
5

38.70
33

.40
3.46

5.87
36.85

79.58
0.22

0
.42

6.55
7.19

Z
ip

M
e

0.64
8.1

2
7
.86

16.62
4
.48

1.22
2.80

19.25
27.75

0.09
0
.29

0.73
1.11

T
a
b
le

4
.3

:
T

otal
ru

n
-tim

e
in

secon
d
s

for
all

p
ro

d
u
cts

of
each

b
en

ch
m

ark
p
ro

d
u
ct

lin
es

b
y

ty
p

e-ch
eck

in
g

strategy.
(m

easu
rem

en
t

in
tervals:

setu
p

=
setu

p
,

com
p

=
com

p
osition

,
ch

eck
=

ty
p

e
ch

eck
,

fc
=

featu
re

com
p

ilation
,

su
m

=
su

m
of

all

in
terva

ls;
*

on
ly

40
p
ro

d
u
cts

ch
ecked

fo
r
V
io
l
e
t

,
see

S
ection

2.3
for

d
etails

on
th

is.)

5. Related Work

The classification of the product-line analysis strategies that is used in this
thesis was published in a survey by Thüm et al. [TAK+12]. The authors
already discussed advantages and disadvantages of each strategy as presented
in Section 2.1. The authors also presented a set of mixed strategies such as
the feature-product-based one which is the idea behind the bytecode-based
analysis evaluated in this thesis. Von Rhein et al. presented the Product-Line-
Analysis model [vRAK+13] on top of this classification of analysis strategies.
This model is able to represent the full set of possible combinations of product-
line analysis strategies and helps searching for an optimal strategy.
The single strategies were applied in many studies with different analysis
techniques before, such as type checking, static analysis and model checking.

The family-based strategy was applied by Kästner et al. [KGR+11] on parsing
preprocessor-annotated C and Java programs using the TypeChef frame-
work. The authors parsed the Java-ME-based MobileMedia product line
and the entire X86 architecture of the Linux kernel (6065 features). They
generated a variability-aware AST—much like Fuji and the Family-Based
Type-Checker are able to do for FOP product lines.
Safe composition was proven for Lightweight Feature Java by Delaware et al.
[DCB09] They presented a type system to ensure safe composition for all com-
binations of features that satisfy the typing rules. Kästner et al. [KATS12]
extended the Featherweight Java calculus with feature annotations. They
proved formally that all program variants produced from a well-typed prod-
uct line are well-typed, too. On top of their formal achievements, they im-
plemented CIDE, a tool to virtually separate features within an IDE. Thaker
et al. [TBKC07] showed on the example of AHEAD product lines how to
guarantee safe composition using feature models and SAT solvers. They first
compiled the feature modules by adding the union of all fields, methods and

38 5. Related Work

declarations that can appear in a class as stubs. Then, they inferred compo-
sition constraints for each feature module that are implied by the module’s
“requires-and-provides interface”. This is generally similar to the way Fea-
tureStubber works on top of the introduction- and references-files provided
by Fuji. (cf. Section 3.1)
Bodden et al. [BMB+13] contributed a tool to statically analyze product
lines by supplying traditional program analyses that were converted to proper
product-line-aware analyses automatically in the process. They used a tool
named SPLLIFT to accomplish this. So that developers do not have to gen-
erate and analyze products individually, Braband et al. [BRT+13] presented
three ways to take any standard intraprocedural data-flow analysis and con-
verted it into a feature-aware data-flow analysis. Liebig et al. [LvK+12] com-
pared a variability-aware type-checking and data-flow analysis with a sam-
pling approach for product lines written in C and annotated with preprocessor
directives. They found the variability-aware analysis outranks the sampling
heuristics with respect to analysis time. (cf. Section 4.4)
There is also related work for family-based analysis in terms of model checking
[LTP09][CHS+10][ASW+11][AvRW+13] and deductive verification [TSAH12].

In the context of product-based analyses with sampling, Johansen et al. sug-
gested an algorithm called ICPL which generates covering arrays from fea-
ture models. [JHF12] With this non-deterministic algorithm, they were able
to quickly generate small covering arrays. Oster et al. [OMR10] suggested a
way to apply combinatorial testing to a feature model of a SPL.
Siegmund et al. [SRK+13] approximated non-functional properties by measur-
ing a small set of products and predict the actual property for a given product
configuration. They evaluated their approach for the non-functional property
“footprint” and accomplished an accuracy of 98% for their prediction.

