
Black-Box Performance Modeling of
Configurable Software Systems

Dissertation zur Erlangung des Grades des

Doktors der Ingenieurwissenschaften (Dr. Ing.)

der Fakultät für Mathematik und Informatik der Universität des Saarlandes

vorgelegt von

Christian Kaltenecker

Saarbrücken, 2023

Dean of Faculty Prof. Dr. Jürgen Steimle

Day of Colloquium 29.01.2024
Chair of the Committee Prof. Dr. Jan Reineke
Reviewers Prof. Dr. Sven Apel

Prof. Dr. Mathieu Acher
Academic Assistant Dr. Sebastian Biewer

Christian Kaltenecker: Black-Box Performance Modeling of Configurable Software Systems,
© February 2024

Abstract

Software systems have become an important part of our daily lives, and a multitude of dif-
ferent application scenarios, user requirements, and hardware requirements have emerged.
To handle these different requirements, most software systems offer some degree of config-
urability in terms of configuration options, allowing the user to adapt the software system
to functional and non-functional requirements. Among non-functional requirements, the
performance of the software system plays an important role to end-users.

It is often unclear which configuration options influence the performance of the system.
Specifically, there is a gap in how to select configurations affecting the system’s performance
whennoprevious knowledge is available. Furthermore, little is known about how the influence
of configuration options on the system’s performance changes across different workloads and
software evolution. To bridge this gap, performance modeling based on statistical learning
has proved useful.

In this thesis, we follow three objectives in which we use or improve performance modeling
of configurable software systems by statistical learning. First, we propose a novel sampling
strategy, distance-based sampling, to improve the configuration selection (i.e., sampling) while
also addressing the shortcomings of existing state-of-the art sampling strategies. To assess
the advantages and limitations of distance-based sampling, we compare it to state-of-the-
art sampling strategies on multiple real-world configurable software systems. Our results
indicate that distance-based sampling outperforms other state-of-the-art sampling strategies
in terms of accuracy, but also suggest that there is still room for improvement with regard to
scalability.

Second, to assess how the influence of configuration options on the system’s performance
changes during software evolution, we use performance modeling on multiple real-world
configurable software systems. This investigation delivers multiple valuable insights into the
frequency of performance changes with implications to other research domains. We further
investigate in how many cases the performance changes are documented by developers and
find indications in which cases performance regressions are documented and when they are
not.

Third, besides configurability and software evolution, we also assess the role of workload
variability in an exploratory study of the configurable software system FastDownward.
For this purpose, we propose a performance modeling approach to identify performance
changes considering workload variability and investigate the accuracy of this approach by
evaluating precision and recall. Our results show that our approach is able to identify most
performance changes, but we also identify the limitations of our approach, leaving room
for further improvement. Furthermore, our performance measurements proved helpful in
that they enabled us to discover and report multiple performance regressions in a real-world
configurable software system.

iii

Overall, we contribute to performance modeling of configurable software systems by (1)
proposing a novel sampling strategy designed to cover configuration spaces with regards to
performance; (2) lifting how performance changes affect software configurability in practice
and show implications on other research areas; (3) demonstrating how performancemodeling
can be used to find performance changes while including workload variability. To the best
of our knowledge, we are the first to investigate configurability, evolution, and workload
variability of configurable software systems together.

iv

Zusammenfassung

Softwaresysteme sind zu einem wichtigen Bestandteil unseres täglichen Lebens geworden.
Durch die Vielfalt der existierenden Softwaresysteme ist eine Vielzahl unterschiedlicher
Anwendungsszenarien, Benutzeranforderungen sowie Hardwareanforderungen entstanden.
Um diesen unterschiedlichen Anforderungen gerecht zu werden, bieten die meisten Soft-
waresysteme einen gewissen Grad an Konfigurierbarkeit, der es dem Benutzer ermöglicht,
das Softwaresystem an funktionale und nicht-funktionale Anforderungen anzupassen. Unter
den nicht-funktionalen Anforderungen spielt die Performance des Softwaresystems eine
wichtige Rolle für die Endbenutzer.

Häufig ist unklar, welche Konfigurationsoptionen die Performance des Systems beein-
flussen. Aktuelle Verfahren zur Auswahl von Konfigurationen, die die Performance des
Systems beeinflussen, weisen Schwachstellen auf. Darüber hinaus ist wenig darüber bekannt,
wie sich die Auswirkungen von Konfigurationsoptionen auf die Performance im Laufe der
Softwareentwicklung und bei unterschiedlichen Arbeitslasten ändern. Zur Lösung dieser
Probleme kann die Performancemodellierung eingesetzt werden.

In dieser Arbeit verfolgen wir drei Ziele, mit denen wir die Performancemodellierung
von konfigurierbaren Softwaresystemen nutzen oder verbessern. Erstens stellen wir eine
neuartige Sampling-Strategie vor, das distanzbasiertes Sampling. Damit kann die Auswahl der
Konfigurationen (des Samplings) verbessert und gleichzeitig die Unzulänglichkeiten ver-
mieden werden, die andere State-of-the-Art-Samplingstrategien aufweisen. Um die Vorzüge
und Grenzen des distanzbasierten Samplings beurteilen zu können, vergleichen wir es mit
modernsten Samplingstrategien auf mehreren realen, konfigurierbaren Softwaresystemen.
Unsere Ergebnisse zeigen, dass distanzbasiertes Sampling andere moderne Samplingstrate-
gien in Bezug auf die Genauigkeit übertrifft, aber auch, dass es in Bezug auf die Skalierbarkeit
noch Raum für Verbesserungen gibt.

Zweitens: Um zu beurteilen, wie sich der Einfluss von Konfigurationsoptionen auf die
Performance des Systems über die Evolution der Software hinweg verändert, verwenden
wir Performancemodellierung für mehrere reale konfigurierbare Softwaresysteme. Diese
Untersuchung liefert wertvolle Einblicke in die Häufigkeit von Performanceänderungen mit
Auswirkungen auf andere Forschungsbereiche. Außerdem untersuchen wir, wie häufig die
Performanceänderungen von den Entwicklern dokumentiert werden und finden Hinweise
darauf, in welchen Fällen Performanceänderungen dokumentiert werden und wann nicht.

Drittens untersuchen wir in einer explorativen Studie zum konfigurierbaren Softwaresys-
tem FastDownward neben der Konfigurierbarkeit und der Softwareevolution auch die Rolle
der Arbeitslastvariabilität. Daher schlagen wir einen Ansatz zur Performancemodellierung
vor, um Performanceänderungen unter Berücksichtigung der Arbeitslastvariabilität zu identi-
fizieren, und untersuchen die Genauigkeit dieses Ansatzes, indem wir die Präzision und die
Ausbeute auswerten. Unsere Ergebnisse zeigen, dass unser Ansatz in der Lage ist, die meisten

v

Performanceänderungen zu erkennen. Wir zeigen aber auch die Grenzen unseres Ansatzes
auf, die zeigen, wo noch weitere Verbesserungen möglich sind. Darüber hinaus haben sich
unsere Performancemessungen als hilfreich erwiesen, da sie es uns ermöglichten, mehrere
Performanceregressionen in einem realen konfigurierbaren Softwaresystem aufzudecken
und an die Entwickler zu melden.

Insgesamt leisten wir einen Beitrag zur Performancemodellierung konfigurierbarer Soft-
waresysteme, indem wir (1) eine neuartige Samplingstrategie vorschlagen, die darauf aus-
gelegt ist, Konfigurationsräume in Bezug auf die Leistung abzudecken; (2) aufzeigen, wie
sich Performanceänderungen auf die Konfigurierbarkeit von Software in der Praxis auswirken
und Auswirkungen auf andere Forschungsbereiche aufzeigen; (3) demonstrieren, wie die Per-
formancemodellierung verwendet werden kann, um Performanceänderungen aufzudecken
und zusammen mit der Variabilität der Arbeitslast zu berücksichtigen. Soweit uns bekannt
ist, sind wir die Ersten, die Konfigurierbarkeit, Evolution und Arbeitslastvariabilität von
konfigurierbaren Softwaresystemen gleichzeitig untersuchen.

vi

Acknowledgments

Writing a dissertation is a challenging and long-lasting endeavor that is often underestimated.
I would have not accomplished this dissertation without the support of many persons, which
I want to thank in this section.

Foremost, I want to thank my girlfriend Kristela Kaja for her relentless support on writing
this thesis and for accepting the invitation to read this thesis, knowing how much work it
would be. I also want to thank the rest of my family for always lifting my spirit and supporting
me with all the means to finally pursue a study program.

I want to express my gratitude to my advisor Sven Apel for his support in terms of motiva-
tion, knowledge, new ideas, his eager eye to spot inconsistencies, but also for having always a
friendly ear. Sven was one of the main reasons for me to become a researcher and, ultimately,
the reason to move from Passau to Saarbrücken.

I would also like to thank Norbert Siegmund for his special way of providing feedback,
which helped me in improving my scientific writing skills. Furthermore, I want to thank
Mathieu Acher for accepting the invitation to be my second examiner.

I want to thank my colleagues at the chair for the many activities that increased the team
spirit and for supporting me in the last few months by overtaking administrative tasks,
which are undenyingly time consuming. Especially, I want to thank Thomas Bock, whom
I got to know early in my studies. He has supported me throughout my academic carrier
in very different ways and always helped me by sharing his opinion on different important
matters. I also want to thank Florian Sattler for sharing new ideas, plenty of helpful book
recommendations, and for the collaboration on VaRA. Furthermore, I want to thank my
colleagues and friends for proofreading my thesis and general support: Sebastian Böhm,
Sandra Greiner, Christian Hechtl, Anna-Maria Maurer, and Kallistos Weis. In a similar vein,
I also want to thank a former colleague, Alexander Grebhahn, for his ideas and support,
especially in the beginning while joining the research team. I also want to thank Eva Reichhart
and Friederike Repplinger for their organizational and administrative support.

vii

Contents
1 Introduction 1

1.1 Motivation and Problem Statement . 1
1.2 Goals . 4
1.3 Contributions and Key Results . 6
1.4 Outline . 7

2 Background 9
2.1 Configurable Software Systems . 9

2.1.1 Configuration Issues . 10
2.1.2 Feature Modeling . 11
2.1.3 Non-Functional Properties . 16
2.1.4 Interactions . 16
2.1.5 One-Hot Encoding of Numeric Configuration Options 17

2.2 Performance Modeling . 18
2.2.1 Overview . 19
2.2.2 Sampling . 21
2.2.3 Performance Measurements . 25
2.2.4 Performance-Influence Models . 27

3 Distance-Based Sampling of Software Configuration Spaces 37
3.1 Sampling . 39

3.1.1 Approach . 41
3.2 Experiment Setup . 45

3.2.1 Research Questions . 45
3.2.2 Operationalization . 46
3.2.3 Subject Systems . 48

3.3 Evaluation . 52
3.3.1 Results RQ1—Prediction Accuracy . 52
3.3.2 Results RQ2—Robustness . 54
3.3.3 Results RQ3—Performance . 55
3.3.4 Discussion . 55
3.3.5 Threats to Validity . 57

3.4 Summary . 58
4 Performance Evolution of Configurable Software Systems: An Empirical

Study 61

ix

x contents

4.1 Related Work . 63
4.2 Software Evolution . 65
4.3 Experiment Setup . 66

4.3.1 Research Questions . 66
4.3.2 Subject Systems . 68
4.3.3 Workloads . 70
4.3.4 Operationalization . 71

4.4 Evaluation . 74
4.4.1 Results . 74
4.4.2 Metadata Analysis . 80
4.4.3 Implications . 87
4.4.4 Threats to Validity . 89

4.5 Summary . 92
5 Performance Prediction in the Presence of Workload Variability 95

5.1 Related Work . 98
5.2 Workloads . 99
5.3 Experiment Setup . 101

5.3.1 Research Questions . 101
5.3.2 Fast Downward . 103
5.3.3 Operationalization . 109

5.4 Evaluation . 115
5.4.1 Results . 116
5.4.2 Discussion . 118
5.4.3 Threats to Validity . 125

5.5 Summary . 128
6 Concluding Remarks 129

6.1 Contributions of this Thesis . 129
6.2 Avenues of Future Work . 130

Bibliography 133
A Appendix 147

a.1 Constraints after One-Hot Encoding . 148

List of Figures

Figure 1.1 Different contributions of this thesis 6
Figure 2.1 Representation of the feature root . 12
Figure 2.2 Parent–child relation . 12
Figure 2.3 Optional and mandatory options . 13
Figure 2.4 Alternative group . 13
Figure 2.5 Or group . 14
Figure 2.6 Numeric configuration option . 14
Figure 2.7 Feature model of Comp . 15
Figure 2.8 One-hot encoding of the configuration option CompressionLevel. . . 17
Figure 2.9 Feature model of Comp after one-hot encoding 19
Figure 2.10 General approach of performance modelling 20
Figure 2.11 Feature model of CompExt . 23
Figure 2.12 Comparison of machine-learning algorithms and sampling strategies 33
Figure 3.1 The performance distribution of different sampling strategies 39
Figure 3.2 Distribution of configurations according to the distance measure . . . 41
Figure 3.3 Application of the distance function on an exemplary software system 43
Figure 4.1 Fraction of performance changes and stability of performance ranking 75
Figure 4.2 Fraction of performance changes and stability of performance ranking

at option level . 76
Figure 4.3 Plot on the fraction of configurations or options involved in perfor-

mance changes . 77
Figure 4.4 Performance changes of VP9 . 77
Figure 4.5 Plot on the stability of configurations or options 77
Figure 4.6 Performance influence of options and interactions 78
Figure 4.7 Distribution of the relative influences of model terms across subject

systems . 79
Figure 4.8 Evolution of the performance ranking in VP9 80
Figure 4.9 Methodology of our deeper analysis 81
Figure 4.10 Performance changes of brotli . 84
Figure 4.11 The performance of all configurations and default configurations of VP9 89
Figure 5.1 Tower of Hanoi Planning Problem . 104
Figure 5.2 The transportation planning problem 105
Figure 5.3 Overview of our preliminary measurements for workload selection . 106

xi

Figure 5.4 Detailed overview of our preliminary measurements 107
Figure 5.5 Minimal example for the adjustments performed on the performance

models. 111
Figure 5.6 Visualization of TP, FP, TN, and FN. 112
Figure 5.7 Relative number of identified performance changes. 115
Figure 5.8 Precision and recall over workloads . 116
Figure 5.9 Overview of number of workloads identifying a performance change 118
Figure 5.10 Example for metric discrepancy while assessing precision. 119
Figure 5.11 Example for metric discrepancy while assessing recall. 121
Figure 5.12 Dendrogram with workload clustering. 123
Figure 5.13 Overview of average silhouette width 124
Figure 5.14 Overview of the number of releases until a regression was fixed. . . . 125
Figure A.1 Feature Model of FastDownward . 151

List of Tables

Table 2.1 Configurations of Comp . 11
Table 2.2 Exemplary performance values for Comp 17
Table 2.3 All 20 configurations of CompExt. 24
Table 2.4 Example for using 𝑡-wise sampling with 𝑡 = 1. 24
Table 2.5 Example for solver-based sampling to sample 6 configurations (i.e.,

the same number as 𝑡 = 1). 25
Table 2.6 Example for random sampling to sample 6 configurations (i.e., the

same amount as 𝑡 = 1). 26
Table 2.7 Excerpt of different machine-learning strategies 28
Table 2.8 Configurations with A1 and the three compression levels. 30
Table 2.9 Sampling strategies considered in Grebhahn et al. 32
Table 2.10 Subject systems of the empirical study of Grebhahn et al. [38]. 32
Table 3.1 Overview of the subject systems for RQ1 and RQ2 49
Table 3.2 Overview of the subject systems for RQ3 50
Table 3.3 Error rates of different sampling strategies for 10 subject systems . . . 51
Table 3.4 Results of the significance test on the quality of sampling strategies . 53
Table 3.5 Results of the significance tests on robustness of sampling strategies . 53

xii

list of tables xiii

Table 3.6 Performance of sampling strategies while sampling large configuration
spaces . 56

Table 3.7 Performance of sampling strategies on smaller configurable software
systems . 56

Table 4.1 Overview of the subject systems . 68
Table 4.2 Valid configurations of an exemplary system 72
Table 4.3 Overview of the number of releases with speed-ups or slow-downs . 82
Table 4.4 Excerpt of the 88 relevant consecutive releases 83
Table 4.5 Number of terms of the performance-influence model per subject system 91
Table A.1 Precision and recall for each workload of FastDownward. 149

1
Introduction

1.1 Motivation and Problem Statement

Software systems simplify our life by taking over various kinds of tasks, not only as part of
embedded systems, such as coffee machines, dish washers, or autonomous cars, but also as
part of end-user devices, such as smartphones, or the digital infrastructure such as database
servers, or network devices. Since software systems are much faster in calculating and solving
tasks than human beings, software systems overtake crucial tasks from our daily life (e.g.,
search engines, which makes manual searching in books obsolete) and, thus, save a lot of
time. Ultimately, some sectors not only rely on software, but cannot even operate without
them (e.g., banking, movie streaming).

Software systems must evolve constantly to adapt to changes of hardware and user re-
quirements [152]. This evolution of software is mainly driven by the integration of new
functionality, refactoring, and bug fixes [98]. Besides functionality, the performance of a
software system may change considerably over time. For example, it has been observed that
often software updates accidentally slow down specific parts of the software [44]. This is
a major problem for software systems: Such performance regressions do not save time, but
often waste time. For instance, a software incident in 2019 involving performance regressions
at Salesforce1 affected eight data centers and led to a negative user experience for many clients
across many organizations2. Another more recent incident from 2022 affected the stream-
ing service Netflix3, where a performance regression degraded the latency4 by 50% while
upgrading the machine’s hardware. Syncsort [146] estimated in 2018 that 59% of Fortune
500 companies (i.e., a magazine focusing on the 500 corporations with the highest turnover
of the United States) have a minimum downtime of 1.6 hours per week due to software
failure, which results in an estimated loss of $ 896 000 per week. Zaman et al. [154] report
that many of the failures are due to performance issues; Han and Yu [44] report that most of
these performance issues are configuration issues. This emphasizes the prominent role of
performance issues in highly configurable software systems, which we will address in this
thesis.

