
University of Passau

Department of Informatics and Mathematics

Master’s Thesis

Comparison of Analytical and
Empirical Performance Models: A
Case Study on Multigrid Systems

Author:

Christian Kaltenecker

November 29, 2016

Advisors:

Prof. Dr.-Ing. Sven Apel

Chair of Software Engineering

Alexander Grebhahn

Chair of Software Engineering

Kaltenecker, Christian:
Comparison of Analytical and Empirical Performance Models: A Case Study on
Multigrid Systems
Master’s Thesis, University of Passau, 2016.

Abstract

Runtime complexity of software can be described by the O-notation. However, this
is only a theoretical indicator and cannot be used as an indicator for the actual
runtime of a software. For the approximation of the runtime of a certain soft-
ware, so-called performance models are used, which can be categorized in analytical
and empirical performance models. While analytical performance models are cre-
ated using domain knowledge, empirical performance models are obtained using
machine-learning strategies. In this work, we compare two analytical and empir-
ical performance models for two multigrid systems, SMG2000 and BoomerAMG.
The empirical performance models are generated by the tool SPL Conqueror using
different sampling heuristics to define the learning set. To allow the comparison
between these kinds of performance models, we propose two different comparison
strategies, which we evaluate and discuss in this thesis. For one comparison strategy,
we investigate on different distance and similarity measures. We observe that the
selection of the sampling heuristic has an influence on both comparison strategies.
Furthermore, we notice that both comparison strategies as well as the results of the
distance and similarity measures differ from each other.

v

vi

Contents

Contents vii

List of Figures ix

List of Tables xi

List of Algorithms xiii

1 Introduction 1

2 Background 3
2.1 Performance Models . 3

2.1.1 Analytical Performance Models 4
2.1.2 Empirical Performance Models 5

2.2 SPL Conqueror . 5
2.2.1 Performance-Influence Models 6
2.2.2 Sampling Heuristics . 8

2.3 Similarity and Distance Measures . 12
2.3.1 Cosine Similarity . 13
2.3.2 Jaccard . 13
2.3.3 Minkowski . 13

2.4 Multigrid . 14
2.4.1 Overview . 14
2.4.2 Grid . 14
2.4.3 Restriction and Prolongation 15
2.4.4 Smoothing . 16
2.4.5 Solver . 17

3 Case Studies 19
3.1 SMG2000 . 19

3.1.1 Functionality . 19
3.1.2 Analytical Performance Models 20

3.2 BoomerAMG . 22
3.2.1 Functionality . 22
3.2.2 Analytical Performance Model 22

4 Analyzation 25
4.1 Syntactical Comparison . 25

viii Contents

4.2 Semantical Comparison . 26

5 Evaluation 29
5.1 Setup . 29

5.1.1 Cluster . 29
5.1.2 Software . 30

5.2 Obtaining Parameters for the Evaluation 31
5.2.1 SMG2000 . 31
5.2.2 BoomerAMG . 32
5.2.3 Benchmarks . 32

5.3 Learning Performance-Influence Models 33
5.4 Comparison . 34

5.4.1 SMG2000 . 34
5.4.2 BoomerAMG . 43

5.5 Discussion . 46
5.6 Threats to Validity . 49

6 Related Work 51

7 Conclusion 53
7.1 Summary . 53
7.2 Future Work . 54

A Appendix 57
A.1 Folder and File Structure on the CD 57

Bibliography 59

List of Figures

2.1 General sketch of SPL Conqueror’s approach 6

2.2 Selection of numeric values using the Full Factorial design 9

2.3 Generation of a Central Composite Design 11

2.4 Selection of numeric values using the Central Composite Design . . . 11

2.5 V-cycle in detail . 15

2.6 Restriction in detail . 15

2.7 Prolongation from a single grid cell to a 2× 2 grid. 16

2.8 Error in a grid when using a solver 17

3.1 Allocation of grids to processes . 20

3.2 Example of an unstructured grid . 22

4.1 Semantic comparison of the exemplary performance models 27

5.1 Results of the 1-dimensional grid of SMG2000 35

5.2 Improved results of the 1-dimensional grid of SMG2000 36

5.3 Results of the 2-dimensional grid of SMG2000 38

5.4 Improved results of the 2-dimensional grid of SMG2000 38

5.5 Results of the performance models and the measurements on 3-dimensional
grids of SMG2000 . 41

5.6 Improved results of the analytical performance model on 3-dimensional
grids of SMG2000 . 42

5.7 Results of the baseline model in relation of BoomerAMG. 45

A.1 Folder hierarchy on the CD . 57

A.2 Files in the BoomerAMG folder . 58

A.3 Files in the folders of SMG2000 . 58

x List of Figures

List of Tables

2.1 Candidate sets for three numeric options 8

2.2 Plackett-Burman with parameters (n = 9, l = 3) 10

4.1 Exemplary results of the distance and similarity measures 28

5.1 Processor topology ranges for SMG2000 31

5.2 Grid size range for SMG2000 on Chimaira 32

5.3 Numeric ranges for the grid size of BoomerAMG 32

5.4 Benchmark results for different number of nodes on Chimaira 33

5.5 Configurations of the Plackett-Burman design 33

5.6 Comparison results of different sampling heuristics in SMG2000 with
an 1-dimensional grid . 35

5.7 Results of the comparison of the 1-dimensional analytical performance
model with the measurements . 36

5.8 Comparison results of different sampling heuristics in SMG2000 with
a 2-dimensional grid . 38

5.9 Results of the comparison of the analytical performance model with
the measurements from the 2-dimensional case 39

5.10 Best and worst results of the syntactical and semantical comparison
strategy in the 3-dimensional grid. 41

5.11 Results of the comparison of the analytical performance model with
the measurements from the 3-dimensional case 42

5.12 Results of the syntactical and semantical comparison strategies in
BoomerAMG . 45

5.13 Results of the comparison of the analytical performance model with
the measurements from BoomerAMG 46

xii List of Tables

List of Algorithms

1 Sketch of the Feature Forward Selection of SPL Conqueror 6

xiv List of Algorithms

1. Introduction

One simple way to express runtime complexity of a software is to use the O-notation.
However, this notation provides only information about the theoretical complexity
and not about the real runtime of a software. Information about the runtime of
a software is important when the software is executed on shared computers. For
instance, computer clusters and supercomputers are used by multiple persons. To
this end, each person has a certain time limit for the execution of its tasks. To
tailor software to specific needs, most software provides configuration options, which
allow the selection or deselection of components. These configuration options can
have an impact on the performance, which give the estimation of the runtime more
importance. The estimation of the runtime can be used to find a performance-
optimal configuration to maximize efficiency of the executed software. A famous
algorithm in the domain of high performance computing is multigrid, which is used
to solve discretized PDEs. In multigrid systems, components such as the solver,
smoother and number of pre-smoothing and post-smoothing steps can be configured.
Each component has a different effect on the performance of the system as described
by Trottenberg et al. [TS01].

However, finding the performance-optimal configuration may turn out to be an infea-
sible challenge if every software configuration is measured in a brute-force manner.
The disadvantage in measuring in a brute-force manner is the exponentially high
number of software configurations with respect to the configuration parameters. To
overcome this problem, performance models can be used to predict the runtime of a
certain software configuration on the targeted hardware. For the prediction of the
execution time, the influence factors of different system aspects with the highest
impact on the performance of the software are considered. Considerable aspects on
the computing system are characteristics of hardware and software. For instance,
the different cache levels and the clock rate of the central processing unit (CPU) are
relevant hardware aspects, whereas configuration options are software characteris-
tics. Moreover, these aspects can interact with each other, which means that these
aspects together imply a certain influence on the overall performance.
According to their nature, performance models can be categorized in two groups,

2 1. Introduction

namely analytical performance models and empirical performance models. The for-
mer are created by domain experts that use their own perception of the program
to create such analytical performance models. The latter can be created by using a
machine-learning algorithm that is based on a small set of measurements, so-called
empirical performance models.

In this work, we focus on the comparison of analytical performance models and
empirical performance models of two multigrid programs, SMG2000 [Car01] and
BoomerAMG [Yan02]. The empirical performance models we use in this thesis
are generated by the tool SPL Conqueror by using different sampling strategies.
Throughout this study, we address multiple issues that arise regarding the creation
of empirical performance models. The research questions we examine in this thesis,
are the following:
RQ1: Is it possible to identify the influences proposed by analytical performance
models?
RQ2: Does the sampling strategy have a high influence on the similarity of empirical
performance-influence models to analytical performance models?
RQ3: Is it beneficial to compare analytical and empirical performance models using
only syntactic information?
RQ4: Is it beneficial to compare analytical and empirical performance models using
distance and similarity measures?
RQ5: Do the results of the similarity and distance measures correlate with the
error rate?

This thesis is structured as follows:

Firstly, in Chapter 2 we provide general information, which is meant to improve
the understanding of the used software and terminology. We provide information
about the properties of analytical performance models and empirical performance
models, SPL Conqueror, the software that is used to generate empirical performance
models, and introduce the theory behind multigrid systems as well as the distance
and similarity measures.

In Chapter 3, the multigrid case studies SMG2000 and BoomerAMG are presented
in more detail. For both multigrid case studies, we present characteristics, the
functionality, and we describe their analytical performance models in this chapter.

Based on performance models, we propose different comparison strategies to compare
multiple different performance models in Chapter 4.

The evaluation of the performance models and the results of the different types of
comparisons are presented in Chapter 5. First, we show the setup of the measure-
ments. Thereafter, we use these performance models to analyze and compare them
with each other on the base of two case studies, SMG2000 and BoomerAMG. The
outcomes are used to answer the research questions.

In Chapter 6, we present other publications that are concerned with the generation
or the improvement of analytical and empirical performance models.

Last, in Chapter 7, we conclude this thesis and present future work.

2. Background

In this chapter, we provide general information on the terminology and software of
this study. We begin with explaining the performance models in Section 2.1, where
we give a deeper insight into what performance models are, what they are used
for, and how they can be categorized. Afterwards, we roughly describe the basic
concepts of SPL Conqueror, which is used to generate the empirical performance
models in this thesis, in Section 2.2. Then, the mathematical properties of distance
and similarity measures are shown in Section 2.3, which are used in the semantical
comparison to express the similarity or dissimilarity of two performance models.
Finally, in Section 2.4, we provide basic knowledge of multigrids to understand the
behavior of the case studies as well as the predicted influences of the performance
models.

2.1 Performance Models

Our study focuses on the performance prediction of software, due to the fact that a
high number of configuration options would also mean a high effort for measuring
every configuration of a software. The configurations of the software are measured
to gain knowledge about the performance behavior of this software and to find
the performance-optimal configuration. To minimize the effort of predicting the
runtime of a software, mathematical equations are used, whose variables are the
different hardware factors, software factors and interactions among them. These
equations can be used to predict the performance of a system and thus help to find
the performance-optimal configuration of a software. Mathematical equations that
are used to predict the performance of a given configuration of a software are called
performance models. The result of such models is usually expressed in seconds or
milliseconds. Since both case studies contain hardware characteristics, such as delay
when interprocessor messages are exchanged, not the CPU time but the wall-clock
time is considered by the performance models. Moreover, in the CPU time hardware
delays are not considered. According to their method by which they are created,
such models can be categorized as follows:

4 2. Background

• Analytical Performance Models

• Empirical Performance Models

The difference between these kind of models stems from the information they are
based on. The creation of analytical performance models is a white-box approach
by including the domain knowledge of experts, whereas the empirical performance
models are built in a black-box manner by including only a set of performance tests,
where different configurations of the software are measured [DR15]. In Didona et
al. [DR15] so-called gray-box modeling techniques are proposed, which are hybrid
approaches that are based on the information of empirical performance models as
well as analytical performance models. However, we only focus on analytical perfor-
mance models and empirical performance models in this work, which we describe in
the following.

2.1.1 Analytical Performance Models

Developers often want to check if their perceptions of the written software are cor-
rect and write performance models to look out for abnormal deviations in the per-
formance, which would mean that the software behaves unexpectedly. Such models
are created by one or more domain experts and are called analytical performance
models. In the last decades, research was focused on the creation of this kind of
performance models, see for example the work of Tay et al. [Tay13]. In general,
this is a white-box approach, as the domain expert includes knowledge about the
software and their perception of it [DR15].
Furthermore, this kind of model can be used to predict the performance of a software
on different architectures. To this end, they include information of the underlying
hardware, such as the floating point operations per second (Flops) to consider the
architecture in the performance prediction [Tay13].
Besides, such analytical performance models can become very complex, the more
influence factors they consider. Hence, considering a high amount of factors makes
it more difficult for the domain expert to create such performance models. More-
over, a more complex equation makes it difficult for the user to understand and to
use the analytical performance models. To overcome the problem of complex ana-
lytical performance models, only a part of the software and of the environment it
is executed in is modeled. Possible factors that have an impact on the performance
are for example the cache-miss rate and the temperature of the CPU [MDHS09].
Taking these factors in consideration, would make the analytical performance model
far too complex. To overcome this problem, the factors with the highest impact on
the performance are considered by the analytical performance model, which leads
to a minor error in the performance prediction.
Nonetheless, analytical performance models are needed in every domain where the
prediction of the performance is crucial and not exclusively in the domain of high-
performance computing. For instance, in the domain of distributed computing an
analytical performance model for MapReduce was created by Yang et al. [YS11].
Another example is the analytical performance model made by Hong et al. [HK09]
for graphics processing unit (GPU) architectures.

2.2. SPL Conqueror 5

To sum it up, analytical performance models are portable and can be applied to
different architectures, but include a certain error, as they are only considering the
most relevant influence factors to the performance. Furthermore, if the perceptions
of the domain experts are wrong, the analytical performance models produce wrong
predictions and hence are not helpful.

2.1.2 Empirical Performance Models

Machine-learning algorithms can be used to predict the performance of a given
software configuration [Bis06]. If one is interested only in the optimal configura-
tion of the software and not the impact of the configuration options on the per-
formance, then different machine-learning approaches can be used, such as genetic
algorithms [MSB91] and gradient descent [Bot10]. More powerful tools like Cat-
Walk [WBH+14] and SPL Conqueror [SRK+12] are capable of estimating the influ-
ence of the most relevant configuration options and the most relevant configuration-
option interactions on the performance of the system. This estimation is done by
using machine-learning algorithms on a set of measurements of the target system.
The empirical performance models in this thesis are created in a black-box manner,
as no knowledge about the system itself is included in the models [DR15]. Unlike
analytical performance models, this kind of performance model only considers the
hardware on which the measurements were executed on. To this end, mostly a higher
prediction accuracy is achieved with respect to analytical performance models, but
these predictions are not portable. As analytical performance models are created
by domain experts, empirical performance models can be created based on measure-
ments of the respective software and a tool, such as CatWalk and SPL Conqueror
and do not expect background knowledge of the software.

2.2 SPL Conqueror

In this section, we present the concepts of SPL Conqueror, which is used to learn
empirical performance models in this thesis. Besides, in the publications related to
SPL Conqueror, the empirical performance models are called empirical performance-
influence models. Since we use SPL Conqueror, we adapt this terminology and call
it from now on empirical performance-influence model. The goal of this program
is to quantify influences of options and their interactions to ease understanding,
debugging and optimization of the configurable systems [SRK+12]. The sketch of
SPL Conqueror’s approach is shown in Figure 2.1. To minimize the number of
measurements for the quantification of the influences, different sampling heuristics
can be used in SPL Conqueror, where some are presented later and used in the
evaluation. To learn an empirical performance-influence model, SPL Conqueror
needs a set of measurements to consider, which we call Learning Set in the following.
Based on this learning set, SPL Conqueror uses Feature Forward Selection [CS14],
which is an iterative machine-learning algorithm. The influence of different models,
each of which considers the influence of one single configuration, is computed by
using Stepwise Linear Regression. Then, the best model with respect to the error
rate is selected and another set of models, called candidates in the following, is
generated on the base of the best model. The different generated models now contain
interactions between configuration options. The next step is again the computation

6 2. Background

Software

System description

Measurements

0.3A+−2.3 · AB
Performance-influence model

Figure 2.1: General sketch of SPL Conqueror’s approach, which needs the measure-
ments as well as the corresponding system description of a software to produce an
empirical performance-influence model.