The feature-product-based strategy was used by Apel and Hutchins [AH10]
regarding type checking. The authors propose with gDeep a core calculus
that enables the generation of interfaces after a feature-based type-check and
performs product-based linking analyses on valid compositions of these in-
terfaces. Schaefer et al. [BDS13] provided a core calculus for delta-oriented
programming that is the foundation for compositional type-checking of delta-
oriented product lines. The delta modules are type-checked in isolation and
the combined results can be used to reason about all products and their well-
typedness regarding the Java type system.
Li et al. [LKF02] described requirements for verifying feature modules through
model checking by providing a new methodology for verification. They val-
idated their work by application to feature modules inheriting feature inter-
action problems. The authors also presented a model of interfaces to verify
features independently and to support automated feature-based model check-
ing. [LKF05]

39

Delaware et al. [DCB11] proved type-safety of a product-line of languages
(written in Featherweight Java) in a feature-product-based manner. Theo-
rems were created and proved for each feature first; then, these theorems
helped proving preservation and progress for the product line.

Regarding feature composition, the AHEAD tool suite [BSR04] and Fea-
tureHouse [AKL09] have to be referenced apart from Fuji [Kol11]. The
authors of AHEAD presented a model for FOP and showed how both code
and non-code fragments of programs can be composed using algebraic mod-
els by retaining hierarchical structure. They also provided bytecode tools16

that are capable of composing AHEAD-based feature modules as is Fea-
tureBite. These tools use BCEL as underlying bytecode framework for
composition instead of ASM like FeatureBite17. A feature-stub generator
utility is also provided that works similar to FeatureStubber. Feature-
House is another approach to the composition of software artifacts. It is
language-independent, so that, for example, source code, models and even
documentation can be composed.

The differences of this thesis to the work of Kolesnikov et al. [KvHA13] pri-
marily lie in the choice of tools while the same sample product lines were
used. The researchers integrated all type-checkers in one tool that was based
on Fuji. The Family-Based Type-Checker is integrated in the same
version as it was used in this thesis. The product-based type-checker was re-
implemented to conform with the family-based type-checking algorithm. Also,
a pure feature-based type-checker was implemented that does not depends on
FeatureStubber. By using these tools, the product-based analysis took
longest for type-checking most of the product lines. Also the feature-product-
based analysis that was applied (also using FeatureBite) is mostly faster
than the pure product-based.

16http://www.cs.utexas.edu/˜schwartz/ATS/fopdocs/ByteCodeTools.html
17BCEL is only used for verification purposes. See Section 3.4 for details.

http://www.cs.utexas.edu/~schwartz/ATS/fopdocs/ByteCodeTools.html

40 5. Related Work

6. Conclusion

In this thesis, we compared three type-checking strategies in terms of perfor-
mance: the product-based, the bytecode-based and the family-based strategy.
For evaluation, we conducted one type-checker tool per strategy on a set of 12
Java-based, feature-oriented product lines in a controlled setting in order to
measure the needed run-time of each tool. The type-checkers were Fuji for
the product-based strategy, FeatureBite for the bytecode-based one and
Family-Based Type-Checker for the latter strategy.
The comparison emphasized the family-based strategy as the fastest one in
terms of performance of type-checking, not even sampling is able to out-
perform this strategy. (cf. Section 4.4) This strategy is up to 714 times
faster than the product-based one and up to even 911 times faster than
the bytecode-based approach. The bytecode-based strategy implemented by
FeatureBite is the slowest approach.

During the benchmarking, several advantages and drawbacks were identified
for each strategy:
Both the product-based strategy as well as the bytecode-based strategy scale
poorly, because the feature modules have to be parsed and composed re-
peatedly, in contrast to the family-based strategy which performs the needed
actions only once. However, this strategy has to repeat the whole analysis
when the features’ code base is changed, the other strategies are able to repeat
the analysis only for affected products. Apart from that, the bytecode-based
strategy is yet for product lines with a small number of features slower than
the product-based strategy because of the expensive bytecode verification,
although the setup and the composition analysis parts are faster than for the
product-based strategy. The bytecode-based strategy also exhibits critical
problems for feature composition. Nevertheless, this strategy may be appro-
priate if special sanity checks for security reasons are necessary such as those

42 6. Conclusion

performed during bytecode verification. In the end, the family-based strategy
is not only the fastest one, it also supplies the user with the most compre-
hensive error messages [KvHA13] that enables the developer to track down
the error accordingly, because it is able to incorporate the variability into the
analysis.