1 https://www.salesforce.com/, last accessed on 02/16/2023.
2 https://martech.org/performance-degradation-affecting-salesforce-clients/, last accessed on

02/16/2023.
3 https://netflixtechblog.com/seeing-through-hardware-counters-a-journey-to-threefold-performance-

increase-2721924a2822, last accessed on 02/16/2023.
4 Latency is the delay between a user’s action and the received response. Typically, latency appears in server–client

software.

1

https://www.salesforce.com/
https://martech.org/performance-degradation-affecting-salesforce-clients/
https://netflixtechblog.com/seeing-through-hardware-counters-a-journey-to-threefold-performance-increase-2721924a2822
https://netflixtechblog.com/seeing-through-hardware-counters-a-journey-to-threefold-performance-increase-2721924a2822

2 Introduction

Configurable software systems Software systems became increasingly configurable in the
past decades [88, 116]. A multitude of configuration options have been introduced to software
systems to support higher numbers of users and environments by offering users and admins
the possibility to adjust the software system to their environment and needs. Furthermore,
these configuration options allow for optimizing the software’s performance [112], to save
time and resources. The downside of adding more and more configuration options is that it
may confuse users. In this vein, Xu et al. [152] found that 48.5% of the occurring configuration
problems originate from difficulties to find the right configuration option or to choose the
right value for the respective configuration option. Moreover, they found that 51.9% of the
configuration options are unused by a majority of the users.

Let us take a compression program as a simple example that provides two different al-
gorithms for file compression; the algorithms exhibit different runtime behavior (i.e., some
compression algorithms need less time to compress a file than others) and achieve different
results in reducing the file size. If each algorithm can be tuned in addition by, for instance,
adjusting the compression quality, the user has to determine not only which compression
algorithm is best suited, but also which compression quality is most suitable.

Amajor consequence of maintaining a high number of configuration options is the resulting
combinatorial explosion [94] of the configuration space (i.e., each additional configuration
option that allows for switching functionality on or off doubles the number of configurations).
In our example, a user who wants to shrink the file size of a certain file as fast as possible
has to assess the differences between the algorithms first, and then the differences of their
compression quality. Even worse, in many cases it is not clear from the documentation which
of the algorithms performs best in terms of performance. To save time and resources, knowing
which algorithm performs best is crucial when the software is deployed in a larger setting,
such as in databases.

As a solution, domain knowledge from an experienced user or a developer of the software
can help. That is, experienced users or developers of the software can tell which configuration
options are known to have an impact on the performance of the software and which do not.
However, such domain knowledge is only rarely (publicly) available. Without prior domain
knowledge, the performance of all algorithms and their compression qualities have to be
measured to identify the fastest among them. For a compression software providing two
compression algorithms with ten configuration options for each compression algorithm, this
results in measuring 211 = 2 048 configurations. This combinatorial explosion of the configu-
ration space turns measuring all configurations of larger software systems into an infeasible
task, as the following thought experiment illustrates: A software with 300 configuration
options has 2300 configurations in the worst case, which is more than the estimated number
of atoms in the universe5. Even worse, some configuration options (e.g., compression level,
maximum memory consumption) cannot only be selected or deselected, but also accept a
certain numeric value. This poses a central problem for configuration testing [94], where
the goal is to identify configuration issues such as undocumented invalid configurations or
performance issues.
In the past, research [112, 133, 139] focused on approaches for identifying configuration-
specific issues as they require special techniques to analyze the large number of configurations
sincemeasuring all configurations is infeasible [139]. Sampling of software configurations (i.e.,

5 https://www.thoughtco.com/number-of-atoms-in-the-universe-603795, last accessed on 02/16/2023.

https://www.thoughtco.com/number-of-atoms-in-the-universe-603795

1.1 Motivation and Problem Statement 3

selecting a small amount of configurations that can bemeasured in feasible time) and applying
machine learning on the sample set serves as one possible solution. But multiple questions
arisewhen selecting configurations for a sample set: How shouldwe choose the configurations
for performance modeling without domain knowledge? Are there any characteristics that
can be exploited? In the past, different sampling strategies have been proposed and tested
to identify a suitable set of configurations for performance prediction [48, 95, 112, 133, 139].
Missing domain knowledge and a lack of sampling strategies that produce random samples
with a low computational effort are among the core problems.

Software Evolution It is almost a law: Over time, software evolves [98]. Changes might
arise throughout the evolution of a software system, for instance, from adding configuration
options to serve more stakeholders, or from changing existing functionality. In particular,
these changes might alter the behavior of one or multiple configuration options or even all of
them with respect to non-functional properties such as performance [44]. Han and Yu [44]
found that 59% of the performance bugs of configurable software are related to configuration
issues; 78% to 92% of these configuration issues are due to wrong parametrization (i.e., wrong
values for the configuration options).

Understanding how and when software changes affect the performance of configuration
options plays an important role in configurable software systems. This knowledge provides a
base for devising novel approaches to detect performance changes early on and, thus, improve
the configurable software system with regards to performance. In the past, approaches have
been proposed to identify evolutionary software performance changes related to configuration
options by relying on heuristics [102] or by reusing existing performance data [54, 93].
However, these approaches typically rely on the performance data of a small number of case
studies [54, 93] or randomly sampled configurations [102]. Thus, they are unable to provide
a comprehensive overview on how evolutionary changes actually affect the performance of
configuration options in the wild.

Workload Variability Apart from configuration options and the evolutionary changes,
workloads (i.e., the benchmark or input of the software, such as music files or text files for
a compression software) also affect the behavior of a configurable software system and its
performance [151]. Identifying the right set of workloads that is scalable, maximizes code
coverage, and represents the real world is a challenging endeavor [56, 71]. Despite several
studies and approaches on workload variability [56, 71], the impact of workloads in the
presence of configuration options remains unclear. Recently, studies conducted by Mühlbauer
et al. [103] and Lesoil et al. [79] highlighted the impact of workloads on the performance
of configurable systems. They found that workloads induce performance variation that
even depends on the configuration options. In other words, different configuration options
might exhibit a different performance impact in different workloads and might even invert
the performance impact of configuration options (i.e., previously important configuration
options become irrelevant and vice versa).

Problem Statement While ongoing research sheds light onto the performance impact of
the workloads on a given configurable software system, there is a lack of empirical results on
combining all three dimensions to pin down performance changes: configurability, evolution,

4 Introduction

and workloads. It is important to note that, typically, all three dimensions are present at the
same time in current software systems (e.g., database systems, web servers, compression tools,
video encoders, etc.), but—to the best of our knowledge—have not been considered together
in research. Empirical research considering all three dimensions is fundamental for future
research in this area. That is, including all three dimensions enables us to find performance
regressions that might have beenmissed by previous studies since the studies only considered
one or two of the three dimensions. It is important to note that considering these dimensions
separately is certainly not enough due to interactions between these dimensions, as recent
studies demonstrate on the dimensions configurability and workloads [79, 103]. For instance,
measuring the performance of different database releases using only read queries cannot
be used to detect performance changes that affect only write queries. An analysis of these
performance data can be used to pinpoint performance changes by tracking down in which
configuration, release, and workload the performance changes are detected.

1.2 Goals

Overall, this thesis pursues the following three goals:

1. We aim at analyzing the shortcomings of state-of-the-art sampling strategies and we
devise a novel sampling strategy to overcome these shortcomings.

2. We aim at understanding how performance changes interact with configurability and
whether performance changes are documented by software developers.

3. We aim at understanding how performance changes interact with configurability, evo-
lution, and workload variability together and at assessing how performance modeling
of configurable software systems can be used to detect performance changes.

Sampling Performance modeling typically consists of two major parts [139]: a sampling
strategy to select software configurations to measure and a machine-learning approach
that models the performance information from the data. In essence, the machine-learning
approach builds and fits a performance model based on the measured configurations. As a
consequence, the quality of the machine-learning approach highly depends on the sampling
strategy [75], since the machine-learning approach is capable of extracting only information
that is actually present in the provided data. In other words, if the measurement data do not
contain any information on a configuration option, the machine-learning approach will not
be able to derive any information about this configuration option. For instance, measuring
only compression algorithms in tar, such as xz, does not allow to infer knowledge about the
performance of other compression algorithms, such as lzma.

In the past, different sampling strategies have been devised that exploit different character-
istics in terms of performance and quality. Siegmund et al. [139] propose different sampling
strategies to identify a suitable set of configurations and tested the sampling strategies for
performance prediction. Medeiros et al. [95] compare different sampling strategies for fault
prediction. Because of the high number of sampling strategies, further questions arise: Which

1.2 Goals 5

sampling strategy is the most efficient for performance modeling based on machine learning?
Which sampling strategy should be used?

One established sampling strategy is random (or uniform) sampling [48]. Random sam-
pling performs generally good for software testing [120] and performance prediction [38].
However, Liebig [87] showed that sampling by randomly selecting a configuration at a time
and checking its validity is intractable for real-world configuration spaces due to the high
number of constraints between the configuration options6. This approach produces a high
number of invalid configurations at the expense of execution time [29, 120]. Other approaches
aim at addressing this issue by relying on additional data structures [112, 133]. The idea is to
embed all constraints in a corresponding data structure (e.g., a binary decision diagram [112]).
Avoiding invalid configurations while using these data structures to select random valid
configurations. However, this advantage comes at the expense of scalability [48]. In general,
random sampling performed good in past experiments on performance prediction, but is
infeasible in practice [38, 87].

To shed light onto these questions, we devise a novel sampling strategy that comes close
to random sampling and is feasible in practice. To assess the performance of our sampling
strategy, we compare it with existing state-of-the-art sampling strategies on the basis of a
number of real-world configurable software systems to derive which sampling strategies are
efficient and in which cases.

Detecting Performance Changes of Configurable Software Systems Another goal of
this thesis is to address one fundamental question of identifying performance changes in
configurable software systems: Which technique is able to reliably identify performance
changes? Performance modeling has shown promising results at describing and understand-
ing the impact of individual configuration options on the performance of a system [37, 137].
However, performance modeling has been applied on configurable software systems by
considering either only a single release or only a single workload. In a first step, we mitigate
this shortcoming and propose an approach to identify performance changes in one or more
configuration options across multiple releases of configurable software systems. For this
purpose, we rely on comparing performance models and tackle issues that arise when using
multiple performance models, such as multicollinearity [27]. To assess the practicability of
this approach with regard to the capability of identifying performance changes, we apply it
to a number of real-world configurable software systems and analyze the results. We contrast
our findings with the history of the software system—captured in the version control system
and the change log—to verify these results.

We expand this approach further to support workload variability. Ultimately, we devise
an approach to identify performance changes across different configurations, releases, and
workloads. The data produced by this approach gives us the opportunity to analyze when and
how often performance changes occur: Exploring (1) configurability, (2) software evolution,
and (3) workload variability provides us data on how these dimensions interact with each
other. Applying our approach on these data provides us with the opportunity to assess the
limitations of our approach in terms of precision and recall.

6 When randomly selecting options of the Linux kernel, there was not a single valid configuration even after one
million trials [86, 123].

6 Introduction

1.3 Contributions and Key Results

(1) Configurations

The Interplay of Sampling and
Machine Learning for Software
Performance Prediction [59]
(Chapter 2)

Distance-Based Sampling of Soft-
ware Configuration Spaces [60]
(Chapter 3)

(2) Evolution
Performance Evolution of Con-
figurable Software Systems: An
Empirical Study [61]
(Chapter 4)

(3) Workloads

Performance Prediction in the Presence of Workload Variability (Chapter 5)

Figure 1.1: Different dimensions of configurable software systems to which we contribute in this thesis.
This includes contributions that consider (1) only configurations (the first one is included
in the background), (2) a contribution focusing on evolution and configurations, and (3) a
contribution considering workloads, evolution, and configurations.

Our contributions to performance modeling of configurable software systems are guided
by the goals in Section 1.2. We provide an overview of the different dimensions mentioned
before and the contributions to these dimensions in Figure 1.1. Note that some contributions
are overarching multiple dimensions. For instance, „Performance Prediction in the Presence
of Workload Variability“focuses on all three dimensions (i.e., configurability, evolution, and
workloads). Overall, we make the following contributions:

1. We propose a novel sampling strategy—distance-based sampling—for performance
modeling of configurable software systems that uses a distance metric to select configu-
rations. To assess its practicability, we compare distance-based sampling with 4 different
state-of-the-art sampling strategies on the basis of 10 widely used configurable software
systems. We find that distance-based sampling outperforms state-of-the-art sampling
strategies in terms of both accuracy and robustness, almost reaching the baseline of
random sampling.

2. We propose a novel approach using performance modeling that enables us to identify
performance changes of configuration options throughout history. For this purpose,
we include additional metrics (such as the variance-inflation factor) to counter threats
that arise while learning performance models and extract statistics on configurable

1.4 Outline 7

software systems. We apply this approach to 12 different popular configurable software
systems covering up to 15 years of their evolution. Our results indicate that in 91% of the
performance changes, multiple configuration options and interactions between them
are involved. This emphasizes that focusing on the performance of single configuration
options is certainly not sufficient. We traced the results of the performance changes to
the change log and commit messages of the respective configurable software systems in
a subsequent metadata analysis. We find that 68% of the releases mention performance
changes in the change log or commit messages and 67% of them even mention the
affected configuration option from our results.

3. We devise a novel approach to additionally support workload variability by refining
our analysis from the previous contribution further. To assess the capabilities and
limitations of our approach, we analyze the precision and recall. Thereby, we follow the
case-study research method [127] (i.e., initial investigation on the considered phenomena)
instead of a quantitative approach, by focusing on a single configurable software system
(i.e., FastDownward). To keep our performance measurements feasible, we reduce
the measurement effort by involving developers of FastDownward. We find that the
precision of our approach is 88.2%, the recall is 59.4%, and identify limitations. In
addition, we investigate the role of workload variability in the evolution of configurable
software systems. We also find that 92.4% of the performance changes are detected only
by a subset of the workloads.

1.4 Outline

This thesis is structured as follows. In Chapter 2, we lay the foundation that is needed to
understand this thesis. In particular, we provide detail on configurable software systems,
performance modeling, and sampling. Chapter 3 comprises the contributions related to
configurability of software. That is, we present and evaluate a novel sampling strategy—
distance-based sampling— for performance modeling and we compare it with other state-
of-the-art approaches. In Chapter 4, we explain the adaption of performance modeling for
detecting performance changes, apply this approach on 12 configurable software systems,
and verify our results using a subsequent metadata analysis. We further expand performance
modeling to support workloads in Chapter 5 and assess the accuracy in terms of precision
and recall. Further, we investigate configurability, evolution, and workload variability at once.
Finally, we summarize the thesis in Chapter 6 and discuss future work.

2
Background

This chapter (in particular Section 2.2) shares material with the following
publication: Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund,
and Sven Apel. “The Interplay of Sampling and Machine Learning for Soft-
ware Performance Prediction.” In: IEEE Software 37.4 (2020), pp. 58–66 [59]

In this chapter, we lay the foundations of this thesis by introducing basic terminology and
concepts. We begin with a description of configurable software systems, different types of
features and their conversion, and a brief notion of non-functional properties in Section 2.1.
Afterwards, in Section 2.2, we describe the process of performance modeling, which we use
throughout this thesis.

2.1 Configurable Software Systems

A configurable software system—or simply configurable system—is a software system built with
the possibility to tailor it to specific requirements of individual users [7]. These requirements
can be functional (e.g., encrypted communication) or non-functional (e.g., performance,
security requirements) and can arise from different environments (e.g., specific hardware or
software environment) or user groups (e.g., administrators or users). In the following, we
describe configurable software systems in more detail.

Configuration options—also called features—are knobs to adjust the behavior of a configurable
system. These configuration options can be adjusted statically using, for instance, preprocessor
statements (e.g., ifdef) or dynamically using configuration files or command-line parameters.
In this work, we focus on dynamic configuration options, since the effect of static configuration
options on performance have already been analyzed extensively in literature [11, 50, 63, 84,
85].

Each configurable system offers a multitude of different configuration options. Formally,
we denote the set of all configuration options with regard to the configurable system 𝑆 as O𝑆.
Further, we distinguish between the set of binary configuration options O𝐵

𝑆 and the set of
numeric configuration options O𝑁

𝑆 . These sets are disjoint (i.e., O𝐵
𝑆 ∩ O𝑁

𝑆 = ∅) and together
they represent all configuration options of the configurable system (i.e., O𝐵

𝑆 ∪ O𝑁
𝑆 = O𝑆).