Algorithm 1: Sketch of the Feature Forward Selection of SPL Conqueror.
Taken from [SGAK15].
Data: measurements, O
Result: performance model

1 optionSet = ∅, error = ∞
2 repeat
3 lastError = error

4 bestCandidate = ⊥
5 candidates = generateCandidates(optionSet, O);
6 foreach option in candidates do
7 model = learnFunction(optionSet ∪ {option},
8 measurements)

9 modelError = computeError(model, measurements)

10 if modelError < error then
11 error = modelError, bestCandidate = candidate

12 end

13 end
14 if bestCandidate 6= ⊥ then
15 optionSet = optionSet ∪ {option}
16 end

17 until (lastError− error < margin) ∨ (error < threshold);
18 return learnFunction(optionSet, measurements);

of the influence. These steps are repeated iteratively until the error rate has reached
a certain value or the improvement from one round to another is under a certain
threshold.
We address one configuration option or an interaction of configuration options with
its influence as Term throughout this work.

In Section 2.2.1, we present the empirical performance-influence models that are
generated by SPL Conqueror. For the generation of different learning sets, different
sampling heuristics are used, which we present in Section 2.2.2. We use these sam-
pling heuristics in this thesis and compare them with each other in relation to the
analytical performance models.

2.2.1 Performance-Influence Models

In this section, we describe performance-influence models according to the work of
Siegmund et al. [SGAK15]. Assume that O is the set of all configuration options
and C the set of all valid configurations. Furthermore, a configuration c ∈ C is a
function c : O → R that assigns a value to every configuration option. For a binary
configuration option b ∈ O, c(b) = 1 if the respective option is selected and c(b) = 0

2.2. SPL Conqueror 7

if not. In contrast to the binary options, the range of a numeric options consists
of more than one value, although only one value can be selected for one single
configuration. It is assumed that every value of the numeric option has a different
influence upon the final performance and that this influence can be represented as
a function. Additionally, configuration options can interact with each other and
have a high influence on the performance. For instance, the compression can have
a positive effect on encryption, as the encryption takes less time on a smaller set of
information.
A performance-influence model is a function

∏
: C → R that can be written as a sum

of terms over configuration values. In one term of the model, different functions can
be composed of the configuration options of each term. This composition results in
shapes such as β ·c(o), β ·c(o)2, β ·

√
c(o), where β is the influence of the configuration

option upon the performance and c(o) is the value of option o in the configuration
c. The influence β is computed by using linear regression. Besides, SPL Conqueror
also finds terms with multiple configuration options like β · c(o1) · c(o2) with the
influence of the interaction symbolized as β and configuration options o1, o2 ∈ C.
Furthermore, a term is an expression β · c(o1) or β · c(o1) · c(o2) · · · c(on) where o1,
o2, . . . on ∈ O. Moreover, a term that refers to a single configuration option o is
denoted as φo, whereas interactions of multiple options i..j is denoted as φi..j.

To sum it up, every performance-influence model is of the form:∏
(c) = β0 +

∑
i∈O

φi(c(i)) +
∑
i..j∈O

φi..j(c(i)..c(j))

In the equation, β0 is a value that is related to no specific configuration option or
in other words is present in every software configuration and

∑
i∈O φi(c(i)) stands

for the sum of all individual configuration options, whereas
∑

i..j∈O φi..j(c(i)..c(j))
denotes the sum of all configuration option interactions.

To find such a model, multiple steps are performed by using Stepwise Linear Re-
gression, as shown in Algorithm 1. In the following, we describe this algorithm in
more detail.

In Lines 2− 17 of Algorithm 1, the best model is searched. This is done by Feature
Forward Selection by adding each found model to the current model for improving
the current model. To choose among different models, a set of candidates including
the single configuration options and interactions of them have to be generated in
Line 5. These candidates differ from each other by the type of influence of the
considered configuration options (e.g., logarithmic influence, linear influence). Then,
in Lines 6 − 13, the candidates are added iteratively to the model. Thereby, the
influence of each term is computed and afterwards the error rate of the model to the
measurement results. If an improvement was made, then the model is selected as the
best candidate. Note, that if none of the candidates is better than the best model
from the last round, then the best model will be selected in Lines 14 − 16. In this
step, the influences of every term of the model are recomputed. This procedure is
repeated until the error has reached a certain value (threshold) and the improvement
from one model to another model is greater than a value (margin). Finally, the best
model is returned in Line 19 as the result of the algorithm.

8 2. Background

2.2.2 Sampling Heuristics

Until now, we presented the algorithm of SPL Conqueror to learn performance-
influence models that are based on a learning set. Due to the fact that measuring
every valid configuration would take a lot of time, only a set of configurations should
be used for creating a suitable empirical performance-influence model. To determine
a representative learning set of the set of all software configurations, sampling heuris-
tics are used. Since we have two types of configuration options, namely binary and
numeric, different sampling heuristics are used for the sampling of binary options
and others for the sampling of numeric options. Nevertheless, only numeric-option
sampling is considered, as only numeric configuration options are relevant in the
analytical performance model of our multigrid case studies, SMG2000 and Boomer-
AMG. To express the value range of a numeric option, we use the notation [<min-

Value>..<maxValue>;<stepSize>], where minValue is the lower bound, maxValue
represents the upper bound and stepSize the step size of the numeric option.

In this work, we use the following sampling heuristics to generate the empirical
performance-influence models:

• Full Factorial Design

• Random Design

• Plackett-Burman Design

• Central Composite Design

Table 2.1: Matrix of candidates for three numeric options A = [1..2; 1], B = [1..5; 4]
and C = [1..2; 1]. The first matrix of candidates, ξ8 contains every configuration,
whereas ξ2 contains only 2 of these configurations, which are selected by the sampling
heuristic.

ξ8 =

A B C

1 1 1
1 1 2
1 5 1
1 5 2
2 1 1
2 1 2
2 5 1
2 5 2

ξ2 =

A B C

1 1 1
2 5 2

Each of these heuristics are Experimental Designs [Puk06]. An experimental design
is an approach to find a subset from the set of all configurations. Instead of mea-
suring every configuration of a software, experimental designs generate a candidate
matrix that consists of software configurations which have to be measured to make
conclusions. According to de Aguiar et al. [dABK+95], such a candidate matrix
contains the software configurations that have to be measured. The candidate ma-
trix is denoted as ξi, where i is the number of chosen configurations of the sampling

2.2. SPL Conqueror 9

heuristic. An example for the candidate matrix is shown in Table 2.1. Every column
of the matrix of candidates stands for a configuration option and every line describes
a configuration. The matrix of candidates containing all configurations is usually
depicted as ξN where N is the total number of configurations. Furthermore, from
this matrix of candidates, further subsets ξn can be derived, where 0 < n ≤ N .
Besides, some of the experimental designs such as the Plackett-Burman design create
a matrix of candidates according to predefined shapes.

In the following, we describe the sampling heuristics that are used in this work more
precisely.

Full Factorial Design. The Full Factorial design is the most simple experimental
design, as it uses the whole configuration set as learning set and not a subset of
it [BTA10]. This means that each valid configuration of the software is needed for
the use of this design. The advantage of this design is that influences that appear
only in a few configurations are considered. For calculating the number of needed
measurements for the learning set of this design, the product of the cardinality of
each configuration option is built. In Figure 2.2, we show the configurations that
are measured by using this design for two configuration options A and B. Because
of the high number of needed measurements, this design is less frequently used.

1 2 3 4 5
A

B

2

4

6

8

10

Figure 2.2: Selection of numeric values with the Full Factorial design using two
numeric options A and B where A = [1..5; 1] and B = [2..10; 2].

Random Design. The Random design chooses random values from the value
domains of the numeric options. This is possible, as we later define the lower and
the upper bound of each numeric option as well as the step size between valid
numeric option values. The used implementation of this design chooses the set of n
configurations in a random manner by selecting a value of the range of each numeric
option starting with an initial random seed. Since this sampling is random, the
effectiveness of choosing good sampling may vary according to the chosen seed for
the random-number generation.

Plackett-Burman Design. This design was proposed in 1946 by Plackett and
Burman [PB46]. It is an experimental design that aims to minimize the variance of
the estimates of variables that are independent and do not interact with each other.

10 2. Background

Table 2.2: The Plackett-Burman Design for 8 numeric options (A - H) and the
parameters (n = 9, l = 3). We use a mapping, where 0 is the minimum value, 2
the maximum value and 1 the midpoint of the numeric value range. Each row in
the table depicts one configuration. From this software, 9 different configurations
would be tested.

A B C D E F G H

1 0 1 1 2 0 2 2 1
2 1 0 1 1 2 0 2 2
3 2 1 0 1 1 2 0 2
4 2 2 1 0 1 1 2 0
5 0 2 2 1 0 1 1 2
6 2 0 2 2 1 0 1 1
7 1 2 0 2 2 1 0 1
8 1 1 2 0 2 2 1 0
9 0 0 0 0 0 0 0 0

In contrast to other designs, the Plackett-Burman design uses only a very limited
number of measurements as learning set, which is also pre-defined. Furthermore,
one can set the number of levels (3, 5 and 7), which affects the chosen number of
distinct values from each numeric option. Based on the number of levels (l), the
number of measurements n can be chosen (for l = 3, n = {9; 27; 81}, for l = 5,
n = {25; 125} and for l = 7, n = {49}). Depending on the chosen value of n and
l, a specific predefined initial seed is selected to define the first configuration used
by the design. Every further configuration except the last configuration is a shift to
the right of the previous configuration. An additional configuration is added, where
all minimum values of the numeric options are used.

For instance, in Table 2.2 we show the Plackett-Burman for (n = 9, l = 3) defining
9 measurements for 8 independent variables (numeric options A-H) with 3 levels.
The values 0, 1 and 2 are mapped to the minimum, the middle and the maximum
value of the configuration option, respectively. The pre-defined seed is 01120221 for
the configuration (n = 9, l = 3).

Central Composite Design. Box and Wilson proposed the formerly known Box-
Wilson Central Composite design in 1951 [BW51]. This experimental design expands
the 2k factorial design, which takes the minimum and the maximum values of each
numeric option. The configurations chosen by the factorial design are called factorial
points. In the factorial design, 2k combinations are generated when having k numeric
options. The Central Composite Design(CCD) adds 2 ·k further configurations, also
called star points, as well as the midpoint of the configuration space to the learning
set. This expansion is also shown in Figure 2.3 for the case k = 2. The star points
have a certain distance to the center, which is depicted as α.

The form presented in Figure 2.3 is called Central Composite Circumscribed(CCC).
In this design type, the distance from the center to the star points is depicted as
α. Depending on the value of α, additional types of the Central Composite De-
sign, namely Central Composite Inscribed(CCI) and Central Composite Face Cen-

2.2. SPL Conqueror 11

+ =

Figure 2.3: Generation of a Central Composite Design(CCD) for k = 2. The first
square is made by the 2k factorial design and the second one is added by CCD. The
result is depicted on the left-hand side. See also Figure 3.20 in [NIS16].

tered(CCF) are defined. As mentioned before, the factorial design covers the mini-
mum and maximum values of the numeric option range. Thus, it may not be possible
to select values which are smaller than the lower bound or higher than the upper
bound. To overcome this problem, the star points as well as the factorial points are
scaled down to the actual bounds by using the value of α and the distance from
the center to the factorial points. This type of Central Composite design is called
CCI. As CCI needs at least 5 different values in the numeric range, which is also
not always possible, the star points were placed on the center of every edge of the
rectangle and resulted in the CCF design.

In SPL Conqueror CCI was implemented and thus, we do not investigate the other
types. Further information on the different types of CCD is provided in [NIS16]. The
selection of numeric option values using CCI for two numeric configuration options
is shown in Figure 2.4. In the figure, the cells with red content depict configurations
that are ignored, whereas green-colored cells with a point in the center are chosen
configurations.

1 2 3 4 5
A

B

2

4

6

8

10

Figure 2.4: Selection of numeric values with the Central Composite Design using
CCI and two numeric options A and B where A = [1..5; 1] and B = [2..10; 2].

12 2. Background

2.3 Similarity and Distance Measures

Distance and similarity measures are used to determine how close two elements of
the same kind are to each other [XX11]. Since we want to express the similarity
or dissimilarity of performance-influence models with a numerical value, we use
distance and similarity measures in this work. When using a distance measure, the
result of two closer instances are smaller than the result of two distant instances.
In contrast, a similarity measure results in higher values the closer both instances
are to each other. Moreover, the value of an similarity measure is in between 0 and
1, where 0 means absolutely no similarity and 1 means that the instances are the
same. However, this does not inherently apply to distance measures.

Besides, the distance and similarity measures can be applied to different input types,
such as Point Data, where each point in the n-dimensional space is a multidimen-
sional vector of length n and where the i-th number is the coordinate in the i-th
dimension [DB79]. There are also other input types than the one presented before.
However, these input types are not described in more detail, as they are not relevant
in this work. Additionally, there are multiple axioms that can be satisfied by the
distance and similarity measures. These are presented in the following.

Let S denote the set of all points in an n-dimensional space, d, s the distance and
the similarity measures with d : S × S → R and s : S × S → R.

Then, according to the work of Xu et al. [XX11], for distance measures the satisfiable
conditions are:

1. ∀x, y ∈ S : d(x, y) = 0⇔ x = y Identity of Indiscernibles

2. ∀x 6= y ∈ S : d(x, y) ≥ 0 Non-Negativity or separation axiom

3. ∀x, y ∈ S : d(x, y) = d(y, x) Symmetry

4. ∀x, y, z ∈ S : d(x, z) ≤ d(x, y) + d(y, z) Triangle Inequality

According to the work of Xu et al. [XX11], the satisfiable conditions for the similarity
measures are as follows:

1. ∀x 6= y ∈ S : s(x, y) ≥ 0 Non-Negativity

2. ∀x, y ∈ S : s(x, y) = 1⇔ x = y Identity of Indiscernibles

3. ∀x, y ∈ S : s(x, y) = s(y, x) Symmetry

4. ∀x, y, z ∈ S : s(x, z) ≥ s(x, y) + s(y, z) Triangle Inequality

Regarding the satisfied conditions, these measures can be categorized in multiple
types of metrics [GV02], which are:

• Metric: A metric has to satisfy every property that was mentioned above,
namely Non-Negativity, Identity of Indiscernibles, Symmetry and Triangle In-
equality.

2.3. Similarity and Distance Measures 13

• Pseudo-Metric: These are functions that satisfy Identity of Indiscernibles,
Symmetry and Trianlge Inequality, but no Non-Negativity.

• Semi-Metric: For this kind of measure, every property but the Triangle In-
equality holds.

• Semi-Pseudo-Metric: This kind of measure is a combination of Semi-Metric
and Pseudo-Metric. So, Non-Negativity and Triangle Inequality is not satisfied
by this kind of metric.