The bytecode-based strategy could be expanded in future in order to trans-
form it to an actual feature-product-based strategy. Accordingly, the byte-
code verification could be optimized in this way because results from the
feature-based part of the analysis were handed over to the product-based
part to save effort for double checks and, potentially, unnecessary security
routines. Moreover, a more detailed statistical evaluation could support the
results of this thesis.

List of Abbreviations

AOP aspect-oriented programming

API application programming interface

AST abstract syntax tree

FOP feature-oriented programming

GB gigabyte

GHz gigahertz (109 Hertz)

IDE integrated development environment

JVM Java Virtual Machine

LOC lines of code

SPL software product line

TB terabyte

44 List of Abbreviations

List of Figures

2.1 Analysis steps of the product-based strategy 8

2.2 Analysis steps of the family-based strategy 8

2.3 Analysis steps of the bytecode-based strategy 9

2.4 Formal description of measured time intervals for all imple-
mented type-checking strategies 12

3.1 Example for anonymous classes in different features 16

3.2 Example for conflicting original calls 17

3.3 Class Editor of feature NewFile contemplated with its fixed stubs 18

3.4 Example features for an field-initialization error 19

3.5 Example features for an field-initialization error, composed
with Fuji . 20

3.6 Example features for an field-initialization error, composed
with FeatureBite . 21

4.1 sum and avg diagrams for GUIDSL 27

4.2 cumul diagram for GUIDSL 28

4.3 sum and avg diagrams for Prevayler 28

4.4 cumul diagram for Prevayler 29

4.5 sum and avg diagrams for EPL 30

4.6 cumul diagram for EPL . 30

A.1 Visualization of Table A.2: Relative run-time for each mea-
sured time interval by type-checking strategy. 49

46 List of Figures

A.2 sum and avg diagrams for GPL 52

A.3 cumul diagram for GPL . 52

A.4 sum and avg diagrams for Graph 53

A.5 cumul diagram for Graph . 53

A.6 sum and avg diagrams for Notepad 54

A.7 cumul diagram for Notepad 54

A.8 sum and avg diagrams for PKJab 55

A.9 cumul diagram for PKJab . 55

A.10 sum and avg diagrams for Raroscope 56

A.11 cumul diagram for Raroscope 56

A.12 sum and avg diagrams for Sudoku 57

A.13 cumul diagram for Sudoku 57

A.14 sum and avg diagrams for TankWar 58

A.15 cumul diagram for TankWar 58

A.16 sum and avg diagrams for Violet 59

A.17 cumul diagram for Violet . 59

A.18 sum and avg diagrams for ZipMe 60

A.19 cumul diagram for ZipMe . 60

List of Tables

2.1 Overview on the three basic type-checking analyses and two
mixed strategies with respect to their capabilities regarding
error detection, erroneous feature blaming and tool reuse. . . . 7

2.2 Overview on the benchmark set of product lines 10

4.1 Speedups for the product-based strategy with respect to the
bytecode-based strategy and speedups of the family-based strat-
egy with respect to both other strategies. 31

4.2 Break-even points for the family-based type-checking strategy
with respect to both other strategies 33

4.3 Total run-time in seconds for all products of each benchmark
product lines by type-checking strategy 36

A.1 Run-time in seconds for an average product of each benchmark
product lines by type-checking strategy 50

A.2 Relative run-time for each measured time interval by type-
checking strategy . 51

48 List of Tables

A. Appendix

A.1 Run-Time Measurements

feature compilation setup composition typecheck

0%

25%

50%

75%

100%

E
P

L

G
P

L

G
ra

ph

G
U

ID
S

L

N
ot

ep
ad

P
K

Ja
b

P
re

va
yl

er

R
ar

os
co

pe

S
ud

ok
u

Ta
nk

W
ar

V
io

le
t

Z
ip

M
e

Figure A.1: Visualization of Table A.2: Relative run-time for each measured
time interval by type-checking strategy.