Each binary configuration option 𝑜 ∈ O𝐵
𝑆 can be selected or deselected, whereas each numeric

configuration option 𝑜 ∈ O𝑁
𝑆 usually exposes multiple different numeric values that it can be

9

10 Background

assigned to (e.g., the compression level of a compression tool typically has a value from 0 to
9). We denote the value set of a numeric configuration option 𝑜 ∈ O𝑁

𝑆 as 𝑟𝑜.
Moreover, the combination of one assignment for all configuration options (e.g., whether the

configuration option is enabled) is called a configuration. A configuration is the end-product
tailored upon the specific requirements of the end-user. We further denote C𝑆 as the set of all
configurations (i.e., configuration space) of the configurable system 𝑆. A configuration is an
allocation for each configuration option 𝑜 ∈ O𝑆. Formally, a configuration 𝑐 ∈ C𝑆 maps each
configuration option 𝑜 ∈ O𝑆 to its value 𝑐 ∶ O𝑆 → ℝ. That is, for each binary configuration
option 𝑜 ∈ O𝐵

𝑆 , 𝑐(𝑜) = 1 if the configuration option 𝑜 is selected in configuration 𝑐; otherwise
𝑐(𝑜) = 0. For each numeric option 𝑜 ∈ O𝑁

𝑆 , 𝑐 maps the configuration option to its specific
value 𝑣 ∈ ℝ: 𝑐(𝑜) = 𝑣.

2.1.1 Configuration Issues

Although configuration options can be easily introduced into a system and provide a good
opportunity to cover a broader range of users, they come with their own pitfalls. Previous
work by Xu et al. [152] pointed out that the number of configuration options in configurable
systems is typically increasing throughout time to provide even more flexibility to users.
The addition of new configuration options increases complexity of configurable systems
substantially although only a small portion of configuration options between 6.1% to 16.7%
are used by themajority of users and up to 54.1% are rarely used. One immediate consequence
of maintaining such a high number of configuration options are configuration issues [152].
Configuration issues arise when the user has specified a configuration 𝑐 ∈ C𝑆 (i.e., an allo-
cation of configuration options) which triggers an unwanted behavior of the configurable
system. To avoid such unwanted behavior, developers typically introduce constraints between
configuration options (e.g., if encryption is selected, an encryption standard has to be cho-
sen). Such constraints are often included only implicitly into the code of the configurable
system. If even one of these constraints is violated, the configurable system might behave in
an undesired way and could even produce wrong results. Formally, we denote 𝔹𝑆 as the set
of all constraints of configurable system 𝑆. Each constraint con ∈ 𝔹𝑆 is a Boolean expression
for one or more configuration options. We model a constraint con ∶ C𝑆 → {false, true} as a
function that takes a configuration and returns whether the constraint is satisfied (true if
it is satisfied; false otherwise). A configuration 𝑐 ∈ C𝑆 is valid if and only if it satisfies all
constraints:

∀con ∈ 𝔹𝑆 ∶ con(𝑐) = true

Usually, constraint solvers such as clasp1, Sat4J2, PicoSAT3, or z34 are used to assess whether a
configuration satisfies all constraints. In this thesis, we use z3 to search for valid configurations,
as it supports constraints from feature modeling, but also specific constraints from sampling
strategies, as we will explain in Section 2.2.2. We do not describe constraint solvers in more
detail and recommend the Handbook of Satisfiability by Biere et al. [13] for further reading.

1 https://potassco.org/clasp/, last accessed on 07/07/2023.
2 http://www.sat4j.org/, last accessed on 07/07/2023.
3 https://fmv.jku.at/picosat/, last accessed on 07/07/2023.
4 https://github.com/Z3Prover/z3, last accessed on 07/07/2023.

https://potassco.org/clasp/
http://www.sat4j.org/
https://fmv.jku.at/picosat/
https://github.com/Z3Prover/z3

2.1 Configurable Software Systems 11

For illustration purposes, we use an exemplary configurable system which we expand
throughout this chapter. The exemplary configuration system is a compression program
called Comp, which offers the binary configuration options O𝐵

Comp: root for the base code that
is always executed, Encryption () for encrypting a file, Compression () for compressing
a file, and two compression algorithms – A1 () and A2 (). The binary configuration
option root must always be selected. For brevity, we leave root in this example out. Another
constraint is that exactly one of the compression algorithms has to be set if Compression
is used. Furthermore, Comp offers a numeric configuration option CompressionLevel ().
Formally, the following holds: CompressionLevel ∈ O𝑁

Comp. CompressionLevel offers values
from 0 to 2 where 0 () indicates no compression, 1 () medium compression, and 2 ()
maximum compression. The compression level can only be set to 1 or 2 if Compression is
selected; otherwise it is 0.

Table 2.1: All valid configurations of the exemplary compression program Comp. Comp has the binary
configuration options Encryption (), Compression (), and two different compression
algorithms: A1 () and A2 (). Further, Comp provides CompressionLevel to adjust the
compression: no compression (), medium compression (), and maximum compression
(). For brevity, we omitted root that denotes the execution of the base code.

Configuration

𝑐1 { }
𝑐2 { , }
𝑐3 { , , }
𝑐4 { , , }
𝑐5 { , , }

Configuration

𝑐6 { , , }
𝑐7 { , , , }
𝑐8 { , , , }
𝑐9 { , , , }
𝑐10 { , , , }

Only configurations that fulfill all constraints specified before are valid configurations. In
Table 2.1, we show the valid configurations of the compression program Comp. An invalid
configuration would be { , , , } since it violates two constraints. First, Compression
() is turned on with CompressionLevel 0. This is not possible since either Compression has
to be turned on or CompressionLevel has to be 0, but not both. Second, both compression
algorithms A1 () and A2 () are enabled, which contradicts the rule that exactly one of
these algorithms can be turned on. In total, Comp has 5 configuration options and 10 valid
configurations. To formally describe such subject systems with their configuration options
and constraints, feature models are typically used. These feature models are described in the
following section.

2.1.2 Feature Modeling

To model a configurable software system, there are many different concepts to formally
describe the variability of a configurable software systemaswe show in Table 2.1. Some of these
concepts originate from the area of feature-oriented software product-line engineering [7,
130]. In this work, we reuse the concepts of feature models and their visual representation in a

12 Background

tree-like structure, feature diagrams, which we describe in the following by creating a feature
model for Comp.

A feature model consists of configuration options (O𝑆) and the constraints (𝔹𝑆) among
them. This information is sufficient to describe the configuration space (C𝑆) of a configurable
software system 𝑆. The configuration option that is present in every feature model is the
binary option root. It represents the root of the feature diagram, which stands for the base
code (i.e., the code that is always executed and not related to any configuration option)
and is also referred to as base. In Figure 2.1, we show the representation of the root feature
used throughout this paper. In our exemplary configurable software system Comp, this
configuration option represents, among other functions, (1) the code that reads in the data to
compress and (2) writes the compressed data into a file. Both of these operations have to be
performed each time regardless of other configuration options. Formally, the configuration
option root is a binary configuration option: root ∈ O𝐵

Comp. Further, root is always enabled,
which we assure with the constraint con ∈ 𝔹Comp:

𝑐(root)

root

Figure 2.1: Feature diagram representation of the feature root in the software system Comp

A further constraint that describes the relationship between configuration options is the
parent–child constraint. In a feature diagram, it is represented as a line between two configu-
ration options, illustrated in Figure 2.2 with configuration options root and Compression. In
essence, the parent–child constraint assures that the parental configuration option is selected
whenever the child is selected. Formally, the expression con ∈ 𝔹Comp to express the parent–
child relation between root and Encryption in the configurable software system Comp is as
follows:

𝑐(Encryption) ⇒ 𝑐(root)

root

Encryption

Figure 2.2: Parent–child relation between configuration options root and Encryption.

In a feature diagram, we distinguish between optional and mandatory configuration
options and between or and alternative groups [7]. An optional configuration option is a
configuration option that can be selected or deselected. A configuration option is marked as
optional in a feature diagram by a hollow circle symbol on top of the feature as shown in
Figure 2.3 (a). The optional configuration option does not need any additional constraint. A
mandatory configuration option is a configuration option that is selected in each configuration
whenever the parent configuration option is selected. In a feature diagram, the symbol for
a mandatory option is a filled circle on top of the configuration option as we illustrate in

2.1 Configurable Software Systems 13

Figure 2.3 (b). The corresponding constraint con ∈ 𝔹Comp for the mandatory configuration
option Algorithm is as follows: 𝑐(Compression) ⇒ 𝑐(Algorithm).

root

Encryption

(a)

Compression

Algorithm

(b)

Figure 2.3: Optional option Encryption (a) and mandatory option Algorithm (b) of the compression
tool Comp.

A special group of configuration options are alternative groups. In an alternative group,
the parent node usually depicts functionality of the software that allows for different choices
(i.e., exchanging one functionality with another). Among these choices, exactly one choice
can be chosen. In a feature diagram such an alternative group is represented by a hollow arc
in the parent configuration option.

Algorithm

A1 A2

Figure 2.4: Alternative group offering different compression algorithms A1 and A2. Exactly one of
both alternatives A1 and A2 have to be chosen.

In Figure 2.4, we depict such an alternative group in our exemplary configurable software
system Comp. The parent node, Algorithm, has two child nodes, A1 and A2. This means
that either A1 or A2 have to be chosen as an compression algorithm to compress the data.
Multiple constraints con ∈ 𝔹Comp are needed to express an alternative group:

𝑐(Algorithm) ⇒ (𝑐(A1) ∨ 𝑐(A2)) (2.1)

𝑐(A1) ⇒ ¬𝑐(A2) (2.2)

𝑐(A2) ⇒ ¬𝑐(A1) (2.3)

The constraint in Equation 2.1 is needed to assure that at least one of the alternatives is selected
whenever the parent node is selected. The constraints in Equation 2.2 and Equation 2.3 exclude
the other configuration option to assure that only one of them can be selected at a time.

A similar group of configuration options is the or group as we show in Figure 2.5. In an
or group, at least one configuration option has to be selected. The difference of an or group
compared to multiple optional configuration options is that at least one option has to be
selected. Both requirements of selecting at least one configuration option at a time is, however,
very rare in feature modeling of configurable software systems. The only needed constraint is
the following: 𝑐(OrGroup) ⇒ (𝑐(A) ∨ 𝑐(B))

Previously, we described binary configuration options (O𝐵
𝑆) and different characteristics of

these. A common trait is that these options can only be selected or deselected. This, however, is

14 Background

OrGroup

A B

Figure 2.5: Representation of an or group in a feature diagram. When OrGroup is selected, at least A
or B have to be selected.

often not sufficient for modeling a configurable system, since other options demand different
numeric values instead of selecting or deselecting it. These options are called numeric options
(O𝑁

𝑆). In our exemplary configurable system Comp, we have the possibility to adjust the
compression level (i.e., the quality of the compression). In Figure 2.6, we represent this
with the numeric configuration option CompressionLevel. The first line of the node contains
the name of the configuration option; the second line contains the set of values; the third
line contains the default value of the numeric configuration option (i.e., the value when
it is not explicitly set). This type of configuration option adds one constraint con ∈ 𝔹:
(𝑐(CompressionLevel) = 0) ∨ (𝑐(CompressionLevel) = 1) ∨ (𝑐(CompressionLevel) = 2)

CompressionLevel
{0, 1, 2}

0

Figure 2.6: Numeric configuration option CompressionLevel in Comp. The first line represents the
name of the configuration option. The possible values for CompressionLevel are shown in
the second line. The last line defines the default value of the configuration option (i.e., the
value this numeric option has when it is not used).

Other constraints, that are not implicitly encoded into the tree-like structure of a feature
diagram, are called cross-tree constraints. The necessity of using additional constraints arises
since the tree-like structure of feature diagrams and its implicit constraints do not suffice to
express configuration spaces as proven by Knüppel et al. [65]. These cross-tree constraints
are usually listed below the feature tree and are expressed by their formula as we show in the
summarized feature diagram in Figure 2.7. In our case, we have two cross-tree constraints.
The first cross-tree constraint, Compression ⇒ (CompressionLevel > 0), expresses that Com-
pressionLevel can only have the values 1 or 2 if Compression is enabled. The second cross-tree
constraint, CompressionLevel = 0 ⇒ ¬Compression, is additionally needed to assure that
Compression is always turned off while CompressionLevel is 0.
The feature diagram in Figure 2.7 contains the feature diagram of our configurable software
system Comp. In summary, the configuration options have the following meaning: root
represents the base code of the configurable software system Comp and is always selected.
Encryption represents the encryption functionality (i.e., encrypting the compressed data
before writing the data to disk) and can be selected or deselected. Compression represents
using the compression algorithm, which can be selected or deselected. The CompressionLevel
has to be 1 or 2 if the compression is selected and 0 otherwise. Either A1 or A2 has to be
chosen as an compression algorithm if Compression is selected.

2.1 Configurable Software Systems 15

root

Compression Encryption

CompressionLevel
{0, 1, 2}

0

Algorithm

A1 A2

Compression ⇒ (CompressionLevel > 0)
CompressionLevel = 0 ⇒ ¬Compression

Mandatory option
Optional option
Alternative group

Figure 2.7: Complete feature model of Comp. For the sake of simplicity, we excludementioning configu-
ration 𝑐 in the cross-tree constraints (e.g., wewrite Compression instead of 𝑐(Compression)).

In summary, the feature diagram in Figure 2.7 encodes the following constraints:

𝑐(root)
𝑐(Encryption) ⇒ 𝑐(root)
𝑐(Compression) ⇒ 𝑐(root)
𝑐(Algorithm) ⇒ 𝑐(Compression)
𝑐(A1) ⇒ 𝑐(Algorithm)
𝑐(A2) ⇒ 𝑐(Algorithm)
𝑐(Compression) ⇒ 𝑐(Algorithm)
𝑐(Algorithm) ⇒ (𝑐(A1) ∨ 𝑐(A2))
𝑐(A1) ⇒ ¬𝑐(A2)
𝑐(A2) ⇒ ¬𝑐(A1)
(𝑐(CompressionLevel) = 0) ∨ (𝑐(CompressionLevel) = 1) ∨ (𝑐(CompressionLevel) = 2)
𝑐(Compression) ⇒ (𝑐(CompressionLevel) > 0)
(𝑐(CompressionLevel) = 0) ⇒ ¬𝑐(Compression)

With all these constraints, the configurations from Table 2.1 are the only configurations that
satisfy all constraints. Interestingly, although our exemplary configurable software system
has 7 configuration options and a configuration space of 192 possible configurations, only 10
(∼ 5%) of them satisfy all constraints. In another configurable software system, the video
encoder VP9, we focused on only 42 binary configuration options with a configuration space
of 242 ∼ 1012 configurations. In this example, only 216 000 configurations were valid (i.e.,
0.000021% of the configurations are valid). This high number of constrains illustrates one
of the main challenges when handling configurable software systems: it is usually difficult
to identify valid configurations [87]. We address this issue later in Section 2.2.2. For the
remainder of this work, we denote the set of all valid configurations of a configurable system
𝑆 as C𝑆 and refer to it as whole population.

16 Background

2.1.3 Non-Functional Properties

Each configuration of a configurable software system has measurable properties which can
be acquired by building or executing the configurable software system with the particular
configuration and aworkload. In this section, we describe the so called non-functional properties.
In literature, non-functional properties have received much attention in the last decades as
Siegmund [138] points out since there are over 25 definitions of these terms. Additionally,
there are multiple surveys on this topic due to the ambiguous definitions [138]. Similarly to
Siegmund, we do not give an additional definition of non-functional properties and state only
that non-functional properties are related to a quality or attribute. Exemplary non-functional
properties of configurable software systems are footprint (i.e., the size of the binary after
compiling it), latency (i.e., the time to send or process some information), throughput (i.e., the
amount of information to send or process during a given time frame), energy consumption (i.e.,
the energy needed while performing a certain task), or execution time (i.e., the time needed to
perform a certain task).

Execution time, in particular, has gained momentum in software engineering in the last
years.Whole domains, such as the high performance computing (HPC) domain, are dedicated
on performance optimization of hardware and software alike. Recently, Han and Yu conducted
an empirical study on performance bugs by using bug repositories and change logs [44];
Leitner and Bezemer conducted an exploratory study on performance tests of configurable
systems [78]. Siegmund et al. propose a machine-learning approach to measure only a subset
of the configuration space and predict the rest [139] and later, Grebhahn et al. use this
approach to explain and verify the performance behavior of configuration options [37]. Our
work builds on the later two publications. In the remainder of this work, we focus mainly
on the execution time as a non-functional property of configurable software systems and use
performance as a synonym.

Formally, the performance measurements can be represented as a function ℙ𝑆 ∶ C𝑆 → ℝ
that maps a given configuration of the configurable software system 𝑆 to the measured
performance value.

In Table 2.2, we show exemplary performance values of the configurable software system
Comp. Taking a closer look on the table reveals the following: Running the base code without
any configuration option takes about 5 seconds. Using only Encryption () in 𝑐2 needs about
3 seconds more than 𝑐1 (8 seconds in total). In 𝑐3, using Compression () with algorithm A1
() and CompressionLevel 1 () needs about 2 seconds more than without compression (7
seconds in total). One could assume that these performance offsets in 𝑐2 and 𝑐3 are additive,
which would result in a performance of 5 + 3 + 2 = 10 seconds. Interestingly, combining
encryption with compression in 𝑐7 does not yield the assumed result of 10 but only 9. The
reason for this behavior are interactions between configuration options, which we describe in
the following section.

2.1.4 Interactions

In configurable software systems, multiple configuration options might interact with each
other. That is, two or more configuration options interact when they influence each other

2.1 Configurable Software Systems 17

Table 2.2: Measured performance values ℙ in seconds for each configuration of the exemplary config-
urable software system Comp.

Configuration ℙ

𝑐1 { } 5
𝑐2 { , } 8
𝑐3 { , , } 7
𝑐4 { , , } 9
𝑐5 { , , } 6

Configuration ℙ

𝑐6 { , , } 7
𝑐7 { , , , } 9
𝑐8 { , , , } 10
𝑐9 { , , , } 8.5
𝑐10 { , , , } 9

while executed together. The reasons for such interactions can be, among others, dependencies
in the configuration option’s implementation, such as control-flow or data-flow dependencies.
In some cases, interactions even lead to program errors [42]. Apel et al. [7] describe the
problem of detecting, managing, and resolving these interactions as the feature-interaction
problem.