This categorization applies to distance functions as well as to similarity measures.
Furthermore, there are also additional axioms that allow other combinations. How-
ever, as they are not relevant for the comprehension performed in this thesis, they
are not further discussed.
Although there are many different distance and similarity measures, some of which
are presented by Cha et al. [Cha07], we focus on the Cosine Similarity, Jaccard and
the Minkowski Distance, which we present in the following.

2.3.1 Cosine Similarity

The Cosine Similarity [NB10] measures the cosine of the angle between two vectors
in an n-dimensional space. The formula of the cosine similarity for two n-dimensional
vectors a and b is as follows:

cos(a, b) =

∑n
i=1 ai · bi√∑n

i=1 a
2
i ·
√∑n

i=1 b
2
i

Like the cosine function, the resulting similarity ranges between [−1, 1], so the non-
negativity property is not given. Moreover, the triangle inequality does also not
hold, which makes this measure a semi-pseudo-metric [Kry14].

2.3.2 Jaccard

Another similarity measure is the Jaccard Index, which is also known as the Jaccard
Similarity [HHH+89]. This measure is used to express the similarity of two different
sets. However, Jaccard can additionally be used for estimating the similarity of two
multidimensional vectors. For two n-dimensional vectors a and b, the formula is:

J(a, b) =

∑n
i=1 min(ai, bi)∑n
i=1 max(ai, bi)

Since the non-negativity does not hold for negative vectors and the triangle inequal-
ity does it neither, this is also a semi-pseudo-metric.

2.3.3 Minkowski

One of the most popular distance measures is the Minkowski distance of order
p [Cha07]. The general formula for two multidimensional vectors is:

Mp(a, b) = (
n∑

i=1

|ai − bi|p)
1
p

14 2. Background

According to Hardy et al. [HLP52], the Minkowski distance is a distance metric for
the p ≥ 1. In this thesis, we use different forms of the Minkowski distance, namely
the Manhattan distance (p = 1), the Euclidean distance (p = 2), Minkowski distance
of order 3 and Chebyshev (lim

p→∞
).

2.4 Multigrid

In this section, the multigrid approach is presented, because both case study systems
are multigrid systems. Multigrid is the most efficient way to solve partial differential
equations (PDEs). These PDEs describe physical or chemical processes, such as
movement of waves as described by LeVeque et al. [LeV97]. Another possibility to
solve a PDE is a direct solver like the gaussian solver, which solves the PDE directly
achieving high accuracy but also a high runtime (O(N3), where N denotes the
number of unknowns in the PDE). In contrast to the direct solver, the multigrid
approach is an iterative solver that has a low runtime (O(N log ε), where N is the
number of unknowns and ε is a constant value). In the following, we provide an
overview of the multigrid approach and describe its components in detail.

2.4.1 Overview

In this section, we provide an overview of the multigrid approach, which is depicted
in Figure 2.5. Before the application of the multigrid approach, the PDE has to be
discretized to obtain an equivalent grid, which we describe in Section 2.4.2. Each
data point on the grid represents one unknown in the original PDE. As a direct
solver cannot be applied to the grid because of the high runtime and the memory
consumption, it has to be brought into a form that is easier to solve. To do so, a
hierarchy of grids is used to reduce the size of the grid before applying the solver.
Therefore, a restriction operation is performed to transfer the grid from a fine to a
coarser grid and hence, the grid contains less unknowns than before. We describe
the transfer from a fine to a coarser grid in Section 2.4.3. Afterwards, a smoother is
used to turn high-frequent errors into low-frequent errors, since a high-frequent error
cannot be mapped by executing the restriction. We explain the smoothing process in
Section 2.4.4. This process is repeated until the coarsest level is reached. Then, the
solver is executed to obtain a solution. The solver is presented in Section 2.4.5. Now,
the grid has to be brought to the initial size. Thus, the prolongation and additional
smoothing is performed, which updates the values of the finer grids. This process is
also shown in Figure 2.5. Besides, the V-cycle is repeated until the solution error is
appropriate.

Performing such a cycle is also named iteration. So, performing 5 iterations with
a V-cycle means that the V-cycle is repeated 5 times to achieve a smaller error
regarding the solution. Other frequently used cycles are the W-cycle and the F-
cycle as presented in [TS01].

2.4.2 Grid

The grid is the most basic compound of the multigrid approach and is built by
discretizing the PDE. That means that the PDE being considered is mapped to the

2.4. Multigrid 15

level 0

level 1

level 2

Figure 2.5: A V-cycle beginning on level 0 where the initial grid is of the size 4× 4.
On the coarsest level, level 2, the grid is of the size 1 × 1. On the right-hand side,
the grids of each level are shown.

grid. To do so, often the finite element and the finite difference methods are used
to discretize the PDE [BS07]. In this work, the process of mapping the equations
onto a grid is not explained in more detail, as the measured software creates the
grid automatically. Every crossing of a horizontal and a vertical line stands for one
unknown.

Additionally, the size of the grid in each dimension can oftenly be configured. In our
work, the grid size is denoted as nx, ny and nz for the grid size in each dimension.
Although grids can be of different shapes, we only focus on rectangular grids in this
work.

2.4.3 Restriction and Prolongation

The restriction and the prolongation are operations that are performed to transfer
information from one grid to the other. As mentioned previously, the restriction
coarsens the grid, so that only a subset of the nodes are considered in the next
steps. In more detail, the grid is separated into 3 × 3 grids and then mapped on a
single block (see Figure 2.6). Thereby, different coarsening operators can be used,
which differ in runtime, parallelism and efficiency property.

0 1

2 3

4

5

6

7 8 ⇒

0 1

2 3

Figure 2.6: The restriction in more detail by restricting a 2× 2 grid to a 1× 1 grid.

16 2. Background

0 1

2 3

⇒

0 1

2 3

4

5

6

7 8 ⇒

0 1

2 3

4

5

6

7 8

Figure 2.7: Prolongation from a single grid cell to a 2× 2 grid.

In comparison to that, the prolongation is the inverse to the restriction. While
the restriction transfers the information on a coarser grid, the prolongation updates
the information on the finer grid. The input of the prolongation is an n × n grid.
Afterwards, on every cell of the grid a prolongation operation is performed according
to Figure 2.7. In this figure we show the extraction of the information of every cell
and the transfer of the single cell to the corresponding 2× 2 cells on the finer grid.
Afterwards, we consider the finer 2n × 2n grid instead of the n × n grid after the
prolongation step.

2.4.4 Smoothing

Because of the restriction, a pre-existing error could be amplified, since the coars-
ening turns low-frequent error into high-frequent error. A low-frequent error means
that the error of a grid point does not differ too much from the neighboring grid
points. By contrast, a high-frequent error means the opposite. Since high-frequent
error can not be represented on a coarser grid, the high-frequent error has to be
turned to a low-frequent error. To convert high-frequent error into low-frequent
error, a smoother can be used multiple times as depicted in Figure 2.8. The appli-
cation of the smoother after the restriction is called pre-smoothing. High-frequent
errors does also appear after the prolongation. Therefore, smoothing can be applied
additionally after prolongation, which is called post-smoothing. Note that, although
the error is converted using a smoother, the error is not necessarily decreased. In

2.4. Multigrid 17

literature, there are different smoothers that can be applied. Famous examples are
the Gaussian elimination and the Jacobi elimination [TS01].

Figure 2.8: The error without smoother (left-hand side), the error with 5 smoother
repetitions (midle) and with 10 repetitions (right-hand side) [TS01].

2.4.5 Solver

In the multigrid approach, the solver is applied to the coarsest grid to solve the
PDE. Applying a multigrid solver, such as the gaussian elimination, on a grid has
the highest complexity over all multigrid components. For instance, the gaussian
elimination has a complexity of O(n3), where n is the number of unknowns. Instead
of applying the multigrid solver directly to the grid, the multigrid solver is applied
to the coarsest grid with only a few unknowns to save execution time. However,
applying the solver to the coarsest and not the finest grid produces an error, which
makes it necessary to repeat the whole multigrid cycle.

18 2. Background

3. Case Studies

In this chapter, we give an introduction to SMG2000 in Section 3.1 and afterwards
to BoomerAMG in Section 3.2. For both systems, we describe the functionality of
the programs as well as the corresponding analytical performance models.

3.1 SMG2000

In this section, we present the multigrid program SMG2000 [Car01], which is part
of the Hypre library [FY02]. Firstly, we explain the functionality of SMG2000 in
Section 3.1.1 and explain the specific characteristics of the program in relation to
the multigrid approach. Afterwards, we present the analytical performance models
of SMG2000 and discuss it in Section 3.1.2.

3.1.1 Functionality

SMG2000 is an implementation of a semi-coarsening approach. Semi-coarsening
minds situations where the deviations of neighboring cells are high. In this case,
the semi-coarsening maps them as two different cells on the coarser grid, whereas in
standard coarsening such situations are ignored [dZ96]. For this system, analytical
performance models were created by Brown et al. [BFJ00]. In their models, they
consider the prediction of the relaxation process, which needs a major part of the
runtime (about 90%).

The processor topology and the grid size per block on the different dimensions are
the numeric options that are observed in this work and aspects that are included in
the analytical performance model. The grid allocation is shown in Figure 3.1, where
each block is a subgrid of size nx× ny × nz. Hence, the higher the number of total
processes ptotal = px · py · pz, the greater the grid size.

The analytical performance models predict the performance when performing SMG2000
on grids with 1 to 3 dimensions, one performance model for each dimension. In the
following section, we present the analytical performance model of SMG2000 in more
detail.

20 3. Case Studies

px

py

pz

Figure 3.1: A grid on a multicore system. Every cell is a subgrid of size nx×ny×nz
and is processed by one core on the computing machine.

3.1.2 Analytical Performance Models

The analytical performance model of SMG2000 by Brown et al. [BFJ00] considers
only the relaxation phase of the respective multigrid approach. As it turned out,
90% of the runtime is needed by the relaxation, which constitutes a major part of
the runtime. In SMG2000 the grid can have different dimensions, namely from 1
to 3. Accordingly, Brown et al. have created an equation for each dimension with
increasing complexity.

Since SMG2000 uses the Message Passing Interface (MPI) for communication be-
tween multiple processes, the latency as well as the bandwidth are crucial factors
in the analytical performance model. In the model it is assumed that the time to
deliver a number of values of the type double, called n, from one process to another
is:

Tsend = α + β · n

In the equation, α depicts the latency of MPI messages and β the inverse bandwidth
of a double value sent via MPI.
The equation for SMG2000 running on a 1-dimensional grid is the following:

T 1D = 2 · Lx · α + 2 · Lx · β + 6 ·N · f

where T is the runtime in microseconds, Li = log2(pi · N), N denotes the size of
the grid in one dimension, and f is the inverse of floating point operations per
second. Furthermore, α, β, and f are constants that depend on the system and can
only be resolved by benchmarks on the respective systems. When investigating the
equation, the operations performed in the relaxation phase are considered by the last
term 6 ·N · f , whereas the message exchange in the relaxation phase is represented
by 2 · Lx · α + 2 · Lx · β.

However, this equation is currently not related to the configuration options, which
we have mentioned in the previous section. Therefore, the variables are mapped to
their corresponding names of the configuration options. As this equation is meant for
1-dimensional grids, we strictly replace N by nx. The outcome of the replacement
upon the equation is shown below.

T 1D = 2 · log2(px · nx) · α + 2 · log2(px · nx) · β + 6 · nx · f

3.1. SMG2000 21

Additionally, in the logarithmic function appear multiple unknowns. Since it holds
that log(a · b) = log(a)+ log(b), the logarithmic function can be split into two terms.
This is necessary, as the equation of the analytical performance models and the
empirical performance-influence models have to be converted in a similar form to
make comparisons of both performance models easier. Moreover, we have configured
SPL Conqueror in such a way that only one option appears in the logarithm function,
as it would lead to ambiguity otherwise. The outcome after splitting the logarithmic
functions is the following:

T 1D = 2 · log2(px) · α+ 2 · log2(nx) · α+ 2 · log2(px) · β + 2 · log2(nx) · β + 6 · nx · f

This procedure is repeated for the analytical performance model for 2 and 3 dimen-
sions. Since these conversions behave similar for the all dimensions, we consider only
the initial and the converted equations.

The model for a 2-dimensional grid is as follows:

T 2D = 4 · Ly(Lx + 1) · α + 4 ·N · (Lx + Ly) · β + 20 ·N2 · f
Furthermore, in the paper nx = ny holds for two-dimensional grids. Hence, every
appearance of N is replaced by nx without loss of generality. The conversion yields:

T 2D = 4 · log2(py) · log2(px) · α + 4 · log2(py) · log2(nx) · α + 4 · log2(nx) · log2(px) · α
+ 4 · log2(nx) · log2(nx) · α + 4 · log2(py) · α + 4 · log2(nx) · α + 4 · nx · log2(nx)β

+ 4 · nx · log2(px)β + 4 · nx · log2(nx)β + 4 · nx · log2(py)β + 20 · nx · nx · f

In the following, we present the analytical performance model for a 3-dimensional
grid:

T 3D = 4 · Lz · (1 + 2Ly(Lx + 1)) · α + 4 ·N2 · (Lz + 2Lx + 2Ly) · β + 48 ·N3 · f
As before, T symbolizes the runtime in microseconds, Li = log2(pi ·N), N denotes
the size of the grid in one dimension. According to the previous equations, the same
rules are applied to these transformations. Furthermore, nx = ny = nz holds in this
equation with respect to Brown et al., so we replace N again by nx. The result is:

T 3D = 4 · log2(pz) · α + 8 · log2(nx) · α + 8 · log2(pz) · log2(py) · log2(px) · α
+ 8 · log2(pz) · log2(py) · log2(nx) · α + 8 · log2(pz) · log2(nx) · log2(px) · α
+ 8 · log2(pz) · log2(nx)2 · α + 8 log2(nx) · log2(py) · log2(px) · α
+ 8 · log2(nx)2 · log2(py) · α + 8 · log2(nx)3 · α
+ 8 · log2(pz) · log2(py) · α + 8 · log2(pz) · log2(nx) · α
+ 8 · log2(nx) · log2(py) · α + 8 · log2(nx)2 · α
+ 4 · nx2 · log2(pz) · β + 4 · nx2 · log2(nx) · β + 8 · nx2 · log2(px)

+ 8 · nx2 · log2(nx) + 8 · nx2 · log2(py) + 8 · nx2 · log2(nx)

+ 48 · nx3 · f

By viewing the general equations of the analytical performance model, they turn out
to be easy to understand. As already mentioned, this could lead to problems, as in
a simple equation too few influence factors are selected and hence, such performance
models contain a higher prediction error.

22 3. Case Studies

3.2 BoomerAMG

In the following, we present the multigrid system BoomerAMG [Yan02], which is
also part of the Hypre library [FY02]. First of all, we describe the characteristics
of BoomerAMG in Section 3.2.1. Then, in Section 3.2.2, we present the analytical
performance model which was proposed by Gahvari et al. [GBS+11].

3.2.1 Functionality

The Algebraic MultiGrid (AMG) [RS87] is a multigrid approach that is focused on
solving extremely large, unstructured grids. An example of an unstructured grid is
given in Figure 3.2, where the grid has no rectangular form as we have shown in
Section 2.4.2. Since the grid has no rectangular form, a lot of optimizations cannot
be applied. For instance, Chen et al. [CLB03] used a non-rectangular grid for the
representation of an ocean model. The absence of specific shape properties makes
the computation of AMG difficult to parallelize. However, with a parallel execution
of unstructured grids on multiple cores, the overall runtime of this approach would
be shortened. To parallize this, an algorithm was proposed by Cleary et al. [CFJ98],
later implemented by Yang et al. [Yan02] and called BoomerAMG.