50 A. Appendix

S
P
L

p
ro

d
u
c
t-b

a
se
d

b
y
te
c
o
d
e
-b

a
se
d

fa
m
ily

-b
a
se
d

se
tu

p
c
o
m
p

ch
e
ck

su
m

fc
se
tu

p
c
o
m
p

ch
e
ck

su
m

se
tu

p
c
o
m
p

ch
e
ck

su
m

E
P

L
0.02

0.2
0

0
.04

0.26
3
.14

0.03
0.03

0
.14

3.34
0.08

0
.17

0.28
0.53

G
P

L
0.03

0.2
9

0
.12

0.44
6
.82

0.05
0.09

0
.32

7.28
0.09

0
.29

1.15
1.53

G
ra

p
h

0.02
0.2

3
0
.07

0.32
1
.46

0.03
0.03

0
.20

1.72
0.06

0
.19

0.18
0.43

G
U

ID
S

L
0.04

0.5
5

0
.62

1.20
12

.94
0.14

0.21
1
.18

14.47
0.10

0
.49

2.67
3.26

N
o
tep

ad
0.02

0.3
2

0
.26

0.61
6
.68

0.04
0.08

0
.52

7.32
0.08

0
.26

1.20
1.54

P
K

J
ab

0.04
0.4

4
0
.49

0.96
4
.31

0.06
0.12

1
.16

5.65
0.09

0
.35

1.60
2.04

P
revay

ler
0.04

0.4
1

0
.68

1.13
3
.58

0.10
0.17

1
.18

5.03
0.09

0
.42

1.43
1.94

R
arosco

p
e

0.02
0.2

5
0
.08

0.36
1
.55

0.03
0.04

0
.28

1.90
0.05

0
.20

0.18
0.43

S
u

d
ok

u
0.02

0.3
8

0
.28

0.68
3
.73

0.04
0.08

0
.64

4.49
0.05

0
.29

0.73
1.07

T
a
n
k
W

a
r

0.02
0.3

5
0
.32

0.69
11

.93
0.04

0.11
0
.72

12.81
0.07

0
.30

2.01
2.38

V
io

let
*

0.05
0.4

1
0
.51

0.97
33

.40
0.09

0.15
0
.92

34.55
0.22

0
.42

6.55
7.19

Z
ip

M
e

0.03
0.3

4
0
.33

0.69
4
.48

0.05
0.12

0
.80

5.45
0.09

0
.29

0.73
1.11

T
a
b
le

A
.1

:
R

u
n
-tim

e
in

secon
d
s

for
an

average
p
ro

d
u
ct

of
each

b
en

ch
m

ark
p
ro

d
u
ct

lin
es

b
y

ty
p

e-ch
eck

in
g

strategy.
(m

easu
rem

en
t

in
tervals:

setu
p

=
setu

p
,

com
p

=
com

p
osition

,
ch

eck
=

ty
p

e
ch

eck
,

fc
=

featu
re

com
p

ilation
,

su
m

=
su

m
of

all

in
terva

ls;
*

on
ly

40
p
ro

d
u
cts

ch
ecked

fo
r
V
io
l
e
t

,
see

S
ection

2.3
for

d
etails

on
th

is.)

A.1. Run-Time Measurements 51

S
P
L

p
ro

d
u
c
t-
b
a
se
d

b
y
te
c
o
d
e
-b

a
se
d

fa
m
il
y
-b

a
se
d

se
tu

p
c
o
m
p

ch
e
ck

fc
se
tu

p
c
o
m
p

ch
e
ck

se
tu

p
c
o
m
p

ch
e
ck

E
P

L
8
%

77
%

15
%

4%
15

%
13

%
69

%
15

%
32

%
53

%

G
P

L
6
%

66
%

28
%

9%
9%

18
%

64
%

6%
19

%
75

%

G
ra

p
h

6
%

71
%

23
%

2
6
%

7%
9%

58
%

14
%

44
%

42
%

G
U

ID
S

L
3
%

46
%

51
%

2
6
%

7%
10

%
57

%
3%

15
%

82
%

N
ot

ep
a
d

3
%

53
%

43
%

2%
5%

12
%

81
%

5%
17

%
78

%

P
K

J
a
b

4
%

46
%

50
%

6%
5%

9%
81

%
4%

17
%

78
%

P
re

va
y
le

r
3
%

36
%

60
%

7%
6%

11
%

76
%

5%
22

%
74

%

R
a
ro

sc
op

e
5
%

71
%

24
%

2
2
%

7%
9%

62
%

12
%

47
%

42
%

S
u

d
o
k
u

3
%

56
%

41
%

7%
5%

10
%

78
%

5%
27

%
68

%

T
an

k
W

ar
3
%

50
%

46
%

1%
5%

13
%

82
%

3%
13

%
84

%

V
io

le
t*

5
%

42
%

52
%

4
2
%

4%
7%

46
%

3%
6%

91
%

Z
ip

M
e

4
%

49
%

47
%

1
6
%

4%
10

%
69

%
8%

26
%

66
%

T
a
b
le

A
.2

:
R

el
at

iv
e

ru
n
-t

im
e

fo
r

ea
ch

m
ea

su
re

d
ti

m
e

in
te

rv
al

b
y

ty
p

e-
ch

ec
k
in

g
st

ra
te

gy
.