In Section 2.1.3, we pointed out that the measurements in Table 2.2 are not consistent
when focusing on Encryption (), A1 () and CompressionLevel 1 (). We observe that
the execution time was 1 second lower than expected. In fact, it turns out that there exist
a data-flow dependency between encryption and compression in this case since Comp first
compresses the data and afterwards encrypts the compressed data. This way, the encryption
has less data to encrypt and obtains a speed up of 1 second. While this example is easy to
explain and involves only two configuration options, in reality we encounter more complex
interactions of up to 6 configuration options, as we describe in Chapter 4. Kolesnikov et al. [68]
observed in an empirical study that considering interactions of up to 3 configuration options
are sufficient to cover most of the influences; interactions with more than 3 configuration
options are only marginally relevant. We describe the results of this study in more detail in
Section 2.2.

In general, interactions are a cross-cutting problem throughout this thesis (i.e., they are
present in each chapter). Interactions have implications on sampling as discussed in Sec-
tion 2.2.2 and Chapter 3. Interactions also appear when it comes to explaining performance
behavior on different releases and workloads as we do in Chapter 4 and Chapter 5.

2.1.5 One-Hot Encoding of Numeric Configuration Options

CompressionLevel
{0, 1, 2}

0
⇒

CompressionLevel

CompressionLevel_0 CompressionLevel_1 CompressionLevel_2

Figure 2.8: One-hot encoding of the configuration option CompressionLevel.

18 Background

Typically, numeric configuration options are configuration options with a multitude of
different numeric choices. However, numeric configuration options are often converted into
binary configuration options since feature model formats used in practice (such as SXFM in
S.P.L.O.T. [97] or UVL [145]) do not support numeric configuration options. But, to cover
numeric configuration options nevertheless, numeric configuration options are often con-
verted into binary configuration options [60, 139]. In literature, this conversion process is
also referred to as discretization [60, 139]. However, the more precise term for this conversion
in the machine-learning area is one-hot encoding [125]. In our configurable software system
Comp, we use a numeric configuration option for the quality of our compression algorithm
(i.e., the higher the compression level, the better the compression). Other numeric config-
uration options could adjust the hardware usage of the program (i.e., maximum memory
consumption, number of threads) or the control flow of the program (i.e., number of itera-
tions or the threshold of a certain algorithm). In the past, literature focused mainly on binary
configuration options, since numeric configuration options can be converted into multiple
binary configuration options. To use this conversion process, the values of a numeric options
have to be a fixed number of possible values. Theoretically, numeric configuration options
could be continuous and infinite, but in practice the value range of numeric configuration
options are bound to data types such as int or double and, thus, more limited. In this work,
we further limit the value range of numeric configuration options to keep the measurement
effort of a configurable system feasible. Consequently, the prerequisite of categorical data
(i.e., data with a limited and fixed number of possible values) is given for each numerical
configuration option.

The general idea of one-hot encoding of numeric configuration options is as follows: Replace
each numeric configuration option by a binary configuration option with the same name
and create an alternative group, where each child represents one single value of the numeric
configuration option. In Figure 2.8, we show the conversion of the numeric configuration
option CompressionLevel. To obtain a valid feature diagram again, two additional steps have
to be performed. First, the alternative group has to be a child of root to be able to model
that CompressionLevel_0 is the default value and selected whenever Compression is not
selected. Second, the cross-tree constraints referring to the choices of numeric configuration
options have to be changed too. Therefore, each equation or inequality constraint is reformed
by replacing them by the corresponding alternative configuration options as we show in
Figure 2.9.

2.2 Performance Modeling

Performance plays a crucial role when it comes to configurable systems. From a developer’s
point of view, understanding and verifying their knowledge of configurable systems [37]
might help, for instance, to detect performance bugs [44]. From a user’s point of view, iden-
tifying the performance-optimal configuration to a certain preset (i.e., the user specifies
that certain configuration options have to be selected or deselected) helps improving perfor-
mance [139]. For instance, a user of Comp might be interested in identifying the performance-
optimal configuration when A1 () is selected. A look on Table 2.2 reveals that 𝑐3 is the
best configuration for his needs (i.e., using only medium compression () and deselecting

2.2 Performance Modeling 19

root

CompressionLevel Encryption Compression

CompressionLevel_0 CompressionLevel_1 CompressionLevel_2 Algorithm

A1 A2

Compression ⇒ (CompressionLevel_1 ∨ CompressionLevel_2)
CompressionLevel_0 ⇒ not Compression

Mandatory option
Optional option
Alternative group

Figure 2.9: Complete feature model of Comp after one-hot encoding. The change of the feature model
is highlighted by a dashed line.

encryption ()). However, in most cases it is not as trivial as in Comp because on the one
hand, the feature interaction problem should be addressed by measuring and investigating
all configurations [42] as described in Section 2.1.4. On the other hand, it is not feasible to
measure all configurations due to the vast size of the configuration space. For illustration,
a configurable system offering 30 binary configuration options without any constraints re-
sults in a configuration space of |C| = 230 ≈ 109. However, real-world configurable systems
have usually a lot more configuration options. For instance, SQLite, a small SQL database
engine consists of more than 80 configuration options [138]. Larger configurable systems,
such as the Linux kernel had more than 5 000 configuration options in the year 2010 [135]
and recently more than 9 000 configuration options [1] with an estimated number of 106000

configurations [93]. These factors make it difficult to either measure all configurations or
to alternatively identify the performance-optimal configuration by measuring only a few
configurations. To tackle this problem, an approach is needed that aims at identifying the
performance-optimal configuration by only measuring a few configurations. To tackle the
problemwhich we address as performance modeling, a joint approach of (1) sampling strategies
to limit the amount of configurations to measure and (2) machine-learning technique to
extract performance information is used [139]. Next, we provide an overview of how sampling
and machine learning are combined to use it not only for predicting the configuration space,
but also to convey the influence of different configuration options and interactions on the
performance. After this overview, we provide more detailed information on the components
of performance modeling.

2.2.1 Overview

In Figure 2.10, we illustrate the overall process of learning performance-influence models for
configurable software systems. A sampling strategy is used to select (Step I) and measure
(Step II) a tractable subset of configurations, which is then used to learn an influence model
(Step III). The influence model can then be used to predict the performance of any configura-

20 Background

Configurations

valid

I. Sampling

𝑐1𝑐2𝑐3𝑐4𝑐8

Conf. Perf.

𝑐1 { } 5
𝑐2 { , } 8

𝑐3 { , , } 7

𝑐4 { , , } 9

𝑐8 { , , , } 10

II. Measuring III. Learning

IV. Performance Prediction

Conf. Measured perf. Predicted perf. Error

𝑐1 { } 5 5 0%
𝑐2 { , } 8 8 0%

𝑐3 { , , } 7 7 0%

𝑐4 { , , } 9 9 0%

𝑐5 { , , } 6 7 16%

𝑐6 { , , } 7 9 28%

𝑐7 { , , , } 9 9 0%

𝑐8 { , , , } 10 10 0%

𝑐9 { , , , } 8.5 9 5%

𝑐10 { , , , } 9 10 11%

error = 6%

5
+ 3 ⋅

+ 2 ⋅ ⋅

− 1 ⋅ ⋅

V. Comprehension

Figure 2.10: Predicting and comprehending the performance of configurations: The subject is the
configurable software systemComp. The steps for performance prediction of configurations
are sampling (I),measuring (II), learning (III), performance prediction (IV), and comprehension
(V). In Step I, a sampling strategy selects a tractable number of configurations. These
configurations are measured in Step II. In Step III, a machine-learning algorithm is used to
learn an influencemodel. The learned influencemodel can be used in Step IV to predict the
performance of any configuration. This way, one can compare the predicted performance
to the measured performance and compute the prediction or model error. Alternatively,
the influence model can be used in Step V to comprehend the performance behavior of
configuration options; terms representing influences of options and interactions among
options are underlined.

tion (Step IV). This can be specifically used to identify the performance-optimal configuration
for a certain preset. Additionally, the influence model can also be used to comprehend the
influence of different configuration options on the performance (Step V). In our example, the
influence model captures the relevant influences of configuration options and interactions on
performance as a linear combination of the respective terms [139]. An influence is relevant if
it increases the predictive power of the model on configurations of the sample set [139]. The
influence model from Figure 2.10 has four components:

• 5 represents the base performance (the intercept),
• 3 ⋅ represents the influence of option encryption,
• 2 ⋅ ⋅ represents the influence of the numeric option CompressionLevel, and
• −1 ⋅ ⋅ represents the influence that arises from the interaction of encryption and

CompressionLevel

2.2 Performance Modeling 21

The accuracy of the model depends on two factors: (1) the sample set (Step I) and (2)
the machine-learning technique (Step III). Note that other representations for the influence
model (e.g., regression trees) are possible and may even result in improved accuracy (i.e.,
lower error) [129]. However, an important aspect for software engineers is interpretability of
the model as we use it in Step V, which is why we resort to the simple, but yet reasonably
expressive form of a linear, multi-variable regression model [37].

Let us start with a closer look at the sampling step. The goal of the sampling step is to select
a sample set such that all relevant influences are covered. If an important option or interaction
among multiple options is not present in the sample set (for example, the interaction among
encryption and compression in our example), the learning step cannot possibly uncover it
and include it into the influence model.

2.2.2 Sampling

Since measuring all configurations of a configurable software system is typically infeasible
due to the sheer size of the configuration space, researchers and practitioners have developed
a number of strategies to sample the configuration space of given configurable systems.
Although incomplete (i.e., it selects only a subset 𝕊 ⊆ C of all configurations), sampling
is the state of the art in practice [139]. For example, in Linux, code coverage sampling is
used to create a sample set that covers all lines of source code [147]. Achieving completeness
by exploiting parallelism to measure all configurations is infeasible, since the number of
configurations grows exponentially with the number of options.

A prominent sampling strategy among researchers and practitioners is random sampling.
The idea is to select configurations randomly from the configuration space in an unbiased
way. More precisely, the probability of selecting a configuration 𝑐 from configuration space
C𝑆 should be 1

|C𝑆| . Without any knowledge on relevant influences and interaction effects,
random sampling is a reasonable choice. Nevertheless, random sampling may miss important
information—there is no guarantee that a certain configuration option or interaction is covered
in the sample set, which becomes more prevalent when the number of samples is very low
compared to the size of the configuration space (i.e., the probability of covering a configuration
option is lower). Furthermore, obtaining an unbiased random sample is computationally
hard. This is due to possible constraints among configuration options. While there has been
progress in this direction using binary decision diagrams or satisfiability solvers [19, 112],
existing solutions are not ready for industrial adoption yet.

A more systematic sampling strategy is 𝑡-wise sampling. The idea is to select the sample set
such that it covers all interactions among all combinations of 𝑡 options.Pair-wise sampling (𝑡 = 2)
is the most popular. It ensures that all pairs of configuration options are present (i.e., enabled),
at least, once in the sample set. Option-wise sampling (𝑡 = 1) ensures that each individual
option is selected, at least, once. Clearly, the larger 𝑡 is, the more possible interactions we can
catch, but the larger the sample set grows. Let us illustrate this fundamental tradeoff with an
example—a function that contains preprocessor directives to realize configurability:

1 void encrypt(data) {

2 #ifdef Compression

3 data = compressData(data); // Block 1: Compression

22 Background

4 #endif

5 #ifdef Encryption

6 data = encryptData(data); // Block 2: Encryption

7 #endif

8 }

In the above code snippet, we illustrate the interplay of the options Encryption and Com-
pression in the configurable system Comp at code level. Function encrypt uses two macros,
Encryption () and Compression (), controlling the inclusion of configuration-dependent
code. Block 1 is included only if Compression is selected. Block 2 is included only in configu-
rations that have Encryption selected. It can be seen in the above code snippet that, when
data are compressed, less data have to be encrypted, which speeds up the encryption pro-
cess. Option-wise sampling would select only Block 1 or 2, not both blocks 1 and 2, missing
the speedup due to the interaction of the two options. Pair-wise sampling would select an
additional configuration that includes blocks 1 and 2, at the cost of a larger sample set, though.

While 𝑡-wise sampling is systematic, it comes with its own challenges. First, computing
a sample set even for 𝑡 ≥ 2 is computationally expensive and even infeasible for configu-
ration spaces of the size of the Linux kernel [123]. Second, stoically including all pairs (or
triples, quadruples, etc.) may be unnecessarily expensive since practice has shown that not
all interactions among options are relevant—actually only few are [68]. To address these
challenges, hybrid sampling strategies have been proposed, which combine an element of
randomness with coverage criteria such that certain combinations of interactions or certain
parts of the code are selected [60, 118, 147]. Sampling strategies that are dedicated to numeric
configuration options have been proposed as well [139]. In this work, however, we focus
on binary configuration options. After this brief overview, we present the binary sampling
strategies that are relevant in this thesis in more detail.

Binary Sampling Strategies

In literature, many publications focus on using binary sampling strategies [19, 95, 112, 118].
Binary sampling strategies are designed especially for binary configuration options. For cover-
ing also numeric configuration options, the numeric configuration options could be converted
into multiple binary configuration options using one-hot encoding (see Section 2.1.5). These
sampling strategies typically collect samples until they cover a certain goal (coverage based),
use an off-the-shelf satisfiability solver to identify suitable configurations (solver based),
or adopt a certain strategy to randomly select configurations. Next, we explain the binary
sampling strategies in more detail and extend the feature model of Comp by adding the binary
configuration option CheckIntegrity () for checking the file integrity of the compressed file.
CheckIntegrity is an optional configuration option and, thus, can be selected and deselected
independently to the other configuration options. We refer to this extended feature model as
CompExt and utilize it for a better demonstration of the binary sampling strategies. In total,
CompExt has 20 configurations.

Coverage-Based Sampling Coverage-based sampling strategies focus on specific areas or
properties of the configuration space, such as specific kinds of interactions as in t-wise

2.2 Performance Modeling 23

root

CheckIntegrity CompressionLevel Encryption Compression Deletion

CompressionLevel_0 CompressionLevel_1 CompressionLevel_2 Algorithm

A1 A2

Compression ⇒ (CompressionLevel_1 ∨ CompressionLevel_2)
CompressionLevel_0 ⇒ not Compression

Mandatory option
Optional option
Alternative group

Figure 2.11: Featuremodel of CompExt, an extension of the featuremodel of Comp. In essence, CompExt
has one more configuration option: CheckIntegrity () for checking the file integrity of
the compressed file.

sampling [140]. This might be the optimal way to sample if we know in advance where to
sample, but that is usually not the case for large software systems.

In 𝑡-wise sampling, the idea is to select configurations such that all combinations of 𝑡
configuration options appear at least once in the sample set. In many cases, additional con-
straints force the samples to include configurations with even more than 𝑡 configuration
options enabled. A valid sample that fulfills this goal might be the configuration where all
configuration options are enabled. This, however, is less practical since a single configuration
does not provide enough information to infer any knowledge about configuration options.
As a countermeasure, Siegmund et al. [140] use 𝑡-wise sampling such that it minimizes the
number of selected configuration options. In this thesis, we reuse the later sampling strategy.
For illustration, we show the sample set for 𝑡 = 1 in Table 2.4. In total, 𝑡 = 1 needs 6 out of 20
configurations and thereby covers each configuration option of CompExt, at least, once.

Another strategy aims at a balanced selection and deselection of all configuration options
in the sample set. Sarkar et al. showed that such a frequency-based sampling further im-
proves the accuracy of performance models learned based on the sample set [129]. Other
coverage-oriented sampling strategies are, for example, statement-coverage sampling [147] or
most-enabled-disabled sampling [95]. Statement-coverage sampling is a white-box strategy,
in which the configurations are selected such that every block of optional code from the
software system is selected, at least, once; whereas most-enabled-disabled sampling selects
just one configuration where all configuration options are selected and one where all configu-
ration options are deselected. The main problem of these strategies is that they require prior
knowledge to select a proper coverage criterion, which typically requires a domain expert
(i.e., an experienced user or a developer) and, thus, this option is often not available.

One general shortcoming of coverage-based sampling strategies is that one cannot set an
arbitrary number of configurations to sample. This is especially crucial when the measure-
ment budget only allows for a very limited number of configurations. In t-wise sampling,
adjusting 𝑡 is not practicable in reality. For instance, for a configurable system with 300 op-

24 Background

Table 2.3: All 20 configurations of CompExt.

Configuration

𝑐1 { }
𝑐2 { , }
𝑐3 { , , }
𝑐4 { , , }
𝑐5 { , , }
𝑐6 { , , }
𝑐7 { , , , }
𝑐8 { , , , }
𝑐9 { , , , }
𝑐10 { , , , }

Configuration

𝑐11 { , }
𝑐12 { , , }
𝑐13 { , , , }
𝑐14 { , , , }
𝑐15 { , , , }
𝑐16 { , , , }
𝑐17 { , , , , }
𝑐18 { , , , , }
𝑐19 { , , , , }
𝑐20 { , , , , }

Table 2.4: Example for using 𝑡-wise sampling with 𝑡 = 1.

Conf.

𝑐1 { }
𝑐2 { , }
𝑐3 { , , }
𝑐4 { , , }
𝑐5 { , , }
𝑐11 { , }

tional configuration options such as SQLite, option-wise sampling would yield about 300
configurations, whereas pair-wise would result in about 3002 = 90 000 configurations.