As done in SMG2000, we vary the processor topology px, py, pz as well as the
grid size nx, ny, nz in each dimension. In this system, they use the same topology
for the processors as in SMG2000. For instance, px = 2, py = 1, pz = 3 results in
ptotal = 2·1·3 = 6 processes. Every process sustains a subgrid of the size nx×ny×nz.
The stepsize and the minimum and maximum value will be adjusted according to
the system specifications of the executed system in Chapter 5.

Figure 3.2: An example of an unstructured grid. In comparison to a structured grid,
this type of grid has no special form.

Furthermore, multiple simulations use BoomerAMG such as groundwater flow [KH14]
and electromagnetic flow [BDGGW05]. Hence, performance models are crucial for
this application for estimating the runtime of a given configuration. In the work of
Gahvari et al. [GBS+11], an analytical performance model is proposed, which we
describe in the following section.

3.2.2 Analytical Performance Model

In this section, we present the analytical performance model for the algebraic multi-
grid system BoomerAMG that was proposed by Gahvari et al. [GBS+11]. In the
work of Gahvari et al., a general analytical performance model is proposed, which is

3.2. BoomerAMG 23

called the baseline model. Additionally, the equation was refined by adding different
penalties regarding the distance between nodes, the bandwidth and the paralleliza-
tion. Since our measurement environment is rather small in comparison to the
different clusters used by Gahvari et al. [GBS+11] for the evaluation, we consider
only the baseline model. In contrast to the model of SMG, they consider more
complex parameters, which have to be obtained by instrumentation. To this end,
they use the TAU Performance System [SM06] to get the number and size of sent
messages via MPI. In Chapter 5, we explain TAU in more detail. In the following,
let P be the total number of processes in a configuration, Ci denotes the number of
unknowns on grid level i, si, ŝi are the average number of non-zeros per row of the
grid in the solve and the interpolation phase, respectively, pi, p̂i denote the global
maximum number of MPI Send and MPI Isend operations on level i for the solve
and interpolation step, ni, n̂i symbolize the maximum number of elements sent with
MPI Send or MPI Isend on level i in the solve and the interpolation phase. Fur-
thermore, ti stands for the time per floating point operation on level i, α for the
latency of MPI messages and β for the inverse bandwidth of MPI per double.

Again, the analytical performance model assumes that the cost of sending an MPI
message with n elements is:

Tsend = α + nβ

Based on this assumption, the overall time of an BoomerAMG execution with G
levels using a V-cycle is modeled as:

TAMG
solve =

G∑
i=0

T i
solve

In comparison to the analytical performance model of SMG2000, this analytical
performance model is more detailed in that every level in the V-cycle is modeled:

T i
solve = T i

smooth + T i
restrict + T i

interp

T i
smooth(α, β) = 6

Ci

P
siti + 3(piα + niβ)

T i
restrict(α, β) =

{
2Ci+1

P
ŝiti + p̂iα + n̂iβ if i < G

0 if i = G

T i
interp(α, β) =

{
0 if i = 0

2Ci−1

P
ŝiti + p̂iα + n̂iβ if i > 0

Additionally, one model was created for different components, namely smoothing,
restriction and interpolation. This model is called the Baseline Model and does not
consider any further delays which may occur.

To sum it up, the analytical performance model proposed by Gahvari et al. [GBS+11]
is more complex than the one from SMG2000. Moreover, this analytical performance
model needs further information from the software run that can be obtained by the
instrumentation with TAU.

24 3. Case Studies

4. Analyzation

Until now, the analytical performance models and the empirical performance-influence
models were described separately. In the following, we describe multiple ways to
compare the different models. This can be categorized by the type of information
we use for the comparison, namely in the syntactical and the semantical comparison
strategy. The first approach, the syntactical comparison, uses only syntactical infor-
mation and is presented in Section 4.1. Finally, in the semantical comparison, the
performance-models are evaluated using their results as we describe in Section 4.2.
The interpretation of the results of both comparison strategies is done in Chapter 5.

4.1 Syntactical Comparison

Since we want to compare all terms with the same predicted influences, we com-
pare the performance models by creating so-called equivalence classes regarding the
appearing variables in a term. For instance, 2 · x + 0.5 · x2 are both terms in the
equivalence class x, as they both describe the influence of the configuration option x.
Furthermore, x has a linear influence on the performance of factor 2 and a quadratic
influence of factor 0.5. In the following, we call the influence factor the value of a
term. Assume, we have the following models:

Tanalytical = 3 · x+ 0.4 · y + 1 · y2 + 2 · log2(x) · y + 1 · x · y

Tempirical = 5 · x+ 0.5 · x2 + 3 · y + 1 · y2

where x, y are numeric options. Firstly, we sort the terms of each model in different
equivalence classes. In the first model, we categorize the terms in the following
equivalence classes:

• x: 3 · x

• y: 0.4 · y + 1 · y2

26 4. Analyzation

• x; y: 2 · log2(x) · y + 1 · x · y

The equivalence classes of the second performance models are:

• x: 5 · x+ 0.5 · x2

• y: 3 · y + 1 · y2

Now, if we want to compare both models, we compare each term of an equivalence
class of one performance model with each term of the same equivalence class of the
other performance model. To do so, we apply the following formula on each term of
both performance models:

scoreOfATerm =

−2 if the other model has no such equivalence class
−1 if the equivalence class exists but no such term

1 + simV alue if the term exists in the other model with a different value
2 if the term exists in the other model with the same value

The simV alue is defined as max(0, 1− |e−a|
a

), where e is the influence of the term
from the empirical performance-influence model and a is the influence of the term
from the analytical performance model. According to the formula above, we reward
a term that is present in both performance models with a positive score, whereas the
absence of the term or of the equivalence class results in negative score. The penalty
has to result in a negative score, since otherwise a performance model considering
all possible configuration options and interactions would achieve a high score. In the
case that a term is present in both models but with different influences, we compute
the similarity of both influences. Therefore, we have used the formula of the error
rate |e−a|

a
and inversed its result. Since we want that this reward is between the

interval [1, 2] and the values of the error rate can be above 1, we take the maximum
of 0 and the inverse error rate. These scores are summed up and build the general
score for the syntactical comparison of both models. The above formula is applied
to every kind of influence function (e.g., logarithmic, quadratic) of a variable only
once. Influence functions that do not appear at all are not considered. In our
example, the score for x in the equivalence class x is only computed once. Thus,
for the equivalence class x, the result would be (1 + (1 − |5−3|

3
)) + (−1) = 0.33, as

x is present in both equivalence classes but x2 only in one. Note that we always
view every term of both equivalence classes. The result for the second equivalence
class, y, is 1 + 2 = 3, as y appears in both classes having a different value, whereas
y2 is completely the same and thus is awarded with the highest score, 2. However,
the lowest score is achieved by the equivalence class x; y, where −2 + (−2) = −4
is the outcome, as no single term was found by the second model and thus, both
terms get the score −2. The overall score is then the sum of the previous results,
0.33 + 3 + (−4) = −0.66.

4.2 Semantical Comparison

In the previous section, we have only included syntactical information in the com-
parison of the models. Now, we include only semantical information consisting of
the information about numeric options as well as the measured configurations. To

4.2. Semantical Comparison 27

compare the models with the real results as well as with each other, the outcome
of the performance model is computed for each configuration. In our example, the
option x has the minimum value 1, the maximum value 100 and a step size of 1.
Furthermore, y has a minimum value of 0, a maximum value of 50 and 2 as step
size.

The results of both models are presented in Figure 4.1 and show that the models
behave differently. Since we have created both performance models for exemplary
use, we can not show real results of measurements at this time.

2 4 6 8 10
Number of configuration

0

2000

4000

6000

8000

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

Analytical Performance Model
Empirical Performance-Influence Model

Figure 4.1: The visualization of the results of some configurations of the exemplary
performance models. The x-axis is the number of configurations, which are sorted
in ascending order regarding the result of the first performance model.

Next, we apply the distance and similarity measures on each of these configurations
to calculate the difference between these models. As a reference, we have calculated
the relative error rate by |measured−predicted|

measured
denoted as Error Rate and use this infor-

mation to investigate if some distance or similarity measures provide similar or even
more useful information. The outcome is presented in Table 4.1 and shows that the
distance and similarity measures behave very differently, which will be discussed in
Chapter 5.

28 4. Analyzation

Table 4.1: The semantical comparison of both performance models. This shows the
results of the different distance and similarity measures. Note that these values can
not be used to form statements, as the underlying performance models were created
for the exemplary illustration.

Name Result

Error Rate 36.1%
Cosine Similarity 87.8%
Jaccard 65.9%
Manhattan Distance 1244
Euclidean Distance 4219132
Minkowski Distance 18170166746
Chebyshev 5200

5. Evaluation

After providing relevant knowledge in Chapter 2 and Chapter 3, we are now able
to compare the analytical performance models and empirical performance-influence
models. Therefore, we describe the setup of our measurements in Section 5.1. Based
on the measurements and on the strategies presented in Chapter 4, we perform a
comparison of the models for SMG2000 in Section 5.2.1 and for BoomerAMG in
Section 5.2.2.

5.1 Setup

The underlying measurements for this thesis were performed on one cluster, which
we describe in Section 5.1.1. In Section 5.1.2, we provide information about the
software used for obtaining the measurements.

5.1.1 Cluster

We executed both case studies on a cluster which consists of normal workstations,
but pointed out that the analytical performance models are created with the con-
sens of higher parallelization than on one quad core CPU. To this end, we performed
all measurements, which are needed for the creation of the empirical performance-
influence model on a cluster, where more parallelization is possible, namely Chi-

maira.

Hardware Specification. The cluster Chimaira consists of 17 nodes, each con-
sisting of an Intel Core i7-4770 @ 3.40 GHz with 4 CPU cores, 8 hyperthreads
and 32 GB RAM. To minimize the latency and to increase the bandwidth when
messages are sent between these nodes, Chimaira has an additional 10Gb network
interface. The nodes are all connected to this switch, whereas only internal messages
are exchanged. Every other traffic is sent over another network switch, where the
latency is consequently unpredictable. Moreover, on every node of the cluster the
Linux operating system Ubuntu 16.04.1 LTS is installed.

Since measurement bias could affect the performance of the software, we met addi-
tional precautions. To ensure that every process is executed by one core, we turned

30 5. Evaluation

off hyperthreading, because the behavior of hyperthreads is unpredictable and also
leads to higher deviations in the performance results.

Moreover, we have repeated each measurement at least 3 times and have also com-
puted the standard deviation of each configuration. The standard deviation of each
configuration was less than 10%.

5.1.2 Software

To determine all unknowns in the analytical performance models, we use different
software that we present in the following.

Benchmark Systems.

HPCC. The High Performance Computing Challenge (HPCC) is a benchmark that
can be used to determine performance characteristics of a system. To this end,
the performance of matrix multiplication, parallel matrix transpositions and band-
width/latency tests are included in this benchmark. In our work, we use the test
b_eff to compute the overall latency denoted as α and inverse bandwidth β of the
analytical performance models described in Section 3.1.2 and Section 3.2.2. There-
fore, we have used version 1.5.0 of the benchmark.

MVAPICH. Another benchmark for the latency and bandwidth of MPI messages
is MVAPICH [Tea02], which is based on MPICH, an implementation of MPI. In
our work, we have used MVAPICH to validate the results obtained by the HPCC
benchmark b_eff. In addition to HPCC, MVAPICH lists the bandwidth of diverse
numbers and sizes of messages. On our clusters, we have used the version MVAPICH2

2.2.

Intel R© LINPACK. LINPACK [DLP03] is another benchmark, which is used for
measuring the double precision floating point operations per second (FLOPS). It is
also used for the global TOP500 list of supercomputers. For our purpose, we have
used LINPACK version 2017.1.013.

SpMV. The Sparse Matrix-Vector multiply (SpMV) [Gah06] is a benchmark for
matrix-vector multiplication. Since different factors such as the density of non-zero
entries in the matrix and its dimension have an impact on the performance of such
operations, it is important to measure the different configurations of a matrix-vector
multiplication.

Code Instrumentation.

TAU. As we mentioned in Section 3.2.2, information, such as the number of mes-
sages sent from one node, is used in the analytical performance model of Boomer-
AMG. To measure the information, we profile the number of sent messages and
their respective. To this end, we have used the Tuning and Analysis Performance
System R© (TAU) [SM06]. This toolkit offers multiple ways of instrumenting the code
of a certain software, namely dynamic, source and selective instrumentation, which
differ in the set of information they provide.

5.2. Obtaining Parameters for the Evaluation 31

Table 5.1: The ranges for the processor topology parameters for Chimaira. The first
value in between square brackets is the minimum value, the second is the maximum
value and the third stands for the step size of the configuration option.

Dimension px py pz

1D [1..4; 1] 1 1
2D [1..4; 1] [1..4; 1] 1
3D [1..4; 1] [1..4; 1] [1..4; 1]

The source instrumentation is capable of profiling user-defined methods, such as the
methods provided by the Hypre library. Therefore, the whole program has to be
compiled with specific compilers provided by TAU. To this end, they provide differ-
ent compilers for different source code languages, in more detail, they use tau_cc,
tau_cxx and tau_f90 for code written in C, C++ and Fortran, respectively. After
the recompilation, each run of the software produces one profile file for each pro-
cessor, which contains information about how much time was spent in user-defined
and MPI methods as well as the number of messages and number of elements sent
in each of this method. To obtain the information of every single level from the
V-cycle explained in Section 2.4, we have modified the code by splitting each level
in one separate method.

Additionally, TAU offers a tool, pprof for the textual representation of the instru-
mentation. For our evaluation, we have used pprof for extracting the desired infor-
mation.

5.2 Obtaining Parameters for the Evaluation

In this section, we describe how we have obtained the parameters for the mea-
surements of SMG2000 and BoomerAMG as well as for the analytical performance
models. Firstly, we describe how we have measured the performance of SMG2000
in Section 5.2.1 and afterwards we do the same for BoomerAMG in Section 5.2.2.
Moreover, we show the results of the benchmarks for the latency, bandwidth and
floating point operations per second in Section 5.2.3.

5.2.1 SMG2000

To determine the minimum and maximum value as well as the step size, we investi-
gate on every numeric configuration. On the one hand we have px, py and pz, which
are the number of processors in each dimension. These parameters were chosen with
a minimum value of 1, a maximum value of 4 and step size 1 since we were restricted
in the overall number of processes. On the other hand, nx, ny and nz denote the
grid size of every process in each dimension. The selected values of each of these
parameters depends on the cluster and the dimension of the grid, which is presented
in Table 5.2 for Chimaira. In the table, we use the notation from Section 2.2.2 for
defining the ranges of the numeric options. The maximum value of each parameter
was chosen in such a way that the main memory is not completely used, as it would
produce OutOfMemory errors.

32 5. Evaluation

Table 5.2: The numeric option ranges of the different dimensions and the constraints
for the cluster Chimaira.

Dimension nx ny nz Constraint

1D [3 500 000..4 000 000; 1 000] 1 1 -
2D [1 000..3 700; 10] [1 000..3 700; 10] 1 nx = ny
3D [50..220; 10] [50..220; 10] [50..220; 10] nx = ny = nz

After determining the range of the numerical options, we have measured each config-
uration three times. For the evaluation, the standard deviation of every configuration
was computed and is less than 10% for every measured configuration.

5.2.2 BoomerAMG

Firstly, the parameters for the processor topology, px, py and pz are chosen in the
same way as in SMG2000, which is shown in Table 5.1. The only difference to
SMG2000 is that we use at least 2 nodes on Chimaira, since the analytical per-
formance model is focused on a high parallel execution according to Gahvari et
al. [GBS+11]. Besides, the analytical performance model of BoomerAMG does not
yield any constraints on the grid for each processor. The ranges of the numerical
options in BoomerAMG are shown in Table 5.3.