(m
ea

su
re

m
en

t
in

te
rv

al
s:

se
tu

p
=

se
tu

p
,

co
m

p
=

co
m

p
os

it
io

n
,

ch
ec

k
=

ty
p

e
ch

ec
k
,

fc
=

fe
at

u
re

co
m

p
il
at

io
n

,
su

m
=

su
m

of
al

l

in
te

rv
a
ls

;
*

on
ly

4
0

p
ro

d
u
ct

s
ch

ec
ke

d
fo

r
V
io
l
e
t

,
se

e
S
ec

ti
on

2.
3

fo
r

d
et

ai
ls

on
th

is
.)

52 A. Appendix

A.2 Plots for the Other Product Lines

A.2.1 GPL

 0

20

40

60

80

tim
e

(s
ec

on
ds

)

pb bb fb

feature compilation setup composition typecheck

0

1

2

3

4

5

6

7

8

pb bb fb

Figure A.2: Plots for the run-time measurements results (in seconds)
of GPL: (left) sum diagram, (right) avg diagram. (pb = product-based,

bb = bytecode-based, fb = family-based)

0 50 100 150

0
20

40
60

products

se
co

nd
s

product−based
bytecode−based
family−based

Figure A.3: Run-time (in seconds) of each strategy by the number of type-
checked products for the GPL product line (cumul diagram).

A.2. Plots for the Other Product Lines 53

A.2.2 Graph

0

1

2

3

4

5

6

tim
e

(s
ec

on
ds

)

pb bb fb

feature compilation setup composition typecheck

0.0

0.5

1.0

1.5

2.0

pb bb fb

Figure A.4: Plots for the run-time measurements results (in seconds) of
Graph: (left) sum diagram, (right) avg diagram. (pb = product-based,

bb = bytecode-based, fb = family-based)

0 5 10 15

0
1

2
3

4
5

products

se
co

nd
s

product−based
bytecode−based
family−based

Figure A.5: Run-time (in seconds) of each strategy by the number of type-
checked products for the Graph product line (cumul diagram).

54 A. Appendix

A.2.3 Notepad

 0

 50

100

150

200

250

300

350

tim
e

(s
ec

on
ds

)

pb bb fb

feature compilation setup composition typecheck

0

1

2

3

4

5

6

7

8

pb bb fb

Figure A.6: Plots for the run-time measurements results (in seconds) of
Notepad: (left) sum diagram, (right) avg diagram. (pb = product-based,

bb = bytecode-based, fb = family-based)

0 100 200 300 400 500

0
50

15
0

25
0

products

se
co

nd
s

product−based
bytecode−based
family−based

Figure A.7: Run-time (in seconds) of each strategy by the number of type-
checked products for the Notepad product line (cumul diagram).

A.2. Plots for the Other Product Lines 55

A.2.4 PKJab

 0

10

20

30

40

50

60

70

tim
e

(s
ec

on
ds

)

pb bb fb

feature compilation setup composition typecheck

0

1

2

3

4

5

6

pb bb fb

Figure A.8: Plots for the run-time measurements results (in seconds) of
PKJab: (left) sum diagram, (right) avg diagram. (pb = product-based,

bb = bytecode-based, fb = family-based)

0 10 20 30 40

0
10

30
50

products

se
co

nd
s

product−based
bytecode−based
family−based

Figure A.9: Run-time (in seconds) of each strategy by the number of type-
checked products for the PKJab product line (cumul diagram).

56 A. Appendix

A.2.5 Raroscope

0

1

2

3

4

5

6

7

8

tim
e

(s
ec

on
ds

)

pb bb fb

feature compilation setup composition typecheck

0.0

0.5

1.0

1.5

2.0

pb bb fb

Figure A.10: Plots for the run-time measurements results (in seconds) of
Raroscope: (left) sum diagram, (right) avg diagram. (pb = product-based,

bb = bytecode-based, fb = family-based)

0 5 10 15

0
1

2
3

4
5

6
7

products

se
co

nd
s

product−based
bytecode−based
family−based

Figure A.11: Run-time (in seconds) of each strategy by the number of
type-checked products for the Raroscope product line (cumul diagram).