Solver-Based Sampling Solver-based sampling strategies use an off-the-shelf constraint
solver, such as SAT4J or z3, for sampling an arbitrary number of configurations. Naturally,
these strategies do not guarantee true randomness [47] as in random sampling. Often the
sample set consists only of the first 𝑘 solutions provided by the constraint solver [18], and
the internal solver strategy is typically to search in the “neighborhood” of an already found
solution. Hence, the result is a locally clustered set of configurations. For illustration, we show
this in an example in Table 2.5. Although the solver-based approach identifies 6 configurations,
the configurations are similar to each other and do not contain the configuration options A2
() and CheckIntegrity (). To weaken the locality drawback of solver-based sampling,
Henard et al. [47] change the order of configuration options, constraints, and values in
each solver run. This strategy, which we call henceforth randomized solver-based sampling,
increases diversity of configurations, but it cannot give any guarantees about randomness or
coverage. As we show in our evaluation in Chapter 3, this strategy requires to rebuild the

2.2 Performance Modeling 25

entire solver model from scratch at each solver call (i.e. selection of one configuration), which
is computationally expensive.

Table 2.5: Example for solver-based sampling to sample 6 configurations (i.e., the same number as
𝑡 = 1).

Conf.

𝑐1 { }
𝑐2 { , }
𝑐3 { , , }
𝑐4 { , , }
𝑐7 { , , , }
𝑐8 { , , , }

Random Sampling One way to perform random sampling is by randomly assigning either
0 or 1 to each configuration option for each configuration [39]. However, it is very likely
that many invalid configurations are selected this way due to unsatisfied constraints, which
makes this strategy inefficient. For instance, Liebig [87] sampled 1 000 000 configurations
randomly using this approach for the configurable software system Linux, but none of them
satisfied all constraints. Chakraborty et al. [18] use hash functions to split the configuration
space recursively in multiple regions, and they select configurations from each of the regions.
Still, this strategy produces many invalid configurations. Chen et al. [22] use a distance
metric to find different test inputs for methods to uniformly cover the configuration space.
However, they do not consider constraints among the input variables and, thus, produce
many invalid configurations. Oh et al. [112] encode a system’s configuration space using a
binary decision diagram. This way, they can represent and enumerate all configurations in
a compact way, such that they can randomly draw configurations. However, construction
time and memory consumption of binary decision diagrams are high, and they do not
scale to the largest configurable software systems [134]. Gogate and Dechter [34] propose
a random sampling strategy that uniformly selects configurations without enumerating
all configurations using the Monte-Carlo method [99]. This strategy also selects invalid
configurations, though. Although difficult in practice, we resort in this thesis to enumerating
all configurations of the configurable software systems using an off-the-shelf solver and
randomly select configurations afterwards. For illustration, we show in Table 2.6 a random
sample consisting of 6 configurations. Interestingly, every configuration option is covered, at
least, once. Some interactions between configuration options are also covered.

2.2.3 Performance Measurements

After using sampling strategies in Step I to select a suitable amount of configurations, these
configurations have to be measured in Step II. Performance measurements are exposed to
different confounding factors that may lead to wrong results [33, 105] and inherently to

26 Background

Table 2.6: Example for random sampling to sample 6 configurations (i.e., the same amount as 𝑡 = 1).

Conf.

𝑐1 { }
𝑐4 { , , }
𝑐6 { , , }
𝑐16 { , , , }
𝑐18 { , , , , }
𝑐19 { , , , , }

drawing wrong conclusions. The main issue herein lies in the fact that measurement bias is
unpredictable [105] and, thus, cannot be controlled completely. Measurement bias, however,
could deflect the results of Step III–V and provide a misleading and wrong view on the
configurable software system. This way, we cannot make any trustworthy observations to a
system. To reduce the measurement bias, we deploy multiple steps as precautions to reduce
measurement noise.

First, the hardware could produce a measurement bias which could blur our results. A
way to avoid variation in hardware is to use only a single compute node for performance
measurements. This, however, is unpractical when measuring thousands of configurations
with multiple repetitions. For this reason, we use multiple compute nodes. However, different
compute nodes can also have an effect on measurements. Using different hardware for
our performance measurements (e.g., a different CPU with different clock speeds) affects
the performance measurements (e.g., one hardware executes the measurements faster).
Thus, we are using the same hardware for our performance measurements. That is, we are
using multiple computing nodes with the same hardware to distribute the measurements on
multiple machines. Although hardware may vary slightly [105] due to manufacturing issues,
we ran a performance benchmark (i.e., sysbench5) and compared the performance of all nodes
to assure that the performance is similar on each computing nodes. Further measurement
bias can also be induced by software [105]. For instance, using different versions of software
(e.g., different Linux kernel version by using different Linux operating systems) can also
affect performance due to, for instance, performance updates. Moreover, software running in
the background but consuming the CPU also affects performance negatively. To counteract,
we are running a minimum operating system image (Ubuntu or Debian – depending on
the case study) with only necessary packages (typically libraries) installed on the nodes.
To further assure isolation from the execution of other tasks, we internally use a scheduling
system called Slurm [153], which is often used in high performance computing environments.
However, we cannot control all confounding factors completely (e.g., the environmental
temperature), which gives rise to further measurement noise. To control the remaining noise,
we measure each configuration 3 to 5 times (depending on the case study) and repeat the
measurement of the configuration if the standard deviation exceeds 10%.

5 https://github.com/akopytov/sysbench, last accessed on 03/24/2023.

https://github.com/akopytov/sysbench

2.2 Performance Modeling 27

2.2.4 Performance-Influence Models

Performance-influence models allow us to model and predict the performance of all individual
configurations of a configurable software system [139], as we show in Step III–V in Fig-
ure 2.10. We denote a performance-influence model as a function Π𝑆 ∶ C𝑆 → ℝ, which takes a
configuration 𝑐 ∈ C𝑆 of configurable system 𝑆 and returns its predicted performance value.

However, performance-influence models can become quite complex (i.e., the number of
terms of the performance-influence models is high), especially if the performance-influence
model contains even very small and neglectable influences. Therefore, it is desirable in many
cases that a performance-influence model contains only the most relevant influences, which
can be achieved by adjusting the learning procedure at the cost of predictive power [68].
In any case, predictions of performance-influence models are rarely totally accurate, even
if we included all possible configurations for learning the performance-influence models.
As pointed out in Section 2.2.3, the measurement setup introduces systematic error, result-
ing in noisy data. Because of the random nature of measurement noise, this noise cannot
be learned by machine-learning approaches. Other reasons are that the machine-learning
approach can often not learn all types of influences, as we will point out later in this section.
Performance-influence models are not specific to performance. They can be used to model any
non-functional property that can be quantified on an interval scale. Performance-influence
models have been applied to accurately predict execution time, throughput, memory con-
sumption, binary footprint (i.e., the size of the binary), energy consumption, verification
effort, and more [37, 66, 141].

In the past, many different approaches have arisen for performance modeling of config-
urable software systems. Different approaches, such as classification and regression trees,
multiple linear regression, and deep learning have been shown to work for performance
modeling [41, 129]. We provide more detail on different approaches in Section 2.2.4.

As Shmueli [137] points out, performance-influence models can be used for different
purposes, such as for describing a certain behavior or to predict a certain behavior. Predictive
modeling is used to predict the performance behavior of (unseen) configurations. This can be
used as a heuristic to search for a performance-optimal configuration. However, to get reliable
results, the prediction error has to be minimized. We deliver more details on predictive
modeling in Section 2.2.4. In contrast, we use the descriptive modeling aspect of performance-
influence models to derive the influence on the performance of different configuration options
and interactions thereof. But to avoid drawing wrong conclusions, we need to assure that
the models are reliable. Therefore, we have taken multiple precautions, which we describe
in Section 2.2.4. To use machine-learning models to describe or to predict are two different
goals with different focuses and different machine-learning models perform differently on
predicting or describing a certain behavior [137]. In other words, one machine-learning
approach can—in terms of accuracy—clearly outperform other machine-learning models
when it comes to predicting performance behavior, but is bad in describing the observed
performance behavior (e.g., a configuration option slows down the program by 3 seconds).

In this thesis, we use both predictive and descriptive modeling for different aspects.

28 Background

State-of-the-Art Machine Learning Approaches

Literature has focused in the past on finding and improving approaches for performance
modeling of configurable software systems [35, 38, 41, 129]. These approaches originate from
the domain of machine learning and have a wide variety of different applications.

Table 2.7: Excerpt of different machine-learning strategies used for performance modeling.

Learning algorithm Category Used in

Classification and Regression Trees Decision Tree [35, 129]
DeepPerf Deep Feedforward Neural Network [35, 41]
k-Nearest Neighbours Regression method [35, 38]
Kernel-Ridge Regression Regression method [35, 38]
Multiple Linear Regression Regression method [35, 139]
Random Forest Multiple decision trees [35, 38]
Support Vector Regression Regression method [35, 38]

We show some prominent examples of machine learning approaches used for performance
modeling in Table 2.7. In this thesis, we focus onmultiple linear regression since this is in terms
of accuracy among the best performing machine-learning approaches according to Grebhahn
et al. [38], is also used in related work as we show in Table 2.7. Additionally, it allows for
comprehending which configuration options and workloads influence the performance of
a configurable software system. Next, we describe how the prediction error of a machine-
learning model is determined and provide more detail into multiple linear regression.

Prediction Error The general goal of learning a performance-influencemodel on some data
is to minimize the prediction error. Typically, a low prediction error indicates that the learned
performance-influence model accurately depicts the given data, whereas a high prediction
error indicates that the performance-influence model induces inaccurate predictions. Clearly,
performance-influence models with a low prediction error on the provided data are desired.
The prediction error is determined by using a statistical measure, also known as loss function.
However, in the past, a variety of different loss functions have been proposed [4, 17, 106,
110] and used in literature [24, 40, 139]. In the domain of performance modeling, the mean
absolute percentage error (MAPE) [37, 118, 139], mean squared error (MSE) [24, 41], and
the minimal sum of squared error (MSSE) [40] are common choices.

In this thesis, we use the mean absolute percentage error, which is as follows:

MAPEC𝑆
(ℙ𝑆, Π𝑆) =

1
|C𝑆| ⋅ ∑

𝑐∈C𝑆

|ℙ𝑆(𝑐) − Π𝑆(𝑐)|
ℙ𝑆(𝑐) ⋅ 100

where ℙ denotes the function that maps the configuration to its measured performance value
and Π𝑆 denotes the performance-influence model that maps the configuration to its predicted
performance value.

The rationale and advantages behind using MAPE are manifold. First, this loss function
provides a percentage and, thus, is easier to interpret than metrics providing absolute values.

2.2 Performance Modeling 29

The most important advantage of using MAPE is that it can be used to compare the accuracy
of the performance-influence models across different datasets; other metrics such as using
absolute values do not offer this advantage. However, it is important to note that MAPE comes
with amajor drawbackwhen handlingwithmeasured values (ℙ) near to zero. That is, that the
percentage increases to a large value when the prediction deviates from the measured value
and the measured value is near to zero. For instance, a configuration 𝑐 ∈ C with a measured
performance value of 0.1 and a predicted performance value of 2 would result in a prediction
error of 1 900%. This phenomenon, however, occurs only rarely in the data of this thesis. In
this thesis, the MAPE is used to assess the prediction error of the performance-influence
models derived by multiple linear regression, which we describe next.

Multiple Linear Regression The resulting performance-influence model using multiple
linear regression is a polynomial in which each additive term consists of a coefficient that
describes either the base performance, the influence of a single configuration option (denoted
as 𝜙), or an interaction among multiple options (denoted as 𝜓) on the performance of the
system.

For illustration, consider the configurable system fromTable 2.2. A correspondingperformance-
influence model could be as follows:

Π(𝑐) =5 +
𝜙E

⏞3 ⋅ 𝑐() +
𝜙A1

⏞2 ⋅ 𝑐() −
𝜓E,A1

⏞⏞⏞⏞⏞⏞⏞1 ⋅ 𝑐() ⋅ 𝑐()

Notice that influences may be positive, negative, or negligible (close to 0). In our example,
Encryption () increases the execution time by 3 (𝜙E) and compression algorithm A1 ()
increases the execution time by 2 (𝜙A1). Only if both Encryption and A1 are selected, the
system is additionally sped up by 1, which is effectively an interaction between two con-
figuration options (𝜓E,A1). The configuration-independent base performance is denoted by
the polynomial’s intercept 5. Again, the configuration-independent base performance also
incorporates the performance of all mandatory options.

For multiple linear regression [6], performance models are of the following form:

Π𝑆(𝑐) =
Base
⏞𝛽0 +

Option influences
⏞⏞⏞⏞⏞⏞⏞∑
𝑜∈O

𝛽𝑜 ⋅ 𝑐(𝑜) +
Interaction influences

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∑
𝑜1..𝑜𝑖∈O

𝛽𝑜1..𝑜𝑖
⋅ 𝑐(𝑜1) ⋅ … ⋅ 𝑐(𝑜𝑖)

For the rest of the thesis, we denote TΠ𝑆
as the set of all additive terms of the performance-

influence model Π𝑆 of the configurable software system 𝑆.
The underlying problem of multiple linear regression is to solve the following equation:

y = X𝛽 + 𝜀

where X denotes the input matrix in which each row corresponds to a configuration and
each column represents a configuration option or interaction. 𝛽 is a vector that encodes
the influences of the configuration options and interactions; 𝜀 is a vector containing the
prediction errors. Finally, y is a vector containing our dependent variable (i.e., our performance
measurement results). The objective of multiple linear regression is to fit the vector 𝛽 such
that the error 𝜀 is minimal.

30 Background

Table 2.8: Configurations with A1 and the three compression levels.

Configuration ℙ

𝑐1 { } 5
𝑐3 { , , } 7
𝑐4 { , , } 9

For further illustration, we use the configurations with three compression levels and con-
figuration option A1 as we show in Table 2.8 to fill the equation:

root

⎛⎜⎜⎜
⎝

⎞⎟⎟⎟
⎠

𝑐1 1 0 1 0 0 1 0
𝑐3 1 0 0 1 0 1 0
𝑐4 1 0 0 0 1 1 0

⋅

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝛽0

𝛽
𝛽
𝛽
𝛽
𝛽
𝛽

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜀𝑐1

𝜀𝑐3

𝜀𝑐4

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

5
7
9

⎞⎟⎟⎟⎟⎟⎟
⎠

(2.4)

In this example, we have encoded only the base influence and all individual options, but not
interactions. To also support interactions, the columns of the matrix X and the vector 𝛽 in
Equation 2.4 have to be expanded accordingly. Note that we do not use CompressionLevel
as a numeric option, but use its one-hot encoded form with CompressionLevel_0 (), Com-
pressionLevel_1. The first matrix of Equation 2.4 contains different configurations that were
measured. Thereby, the rows represent the specific configurations and the columns stand
for the configuration options and their assignment in the given configuration. This matrix
is multiplied by a vector, whose values 𝛽0, 𝛽 , … have to be determined by the multiple
linear regression. The next vector contains the prediction errors and the right hand side of
the equation contains the measured values for each configuration.

The overall idea of learning a performance-influence model is to refine a model iteratively
until a user-defined threshold is reached [68, 139], as defined in Algorithm 1. Function
learn_model receives the performance data and the feature model (i.e., information about the
configuration options) as input. In Line 2–3, we initialize two variables, prediction error and
the error improvement, which are used to check against the threshold for aborting the learning
process. Line 5–19 contain the iterative procedure to perform multiple linear regression with
feature forward selection [6, 75]. Therein, a list of different candidates (or features) is created
in each step(Line 6). Each individual configuration option is a suitable candidate and so are
interactions of configuration options with options that have already been added to the model.
For instance, if a model contains the configuration option Encrpytion(), then also interactions
with 𝑐() such as 𝑐() ⋅ 𝑐(), 𝑐() ⋅ 𝑐(), or 𝑐() ⋅ 𝑐() become candidates. The rationale of
this iterative extension of the model is to counter the combinatorial explosion of combining
all configuration options. This iterative approach is hierarchical in that it can add interactions
for only those options that have been found in reducing the model error in prior iterations.
For instance, if E and A1 interact with each other (i.e., 𝑐() ⋅ 𝑐()), the approach would

2.2 Performance Modeling 31

Algorithm 1: Learning a performance-influence model
1 Function learn_model(feature_model, performance_data):
2 error ← ∞
3 error_reduction ← ∞
4 model ← ∅
5 while error > 1% and error_reduction > 0.1% do
6 candidates ← create_candidates(model, feature_model)
7 best_candidate_model ← ∅
8 best_candidate_error ← ∞
9 foreach candidate ∈ candidates do
10 candidate_model, candidate_error ← fit_and_predict(candidate, performance_data)
11 if candidate_error < best_candidate_error then
12 best_candidate_error ← candidate_error
13 best_candidate_model ← candidate_model
14 end
15 end
16 model ← best_candidate_model
17 error_reduction ← error − best_candidate_error
18 error ← best_candidate_error
19 end
20 model ← backward_selection(model)
21 return model, error

firstly include either 𝑐() or 𝑐() into the model and, in a later iteration, 𝑐() ⋅ 𝑐() if both
together would reduce the prediction error for a hold-out set. After creating the candidates,
each candidate is evaluated within a model that represents the state of the prior iteration
(Line 9–15). To this end, we first fit the model to the performance data of a hold-out set (see
Equation 2.4) in Line 10 returning the model including the candidate and the overall error
(i.e., MAPE) of the corresponding model. In Line 11–14, the current candidate is selected as
the best candidate if it reduces the error more than previous candidates. The best candidate of
the current iteration is added to themodel in Line 16. The reduction of the error resulting from
the newly added candidate and the new error are then calculated. Note that choosing the best
candidate represents a limitation of our approach since a worse performing candidate could
lead to a better reduction of the error in future iterations. This iterative process is continued
until one of the thresholds in Line 5 is no longer satisfied. Due to its hierarchical nature,
the model can potentially include configuration options or interactions that may become
irrelevant in later iterations. For instance, if only the interaction 𝑐() ⋅ 𝑐() is relevant for
performance but the individual configuration options 𝑐() and 𝑐() are not, this approach
would still include, at least, 𝑐() or 𝑐() as it reduced for some configuration the prediction
error in previous iterations. To remove such unnecessary options and interactions, we apply
a backward selection in Line 20. The backward selection removes all options and interactions
that no longer improve the model error.