Table 5.3: The numeric ranges for the subgrid sizes of BoomerAMG for Chimaira.

nx ny nz

[20..70; 10] [20..70; 10] [20..70; 10]

Obtaining the information of the analytical performance model of BoomerAMG was
more difficult than SMG2000, as the analytical performance model needs specific
values such as the number of messages sent by every node. Therefore, we have pro-
filed the execution of each configuration with TAU. Since this has led to a much
higher runtime, we have additionally executed every configuration without TAU.
Hence, the executions with TAU instrumentation are only used to extract the infor-
mation related to MPI, whereas the executions without TAU provides us with the
performance information.

5.2.3 Benchmarks

The values computed in this section are used when the analytical performance mod-
els are evaluated. These values are the latency (α), the inverse bandwidth per value
of type double (β) and the inverse double-precision floating point operations per
µsec (f). To this end, we have used the software that is presented in Section 5.1.2.
We have measured the latency and the bandwidth for different numbers of nodes on
Chimaira. Since we use at least 1 and at most 7 nodes per run, we have measured
the latency and bandwidth for 1-7. For our cluster, the number of nodes for every
configuration is calculated firstly and afterwards, the corresponding values from the
table are used. Moreover, we have used the values α = 0 and β = 0 for every se-
quential run. The Table 5.4 shows the results and conversions of the latency and the
bandwidth. Moreover, the value for Flops computed by Intel R© LINPACK is 25.14
GFlops on Chimaira, which corresponds to 0.039 nsec/flop.

5.3. Learning Performance-Influence Models 33

Table 5.4: The latency and bandwidth results on different amounts of processes on
Chimaira. The latency was a direct result of the benchmark, whereas the inverse
bandwidth has been calculated from the bandwidth.

#Nodes Latency (nsec) Bandwidth (MByte/s) Inverse Bandwidth (nsec/double)

1 290 874 9.15
2 7 866 204 39.21
3 6 856 139 57.55
4 11 625 132 60.60
5 12 941 122 65.57
6 13 735 117 68.37
7 13 754 113 70.79

5.3 Learning Performance-Influence Models

Previously, in Section 2.2, we presented the tool SPL Conqueror for the creation of
empirical performance-influence models. There, we have introduced different sam-
pling heuristics for numerical options. Some of these sampling heuristics provide
a parameter for specifying the number of elements in the learning set, namely the
Plackett-Burman and the Random design. In the evaluation, we show the results
of the different sampling heuristics in relation to the considered number of configu-
rations. Another parameter is the seed in the Random design. For the evaluation,
we have used the seeds 0 to 5 to minimize the influence of a generated empirical
performance-influence model that achieves very good or very bad results. Another
experimental design that allows different configurations is the Plackett-Burman de-
sign. As mentioned in Section 2.2.2, the design provides 6 different configurations.
We have chosen 4 of these and depicted in Table 5.5.

Table 5.5: The chosen set of the Plackett-Burman design.

Measurements Level

9 3
25 5
125 5
49 7

Moreover, because of the random nature of the Random design, we always calculate
the mean value and the standard deviation of all seeds of a sample size. In the
graphical representation of the results, we have always taken the empirical perfor-
mance model with the lowest error rate with respect to the measurement results.
We do this, as we want to show the best empirical performance-influence model that
SPL Conqueror was able to learn with the sampling heuristics.

Besides, SPL Conqueror only learns logarithmic influence to the base 10, whereas
the logarithmic functions in the analytical performance model of SMG2000 are to
the base 2. However, we have made use of the logarithmic law loga(x) = logb(x)

logb(a)
to

convert the base and hence, this represents no restriction.

34 5. Evaluation

5.4 Comparison

In this section, we present the different comparison techniques described in Chapter 4
based on the multigrid systems SMG2000 and BoomerAMG. When performing the
syntactical comparison of the performance models, we can choose between multiple
values for α, β and f for computing the influence of a term. We observed that the
selection of the value for these parameters has a low impact on the score of the
syntactical comparison. To this end, we use the benchmark values for 4 nodes on
Chimaira, as this is the median value. The results of the program are presented in
Section 5.4.1 for SMG2000 and in Section 5.4.2 for BoomerAMG.

5.4.1 SMG2000

In this section, we investigate the comparison of the analytical performance models
and the empirical performance-influence models for 1 to 3 dimensions of SMG2000.
For each dimension, we perform the syntactical as well as the semantical comparison
strategy.

1-Dimensional Grid.

For the 1-dimensional grid, Brown et al. [BFJ00] proposed the following analytical
performance model:

T 1D = 2 · log2(px) · α + 2 · log2(nx) · α + 2 · log2(px) · β + 2 · log2(nx) · β
+ 6 · nx · f

Syntactical comparison. As a reminder, in the syntactical comparison the score
according to the function presented in Section 4.1 between the analytical perfor-
mance model and each empirical performance-influence model is computed. In the
first row of Table 5.6, we present the achieved scores using different sampling heuris-
tics for the generation of the empirical performance-influence models. The highest
results were achieved by empirical performance-influence models using the Full Fac-
torial and the Central Composite design. The syntactical score of both sampling
heuristics was −4.2. The equation of the empirical performance-influence model
generated with the Full Factorial design is as follows:

T 1D
FF = −6.023− 0.023 · px+ 0.976 · log10(nx) + 0.014 · px2

The equation produced with the Central Composite is:

T 1D
CC = −6.133− 0.035 · px+ 0.994 · log10(nx) + 0.016 · px2

Since the score of both empirical performance-influence models is almost the same,
we observe the same equivalence classes and terms in both equations of the empir-
ical performance-influence models. These equations have predicted the logarithmic
but not the linear impact of nx. In contrast to the configuration option nx, the
logarithmic impact of px was not found in the equations, but a linear influence of
this option was found instead.

5.4. Comparison 35

Table 5.6: The comparison of different sampling heuristic, namely Full Factorial
(FF), Plackett-Burman (PB), Central Composite (CC) and Random design (R) with
the analytical performance model. The measures were the Syntactical Comparison
(SC), the Error Rate (ER), the Cosine Similarity (CS), the Jaccard Similarity (JS),
the Manhattan Distance (MD), the Euclidean Distance (ED), the Minkowski Dis-
tance (MiD) and the Chebyshev Distance (CD). In the Random design, the standard
deviation is included.

Measures FF PB(9,3) PB(25,5) PB(125,5) PB(49,7) CC R(50) R(125)

SC −4.2 −7 −4.3 −4.3 −4.3 −4.2 −6.3(±14%) −5.1(±18%)
ER 9.8% 9.4% 9.8% 9.8% 9.2% 10% 10.2%(±3%) 9.9%(±2%)
CS 99.3 99.4% 99.3% 99.3% 99.3% 99.2% 99.3%(±0.02%) 99.3%(±1.9%)
JS 90.3% 90.7% 90.2% 90.2% 90.2% 90% 90.1%(±0.17)% 90.2%(±0.1%)
MD 0.044 0.042 0.044 0.044 0.044 0.045 0.045(±1.5%) 0.044(±0.9%)
ED 0.0027 0.0023 0.0027 0.0027 0.0027 0.0029 0.0026(±2.3%) 0.0026(±5%)
MiD 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.00018(±6.6%) 0.00018(±11.5%)
CD 0.087 0.079 0.089 0.089 0.089 0.094 0.086(±4.1%) 0.086(±4%)

0 500 1000 1500 2000
Number of configuration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

Analytical Performance Model
Empirical Performance-Influence Model
Measurements

Figure 5.1: Results of the performance models in comparison to the execution time
of the measurements in seconds. The configurations are sorted in ascending order
according to the values obtained by the measurements.

Semantical comparison. The semantical comparison includes only semantical
information by evaluating the performance models for every measured configuration.
These information includes benchmark results shown previously in Section 5.2.3 and
we show the results in Figure 5.1. In this figure, we use the empirical performance-
influence model with the lowest error rate to the measurements, which was the
empirical performance-influence model generated by using the Full Factorial design
with 0.6%. Although we only show the empirical performance-influence model with
the lowest error rate, the worst achieved error rate was 3.4% among all empirical
performance-influence models. In contrast to this result, the analytical performance
model has an error rate of 99%. After further investigation, we supposed that the
benchmarked values were too low. In fact, as we change the values for the floating
points operations per second, the analytical performance model produces better
results. We observed that multiplying the latency, the inverse bandwidth and the
inverse Flops by 500 results in a much better model. As soon as we encountered

36 5. Evaluation

0 500 1000 1500 2000
Number of configuration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

Analytical Performance Model
Empirical Performance-Influence Model
Measurements

Figure 5.2: Results of the analytical performance model after adjusting the bench-
mark values.

Table 5.7: The results of the different measures when comparing the 1-dimensional
analytical performance model results with the measurements.

Measures Results

ER 9.7%
CS 99.3%
JS 90.3%

MD 0.044
ED 0.0027
MiD 0.0002
CD 0.13

this problem, we contacted the authors of Brown et al. [BFJ00]. Unfortunately, we
have received no response at the time of writing. The outcome of this function is
depicted in Figure 5.2 and has an error rate of 9.7%. Since we only want to compare
performance models, we use the improved results of the analytical performance
model in the following.

After the evaluation of both performance models, we use different distance and
similarity measures. In Table 5.6, we show the results of the comparison of the
generated empirical performance-influence model based on the different sampling
heuristics. Additionally, we have executed the distance and similarity measures on
the results of the analytical performance model and the measurements and received
the results depicted in Table 5.7.

Discussion. Now, that we have presented the results of the 1-dimensional grid,
we discuss the obtained results. The analytical performance model has a low error
rate of 9.7% in relation to the measurements. Furthermore, the error rates of the
empirical performance-influence models to the measurements are between 0.7% and
3.4%.
Considering the results of the distance measures, we observe that they prefer other

5.4. Comparison 37

sampling heuristics than the error rate. The empirical performance-influence model
generated by using the Plackett-Burman design with 49 measurements and 7 levels
is preferred by the error rate. The empirical performance-influence model made by
using the Plackett-Burman design with 9 measurements and 3 levels is preferred by
all similarity and distance measures. By further investigation of the results of the
distance measures, we observe that the results are below 1 due to the runtime of
the software, which is always below 1 on the 1-dimensional grid. Furthermore, the
Minkowski distance has lower results than the Euclidean distance and this, in turn,
lower results than the Manhattan distance.

2-Dimensional Grid.

On the 2-dimensional grid, there are additional configuration options compared to
the 1-dimensional grid, namely py and ny. However, ny can be replaced by nx due
to the constraint that nx = ny. As result, the analytical performance model of the
2-dimensional grid from Section 3.1.2 is the following:

T 2D = 4 · log2(py) log2(px)α + 4 · log2(py) · log2(nx) · α + 4 · log2(nx) log2(px) · α
+ 4 · log2(nx)2 · α + 4 · log2(py) · α + 4 · log2(nx) · α + 4 · nx · log2(nx) · β
+ 4 · nx · log2(px) · β + 4 · nx · log2(nx) · β + 4 · nx · log2(py) · β
+ 20 · nx2 · f

Syntactical Comparison. As the 2-dimensional case is more complex, the empir-
ical performance-influence models from SPL Conqueror also become more complex
compared to the 1-dimensional case. The achieved results of the syntactic com-
parison are listed on the first row of Table 5.8. Here, the highest result of the
comparison is −12, which is achieved by the Plackett-Burman heuristic with a mea-
surement size of 49 and 7 levels. The corresponding formula of the learned function
with the highest result is the following:

T 2D
PB(49,7) = − 2.279− 12.6 · log10(py)− 9.148E-07 · nx2 + 7.302 · log10(px)

+ 2.986E-10 · nx3 + 3.742 · py − 0.464 · px

In relation to the analytical performance model, the logarithmic influence of py was
identified correctly. Apart from py, nx2 is the only other term that appears in both
models. However, the influence of nx2 has a negative impact on the performance in
the empirical performance-influence model, whereas in the analytical performance
model it is positive. The logarithmic influence of px also appears in the analytical
performance model, but only in an interaction with other configuration options and
hence, in different equivalence classes.

In this case, a high syntactic similarity score leads to higher simplicity of the em-
pirical performance-influence model when the analytical performance model is also
simple.

Semantical Comparison. As in the 1-dimensional case, we have the problem
that the results of the analytical performance model are too low. The results of our
original analytical performance model results is presented in Figure 5.3. As before,

38 5. Evaluation

Table 5.8: Result of the semantic comparison on 2-dimensional grids.
Measures FF PB(9,3) PB(25,5) PB(125,5) PB(49,7) CC R(50) R(125)

SC −18.9 −19 −12.9 −26 −12 −22 −17.1(±25.9%) −21(±22.2%)
ER 55.6% 174.7% 103.2% 61.6% 52.5% 126.7% 102.7%(±53%) 111.9%(±39.4%)
CS 91.4% 91.3% 93.6% 89.9% 93.8% 81.9% 91.7%(±1.5%) 92.3%(±0.9%)
JS 66% 63.3% 69.1% 64.1% 69.4% 52.1% 66%(±2.8%) 67.1%(±1.4%)
MD 1.658 1.828 1.468 1.771 1.436 2.540 1.648(±6.5%) 1.584(±3.6%)
ED 5.491 5.858 4.594 6.163 4.277 10.786 5.396(±12.2%) 5.159(±6.2%)
MiD 22.843 25.747 18.644 26.903 19.530 61.251 22.677(±19%) 21.525(±8.5%)
CD 5.353 7.587 5.684 5.784 5.655 12.169 5.765(±12.1%) 5.638(±5%)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of configuration

0

2

4

6

8

10

12

14

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

Analytical Performance Model
Empirical Performance-Influence Model
Measurements

Figure 5.3: The original results of the analytical performance models in relation to
the best empirical performance-influence model and the measurements.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of configuration

0

2

4

6

8

10

12

14

16

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

Analytical Performance Model
Empirical Performance-Influence Model
Measurements

Figure 5.4: The results of the analytical performance models after being multiplied
by the factor 500.

we have multiplied the results by factor 500 and have received a better result, as
shown in Figure 5.4. In both models, we use the empirical performance-influence

5.4. Comparison 39

Table 5.9: The results of the different measures when comparing the analytical
performance model results of the 2-dimensional grid with the corresponding mea-
surements.

Measures Results

ER 63%
CS 87.9%
JS 62.5%
MD 1.869
ED 7.152
MiD 34.768
CD 6.702

model with the lowest error rate to the measurements, namely the Plackett-Burman
with a measurements size of 125 and a level value of 5 with 9.5%. The error rate
of this empirical performance-influence model in relation to the measurements was
9.5%, whereas the worst was 85.3% by Plackett-Burman considering 9 measurements
and 3 levels.

Although both performance models depicted in Figure 5.4 show similar behavior, the
runtime predictions of both models largely deviate from each other. This behavior is
also expressed by applying the distance and similarity measures to the results, as we
show in Table 5.8. In the table, the error rate on up to 174.7% is much higher than
in the 1-dimensional grid, and accordingly, the Cosine and Jaccard similarity are
much lower. The value of the distance metrics are higher than in the 1-dimensional
grid, but this may also be a result of the higher runtime of SMG2000.
In Table 5.9, we show the outcome of the comparison between the analytical per-
formance model from the measurements of the 2-dimensional grid. As previously
by comparing both types of performance models, we obtain the result, that the
analytical performance model has high deviations.