A.2. Plots for the Other Product Lines 57

A.2.6 Sudoku

 0

10

20

30

40

50

60

tim
e

(s
ec

on
ds

)

pb bb fb

feature compilation setup composition typecheck

0

1

2

3

4

5

pb bb fb

Figure A.12: Plots for the run-time measurements results (in seconds) of
Sudoku: (left) sum diagram, (right) avg diagram. (pb = product-based,

bb = bytecode-based, fb = family-based)

0 10 20 30 40 50 60

0
10

20
30

40
50

products

se
co

nd
s

product−based
bytecode−based
family−based

Figure A.13: Run-time (in seconds) of each strategy by the number of
type-checked products for the Sudoku product line (cumul diagram).

58 A. Appendix

A.2.7 TankWar

 0

 500

1,000

1,500

2,000

2,500

tim
e

(s
ec

on
ds

)

pb bb fb

feature compilation setup composition typecheck

 0

 2

 4

 6

 8

10

12

14

pb bb fb

Figure A.14: Plots for the run-time measurements results (in seconds) of
TankWar: (left) sum diagram, (right) avg diagram. (pb = product-based,

bb = bytecode-based, fb = family-based)

0 500 1000 1500 2000

0
50

0
10

00
20

00

products

se
co

nd
s

product−based
bytecode−based
family−based

Figure A.15: Run-time (in seconds) of each strategy by the number of
type-checked products for the TankWar product line (cumul diagram).

A.2. Plots for the Other Product Lines 59

A.2.8 Violet

 0

20

40

60

80

tim
e

(s
ec

on
ds

)

pb bb fb

feature compilation setup composition typecheck

 0

 5

10

15

20

25

30

35

pb bb fb

Figure A.16: Plots for the run-time measurements results (in seconds)
of Violet: (left) sum diagram, (right) avg diagram. (pb = product-based,

bb = bytecode-based, fb = family-based)

0 10 20 30 40

0
20

40
60

products

se
co

nd
s

product−based
bytecode−based
family−based

Figure A.17: Run-time (in seconds) of each strategy by the number of
type-checked products for the Violet product line (cumul diagram).

60 A. Appendix

A.2.9 ZipMe

 0

 5

10

15

20

25

30

tim
e

(s
ec

on
ds

)

pb bb fb

feature compilation setup composition typecheck

0

1

2

3

4

5

6

pb bb fb

Figure A.18: Plots for the run-time measurements results (in seconds)
of ZipMe: (left) sum diagram, (right) avg diagram. (pb = product-based,

bb = bytecode-based, fb = family-based)

0 5 10 15 20

0
5

10
15

20
25

products

se
co

nd
s

product−based
bytecode−based
family−based

Figure A.19: Run-time (in seconds) of each strategy by the number of
type-checked products for the ZipMe product line (cumul diagram).

Bibliography

[AB11] S. Apel and D. Beyer. Feature cohesion in software product lines:
An exploratory study. In Proceedings of the International Con-
ference on Software Engineering (ICSE), pages 421–430. ACM,
2011.

[AH10] S. Apel and D. Hutchins. A calculus for uniform feature com-
position. ACM Transactions on Programming Languages and
Systems (TOPLAS), 32(5):19:1–19:33, 2010.

[AKGL10] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer. Type
safety for feature-oriented product lines. Automated Software
Engineering, 17(3):251–300, 2010.

[AKL09] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse:
Language-Independent, Automated Software Composition. In
Proceedings of the International Conference on Software Engi-
neering (ICSE), pages 221–231. IEEE, 2009.

[AKL+12] S. Apel, S. Kolesnikov, J. Liebig, C. Kästner, M. Kuhlemann,
and T. Leich. Access control in feature-oriented programming.
Science of Computer Programming (SCP), 77(3):174–187, 2012.

[AKL13] S. Apel, C. Kästner, and C. Lengauer. Language-Independent
and Automated Software Composition: The FeatureHouse
Experience. IEEE Transactions on Software Engineering (TSE),
39(1):63–79, 2013.

[ASW+11] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer.
Detection of feature interactions using feature-aware verification.
In Proceedings of the International Conference on Automated
Software Engineering (ASE), pages 372–375. IEEE, 2011.

[AvRW+13] S. Apel, A. von Rhein, P. Wendler, A. Größlinger, and D. Beyer.
Strategies for product-line verification: Case studies and exper-
iments. In Proceedings of the International Conference on Soft-
ware Engineering (ICSE), pages 482–491. IEEE, 2013.

62 Bibliography

[BDS13] L. Bettini, F. Damiani, and I. Schaefer. Compositional type
checking of delta-oriented software product lines. Acta Infor-
matica, 50(2):77–122, 2013.