Prediction

One purpose for using machine-learning approaches is to predict the performance values of
(unseen) software configurations. In this work, we use their predictive ability to assess the
quality of different sampling strategies. Clearly, the choice of the sampling strategy affects
the learning algorithm—what information it can extract from the sample set to be included
in the influence model. As mentioned previously, there is a variety of sampling strategies

32 Background

Table 2.9: Sampling strategies considered in the empirical study of Grebhahn et al. [38].We distinguish
between binary and numeric as well as structured and unstructured sampling.

Sampling strategy Abbreviation Numeric Structured

Option-wise OW 7 3

Negative Option-wise NegOW 7 3

𝑡-wise (𝑡 ∈ {2, 3}) T2, T3 7 3

Random (Binary), three sizes (OW, T2, T3) RB-OW, RB-T2, RB-T3 7 7

One Factor at a Time OFAT 3 3

Box-Behnken Design BBD 3 3

Central Composite Inscribed Design CCI 3 3

Plackett-Burman Design PBD 3 3

D-Optimal Design DOD 3 3

Random (Numeric) RN 3 7

Table 2.10: Subject systems of the empirical study of Grebhahn et al. [38].

Subject system Application domain #Options #Configurations

DUNE MGS Multigrid framework 11 2 304
Polly Code optimizer (plugin for LLVM) 19 59 592
HSMGP Multigrid framework 14 3 456
JavaGC Java garbage collector 11 193 536
TriMesh Scientific code library 13 239 360
VP9 Video encoder 20 216 000

for highly configurable systems. This has immediate implications for the learning step. The
question is whether and to what extent the choice of the sampling strategy affects the ability of
different learning algorithms to obtain accurate models. The canonical literature on machine
learning and predictive modeling says not much about this issue. A recent empirical study
conducted by Grebhahn et al. [38] provides first insights.

This study has analyzed the dependencies between 13 sampling strategies (see Table 2.9)
and 6 learning algorithms (see Table 2.7) on 6 subject systems (see Table 2.10) in terms
of prediction accuracy, stability, and measurement effort using SPL Conqueror [142]. The
authors paid special attention to the fact that different learning algorithms provide different
hyper parameters (i.e., different configuration options to tune the learning algorithm). As hyper
parameters affect efficiency and accuracy of the learning procedure and even depend on the
selected sampling strategy, we included an extension hyper-parameter optimization step, to
ensure a fair comparison. For a detailed description, we refer to Grebhahn et al. [38].

In Figure 2.12, we summarize the results in the form of nested matrix plots. The outer plot
shows the error rates achieved by different machine-learning algorithms. The inner plots
show the different sampling strategies that have been used in combination with the respective
learning algorithm, divided by binary (x axis) and numeric sampling strategies (y axis).

2.2 Performance Modeling 33

Note that the subject systems contain besides binary configuration options also numeric
configuration options, such as page size or number of threads, which require dedicated
numeric sampling strategies [139].

CART kNN KRR MR RF SVR

C
A

R
T

OWNe
gO
W

T2 T3 RB−O
W

RB−T
2

RB−T
3

RN
DOD
PBD
CCIBBD

OFAT
OWNe
gO
W

T2 T3 RB−O
W

RB−T
2

RB−T
3

OW Neg
OW

T2 T3 RB−O
W

RB−T
2

RB−T
3

OW Neg
OW

T2 T3 RB−O
W

RB−T
2

RB−T
3

OW Neg
OW

T2 T3 RB−O
W

RB−T
2

RB−T
3

OWNe
gO
W

T2 T3 RB−O
W

RB−T
2

RB−T
3

RN
DOD
PBD
CCI
BBD
OFAT

kN
N

RN
DOD
PBD
CCIBBDOFAT

RN
DODPBD
CCI
BBD
OFAT

K
R

R

RN
DOD
PBD
CCIBBDOFAT

RN
DODPBD
CCI
BBD
OFAT

M
R

RN
DOD
PBD
CCIBBDOFAT

RN
DODPBD
CCI
BBD
OFAT

R
F

RN
DOD
PBD
CCIBBDOFAT

RN
DODPBD
CCI
BBD
OFAT

S
V

R

RN
DOD
PBD
CCIBBD

OFAT

OW
Neg

OW T2 T3
RB−O

W
RB−T

2
RB−T

3
OW

Neg
OW T2 T3

RB−O
W

RB−T
2

RB−T
3

OW
Neg

OW T2 T3
RB−O

W
RB−T

2
RB−T

3
OW

Neg
OW T2 T3

RB−O
W

RB−T
2

RB−T
3

OW
Neg

OW T2 T3
RB−O

W
RB−T

2
RB−T

3

RN
DOD
PBD
CCI
BBD
OFAT

OW
Neg

OW T2 T3
RB−O

W
RB−T

2
RB−T

3

Figure 2.12: Comparison of combinations of machine-learning algorithms and sampling strategies in
terms of predictions accuracy. Plots on the diagonal compare pairs of sampling strategies;
the lighter the gray tone, the higher the prediction accuracy. Plots beyond the diagonal
compare pairs of learning algorithms; shades of green (red) indicate that the learning
algorithm in the row is more (less) accurate than the one in the column.

Note that we distinguish between plots that are on the diagonal of the top-level matrix and
plots that are not: Each plot on the diagonal (gray-scale) compares pairs of sampling strategies
given a specific learning algorithm. The lighter the gray tone, the higher the accuracy (the
lower the error rate) of resulting influence model. For example, in the upper left plot of
Figure 2.12, we show the error rates for Classification and Regression Trees (CART) when
used with different combinations of sampling strategies.

The plots beyond the diagonal compare pairs of learning algorithms when combined with
the different sampling strategies. Shades of green indicate that the learning algorithm in the
row is more accurate than the one in the column (the more intense the green, the larger the
effect), and shades of red otherwise. For example, in upper right plot, we compare the error

34 Background

rates achieved when using CART with the error rates of using Support Vector Regression
(SVR). It is easy to see that CART outperforms SVR irrespective of the used sampling strategy.

Let us have a closer look at the results. First, let us focus on themachine-learning algorithms
independently of the sampling strategy. Not surprisingly, the choice of the algorithm matters
and has a significant effect on prediction accuracy. Although a clear ranking is not readily
apparent, random forests (RF) outperform the other learning algorithms in most of the cases;
Multiple Regression (MR) and CART also perform very well. Note that we use in this thesis
multiple regression instead of random forests since performance-influence models, which
use multiple regression can be used for comprehension (see Section 2.2.4).

Now let us look closer at combinations of sampling strategies and learning algorithms.
Despite the rather clear picture that we obtained for learning algorithms, there seems to be
no combination that is clearly superior in all cases. Although there is a trend to a specific
combination of learning algorithm and sampling strategy, this does not hold for all cases.
In many cases, random forests or multiple regression in combination with option-wise or
random sampling perform best in terms of accuracy, but there are exceptions.

A further notable result, which is not directly visible in Figure 2.12, is that, despite the
rather small sample sets selected by option-wise (e.g., 72 configurations for VP9), random
forests and multiple regression are still able to learn comparatively accurate influence models.
Increasing the size of the sample set (e.g., from 350 for option-wise to 3 780 for 3-wise for
VP9) often increases the prediction accuracy only marginally (e.g., by only 1% for VP9). The
paradigm “the more, the better” holds for the domain of configurable software systems only
when the more configurations also provide new information (e.g., influences of interactions
not seen before). However, due to the possibly exponential number of interactions with
respect to the number of configuration options, it is unclear which additional configurations
improve accuracy.

Comprehension

One major issue in performance prediction is that machine-learning models from different
learning algorithms may not only differ in prediction accuracy but also in interpretability.
After all, a key goal of influence models is not only prediction, but also comprehension [68].
Developers, administrators, and users would like to know why a certain configuration is fast,
not onlywhether it is faster than another. Exploring the influence of learning on interpretability
of influence models is clearly a rich and promising avenue that we follow for Chapter 4 and
Chapter 5.

However, not all learning algorithms are suitable for comprehension [137] since the models
are not human-readable. For instance, deep neural networks such as DeepPerf [41] represents
a broad family of machine-learning algorithms inspired by the function of the human brain.
Deep neural networks are complex constructs that achieve good results on predicting new
data [41], but bear the caveat that they cannot be comprehended by humans.

Besides using multiple linear regression, researchers also rely on other approaches such as
SHapley Additive Explanations (SHAP) values [89] and Local Interpretable Model-agnostic
Explanations (LIME) to extract information from other machine-learning techniques [124].
In principle, these approaches extract feature information using the predictions and structure
of certain models. This way, SHAP values exploit the structure of tree-based models to deliver

2.2 Performance Modeling 35

even better insights. However, both approaches support any machine-learning approach that
is capable of predicting. In this thesis, we focus on using the models from multiple linear
regression since they were successfully used in the past for describing the influence of certain
features [37].

Multiple linear regression relies on amodel consisting of a polynomial that can be used both
to predict and to comprehend.Multiple linear regressionwas already used for comprehending
configurable software systems in literature [37]. For instance, the following performance-
influence model could be used to predict the performance (in seconds) of compression
algorithm A1 of Comp in Table 2.8:

Π(𝑐) = 5 + 2 ⋅ 𝑐() ⋅ 𝑐() + 4 ⋅ 𝑐() ⋅ 𝑐() (2.5)

For the sake of simplicity, we ignore every other configuration option of Comp in this example.
Using Equation 2.5, we derive that Comp without A1 needs about 5 seconds. When A1 is
selected, then it depends on CompressionLevel. A1 and medium compression () needs
about 2 seconds more, whereas maximum compression () needs about 4 seconds more.
In this thesis, we compare multiple polynomials to gain insights into how the performance of
different configuration options and interactions evolve during time (see Chapter 4) and their
effect in different workloads (see Chapter 5). An issue that needs to be addressed when using
performance-influence models for comprehension is multicollinearity [27]. Multicollinearity
represents a big challenge in regression analysis and refers to a situation, in which a term of a
linear model can be linearly predicted by other terms. That is, multiple terms represent the
same effect such that it becomes unclear, which of these terms has the true influence on the
independent variable and to what extent.

For a comprehensive and an unambiguous analysis of a software system’s evolution (see
Chapter 4) and workload effect (see Chapter 5), we have to assure that the terms of our
models are notmulticollinear. Otherwise, we can end upwith different performance-influence
models all predicting the same value, butwith diverging influences of options and interactions,
threatening internal validity of our analysis. As a countermeasure, one can apply a variance
inflation factor (VIF) analysis [53, 75, 104] and exclude terms that can be completely linearly
predicted by other terms. For illustration, consider Table 2.8 and the following performance-
influence models:

Π′
1(𝑐) =10 + 15 ⋅ 𝑐(C) ⋅ 𝑐(Z)

Π′
2(𝑐) =10 + 15 ⋅ 𝑐(Z)

Both performance-influence models predict the same performance values. The terms 𝑐() ⋅
𝑐() and 𝑐() ⋅ 𝑐() ⋅ 𝑐() are perfectly multicollinear because when A1 () is selected in
a configuration, Compression () is also always selected. Hence, we cannot distinguish the
influence of the interaction 𝑐() ⋅ 𝑐() ⋅ 𝑐() from the influence of the option 𝑐() ⋅ 𝑐().
Having both terms in a performance-influence models would cause infinite possibilities of
assigning coefficients to these terms, as demonstrated here:

Π′
1(𝑐) =10 − 10 ⋅ 𝑐(C) ⋅ 𝑐(Z) + 25 ⋅ 𝑐(Z)

Π′
2(𝑐) =10 + 10 ⋅ 𝑐(C) ⋅ 𝑐(Z) + 5 ⋅ 𝑐(Z)

Again, both performance-influence models make the same predictions but assign completely
different coefficients to the terms. The VIF analysis detects such cases and declares the terms
as multicollinear.

36 Background

Variance Inflation Factor Analysis Next, we describe the VIF analysis [104] in more
detail. The general idea behind the VIF analysis is to determine if a term from a performance-
influence model can be predicted by other terms; or in other words: a term is multicollinear to
the remaining terms of a performance-influence model. Identifying the multicollinear terms
of a performance-influence model is performed by an iterative approach. We denote TΠ𝑆

as
the set of all terms of a performance-influence model Π𝑆. For the VIF analysis, an ordinary
least square regression is applied for each T𝑖 ∈ TΠ𝑆

:

T𝑖 = 𝛼0 + ∑
T𝑗∈T ∧T𝑗≠T𝑖

𝛼𝑗 ⋅ T𝑗 + 𝜀, (2.6)

where 𝛼0 is the intercept (similar to 𝛽0 in regressionmodels), 𝛼𝑗 are constants, and 𝜀 represents
the error (similar to the error in multiple linear regression in Section 2.2.4).

Afterwards, the VIF factor is calculated for the term T𝑖 ∈ TΠ𝑆
with the following formula:

VIFT𝑖
=

1
1 − 𝑅2

T𝑖

where 𝑅2
T𝑖

is the coefficient of determination [108] of Equation 2.6. The coefficient of determi-
nation returns a value in the range of [0, 1]. A value of 0 for 𝑅2

T𝑖
(i.e., VIFT𝑖

= 1) represents
that the term T𝑖 does not correlate at all with the intercept or any of the remaining terms
on the right-hand side of Equation 2.6. A value of 1 for 𝑅2

T𝑖
(i.e., VIFT𝑖

= ∞) represents that
the term T𝑖 can be completely estimated by the intercept and the remaining terms on the
right-hand side of Equation 2.66.

Applying the VIF analysis on our previous example of Π′
1 would result in perfect multi-

collinearity. That is, the terms containing 𝑐(Z) and 𝑐(C) ⋅ 𝑐(Z) describe the same configurations
since one term can be estimated by the other term:

𝑐(Z) = 1 ⋅ 𝑐(C) ⋅ 𝑐(Z)

Consequently, the coefficient of determination would be 1, the VIF is ∞, and we remove
the left-hand side term.

6 Note that we exclude only perfectly multicollinear terms, since perfect multicollinear terms are completely
interchangeable. We do not use any threshold such as 5 [20, 113] as commonly used in literature because
configuration options and their interactions can always be multicollinear to some extent due to overlap.

3
Distance-Based Sampling of Software
Configuration Spaces

This chapter shares material with the following publication: Christian
Kaltenecker, Alexander Grebhahn, Norbert Siegmund, Jianmei Guo,
and Sven Apel. „Distance-Based Sampling of Software Configuration
Spaces.“ In: Proceedings of the IEEE/ACM International Conference

on Software Engineering (ICSE), IEEE/ACM, 2019, pp 1084–1094 [60]

In this chapter, we comprise the contributions to the configuration space of software systems.
Measuring and analyzing the performance of the whole configuration space of software
systems is difficult due to the combinatorial explosion of the configuration space in relation
to the number of configuration options. As a consequence, research relied increasingly on
performance-influence modeling in the past [40, 41, 139], where the idea is to measure only a
low number of configurations using a sampling strategy and, afterwards, learn a performance-
influence model through machine learning [39]. This performance-influence model can then
be used to predict unseen configurations to find the performance-optimal configuration
or to comprehend the impact of configuration options on the performance of the software.
Inherently, the quality of the performance-influence model depends on the machine-learning
approach and the sampling strategy (see Section 2.2). In this chapter, we focus primarily
on the multitude of different sampling strategies. In essence, we propose a novel sampling
strategy—distance-based sampling—for binary configuration options, which we present in
the following.

Despite the benefits of configurability, identifying the performance-optimal configuration
for a given setting is often a non-trivial task, due to the sheer size of configuration spaces [152]
and potential interactions among configuration options [64, 68]. To identify the performance-
optimal configuration of a configuration space, one can measure the performance of every
valid configuration of the software system in a brute-force manner, which usually does not
scale.

Instead, a more efficient approach that consists of sampling and machine learning is used
(see Section 2.2). There, the main idea of sampling (see Section 2.2.2) is often to cover the
configuration space such that one obtains a representative sample set, which, ideally includes
both influential configuration options and interactions among options relevant to performance,
so that accurate performance-influence models can be learned.

37

38 Distance-Based Sampling of Software Configuration Spaces

In general, a uniform coverage of the configuration space is desirable to obtain a represen-
tative sample set when no prior knowledge is available, since it tends to be unbiased when
covering the configuration space. However, it is far from trivial to ensure unbiased uniformity
if there are non-trivial constraints among configuration options. To achieve the goal in a
light-weight way, we propose a novel sampling strategy, called distance-based sampling, that
addresses the shortcomings of existing strategies, as we will discuss next.

The key idea behind distance-based sampling is to produce a sample set that covers the
configuration space as uniformly as possible (or following another given probability distri-
bution). To this end, distance-based sampling relies on a distance metric and assigns each
configuration a distance value. It further relies on a discrete probability distribution to select
configurations according to their distance values from the configuration space. It differs
from other sampling strategies in that (1) it spreads the selected configurations across the
configuration space according to a given probability distribution and is able to resemble the
performance distribution of the whole population, (2) it does not require an analysis on the
whole population, and (3) it uses internally a constraint solver for efficiency while avoiding
locally-clustered sample sets. For illustration, we show in Figure 3.1 how distance-based
sampling spreads the configurations in terms of performance. Other sampling strategies, such
as 3-wise sampling sampling resemble the whole population worse in that 3-wise sampling
covers primarily configurations with a lower performance.