Discussion. Regarding the error rate to the measurements, the results of the em-
pirical performance-influence models range between 9.5% and 85.3%. We observe
that the error rate of the empirical performance-influence models is increasing as
also the error rate of the analytical performance model to the measurements does.
When comparing the best results of the error rate, the similarity measures, the Man-
hattan and Euclidean distance, then the empirical performance-influence models of
the Plackett-Burman with 49 measurements and 7 levels is preferred. Additionally,
this empirical performance-influence model has the best result in the syntactic com-
parison. The only exceptions are the Minkowski and the Chebyshev distance. The
former prefers the result of the Plackett-Burman design with 25 measurements and
5 levels, whereas the latter prefers the empirical performance-influence model of the
Full Factorial design.
Apart from that, the result of the distance similarity measures do not correspond to
the error rate as can be seen on the Full Factorial design and the Plackett-Burman
design with 25 measurements and 5 levels. Although the error rate is higher, the
similarity of the empirical performance-influence models is not smaller, but higher.
Except for the Chebyshev distance, also the distance measures obtain lower dis-
tances. This behavior indicates that the error rate, the similarity and the distance

40 5. Evaluation

measures behave completely differently from each other.
In contrast to the results on the 1-dimensional grid, the results of the distance mea-
sures are above 1. We observe, that now the Minkowski distance has a greater value
than the Euclidean distance and this, in turn, a greater value as the Manhattan
distance, which is the opposite behavior of the 1-dimensional grid.

3-Dimensional Grid.

The analytical performance model of the 3-dimensional case is the most complex
one for the SMG2000 system, as it does allow the configuration options px, py, pz
for the processor topology and nx, ny and nz for the grid per processor. Although
nx, ny and nz are configurable options, we have to use the same value for all of
it, according to Section 3.1.2. To this end, we only use nx as configuration option
for the grid size. As a reminder, the formula of the 3-dimensional grid presented in
Section 3.1.2 is as follows:

T 3D = 4 · log2(pz) · α + 8 · log2(nx) · α + 8 · log2(pz) · log2(py) · log2(px) · α
+ 8 · log2(pz) · log2(py) · log2(nx) · α + 8 · log2(pz) · log2(nx) · log2(px) · α
+ 8 · log2(pz) · log2(nx)2 · α + 8 log2(nx) · log2(py) · log2(px) · α
+ 8 · log2(nx)2 · log2(py) · α + 8 · log2(nx)3 · α
+ 8 · log2(pz) · log2(py) · α + 8 · log2(pz) · log2(nx) · α
+ 8 · log2(nx) · log2(py) · α + 8 · log2(nx)2 · α
+ 4 · nx2 · log2(pz) · β + 4 · nx2 · log2(nx) · β + 8 · nx2 · log2(px)

+ 8 · nx2 · log2(nx) + 8 · nx2 · log2(py) + 8 · nx2 · log2(nx)

+ 48 · nx3 · f

Syntactical Comparison. Since we have more configuration options than in the
other cases, each performance model has multiple different equivalence classes when
performing the syntactical comparison. Thus, the empirical performance-influence
models may differ more from the analytical performance model than in the previous
cases, as we show in Table 5.10. The best score is−28 and is achieved by performance
model using the Full Factorial design, whereas the worst score was −40.9 by the
Plackett-Burman design with 9 measurements and 3 levels. The formula of the
sampling heuristic with the best score is as follows:

T 3D
FF = 5.411− 0.968 · log10(py)− 0.0002 · nx2 + 2.943E-06 · nx3

+ 4.985E-06 · nx2 · log10(py) + 5.662E-06 · nx3 · log10(pz)

+ 5.006E-06 · nx3 · log10(px)− 1.715 · log10(pz)

− 2.343 · log10(nx) + 3.73E-06 · nx3 · log10(pz) · log10(px)

+ 3.671E-06 · nx3 · log10(py) · log10(pz)− 0.719 · log10(px)

By further investigating this formula, the complexity reminds of the formula in the
2-dimensional grid. In fact, the formula above considers a high number of configu-
ration option interactions, but this does not surprise in relation to the complexity
of the analytical performance model, as this also has a higher complexity than the

5.4. Comparison 41

previous analytical performance models. In comparing both models, we observe
that increasing complexity of the empirical performance-influence models means a
higher probability of predicting the influence of interactions which do not appear
in the analytical performance model. Although the terms log10(px), log10(py) and
log10(pz) appear in the empirical performance-influence model, they do not appear
in one combination as in the analytical performance model. Additionally, the term
nx2 appears in the predicted model of the Full Factorial design but not in the analyt-
ical performance model, which leads to further negative scores. Therefore, different
combinations of nx2 with the other options px, py, pz and nx occur, whereas in the
empirical performance model only nx2 · log(py) is present.

Table 5.10: Best and worst results of the syntactical and semantical comparison
strategy in the 3-dimensional grid.

Measures FF PB(9,3) PB(25,5) PB(125,5) PB(49,7) CC R(50) R(125)

SC −28 −40.9 −35.9 −30.9 −34 −34 −35.3(±5.3%) −36.5(±9.7%)
ER 176.1% 159.5% 208.5% 161.6% 280.8% 107.9% 236.1%(±20%) 319.3%(±98.9%)
CS 79.7% 70.1% 74.8% 80.3% 77.4% 80% 78.4%(±1.5%) 79.8%(±1.7%)
JS 51% 37.6% 47.2% 52.07% 48.6% 52.04% 49.4%(±1.9%) 50.4%(±2.7%)
MD 18.6 28.5 20.8 18.1 20.4 18.9 19.2(±3.3%) 19.3(±4.3%)
ED 981 1 441 1 181 952 1 069 958 1 042(±4.2%) 973(±5.9%)
MiD 68 977 98 011 97 632 68 658 73 223 63 193 78 613(±7.2%) 66 407(±8.1%)
CD 122.88 127.1 134.6 137.1 103.9 122.4 129.8(±7.9%) 117.8(±5.2%)

0 200 400 600 800 1000 1200
Number of configuration

0

50

100

150

200

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

Analytical Performance Model
Empirical Performance-Influence Model
Measurements

Figure 5.5: Results of the analytical performance model, the measurements and the
empirical performance-influence model of the Random design with sample size of
125 and seed 4.

Semantical Comparison. When performing the semantical comparison, we have
again recognized that the values of the analytical performance model are far too low.
We present the original results in Figure 5.5 and the results after multiplying the α,
β and f values with 500 in Figure 5.6. In these figures, the empirical performance-
influence model using the Full Factorial design with an error rate of 17.6% in relation
to the measurement results is used.

As the deviation of the predictions of the analytical performance model on the
2-dimensional grid was already high, it is even higher in this case, as shown in

42 5. Evaluation

0 200 400 600 800 1000 1200
Number of configuration

0

50

100

150

200

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

Analytical Performance Model
Empirical Performance-Influence Model
Measurements

Figure 5.6: Improved results by multiplying the benchmarked values by 500, as
before.

Table 5.11: The results of the different measures when comparing the analytical
performance model results with the measurements in the case of 3-dimensional grids.

Measures Results

ER 167%
CS 79.1%
JS 50.4%
MD 19.8
ED 1059
MiD 72948
CD 107.2

Table 5.11. Additionally, the same behavior applies to the comparison between the
analytical performance model and the empirical performance-influence model, which
we show in Table 5.10. In this case, the empirical performance-influence created with
the Central Composite design outperforms the other empirical performance-influence
models regarding the error rate.

Discussion. In investigating on the results depicted in Figure 5.6, the results of
the analytical performance model are more widespread than on 1-dimensional and
2-dimensional grids. This deviation from the measurement results does explain the
high error rate of 167%. Moreover, the error rate of empirical performance-influence
models ranges between 17.6% and 420.9%. The worst result was achieved by the
model created using the Plackett-Burman design with 9 measurements and 3 levels.
Accordingly high are the error rates to the results of the empirical performance-
influence models of the different sampling heuristics, which begin at 107.9%. Ex-
cept for the Minkowski and Chebyshev distance, the distance and similarity mea-
sures prefer the empirical performance-influence model created using the Plackett-
Burman with 125 measurements and 5 levels. On 3-dimensional grids, the empirical
performance-influence model created using the Central Composite design is preferred

5.4. Comparison 43

by the error rate and the Minkowski distance. The empirical performance-influence
model generated using the Plackett-Burman design with 49 measurements and 7
levels is preferred by the Chebyshev distance.

5.4.2 BoomerAMG

We compare the analytical performance model and the empirical performance-influence
models of BoomerAMG in this section. As Gahvari et al. [GBS+11] provide multi-
ple analytical performance models by introducing distance, bandwidth and multicore
penalty, we consider only the baseline model. To compare both performance models
with our program, we have to rewrite the analytical performance model as follows:

T = Solve0 +
G−1∑
i=1

Solvei + Solvecoarsest

Solve0 = 6 · C0

P
· s0 · t0 + 3 · p0 · α + 3 · n0 · β + 2 · C1

P
· ŝ0 · t0 + p̂0 · α + n̂0 · β

Solvecoarsest = 6 · Ci

P
· si · ti + 3 · pi · α + 3 · ni · β + 2 · Ci−1

P
· ŝi−1 · ti + p̂i−1 · α

+ n̂i−1 · β

Solvei = 6 · Ci

P
· si · ti + 3 · pi · α + 3 · ni · β + 2 · Ci+1

P
· ŝi · ti + p̂i · α + n̂i · β

+ 2 · Ci−1

P
· ŝi−1 · ti + p̂i−1 · α + n̂i−1 · β

In our reformulation, Solve0 is the formula for level 0, Solvecoarsest for the coarsest
level and Solvei for every other level. This is necessary, as the in the finest level no
interpolation and on the coarsest level no restriction is performed. We have used
SPL Conqueror to learn on the different cycle levels and not on the overall runtime.
This has the advantage that the empirical performance-influence models use only
the information which is specific to their level, and not the overall information.
Furthermore, considering the influences of options, which are related to smaller parts
of the code increases the accuracy of the performance prediction, as encountered by
Grebhahn et al. [GSKA16]. After learning on all cycle levels, we collect the empirical
performance-influence models and use it for both comparison strategies.

Syntactical comparison. The score of achieved in the syntactical comparison are
lower than in all dimension cases of SMG2000. The best score, −88.9 is achieved by

44 5. Evaluation

the Plackett-Burman design with 9 measurements and 3 levels and the performance
model is as follows:

T = − 417.515 + 2.495E-05 · t20 + 0.002 · C0 − 0.021 · C2 + 221.213 · log10(C1)

+ 0.005 · p̂21 − 116.244 · log10(ny) + 0.279 · p2 − 150.592 · log10(ny)

− 31.279 · log10(C4) + 0.312305542038874 · p3 − 157.801 · log10(ny)

+ 0.007 · nx2 + 18.55 · C5 − 2.473 · n4 + 0.008 · ip24 + 1.034 · nx− 0.331 · C5

+ 0.064 · p̂25 − 1.304 · C2
6 + 0.063 · p̂4

As the formula above uses variables, which depend on the level, it does not use
all of these variables. For instance, the grid size of all levels has an influence on
the performance prediction except for the grid size in level 3, C3, whereas in the
analytical performance model the grid size of every single level is relevant in relation
to the overall number of processes. In the empirical performance-influence model,
the number of processes, P does not appear directly. Since P is the product of px,
py and pz and none of them appears in the empirical performance-influence model
neither, the number of processors is not relevant in this empirical performance-
influence model.

The formula of the empirical performance-influence model using Plackett-Burman
design with 125 measurements and 5 levels obtains the worst score. As a reminder,
we have made the observation that the sampling heuristic with the worst score in the
3-dimensional grid of SMG2000 was rather simple when the analytical performance
model was more complex than the others. However, this does not apply here, as
the formula is so complex that it would fill out 1 full page. Again, we observe that
the higher the complexity of both performance models is, the lower the score in the
syntactical approach.

Semantical comparison. Now, we investigate on the semantical comparison of
BoomerAMG in more detail. Unlike SMG2000, the results of the analytical perfor-
mance model do not need further adjustments and are close to the measurements.
In Figure 5.7, we show the overall results in more than 6000 different configurations
in relation with the model learned using the Full Factorial design that has achieved
a minimum error rate of 13.2% regarding the measurement results.

In Table 5.12, we show the results of the different distance and similarity measures.
The values of the distance measures result are below 1, since the measured runtime
is always below 1. However, the similarity and error results are better than on the
3-dimensional grid of SMG2000, because the analytical performance model is more
accurate, as we show in Table 5.13.

Discussion. Although the analytical performance model of BoomerAMG does not
need further scaling as in SMG2000, the error rate to the measurement results is
higher than on the 1-dimensional grid of SMG2000. The error rates of the empiri-
cal performance-influence models ranges between 13.2% and 31.3%, which is higher
than in the 1-dimensional grid of SMG2000 but lower than in the 2-dimensional grid
of SMG2000.
The preferred empirical performance-influence model of all measures except for the
Cosine similarity, is the one generated using the Full Factorial design. In contrast to

5.4. Comparison 45

0 1000 2000 3000 4000 5000 6000
Number of configuration

0.00

0.05

0.10

0.15

0.20

0.25

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

Analytical Performance Model
Empirical Performance-Influence Model
Measurements

Figure 5.7: Results of the baseline model of BoomerAMG in relation to the Plackett-
Burman sampling heuristic and the measurements.

Table 5.12: Results of the syntactical and semantical comparison strategies in
BoomerAMG by comparing the results of the analytical performance models and
the empirical performance-influence models.

Measures FF PB(9,3) PB(25,5) PB(125,5) PB(49,7) CC R(50) R(125)

SC −156 −88.9 −133.9 −196.9 −181.9 −105 −182(±11.1%) −164.1(±7.5%)
ER 17.8% 19.8% 22.5% 20.4% 24.7% 46.6% 28.4%(±25.3%) 21.2%(±16%)
CS 96.6% 96.9% 92.4% 95.8% 94.9% 96.9% 94.2%(±1.8%) 96.2%(±0.6%)
JS 82% 78.8% 76.2% 81% 80.2% 72.5% 78.2%(±3.6%) 81.1%(±2.1%)
MD 0.019 0.025 0.027 0.02 0.021 0.035 0.024(±16.2%) 0.02(±12.4%)
ED 0.0007 0.001 0.0019 0.0009 0.001 0.0017 0.0013(±31.3%) 0.0008(±26.2%)
MiD 0.00004 0.00005 0.0002 0.00005 0.0001 0.0001 0.0001(±67%) 0.00005(±44.1%)
CD 0.09 0.15 0.70 0.13 0.31 0.11 0.36(±49.6%) 0.19(±36.1%)

that, the empirical performance-influence model generated using the Central Com-
posite design and Plackett-Burman design with 9 measurements and 3 levels are
chosen by the Cosine similarity.
Since the runtime execution values are all below 1, the results of the distance mea-
sures are also below 1. We remark that the results of the Minkowski distance are
lower than the ones from Euclidean distance and this, in turn lower than the results
of the Manhatten distance.
Regarding the analytical performance model, Gahvari et al. [GBS+11] offer further
refinings of the baseline model by adding penalties to the latency (α) and the band-
width (β). However, this is not practical in our case, since this would increase
the prediction results further and would lead to a higher error rate regarding the
analytical performance results in the scale of 0.15 to 0.25.

46 5. Evaluation

Table 5.13: The results of the different measures when comparing the analytical
performance model results from the baseline model for BoomerAMG with the mea-
surements.

Measures Results

ER 22.4%
CS 95.3%
JS 77.6%
MD 0.025
ED 0.0011
MiD 0.00006
CD 0.113

5.5 Discussion

Since we have presented the achieved results by the comparison in the last sections,
we summarize the results and answer the questions from Chapter 1, which are an-
swered in the following.