[BMB+13] E. Bodden, M. Mezini, C. Brabrand, T. Tolêdo, M. Ribeiro, and
P. Borba. SPLlift - Statically analyzing software product lines
in minutes instead of years. In Proceedings of the International
Conference on Programming Languages Design and Implemen-
tation (PLDI), 2013.

[BO92] D. Batory and S. O’Malley. The design and implementa-
tion of hierarchical software systems with reusable components.
ACM Transactions on Software Engineering and Methodology
(TOSEM), 1(4):355–398, 1992.

[BRT+13] C. Brabrand, M. Ribeiro, T. Tolêdo, J. Winther, and
P. Borba. Intraprocedural dataflow analysis for software product
lines. Transactions on Aspect-Oriented Software Development
(TAOSD), 10:73–108, 2013.

[BSR04] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-Wise
Refinement. IEEE Trans. Software Eng., 30(6):355–371, 2004.

[CHS+10] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F.
Raskin. Model checking lots of systems: Efficient verification of
temporal properties in software product lines. In Proceedings of
the International Conference on Software Engineering (ICSE),
pages 335–344. ACM, 2010.

[DCB09] B. Delaware, W. Cook, and D. Batory. Fitting the Pieces To-
gether: A Machine-Checked Model of Safe Composition. In Pro-
ceedings of the International Symposium on Foundations of Soft-
ware Engineering (FSE), pages 243–252. ACM, 2009.

[DCB11] DB. Delaware, W. Cook, and D. Batory. Product lines of theo-
rems. In Proceedings of the International Conference on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 595–608. ACM, 2011.

[GJSB13] J. Gosling, B. Joy, G. .Steele, and G. Bracha. The Java Lan-
guage Specification, Third Edition. http://docs.oracle.com/
javase/specs/jls/se5.0/html/j3TOC.html, March 2013.

[JHF12] M. Johansen, Ø. Haugen, and F. Fleurey. An algorithm for gen-
erating t-wise covering arrays from large feature models. In Pro-

http://docs.oracle.com/javase/specs/jls/se5.0/html/j3TOC.html
http://docs.oracle.com/javase/specs/jls/se5.0/html/j3TOC.html

Bibliography 63

ceedings of the International Software Product Line Conference
(SPLC), pages 46–55. ACM, 2012.

[KATS12] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type checking
annotation-based product lines. ACM Transactions on Software
Engineering and Methodology (TOSEM), 21(3):14:1–14:29, 2012.

[KBK09] M. Kuhlemann, D. Batory, and C. Kästner. Safe composition
of non-monotonic features. In Proceedings of the International
Conference on Generative Programming and Component Engi-
neering (GPCE), pages 177–186. ACM, 2009.

[KGR+11] C. Kästner, P. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann,
and T. Berger. Variability-aware parsing in the presence of lex-
ical macros and conditional compilation. In Proceedings of the
International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), pages 805–824.
ACM, 2011.

[Kol11] Sergiy Kolesnikov. An extensible compiler for feature-oriented
programming in java. Master’s Thesis, Department of Informat-
ics and Mathematics, Passau University, 2011.

[KvHA13] S. Kolesnikov, A. von Rhein, C. Hunsen, and S. Apel. A com-
parison of product-based, feature-based, and family-based type
checking. submitted, June 2013.

[LHB01] R. Lopez-Herrejon and D. Batory. A standard problem for evalu-
ating product-line methodologies. In Proceedings of the Interna-
tional Conference on Generative and Component-Based Software
Engineering (GCSE), LNCS 2186, pages 10–24. Springer, 2001.

[LKF02] H. Li, S. Krishnamurthi, and K. Fisler. Verifying cross-cutting
features as open systems. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 89–98. ACM,
2002.

[LKF05] H. Li, S. Krishnamurthi, and K. Fisler. Modular verification
of open features using three-valued model checking. Automated
Software Engineering, 12(3):349–382, 2005.

[LTP09] K. Lauenroth, S. Toehning, and K. Pohl. Model checking of
domain artifacts in product line engineering. In Proceedings of
the International Conference on Automated Software Engineer-
ing (ASE), pages 269–280. IEEE, 2009.

64 Bibliography

[LvK+12] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and
C. Lengauer. Large-scale variability-aware type checking and
dataflow analyis. Technical Report MIP-1212, Department of
Informatics and Mathematics, University of Passau, November
2012.

[LvRK+13] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and
C. Lengauer. Scalable analysis of variable software. In Proceed-
ings of the European Software Engineering Conference and the
International Symposium on the Foundations of Software Engi-
neering (ESEC/FSE). ACM, 2013.