In summary, our contributions are as follows:
• We define a new distance-based sampling strategy that is based on a given discrete

probability distribution and a distance metric for configurations of software systems.
• Weperforman empirical study to compare our sampling strategywith otherwidely-used

sampling strategies learning performance-influence models for 10 popular real-world
software systems. We find that distance-based sampling achieves better results in terms
of prediction accuracy and robustness than other sampling strategies.

• To further improve the diversity of the sample set, we devise an optimization of distance-
based sampling by iteratively forcing the selection of the least frequently selected
configuration option for configurations with the same distance. The optimization leads
to a significantly higher robustness and significantly better prediction accuracy of
distance-based sampling.

• We show that distance-based sampling is more flexible since the probability distribution
it relies on can be exchanged on demand. Further, we assess the scalability of distance-
based sampling compared to other sampling strategies in an empirical study on 9
real-world software systems with huge configuration spaces.

All experiment and replication data of this chapter are available on a supplementary web
site1.

1 https://github.com/se-passau/Distance-Based_Data/, last accessed on 02/25/2023.

https://github.com/se-passau/Distance-Based_Data/

3.1 Sampling 39

0

10

20

30

40

50

200 220 240 260

Performance [sec]

F
re

qu
en

cy

Whole population (|C|=1024)
(a)

0

4

9

200 220 240 260
Performance [sec]

Fr
eq

ue
nc

y

(b)
3-wise (|S|=165)

0

4

9

200 220 240 260
Performance [sec]

Fr
eq

ue
nc

y

(c)
Distance-based (|S|=165)

0

4

9

200 220 240 260
Performance [sec]

Fr
eq

ue
nc

y

(d)
Solver-based (|S|=165)

Figure 3.1: The performance distribution of (a) the whole population of LLVM (see Section 3.2.3),
the sample set selected (b) by 3-wise sampling, (c) by distance-based sampling, and
(d) by solver-based sampling. In 3-wise sampling, some high performance values are
missed, leading to a skewed distribution, whereas distance-based sampling resembles the
distribution from the whole population better.

3.1 Sampling

Sampling is the process of selecting a subset 𝕊𝑆 ⊆ C𝑆 of all valid configurations C𝑆 of a given
configurable software system 𝑆. There are different strategies for sampling binary configura-
tion options2: random sampling, solver-based sampling, and coverage-based sampling.
Random sampling: One way to create a sample set is by randomly assigning either 0 or

1 to each configuration option for each configuration [39]. However, it is very likely that
many invalid configurations are selected this way due to unsatisfied constraints, which makes
this strategy inefficient. Chakraborty et al. [18] use hash functions to split the configuration
space recursively in multiple regions, and they select configurations from each of the regions.
Still, this strategy produces many invalid configurations as also Plazar et al. point out [120].
Chen et al. [22] use a distance metric to find different test inputs for methods to uniformly
cover the configuration space. However, they do not consider constraints among the input
variables and, thus, produce many invalid configurations. Krishna et al. [73] use Markov-
Chain Monte-Carlo methods in combination with a mutation and cross-over operator to draw

2 Note that we focus on binary sampling strategies (see Section 2.2.2) in this work.

40 Distance-Based Sampling of Software Configuration Spaces

random samples from the configuration space. Again, this approach produces many invalid
configurations which have to be filtered out. Oh et al. [112] encode a system’s configuration
space using a binary decision diagram. This way, they can represent and enumerate all
configurations in a compact way, such that they can randomly draw configurations. However,
construction time andmemory consumption of binary decision diagrams are high, and they do
not scale to the largest configurable software systems [134]. Gogate and Dechter [34] propose
a random sampling strategy that uniformly selects configurations without enumerating all
configurations using theMonte-Carlomethod. This strategy also selects invalid configurations,
though.

Solver-based sampling: Many strategies use an off-the-shelf constraint solver, such as SAT4J3,
for sampling. Naturally, these strategies do not guarantee true randomness [47] as in random
sampling. Often the sample set consists only of the first 𝑘 solutions provided by the constraint
solver [22], and the internal solver strategy is typically to search in the „neighborhood“of
an already found solution. Hence, the result is a locally clustered set of configurations. To
weaken the locality drawback of solver-based sampling, Henard et al. [47] change the order
of configuration options, constraints, and values in each solver run. This strategy, which we
call henceforth randomized solver-based sampling, increases diversity of configurations, but it
cannot give any guarantees about randomness or coverage. As we will show in our evaluation,
this strategy requires to rebuild the entire solver model from scratch at each solver call (i.e.
selection of one configuration), which is computationally expensive.
Coverage-based sampling: Coverage-based sampling strategies optimize the sample set ac-

cording to a specific coverage criterion. One prominent example is 𝑡-wise sampling [58, 77,
92]. This sampling strategy selects configurations to cover all combinations of 𝑡 configu-
ration options being selected. For instance, pair-wise (𝑡=2) sampling covers all pair-wise
combinations of configuration options being selected. To identify the influence of pairs of
configuration options and not to be affected by influences of other configuration options, Sieg-
mund et al. [140] improve 𝑡-wise sampling by additionally minimizing the number of other
selected configuration options in each configuration. Another strategy aims at a balanced
selection and deselection of all configuration options in the sample set. Sarkar et al. [129]
showed that such a frequency-based sampling further improves the accuracy of performance-
influence models learned based on the sample set. Other coverage-based sampling strategies
are, for example, statement-coverage sampling [147] or most-enabled-disabled sampling [95].
Statement-coverage sampling is a white-box strategy, in which the configurations are selected
such that every block of optional code from the software system is selected, at least, once;
whereas most-enabled-disabled sampling selects just one configuration where all config-
uration options are selected and one where all configuration options are deselected. The
main problem of these strategies is that they require prior domain knowledge to select a
proper coverage criterion. Thus, depending on the coverage criterion, specific regions of the
configuration space are emphasized, as shown in Figure 3.2: We see that a higher number of
selected configuration options leads to higher performance values and contains information
from interactions among multiple configuration options. Since 𝑡-wise sampling focuses only
on a specific part of the configuration space (e.g., configurations with distances between 2
and 5), we miss certain performance values in the sample set (e.g., greater than 250 seconds).

3 https://www.sat4j.org/, last accessed on 02/23/2023.

https://www.sat4j.org/

3.1 Sampling 41

200

220

240

260

2 4 6 8 10 12

#Features

P
er

fo
rm

an
ce

 [s
ec

]

Whole population (|C|= 1024)

(a)

200

220

240

260

2 4 6 8 10 12

#Features

P
er

fo
rm

an
ce

 [s
ec

]

t-wise

(b)

200

220

240

260

2 4 6 8 10 12

#Features

P
er

fo
rm

an
ce

 [s
ec

]

Distance-based

(c)

200

220

240

260

2 4 6 8 10 12

#Features

P
er

fo
rm

an
ce

 [s
ec

]

Solver-based

(d)

t=1 t=3t=2(|S|= 11) (|S|= 55) (|S|= 165)

Figure 3.2: Distribution of configurations of LLVM (see Section 3.2.3) based on their distance value
and their performance, for (a) the whole population, a sample set selected (b) by 𝑡-wise
sampling, (c) by distance-based sampling, and (d) by solver-based sampling with the
same sample size as 𝑡-wise with 𝑡=1, 𝑡=2, and 𝑡=3, respectively.

By contrast, a sample set that covers all performance values is more representative, as it
resembles the whole population better. Moreover, not every configuration option interacts
with any other configuration option, so not all pairs are relevant. So, the sample set is likely
unnecessarily large.

3.1.1 Approach

Distance-based sampling aims at covering the configuration space by uniformly (or according
to another given probability distribution) selecting configurations with different distance
values (and therewith interaction degrees) without relying on a whole-population analysis.
In Section 3.1.1, we describe the basic algorithm; in Figure 9, we present an optimization that
further increases the diversity of the sample set.

Basic Algorithm

The key idea to spread the sample set across the configuration space to increase diversity in
the sample set is to use a distance metric in combination with a discrete probability distribution
(e.g., a uniform distribution or a binomial distribution).

42 Distance-Based Sampling of Software Configuration Spaces

Algorithm 2: Distance-based sampling
Input: VM, numSamples, probabilityDistr
Output: sampleSet

1 sampleSet ← ∅
2 while otherSolutionsExist(VM, sampleSet) and size(sampleSet) < numSamples do
3 d ← selectDistance(probabilityDistr)
4 c ← searchConfigWithDistance(VM, d) ▷ Search for configuration 𝑐 with exactly 𝑑

configuration options selected
5 if 𝑐 ≠ ∅ then
6 sampleSet ← sampleSet ∪ {c}
7 end
8 end
9 return sampleSet

In Algorithm 2, we describe the algorithm behind distance-based sampling. It receives
three parameters as input: the variability model (VM), the number of configurations to be
selected (numSamples), and the probability distribution to use (probabilityDistr). Internally, we
use a constraint solver that uses the variability model to determine the valid configurations.
We assume that the solver is globally available to the algorithm.

The algorithm selects a distance 𝑑 based on the probability distribution (probabilityDistr).
The distance is passed as an additional numeric constraint (i.e., in addition to the constraints
of the variability model) to the constraint solver, which searches for a solution with exactly
𝑑 configuration options selected (Line 4). If a solution (i.e., a valid configuration) is found,
it is included into the sample set (Line 6). If not, another distance 𝑑 is selected until a valid
configurationwith this distance is found. This process is repeated until the sample set contains
the desired number of valid configurations or there are no more solutions (Line 2).

In what follows, we define the distance metric and the discrete probability distribution that
we use, and we describe the selection of a valid configuration in more detail.

Distance metric (selectDistance): Figure 3.2 illustrates that 𝑡-wise sampling covers only
specific intervals in the range of possible distances. In fact, 𝑡-wise samplingmisses information
on interactions among more than 𝑡 configuration options. By using a distance metric to
diversify the sample set, we cover more regions of the configuration space, which leads
to a more diverse sample set. In what follows, we use the Manhattan distance [72] of a
configuration to the origin of the configuration space 𝑐0 (∀𝑜 ∈ 𝑂 ∶ 𝑐0(𝑜) = 0) as distance;
another reference point would be possible, though.

So, let dist: C → ℕ be the distance metric defined as follows:

dist(𝑐) = ∑
𝑜∈O

𝑐(𝑜)

where 𝑐 ∈ C is a valid configuration. Let D be the set of all distances:

D = {dist(𝑐) | ∀𝑐 ∈ 𝐶}

Note that, in the case of having only binary configuration options and using the Manhattan
distance, the distance is just the number of selected configuration options of the configuration.

For instance, for 𝑑=2, we will search for a configuration that has exactly two configuration
options selected and all remaining configuration options deselected.

3.1 Sampling 43

A

B

C

c000 c001

c010

c100

c011

c111

c101

c110 (a)

0

1

3

0 1 2 3
Distance

Fr
eq

ue
nc

y

2

{c000}

{c100,

c010,

c001}

{c110,

c101,

c011} {c111}

(b)

Figure 3.3: Example for applying the distance function to a software system with three configuration
options 𝐴, 𝐵, and 𝐶 without any constraints. In (a), we show the configuration space and
in (b) we illustrate the distribution of distances.

Probability distribution (probabilityDistr): In Figure 3.3, we show the distances and the num-
ber of configurations (frequency) per distance for a system with three configuration options
𝐴, 𝐵, and 𝐶, without any constraints. In this small example, the distance distribution is easy
to compute: We derive all valid configurations and apply the distance metric to each of
them. However, deriving all valid configurations (i.e., the whole population) is infeasible
for complex systems. Fortunately, it turns out that we do not need a data set following an
exact probability distribution. Instead, we use pre-defined discrete probability distributions
(e.g., uniform, geometric, binomial) to define the desired distribution of our sample set.
These discrete probability distributions (probabilityDistr) are used to express the likelihood
of choosing a certain value 𝑢 ∈ 𝑈. In every discrete probability distribution 𝑃, we have
∑𝑢∈𝑈 𝑃(𝑋 = 𝑢) = 1, where 𝑋 is a random variable. In what follows, we use the discrete
uniform distribution. So, we uniformly draw a distance 𝑑 ∈ D to derive a configuration with 𝑑
configuration options selected. Thus, we obtain:

𝑃(𝑋 = 𝑑) =
1

card(D)
where card is the cardinality function. In other words, each distance 𝑑 is equally likely to
be picked. While it is possible to use another discrete probability distribution, such as the
geometric distribution or the binomial distribution, we fix this degree of freedom for now, to
keep the discussion focused and the experiment design tractable. Nevertheless, we performed
experiments with different distributions, which we discuss in Section 3.3.4.

Without computing the whole population or understanding all constraints in the variability
model, we have no knowledge about the value domain of D and thus about 𝑃(𝑋 = 𝑑). We
can approximate the lower and the upper bound for D, though, by using the number of
mandatory configuration options and the number of all configuration options, respectively.

max(D) = card({𝑜 | 𝑜 ∈ O})

min(D) = card({𝑜 | 𝑜 ∈ O ∧ 𝑜 is mandatory ∧ all parents of 𝑜 are mandatory})
where card is the cardinality function. Note that all parents nodes (i.e., including transitive
parent nodes) of a configuration option 𝑜 have to be mandatory to increase the minimum dis-
tance.Mandatory configuration options can be easily computed based on the given constraints
of the variability model [10].

44 Distance-Based Sampling of Software Configuration Spaces

Configuration selection (searchConfigWithDistance): After choosing a certain distance 𝑑, we
select a configuration that has a distance of 𝑑 (𝑑 options selected in our setting), for which we
use a constraint solver. To this end, we add an additional constraint to the solver describing
that exactly 𝑑 options have to be selected in the configuration. If there is nomore configuration
with exactly 𝑑 selected configuration options, another distance 𝑑 is selected. This process
is repeated until the sample set contains a given number of configurations or no further
configurations are found. In cases where we select several times the same distance value,
the constraint solver could generate locally clustered solutions. To address this problem, we
propose an optimization to further increase diversity of our sample set, as we describe in
Figure 9.

Time complexity: The most costly function in Algorithm 2 is searchConfigWithDistance,
whose complexity is dominated by the time of computing a feasible solution by the constraint
solver. Theoretically, a constraint solver, such as a SAT solver, has an exponential time com-
plexity to solve a satisfiability problem [12]. Practically, state-of-the-art constraint solvers are
able to handle thousands of variables and constraints efficiently [82]. In our experiments, the
constraint solver considered up to 54 variables and up to 216 000 constraints, which resulted
in less than 0.3 seconds to find a solution (i.e., a valid configuration) on average. But, to
draw a clearer picture of how much overhead the constraint to find a solution with distance
𝑑 induces into configuration spaces with large configuration spaces, we perform scalability
experiments in Section 3.3.

Increasing Diversity

In preliminary experiments with Algorithm 2, we noticed that the produced sample sets
may lack diversity in that some configuration options are selected in many configurations
and some only in few or even none. Hence, to increase diversity of the sample set, we refine
the configuration selection procedure of distance-based sampling by adding configurations
that contain the least frequently selected configuration options. This way, we reduce the
possibility of missing or underrepresenting certain configuration options in the sampling
process. Technically, we determine a ranking over the frequency of configuration options,
which is defined as follows:

∀𝑜 ∈ O ∶ card({𝑐 | 𝑐 ∈ 𝕊𝑆 ∧ 𝑐(𝑜) = 1})
If there is no valid configuration with the given configuration option and distance, we select
the next option in the ranking and so on.

In Algorithm 3, we show the optimized version of distance-based sampling, which we call
diversified distance-based sampling. The novelty here is that we count the number of selections
of each configuration option for each distance 𝑑 ∈ D. To this end, we define one map in Line 1
for each distance 𝑑 ∈ D and update the map in Line 12 when a new configuration is added to
the sample set.

The least frequent configuration option of the current distance 𝑑 is selected using the map in
Line 6 and used to retrieve the next configuration in Line 7. If there is no more configuration
with the given distance 𝑑 that contains the candidate, this candidate is removed from the
distance’s candidate map in Line 8 and the next configuration option is used. As we show in
Line 5, another least frequent candidate is repeatedly chosen until a valid configuration is
found.

3.2 Experiment Setup 45

Algorithm 3: Diversified distance-based sampling
Input: VM, numSamples, probabilityDistr
Output: sampleSet

1 candidates ← getAllOptions(VM) ▷ Generates a list of candidates, one candidate for each
configuration option

2 sampleSet ← ∅
3 while otherSolutionsExist(VM, sampleSet) and size(sampleSet) < numSamples do
4 d ← selectDistance(probabilityDistr); c ← ∅
5 while candidatesExist(candidates, d) and c = ∅ do
6 candidate ← getLeastFrequentCandidate(candidates, d)
7 c ← searchConfigWithDistance(VM, candidate, d)
8 if 𝑐 = ∅ then removeCandidate(candidates, candidate, d)
9 end

10 if 𝑐 ≠ ∅ then
11 sampleSet ← sampleSet ∪ {c}
12 updateCandidateMap(c, d, candidates)
13 end
14 end
15 return sampleSet

3.2 Experiment Setup

In this section, we introduce our research questions regarding the comparison of distance-
based sampling with other state-of-the-art sampling strategies. Furthermore, we describe
how we attempt to answer the research questions and the software systems we use for the
comparison.

3.2.1 Research Questions

The prediction accuracy of machine-learning techniques largely depends on the data set,
which is defined by the sampling strategy, in our setting. Some sampling strategies, such as
random sampling, are affected by randomness, which can have a considerable influence on
the sample set and, consequently, on the prediction accuracy. Hence, we consider both the
prediction accuracy and its robustness when comparing sampling strategies. To this end, we
aim at answering two research questions:

Research Question 1
What is the influence of using distance-based, diversified distance-based, random, solver-
based, randomized solver-based, and 𝑡-wise sampling on the accuracy of performance
predictions?