RQ1: Is it possible to identify the influences proposed by analytical
performance models?

On the base of the previous evaluation, we are able to answer this question. In
considering the syntactical similarity between analytical performance models and
empirical performance-influence models, we have obtained similar, but no equal em-
pirical performance-influence models. This may be caused due to the fact that the
domain experts have not considered certain influence factors or declared them as
unrelevant, although they are relevant. Since the syntactical score was always neg-
ative, we have not managed to learn performance models with the same terms and
also not with the same influences. Therefore, we answer to this question with no
with respect to the tool SPL Conqueror and the used sampling heuristics.

RQ2: Does the sampling strategy have a high influence on the similarity
of empirical performance-influence models to analytical performance
models?

For answering this question, we relate to both comparison strategies, which calculate
the similarity between two performance models based on the syntactical and seman-
tical information of the performance models. In this work, we have investigated
the Full Factorial, Random, Plackett-Burman and the Central Composite designs
as sampling heuristics for the generation of empirical performance-influence models,
which we consider next.

Full Factorial Design. Since the Full Factorial design takes the whole config-
uration space as learning set, this sampling heuristic has the lowest error rates in
relation to the measurements. Moreover, the error rate from the analytical per-
formance model to the measurements is always higher than the error rate from the
empirical performance-influence model generated using the Full Factorial design. To

5.5. Discussion 47

this end, the error rate in relation to the analytical performance models of SMG2000
is only middle-rate. Furthermore, the error rate to the analytical performance model
is always very similar to the error rate of the analytical performance model with the
measurement. In relation to the syntactical comparison, this design has received the
best scores in SMG2000. The only exception is the 2-dimensional case of SMG2000,
where this design has received moderate results. Although this design has achieved
good scores in the both comparison strategies of SMG2000, the requirement of mea-
suring all configurations in the configuration space is oftenly too difficult to satisfy.

Random Design. Since the Random design is based on a seed, which may be
selected randomly, we have presented the mean value of the resulting empirical
performance-influence models of the Random design and the according standard de-
viation. In our results, the standard deviation of the Random design lasted between
2-98.9% with respect to the error rate to the analytical performance model. In fact
it has turned out that the Random design oftenly contains the best but in the same
time the worst results in relation to Plackett-Burman and Central Composite. Fur-
thermore, the sample size of the Random design has lead to different results in both
case studies, where none clearly outperforms the other. To sum it up, the Random
design is no good choice if one is interested in finding a syntactically or semantically
similar performance model.

Plackett-Burman Design. In our syntactical comparison to the analytical per-
formance models, the Plackett-Burman design shows the best results in relation
to the Central Composite and Random design. Only in the 1-dimensional case of
SMG2000, Plackett-Burman was slightly worse than Central Composite. Further-
more, this design has the lowest error rate in the semantical comparison to the ana-
lytical performance models in BoomerAMG and the 1-dimensional grid of SMG2000,
where the error rate of the analytical performance model is below 10%. Compar-
ing the presented Plackett-Burman configuration with each other, the designs with
9 measurements and 3 levels and with 49 measurements and 7 levels alternatingly
achieved the best results.

Central Composite Design. The results of the Central Composite design in
the syntactical comparison were never the worst in our case studies. Furthermore,
the score of the syntactical comparison outperformed the Random and Plackett-
Burman sampling heuristics only in the 1-dimensional. In relation to the semantic
comparison, this sampling heuristic has achieved the best results when the error of
the analytical performance model to the measurements was the highest.

Based on the observations on the different designs, the selection of the design has in
fact a high influence on the similarity of the result empirical performance-influence
model and the analytical performance model. Hence, the answer to this question is
yes. Unfortunately, we have not found a sampling heuristic that always performs
best in this task.

48 5. Evaluation

RQ3: Is it beneficial to compare analytical and empirical performance
models using only syntactic information?

By considering the results from both case studies, the score of the syntactical com-
parison was always negative. This is because the cases, where either the term or
the whole equivalence class was not present in one of both models mostly applied
in our work, whereas the case that the influence of two terms is exactly the same
has never applied. According to our results, a score that is greater than −10 in
relation to a rather simple analytical performance model resulted in an empirical
performance-influence model, which was similarly simple. Although we have found
no empirical performance-influence model having a positive score, the syntactical
comparison provides information about how many relevant and how many unrele-
vant terms were found. To this end, comparing analytical and empirical performance
models using only syntactic information is beneficial, so the answer is yes.

RQ4: Is it beneficial to compare analytical and empirical performance
models using distance and similarity measures?

To find an answer to this question, we have created the semantical comparison in
such a way that it is based on different distance and similarity measures. The
findings regarding the semantical comparison are explained next.

In the semantical comparison strategy that we describe in Section 4.2, we have evalu-
ated the results of the analytical performance models and the empirical performance-
influence models based on different distance and similarity measures and the error
rate.
Firstly, the error rate has shown that it is an indicator of how much different the
results of two performance models are. Although this relation is expressed in per-
cent, the results of the error rate sometimes exceeds 100% and thus, is a less good
indicator for the percentual dissimilarity. In contrast to dissimilarity, the Cosine
and Jaccard similarity have measured the percentual similarity of two performance
models. When examining the results, the results of the Cosine similarity are mostly
above 90%. Since this similarity measure considers the angle between the results of
different performance models, little deviations of small numbers may have the same
relevance as high deviations of higher values. This property can be observed when
comparing the results of the analytical performance model with the measurements
in the 2-dimensional and 3-dimensional case of SMG2000. The Jaccard similar-
ity shows a better behavior in these cases and mostly results in a lower similarity,
when the error rate is high. Moreover, the results of the Jaccard similarity vary
more than the ones received by the Cosine similarity and admits a easier compari-
son between performance models. When considering the distance metrics from the
Minkowski family, it turns out that they behave differently for execution times below
and over 1. In the case that the execution times are mostly below 1, the value of the
Minkowski measure is lower than the one achieved from the Manhattan distance and
the Euclidean distance. If the most execution times are above 1, the results from
the Minkowski measure are higher than the other distance measures. To overcome
this behavior, one could scale the execution times above 1. As some of our results

5.6. Threats to Validity 49

contained both values less than 1 and greater than 1, the behavior may become
unpredictable.
Moreover, the Chebyshev distance shows the greatest distance between all config-
urations, which may be helpful, but not when comparing two large sets of points,
as it would only register the distance of outliers. A similar behavior is shown in
Table 5.9 and Table 5.11.
We have found that the Jaccard similarity produces the best results for comparing
such performance models, although the other distance and similarity measures could
also be used. As we have seen before, the distance and similarity measures behave
differently. To this end, one should know the requirements that the distance or
similarity measure should satisfy. To sum it up, distance and similarity measures
can be used for the comparison of two performance models and hence, the answer
to the question is yes.

RQ5: Do the results of the similarity and distance measures correlate
with the error rate?

Additionally to the observations for RQ4, we have observed that none of the chosen
distance and similarity measures behaves as the error rate. Thus, the answer on this
question is no.

Further Findings.

An unexpected finding that we have made in this work is related to the results of
the analytical performance model of BoomerAMG. There, the most results are be-
low or near the results obtained by the measurements. However, some predictions
of the analytical performance model were too high. After a deeper investigation,
we figured out that these results were all related to the measurements consisting of
4 nodes. A reason for the deviation could be that the latency and the bandwidth
was better than measured by the benchmarks when performing the software with 4
nodes.
A similar observation can be made in SMG2000, where the results of the analyti-
cal performance models can be ordered in lines. These lines stand for the different
number of processes.

Another surprising finding was the scale of the analytical performance model by
factor 500. The reasons for this behavior are diverse. This behavior could be a
result of using another architecture, but also a scale error by the authors from
Brown et al. [BFJ00].

5.6 Threats to Validity

Internal Validity. For the minimization of measurement bias during the mea-
surements on Chimaira, we have run each configuration 3 times and calculated the
standard deviation. The standard deviation of each configuration was less than
10%. Due to time restrictions, we have executed the measurements in parallel. As
this could affect the latency and the bandwidth, we have additionally executed tests

50 5. Evaluation

without interferences. However, the results from the parallel execution coincides
with the results of our tests.

To rule out errors in the implementation of the analyzation, we have calculated the
syntactical comparison as well as the semantical comparison for a set of points by
hand. The only deviation in the computation may be caused by using the datatype
double, which is capable of storing only a fixed amount of decimal places and thus,
introduces a minimal inaccuracy. Moreover, we have compared the results of the
empirical performance-influence models with the results achieved by SPL Conqueror,
which coincided with each other.

Furthermore, we have calculated some configurations by hand and have received
the same results in SMG2000 as our implementation, which is an error in the an-
alytical performance model. Multiplying the benchmarked values by the value 500
was achieved by different tests. A reason for this behavior is the simplicity of the
analytical performance models for SMG2000. Although it is easy to understand, the
analytical performance model has left out important aspects, which were in turn
considered by the analytical performance model from BoomerAMG.

External Validity. In this thesis, we were focused on two different configurable
multigrid systems. Nevertheless, our comparison strategies are generally applicable
on different software systems that provide different configuration parameters for the
selection or deselection of different components that mostly have an influence on the
performance of the system. This type of comparison can not only be applied to ana-
lytical performance models and empirical performance-influence models but also on
different performance models of the same kind. For instance, our comparison can be
applied to empirical performance-influence models of different sampling heuristics.

6. Related Work

To our best knowledge, analytical performance models and empirical performance-
influence models of multigrid systems were not compared in a publication yet.
However, the strengths and weaknesses of analytical performance models and em-
pirical performance-influence models, as described in Section 2.1, are widely known.
For building better performance models, Didona et al. [DQRT15] combines analyti-
cal performance models with empirical performance-influence models to build three
different gray-box approaches. In their evaluation on two case-study systems, none
of these gray-box approaches clearly outperforms the other ones.

In this thesis, we used the analytical performance models for SMG2000 and Boomer-
AMG. As mentioned earlier, analytical performance models are not created specif-
ically for multigrid systems, but also for other popular software. One analytical
performance model is proposed by Yang et al. [YS11], where the performance of
MapReduce is modeled. Based on the analytical performance models, the behav-
ior of MapReduce is analyzed. The result of this analyzation is that configuration
options with a great impact on the performance are found and improvements by
selecting specific values for numerical options are conducted. Another analytical
performance model is proposed by Hong et al. [HK09]. The goal of their work
is to create an analytical performance model for GPU architectures to help finding
performance bottlenecks of parallel applications that are executed on the GPU. Fur-
thermore, their analytical performance model is evaluated on two different GPU’s.

In this work, we use SPL Conqueror for generating empirical performance-influence
models on the base of different sampling heuristics. Besides, there are other tools,
such as Catwalk that is proposed by Wolf et al. [WBH+14]. In contrast to SPL
Conqueror, their main goal is to find scalability bugs of parallel software and not
the prediction of the influence of multiple configuration options and interactions
between those. Besides, there are tools for building empirical performance-influence
models in a white-box manner such as Palm [TH14]. Palm is able to create empirical
performance-influence models such as the one of SMG2000 presented in Section 3.1.2,
where the MPI functions like MPI_Isend are taken in consideration. This is done by

52 6. Related Work

inserting annotations in the code as we have done it using TAU and by monitoring
different regions of the code.

7. Conclusion

In this section, we summarize the findings of this work in Section 7.1. Afterwards,
further enhancements and future work of this thesis are presented in Section 7.2.

7.1 Summary

In this thesis, we have compared analytical performance-influence models from two
multigrid case studies with different empirical performance-influence models. The
empirical performance-influence models were generated by SPL Conqueror based on
a set of configurations defined by different sampling heuristics. This comparison was
done on the base of two different comparison strategies, namely the syntactical and
the semantical comparison. Based on this comparison strategies, we have discussed
multiple aspects.

Firstly, we have investigated if SPL Conqueror is able to find the same terms as
the domain experts in their analytical performance model. Although some empir-
ical performance-influence models have considered almost all terms, we have not
found one empirical performance-influence model which was equal to the analytical
performance model.

Moreover, we examine the influence of different sampling heuristics with the other
sampling heuristics in relation to the results achieved by syntacical comparison strat-
egy. We have found out that the Full Factorial design does not outperform other
sampling heuristics when comparing them with analytical performance models. This
means that considering all configurations of the configuration space is not necessary
to find empirical performance-influence models that are similar to the analytical
performance models. One further finding was that the Random design achieved a
deviation on up to 98.9% in syntactic comparison. Due to the high deviations of the
Random design, the outcome of the Random design is uncertainly. In addition to
that, we have encountered that increasing the sampling set in the Random design
sampling heuristic does not necessarily improve the empirical performance-influence
models generated by SPL Conqueror. Furthermore, the empirical performance-
influence models using Plackett-Burman design with 9 measurements and 3 levels as

54 7. Conclusion

well as with 49 measurements and 7 levels achieved the best results in the syntactical
comparison strategy in relation to the other sampling heuristics when the analytical
performance model had a higher accuracy. We have shown that the chosen sam-
pling heuristic has in fact an influence on the result of both comparison strategies,
even though no empirical performance-influence model of our sampling heuristics
has clearly outperformed the others.

Besides, we observed that the syntactic comparison is a good indicator for the simi-
larity of two performance models, even though the results obtained by this compar-
ison strategy were always negative. Furthermore, we have compared the application
of different distance and similarity measures on the results of comparison between
the analytical performance models and the empirical performance-influence models.
For the Minkowski distance measures, we have made out that they do not behave
well when the result set contains execution times below 1. Additionally, we observed
that the Chebyshev distance has not provided useful information in the semantic
comparison. Furthermore, the Cosine similarity turned out to be less suitable, since
the similarity result was largely above 90%, even if the error between the analyt-
ical performance model and the empirical performance-influence model was high.
Among the chosen distance and similarity measures, the Jaccard similarity turned
out to be the best in our study. Finally, we investigated if the results of the distance
and similarity measures correspond to the one of the error rate and figured out that
they are independent from each other.

7.2 Future Work

This work can be taken as the base on further research on the comparison of perfor-
mance models. One improvement could be alternating grid size in SMG2000. In the
work of Brown et al. [BFJ00], the grid size in the analytical performance model was
limited to a cube and resulted in the constraint that nx = ny = nz. In the future,
we could investigate the impact of the grid size in different dimensions, which would
provide further information about the behavior of the respective software and on
the generality of the analytical performance models.
Furthermore, the number of pre-smoothing and post-smoothing steps presented in
Section 2.4 were fixed in both models. Thus, the influence of smoothing in Boomer-
AMG and SMG2000 could not be observed.
An additional improvement is related to the processor topology of both case studies.
For instance, in the work of Gahvari et al. [GBS+11], where the analytical per-
formance models of BoomerAMG were created, the analytical performance models
were partially evaluated on clusters with thousands of cores. Increasing the number
of processes could provide additional information according to the communication
pattern.
Different multigrid cycles, as mentioned in Section 2.4, depict another property of
both multigrid systems that were not investigated further. Only the simplest cycle,
the V-cycle was performed in all our measurements. Since the different cycles have
an impact on the number of calls of each level as well as on the final convergence
rate [TS01], this configuration would be worth further investigation.

Moreover, the variability of distance measures and similarity measures presented

7.2. Future Work 55

in Section 2.3 can additionally be expanded. In our work, we were focused on
unweighted measures. Thus, another improvement would be the use of weighted
measures, where configuration option combinations having a great influence at the
performance would have a higher weight than configuration option combinations
with less impact. In addition to that, we could investigate further distance measures
and similarity-measure families. Throughout the evaluation, we were focused on the
Minkowski- and the inner-product family. Some different distance- and similarity-
measures were summarized in Cha et al. [Cha07].