[LY13] T. Lindholm and F. Yellin. The Java(TM) Virtual Machine Spec-
ification - second edition. http://docs.oracle.com/javase/specs/
jvms/se5.0/html/VMSpecTOC.doc.html, March 2013.

[OMR10] S. Oster, F. Markert, and P. Ritter. Automated incremental pair-
wise testing of software product lines. In Proceedings of the Inter-
national Software Product Line Conference (SPLC), LNCS 6287,
pages 196–210. Springer, 2010.

[Pie02] B. C. Pierce. Types and programming languages. MIT Press,
Cambridge, MA, USA, 2002.

[SRK+13] N. Siegmund, M. Rosenmüller, C. Kästner, P. Giarrusso, S. Apel,
and S. Kolesnikov. Scalable prediction of non-functional proper-
ties in software product lines: Footprint and memory consump-
tion. Information and Software Technology, 55(3):491–507, 2013.

[TAK+12] T. Thüm, S. Apel, C. Kästner, M. Kuhlemann, I. Schaefer, and
G. Saake. Analysis strategies for software product lines. Tech-
nical Report FIN-004-2012, University of Magdeburg, 2012.

[TBKC07] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe com-
position of product lines. In Proceedings of the International
Conference on Generative Programming and Component Engi-
neering (GPCE), pages 95–104. ACM, 2007.

[TKB+13] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and
T. Leich. FeatureIDE: An extensible framework for feature-
oriented software development. In Science of Computer Pro-
gramming, 2013. To appear; accepted 2012-06-07.

[TOS02] P. Tarr, H. Ossher, and S. Sutton Jr. Hyper/J: Multi-
dimensional separation of concerns for Java. In Proceedings of

http://docs.oracle.com/javase/specs/jvms/se5.0/html/VMSpecTOC.doc.html
http://docs.oracle.com/javase/specs/jvms/se5.0/html/VMSpecTOC.doc.html

Bibliography 65

the International Conference on Software Engineering (ICSE),
pages 689–690. ACM, 2002.

[TSAH12] T. Thüm, I. Schaefer, S. Apel, and M. Hentschel. Family-based
deductive verification of software product lines. In Proceedings
of the International Conference on Generative Programming and
Component Engineering (GPCE), pages 11–20. ACM, 2012.

[vRAK+13] A. von Rhein, S. Apel, C. Kästner, Thomas Thüm, and I. Schae-
fer. The PLA model: On the combination of product-line analy-
ses. In Proceedings of the International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS), pages 73–80.
ACM, 2013.

66 Bibliography

Eidesstattliche Erklärung:

Hiermit versichere ich an Eides statt, dass ich diese Masterarbeit selbständig
und ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel
angefertigt habe und dass alle Ausführungen, die wörtlich oder sinngemäß
übernommen wurden, als solche gekennzeichnet sind, sowie dass ich die Mas-
terarbeit in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbe-
hörde vorgelegt habe.

Claus Hunsen

Passau, den 05. Juli 2013

	Contents
	1 Introduction
	1.1 About This Thesis

	2 Methodology
	2.1 Type-Checking Strategies
	2.2 Type-Checking Strategy Implementations
	2.3 Experimental Setup
	2.4 Testing Environment

	3 The Bytecode-Based Type-Checking
	3.1 Stub Generation and Feature Compilation
	3.2 Feature Composition and Type Check
	3.3 Challenges with Bytecode Composition
	3.3.1 Anonymous Nested Classes
	3.3.2 Conflicting original-Calls
	3.3.3 Fields Initializations

	3.4 Bytecode Verification and Type Checking
	3.4.1 The Verification Process
	3.4.2 Implementation of the Verification Process

	3.5 Summary

	4 Results and Evaluation
	4.1 GUIDSL
	4.2 Prevayler
	4.3 EPL
	4.4 Overall Picture
	4.5 Which Strategy to Choose
	4.6 Threats to Validity

	5 Related Work
	6 Conclusion
	List of Abbreviations
	List of Figures
	List of Tables
	A Appendix
	A.1 Run-Time Measurements
	A.2 Plots for the Other Product Lines
	A.2.1 GPL
	A.2.2 Graph
	A.2.3 Notepad
	A.2.4 PKJab
	A.2.5 Raroscope
	A.2.6 Sudoku
	A.2.7 TankWar
	A.2.8 Violet
	A.2.9 ZipMe

	Bibliography