Another future work is the improvement of the semantical comparison. Since we
have applied our distance and similarity measures on point data, we could addition-
ally apply them on interval data. Therefore, a way to express performance models
as an interval has to be found.
Besides, the minimum and maximum value of each term according to the configu-
ration space can be computed to weight the syntactical and semantical comparison
according to their relevance.

Furthermore, a hybrid comparison strategy is another future work. This hybrid
comparison strategy could use the syntactical as well as the semantical information
of performance models for the comparison. Therefore, the influence of the equiva-
lence classes on the performance could be computed. According to the percentual
influence of an equivalence class, the semantic and syntactic comparison could be
weighted.

56 7. Conclusion

A. Appendix

A.1 Folder and File Structure on the CD

In this thesis, we have compared analytical performance models with empirical
performance-influence models from two multigrid-case studies, namely SMG2000
and BoomerAMG. The empirical performance-influence models were generated us-
ing SPL Conqueror and the comparison of the performance models was performed
by using our tool PErformance MOdel COmparer (PeMoCo). Both tools, written

CD

Evaluation_Data

BoomerAMG

SMG2000

1D

2D

3D

PeMoCo.zip

SPLConqueror.zip

Figure A.1: The folder hierarchy on the CD. In the directories of the folder Evalua-
tion Data, the measurement results and tool output is included.

with C#, are located as zip files on the CD. In the zip folder of both tools, sln files
are included for opening these projects by an integrated development environment
(IDE), such as Visual Studio or MonoDevelop. Furthermore, we have included the
measurement data of SMG2000 and BoomerAMG, as well as the output of both
tools. We show the folder hierarchy in Figure A.1.

Generally, in each folder of both case studies, we have included the equations
of the analytical performance model (analyticalModel.txt), the system descrip-
tion (boomeramg.xml and smg2000.xml), the values obtained by the benchmarks
(depVals.txt). Furthermore, the output data of SPL Conqueror is written in the
files ending with log. On these log-files, we have applied PeMoCo, whose results are

58 A. Appendix

BoomerAMG

analyticalModel.txt

boomeramg.csv

boomeramg.xml

chimaira_ConfigurationResults.xml

depVals.txt

learnOnLevel.log

out_learnOnLevel_semantic.txt

out_learnOnLevel_syntactical.txt

spmv_results.csv

Figure A.2: The files in the BoomerAMG folder.

written in the files ending with syntactic.txt and semantic.txt. In Figure A.2,
we show the files in the folder of BoomerAMG and in Figure A.3 for SMG2000. Note
that the file structure for each dimension of SMG2000 is the same. The files in the
folder of BoomerAMG differs slightly from the files in each folder of SMG2000, as
we have collected more data than in SMG2000. We have stored the overall perfor-
mance and instrumentation results in chimaira_ConfigurationResults.xml and
the results achieved by the benchmark SPmV in spmv_results.csv.

1D

analyticalModel.txt

depVals.txt

out_test_all_semantical.txt

out_test_all_syntactical.txt

out_test_semantical.txt

out_test_syntactical.txt

smg2000.csv

smg2000.xml .2 test.a

test.log

test_all.a

test_all.log

Figure A.3: The files in the SMG2000 folder for each dimension.

Bibliography

[BDGGW05] A. Barchanski, H. De Gersem, E. Gjonaj, and T. Weiland. Im-
pact of the Displacement Current on Low-Frequency Electromagnetic
Fields Computed Using High-Resolution Anatomy Models. Physics in
Medicine and Biology, pages 243–249, 2005. (cited on Page 22)

[BFJ00] P. N. Brown, R. D. Falgout, and J. E. Jones. Semicoarsening Multi-
grid on Distributed Memory Machines. SIAM Journal on Scientific
Computing, 21(5):1823–1834, 2000. (cited on Page 19, 20, 34, 36, 49,

and 54)

[Bis06] C. M. Bishop. Pattern Recognition. Machine Learning, 128, 2006.
(cited on Page 5)

[Bot10] L. Bottou. Large-Scale Machine Learning with Stochas-
tic Gradient Descent. In Proceedings of COMPuter STATis-
tics(COMPSTAT)’2010, pages 177–186. Springer, 2010. (cited on

Page 5)

[BS07] S. Brenner and R. Scott. The Mathematical Theory of Finite Element
Methods, volume 15. Springer Science & Business Media, 2007. (cited

on Page 15)

[BTA10] D. Bingol, N. Tekin, and M. Alkan. Brilliant Yellow Dye Adsorption
onto Sepiolite Using a Full Factorial Design. Applied Clay Science,
50(3):315–321, 2010. (cited on Page 9)

[BW51] J. Box and W. Wilson. Central Composites Design. Royal Statistical
Society, 1, 1951. (cited on Page 10)

[Car01] B. Carnes. The SMG2000 Benchmark Code, 2001. (cited on Page 2

and 19)

[CFJ98] A. J. Cleary, R. D. Falgout, and J. E. Jones. Coarse-Grid Selection for
Parallel Algebraic Multigrid. In International Symposium on Solving
Irregularly Structured Problems in Parallel, pages 104–115. Springer,
1998. (cited on Page 22)

[Cha07] S. Cha. Comprehensive Survey on Distance/Similarity Measures Be-
tween Probability Density Functions. Mathematical Models and Meth-
ods, 1(2):300–307, 2007. (cited on Page 13 and 55)

60 Bibliography

[CLB03] C. Chen, H. Liu, and R. C. Beardsley. An Unstructured Grid, Finite-
Volume, Three-Dimensional, Primitive Equations Ocean Model: Ap-
plication to Coastal Ocean and Estuaries. Journal of Atmospheric and
Oceanic Technology, 20(1):159–186, 2003. (cited on Page 22)

[CS14] G. Chandrashekar and F. Sahin. A Survey on Feature Selection Meth-
ods. Computers & Electrical Engineering, 40(1):16–28, 2014. (cited

on Page 5)

[dABK+95] P. F. de Aguiar, B. Bourguignon, M. S. Khots, D. L. Massart, and
R. Phan-Than-Luu. D-Optimal Designs. Chemometrics and Intelli-
gent Laboratory Systems, pages 199–210, 1995. (cited on Page 8)

[DB79] D. L. Davies and D. W. Bouldin. A Cluster Separation Measure. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1(2):224–
227, 1979. (cited on Page 12)

[DLP03] J. J. Dongarra, P. Luszczek, and A. Petitet. The linpack benchmark:
past, present and future. Concurrency and Computation: Practice
and Experience, 15(9):803–820, 2003. (cited on Page 30)

[DQRT15] D. Didona, F. Quaglia, P. Romano, and E. Torre. Enhancing Perfor-
mance Prediction Robustness by Combining Analytical Modeling and
Machine Learning. In Proceedings of the ACM/SPEC International
Conference on Performance Engineering, pages 145–156. ACM, 2015.
(cited on Page 51)

[DR15] D. Didona and P. Romano. Hybrid Machine Learning/Analytical
Models for Performance Prediction: A Tutorial. In Proceedings of the
ACM/SPEC International Conference on Performance Engineering,
pages 341–344. ACM, 2015. (cited on Page 4 and 5)

[dZ96] P. M. de Zeeuw. Development of Semi-Coarsening Techniques. Applied
Numerical Mathematics, 19(4):443–465, 1996. (cited on Page 19)

[FY02] R. D. Falgout and U. M. Yang. Hypre: A Library of High Performance
Preconditioners. In International Conference on Computational Sci-
ence, pages 632–641. Springer, 2002. (cited on Page 19 and 22)

[Gah06] H. Gahvari. Benchmarking Sparse Matrix-Vector Multiply. Master’s
thesis, Citeseer, 2006. (cited on Page 30)

[GBS+11] H. Gahvari, A. H. Baker, M. Schulz, U. M. Yang, K. E. Jordan, and
W. Gropp. Modeling the Performance of an Algebraic Multigrid Cycle
on HPC Platforms. In Proceedings of the International Conference on
Supercomputing, pages 172–181. ACM, 2011. (cited on Page 22, 23, 32,

43, 45, and 54)

[GSKA16] A. Grebhahn, N. Siegmund, H. Köstler, and S. Apel. Performance
Prediction of Multigrid-Solver Configurations. In Software for Exas-
cale Computing – SPPEXA 2013–2015, volume 113 of Lecture Notes

Bibliography 61

in Computational Science and Engineering, pages 69–88. Springer,
September 2016. (cited on Page 43)

[GV02] P. Giannopoulos and R. C. Veltkamp. A Pseudo-Metric for Weighted
Point Sets. In European Conference on Computer Vision, pages 715–
730. Springer, 2002. (cited on Page 12)

[HHH+89] L. Hamers, Y. Hemeryck, G. Herweyers, M. Janssen, H. Keters,
R. Rousseau, and A. Vanhoutte. Similarity Measures in Scientometric
Research: the Jaccard Index Versus Salton’s Cosine Formula. Infor-
mation Processing & Management, 25(3):315–318, 1989. (cited on

Page 13)

[HK09] S. Hong and H. Kim. An Analytical Model for a GPU Architecture
with Memory-Level and Thread-Level Parallelism Awareness. In ACM
SIGARCH Computer Architecture News, volume 37, pages 152–163.
ACM, 2009. (cited on Page 4 and 51)

[HLP52] G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge
University Press, 1952. (cited on Page 14)

[KH14] G. Kourakos and T. Harter. Parallel Simulation of Groundwater Non-
Point Source Pollution Using Algebraic Multigrid Preconditioners.
Computational Geosciences, 18(5):851–867, 2014. (cited on Page 22)

[Kry14] M. Kryszkiewicz. The Cosine Similarity in Terms of the Euclidean
Distance. Encyclopedia of Business Analytics and Optimization, pages
2498–2508, 2014. (cited on Page 13)

[LeV97] R. J. LeVeque. Wave Propagation Algorithms for Multidimensional
Hyperbolic Systems. Journal of Computational Physics, 131(2):327–
353, 1997. (cited on Page 14)

[MDHS09] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Produc-
ing Wrong Data Without Doing Anything Obviously Wrong! ACM
Sigplan Notices, 44(3):265–276, 2009. (cited on Page 4)

[MSB91] H. Mühlenbein, M. Schomisch, and J. Born. The Parallel Genetic
Algorithm as Function Optimizer. Parallel Computing, 17(6-7):619–
632, 1991. (cited on Page 5)

[NB10] H. V. Nguyen and L. Bai. Cosine Similarity Metric Learning for Face
Verification. In Asian Conference on Computer Vision, pages 709–
720. Springer, 2010. (cited on Page 13)

[NIS16] NIST/SEMATECH. E-Handbook of Statistical Methods.
http://www.itl.nist.gov/div898/handbook/, (09/27/2016). (cited

on Page 11)

[PB46] R. L. Plackett and J. P. Burman. The Design of Optimum Multifac-
torial Experiments. Biometrika, 33(4):305–325, 1946. (cited on Page 9)

62 Bibliography

[Puk06] F. Pukelsheim. Optimal Design of Experiments. Classics in Applied
Mathematics, 2006. (cited on Page 8)

[RS87] J. W. Ruge and K. Stüben. Algebraic Multigrid. Multigrid Methods,
3(13):73–130, 1987. (cited on Page 22)

[SGAK15] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner. Performance-
Influence Models for Highly Configurable Systems. In Proceedings
of the Joint Meeting on Foundations of Software Engineering, pages
284–294. ACM, 2015. (cited on Page 6)

[SM06] S. S. Shende and A. D. Malony. The TAU Parallel Performance Sys-
tem. International Journal of High Performance Computing Applica-
tions, pages 287–311, 2006. (cited on Page 23 and 30)

[SRK+12] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, S. Apel,
and G. Saake. SPL Conqueror: Toward Optimization of Non-
Functional Properties in Software Product Lines. Software Quality
Journal, 20(3-4):487–517, 2012. (cited on Page 5)

[Tay13] Y. C. Tay. Analytical Performance Modeling for Computer Systems.
Synthesis Lectures on Computer Science, 4(3):1–141, 2013. (cited on

Page 4)

[Tea02] MVAPICH Team. MVAPICH 1.2 User and Tuning Guide. Technical
report, The Ohio State University, 2002. (cited on Page 30)

[TH14] N. R. Tallent and A. Hoisie. Palm: Easing the Burden of Analyti-
cal Performance Modeling. In Proceedings of the ACM International
Conference on Supercomputing, pages 221–230. ACM, 2014. (cited on

Page 51)

[TS01] U. Trottenberg and A. Schuller. Multigrid. Academic Press, Inc., 2001.
(cited on Page 1, 14, 17, and 54)

[WBH+14] F. Wolf, C. Bischof, T. Hoefler, B. Mohr, G. Wittum, A. Calotoiu,
C. Iwainsky, A. Strube, and A. Vogel. Catwalk: A Quick Development
Path for Performance Models. In European Conference on Parallel
Processing, pages 589–600. Springer, 2014. (cited on Page 5 and 51)

[XX11] Z. Xu and M. Xia. Distance and Similarity Measures for Hesitant
Fuzzy Sets. Information Sciences, 181(11):2128–2138, 2011. (cited on

Page 12)

[Yan02] U. M. Yang. BoomerAMG: A Parallel Algebraic Multigrid Solver and
Preconditioner. Applied Numerical Mathematics, 41(1):155–177, 2002.
(cited on Page 2 and 22)

[YS11] X. Yang and J. Sun. An Analytical Performance Model of Mapreduce.
In 2011 IEEE International Conference on Cloud Computing and In-
telligence Systems, pages 306–310. IEEE, 2011. (cited on Page 4 and 51)

Eidesstattliche Erklärung:

Hiermit versichere ich an Eides statt, dass ich diese Masterarbeit selbständig und
ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt
habe und dass alle Ausführungen, die wörtlich oder sinngemäß übernommen wur-
den, als solche gekennzeichnet sind, sowie dass ich die Masterarbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegt habe.

Christian Kaltenecker

Passau, den 29. November 2016

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	2 Background
	2.1 Performance Models
	2.1.1 Analytical Performance Models
	2.1.2 Empirical Performance Models

	2.2 SPL Conqueror
	2.2.1 Performance-Influence Models
	2.2.2 Sampling Heuristics

	2.3 Similarity and Distance Measures
	2.3.1 Cosine Similarity
	2.3.2 Jaccard
	2.3.3 Minkowski

	2.4 Multigrid
	2.4.1 Overview
	2.4.2 Grid
	2.4.3 Restriction and Prolongation
	2.4.4 Smoothing
	2.4.5 Solver

	3 Case Studies
	3.1 SMG2000
	3.1.1 Functionality
	3.1.2 Analytical Performance Models

	3.2 BoomerAMG
	3.2.1 Functionality
	3.2.2 Analytical Performance Model

	4 Analyzation
	4.1 Syntactical Comparison
	4.2 Semantical Comparison

	5 Evaluation
	5.1 Setup
	5.1.1 Cluster
	5.1.2 Software

	5.2 Obtaining Parameters for the Evaluation
	5.2.1 SMG2000
	5.2.2 BoomerAMG
	5.2.3 Benchmarks

	5.3 Learning Performance-Influence Models
	5.4 Comparison
	5.4.1 SMG2000
	5.4.2 BoomerAMG

	5.5 Discussion
	5.6 Threats to Validity

	6 Related Work
	7 Conclusion
	7.1 Summary
	7.2 Future Work

	A Appendix
	A.1 Folder and File Structure on the CD

	Bibliography