46 Distance-Based Sampling of Software Configuration Spaces

Research Question 2
What is the influence of randomness of using distance-based, diversified distance-based,
solver-based, randomized solver-based, and random sampling on the robustness of pre-
diction accuracy?

Note that we have excluded 𝑡-wise sampling from RQ2, as it is deterministic in our setting
and does not lead to variations.

As pointed out earlier, distance-based sampling relies on a constraint solver to find a
configuration with a certain distance 𝑑. Although being only one additional constraint, this
constraint to find any configuration with exactly 𝑑 out of 𝑛 selected configuration options
could be difficult to process for large configuration spaces. To this end, we aim at comparing
the sampling strategies in terms of the time they need to find a certain number of solutions:

Research Question 3
What is the performance of using distance-based, diversified distance-based, solver-based,
and randomized solver-based on searching a fixed number of solutions?

Note that we exclude 𝑡-wise sampling from RQ3 since 𝑡-wise does not allow for sampling an
arbitrary number of configurations. Further, since we focus on large configuration spaces, we
cannot retrieve all valid configurations for the configuration spaces anymore. Since random
sampling needs to assess all valid configurations, we further exclude random sampling. A
similar investigation on the scalability of uniform sampling strategies was performed by
Plazar et al. [120]. They, however, have focused on uniform sampling strategies that also
sample invalid configurations, which is out of scope in this chapter.

3.2.2 Operationalization

To answer our research questions, we apply a state-of-the-art machine-learning technique that
relies on multiple linear regression and feature-forward selection [139] to learn performance-
influence models based on the sample sets defined by the different sampling strategies.

To answer RQ1, we use the resulting performance-influence models to predict the perfor-
mance of the whole population of each of our subject systems. We quantify the difference
between the predicted performance Π𝑆(𝑐) and the measured performance ℙ(𝑐) by means of
the error rate for all configurations 𝑐 ∈ C as follows:

error𝑆(𝑐) =
|Π𝑆(𝑐) − ℙ𝑆(𝑐)|

ℙ𝑆(𝑐) (3.1)

where Π𝑆(𝑐) is the predicted performance of configuration 𝑐 and ℙ𝑆(𝑐) the measured perfor-
mance of configuration 𝑐. Lower error rates indicate a higher prediction accuracy and, thus,
are better. We further determine the mean error rate of the whole population:

errorC𝑆
=

∑𝑐∈C𝑆
error𝑆(𝑐)

card(C𝑆) (3.2)

where card is the cardinality function. Note that we compute the error rate based on predic-
tions for the whole population, including configurations from the sample set. The background

3.2 Experiment Setup 47

is that we use regression learning as machine-learning technique, which may produce imper-
fect predictions even for configurations from the sample set, and we would like to take that
into account. Also note that error corresponds to the loss function mean absolute percentage
error (MAPE) presented in Section 2.2.4.

Further note that, initially, we compared the performance distributions of the sample sets
and the whole population. But, as the similarity of distributions of a sample set and the whole
population does not necessarily imply good predictions, we refrain from this evaluation
method and decided for the more definitive method of comparing error rates (i.e., MAPE).

To answer RQ2, we perform the sampling and machine-learning procedures 100 times per
experiment run using different seeds for the random number generator, and we compute the
variance across the error rates:

ẽrrorC𝑆
= Var({error(𝑐) | 𝑐 ∈ C𝑆}) (3.3)

A lower variance indicates a higher robustness (i.e., is better).
So, in our experiments, the independent variables are the subject systems, the sample sizes,

the sampling strategies, and the random seeds for the random number generator. To rule out
influences of different sample sizes, we selected for RQ1 and RQ2 the same sample sizes for
(diversified) distance-based, (randomized) solver-based, and random sampling such that
their size equals the size for 𝑡-wise sampling with 𝑡=1, 𝑡=2, and 𝑡=34. For RQ3, we chose to
use the sample sizes 10, 100, and 1 000 to draw a picture how the different sampling strategies
perform. Choosing these sample sizes has the advantage that the results are more easily
interpretable since 𝑡=1, 𝑡=2, and 𝑡=3 are relative to the case study. The dependent variables are,
for RQ1, the mean error rates of the performance predictions (i.e., error), for RQ2, the variance
of the error rates of the performance predictions on the whole population (i.e., ẽrrorC𝑆

), and
for RQ3, the performance (i.e., execution time) of the sampling strategies.

For both research questions RQ1 and RQ2, we perform a standardization on the error
rates when considering different subject systems, to be able to answer the research questions
without considering each subject system separately. For RQ1, we use a Kruskal-Wallis test [74]
to identify for every sample size 𝑡=1, 𝑡=2, and 𝑡=3 if the error rates of, at least, two sampling
strategies differ significantly (p < 0.05). As proposed by Arcuri and Briand [9], we then
perform pair-wise and one-sided Mann-Whitney U tests [91] to identify which sampling
strategy leads to significant lower error rates than others. In addition to testing for statistical
significance, we determine the effect size using the ̂𝐴12 measure by Vargha and Delaney [150].
Values of ̂𝐴12 of more than 0.56, 0.64, and 0.71 indicate small, medium, and large effect sizes,
respectively.

To answer RQ2, we use Levene’s test [81] to identify whether the variances of, at least,
two sampling strategies differ significantly from each other. If this is the case, we perform a
pair-wise comparison using one-sided F-tests [144] to identify the sampling strategy with
the lower variance.

For RQ3, we perform a pair-wise and one-sided Mann-Whitney U tests [91] to assess for
each subject system and sample size which sampling strategy leads to significant lower
execution times.

4 In 𝑡-wise sampling, the size can be chosen only by using 𝑡, whereas in distance-based, solver-based, and random
sampling, any positive number in [1, |C|] can be used for the specification of the sample size.

48 Distance-Based Sampling of Software Configuration Spaces

Technically, we implemented the (diversified) distance-based sampling strategy on top of
the tool SPL Conqueror5 and compared it with the implementations of 𝑡-wise sampling, (ran-
domized) solver-based sampling, and random sampling of SPL Conqueror. 𝑡-wise sampling
corresponds to the optimized 𝑡-wise strategy by Siegmund et al. [140]. For random sampling,
SPL Conqueror selects randomly distributed configurations from the whole population,
which guarantees a uniform distribution of configurations across the configuration space.
That is, for the purpose of computing a baseline (for error and ẽrror), we follow the non-
scalable random sampling: we derive the whole population (i.e., all valid configurations) first,
which is necessary to answer RQ1. Then, we randomly draw configurations from the whole
population to the sample set. Other random sampling strategies such as the Monte Carlo
method or BDD-based sampling are not suitable, because of the disadvantages mentioned
in Section 3.1. This design decision allows us to maximize internal validity, but requires to
acquire the whole population. For larger subject systems (except for the subject systems in
RQ3), we spent in total more than a week of measurement per subject system. For (random-
ized) solver-based sampling, we used the z3 solver [100], which allows us to set a random
seed. Specifying different random seeds influences the variable-selection heuristics and, thus,
determines the location of the sample set in the configuration space. We performed each
sampling for RQ1 and RQ2 100 times with different random seeds from 1 to 100; for RQ3, we
performed each sampling 10 times with different random seeds from 1 to 10. The measure-
ments for RQ1 and RQ2 were performed on a cluster with an Intel Xeon E5-2690 and 64 GB
RAM (Debian 9) and the measurements for RQ3 were performed on a cluster with an Intel
Xeon E5-2630 v4 and 256 GB RAM (Debian 11).

3.2.3 Subject Systems

In our experiments, we consider 10 real-world configurable software systems from different
domains and of different sizes. We measured all configurations of all subject systems (i.e., the
whole population) between 5 to 10 times until reaching a standard deviation of less than 10%,
to control measurement bias. In total, the measurements took multiple years of CPU time.
In Table 3.1, we provide an overview of the subject systems. Note, as we needed the whole
population for every subject system to perform random sampling, the sizes of configuration
spaces of potential subject systems was limited.0 We provide the variability models and the
measurements of the subject systems on our supplementary web site. Note that we used one-
hot encoding (see Section 2.1.5) to convert the numeric configuration options into multiple
binary configuration options, due to the fact that our sampling strategy is currently designed
especially for binary configuration options. Next, we describe the subject systems in more
detail.

7-Zip (7z) is a file archiver written in C++. Configuration options include different com-
pression methods, different sizes of the dictionary, and the use of single- or multithreading.
We used version 9.20 of 7-Zip and measured the compression time of the Canterbury corpus6
on an Intel Xeon E5-2690 and 64 GB RAM (Ubuntu 16.04).

5 http://www.fosd.de/SPLConqueror/, last accessed on 02/23/2023.
6 https://corpus.canterbury.ac.nz/, last accessed on 02/23/2023.

http://www.fosd.de/SPLConqueror/
https://corpus.canterbury.ac.nz/

3.2 Experiment Setup 49

Table 3.1: Overview of the subject systems for RQ1 and RQ2 including domain, number of valid
configurations (|C|), number of configuration options (|O|), and the performance metric to
be predicted.

Domain |C| |O| Performance

7z File archive utility 68 640 44 Compression time
BDB-C Embedded database 2 560 18 Response time
Dune Multigrid solver 2 304 32 Solving time
HIPA𝑐𝑐 Image processing 13 485 54 Solving time
JavaGC Garbage collector 193 536 39 Time
LLVM Compiler infrastructure 1 024 11 Compilation time
lrzip File archive utility 432 19 Compression time
Polly Code optimizer 60 000 40 Runtime
VP9 Video encoder 216 000 42 Encoding time
x264 Video encoder 1 152 16 Encoding time

BerkeleyDB-C (BDB-C) is an embedded database engine written in C. We consider config-
uration options defining, for example, the page and cache size or the use of encryption. We
measured the time of version 4.4.20 to answer different read and write queries on a machine
with an Intel Core 2 Quad CPU 2.66 GHz and 4 GB RAM (Windows Vista).

Dune MGS (Dune) is a geometric multigrid solver for partial differential equations based
on the Dune framework [14]. As configuration options, we consider different algorithms
for smoothing and different numbers of pre-smoothing and post-smoothing steps to solve
Poisson’s equation. We performed all measurements with version 2.2 on an Intel i5-4570 and
32 GB RAM (Ubuntu 13.04).

HIPA𝑐𝑐 Solver (HIPA𝑐𝑐) is an image processing framework written in C++. We included,
for instance, different numbers of pixels calculated per thread and different types of memory
(e.g., texture, local) as configuration options. We measured the runtime for solving partial
differential equations on an nVidia Tesla K20 with 5 GB RAM and 2 496 cores (Ubuntu 14.04).

JavaGC is the garbage collector of the Java VM, which provides several configuration
options, such as disabling the explicit garbage collection call, modifying the adaptive garbage
collection boundary, and modifying the policy size. We measured the garbage collection time
of Java 1.8 to execute the DaCapo benchmark suite7 on a cluster with an Intel Xeon E5-2690
and 64 GB RAM (Ubuntu 14.04).

LLVM is a popular compiler infrastructure written in C++. Configuration options that we
considered concern code optimization, such as enabling inlining, jump threading, and dead
code elimination. We measured the compile time (using the Clang frontend) of version 2.7
for executing the opt-tool benchmark on an AMD Athlon64 Dual Core, 2 GB RAM (Debian
GNU/Linux 6).

lrzip is a file compression tool. We consider configuration options that define, for instance,
the compression level and the use of encryption. We used the uiq28 generator to generate a
file (632 MB), and we measured the time for compressing this file with version 0.600 on a
machine with AMD Athlon64 Dual Core, 2 GB RAM (Debian GNU/Linux 6).

7 http://dacapobench.sourceforge.net/, last accessed on 02/23/2023.
8 http://mattmahoney.net/dc/uiq/, last accessed on 02/23/2023.

http://dacapobench.sourceforge.net/
http://mattmahoney.net/dc/uiq/

50 Distance-Based Sampling of Software Configuration Spaces

Polly is a loop optimizer that rests on top of LLVM. Polly provides various configuration
options that define, for example, whether code should be parallelized or the choice of the tile
size. We used Polly version 3.9, LLVM version 4.0.0, and Clang version 4.0.0. As benchmark,
we used the gemm program from polybench andmeasured its runtime on an Intel Xeon E5-2690
and 64 GB RAM (Ubuntu 16.04).

vpxenc (VP9) is a video encoder that uses the VP9 video coding format. It offers different
configuration options, such as adjusting the quality, the bitrate of the coded video, and the
number of threads to use. We measured the encoding time of 2 seconds from the Big Buck
Bunny trailer on an Intel Xeon E5-2690 and 64 GB RAM (Ubuntu 16.04).

x264 is a video encoder for the H.264 compression format. Relevant configuration options
included the number of reference frames, enabling or disabling the default entropy encoder,
and the number of frames for ratecontrol and lookahead. We have measured the time to
encode the Sintel trailer (734 MB) on an Intel Core Q6600 with 4 GB RAM (Ubuntu 14.04).

In Table 3.2, we show the subject systems for our scalability experiments in RQ3. The
rationale behind using these subject systems is that they are freely available and all of these
subject systems use kConfig to describe the configuration options. Although kConfig also
allows for numeric configuration options, we focus only on the binary configuration options.
For the conversion from kConfig models to feature models, we used kmax9 in a first step to
derive models in conjunctive normal form in the DIMACS10 format and, in a second step,
converted this DIMACS file into a feature model using SPL Conqueror. It is important to
note that through this conversion process, the configuration options in the feature model
do not exactly correspond to their original configuration options in kConfig. In particular,
tristate configuration options (i.e., configuration optionswith three different assignable values
instead of two) are converted into multiple binary configuration options. This is also the
reason why the number of configuration options of Linux does not correspond to the numbers
of other literature, such as the recently reported 9 000 configuration options by Acher et al. [1].

Table 3.2: Overview of the subject systems for RQ3 including domain and number of configuration
options (|O|).

Domain |O|

axTLS Embedded SSL library 143
Buildroot Embedded system generator 13 559
BusyBox Unix toolbox 772
Fiasco Microkernel 130
Freetz-ng Router firmware extension 15 921
Linux Operating system kernel 27 318
toybox Linux command line 69
uClibc-ng C library 331

9 https://github.com/paulgazz/kmax, last accessed on 07/08/2023.
10 https://jix.github.io/varisat/manual/0.2.0/formats/dimacs.html, last accessed on 07/08/2023.

https://github.com/paulgazz/kmax
https://jix.github.io/varisat/manual/0.2.0/formats/dimacs.html

3.2 Experiment Setup 51

Ta
bl
e
3.
3:

Er
ro

rr
at
es

of
𝑡-w

is
e,

(r
an

do
m
iz
ed

)
so

lv
er
-b
as

ed
,(

di
ve

rs
ifi

ed
)
di

st
an

ce
-b
as

ed
,a

nd
ra
nd

om
sa

m
pl

in
g
fo
ra

ll
10

su
bj
ec

ts
ys

te
m
s.

Th
e
bo

tto
m

ro
w

co
nt

ai
ns

th
e
m
ea

n
va

lu
e
ac

ro
ss

al
ls

ub
je
ct

sy
st
em

s.
Th

e
be

st
re
su

lts
pe

rs
ub

je
ct

sy
st
em

an
d
sa

m
pl

e
se

ts
iz
e
ar

e
hi
gh

lig
ht

ed
in

bo
ld

an
d

gr
ee

n
iff

th
e
M

an
n-
W

hi
tn

ey
U

te
st

re
po

rt
ed

a
si
gn

ifi
ca

nt
di

ffe
re
nc

e
(p

<
0.

05
).

C
ov

er
ag

e-
ba

se
d

So
lv
er
-b
as

ed
Ra

nd
om

iz
ed

so
lv
er
-b
as

ed
D
is
ta
nc

e-
ba

se
d

D
iv
er
si
fie

d
di

st
an

ce
-b
as

ed
Ra

nd
om

𝑡=
1

𝑡=
2

𝑡=
3

𝑡=
1

𝑡=
2

𝑡=
3

𝑡=
1

𝑡=
2

𝑡=
3

𝑡=
1

𝑡=
2

𝑡=
3

𝑡=
1

𝑡=
2

𝑡=
3

𝑡=
1

𝑡=
2

𝑡=
3

7z
51

.2
%

33
.8

%
22

.6
%

65
.4

%
58

.2
%

25
.2

%
55

.1
%

37
.2

%
16

.7
%

85
.9

%
27

.3
%

16
.6

%
74

.3
%

16
.3
%

17
.2

%
58

.2
%

15
.1
%

9.
9%

BD
B-

C
12

2.
9%

29
.0

%
26

.5
%

49
.5

%
46

.8
%

42
.0

%
45

.1
%

46
.1
%

18
.1
%

32
0.
0
%

75
.1
%

15
.0

%
23

7.
0
%

12
.7
%

9.
3%

12
1.3

%
39

.1
%

12
.2

%

D
un

e
15

.5
%

12
.5

%
11
.4

%
23

.6
%

15
.1
%

11
.8

%
43

.3
%

16
.8

%
11
.2

%
24

.4
%

15
.2

%
11
.4

%
21

.5
%

11
.8
%

11
.0
%

17
.6

%
11
.5

%
11
.3

%

H
ip
ac

c
26

.2
%

20
.5

%
20

.5
%

44
.8

%
17

.2
%

14
.7

%
31

.9
%

15
.7

%
14

.2
%

27
.9

%
19

.0
%

15
.3

%
31

.5
%

14
.5
%

14
.0
%

19
.9

%
13

.9
%

13
.4

%

Ja
va

G
C

36
.7
%

32
.1
%

23
.7

%
54

.2
%

59
.3

%
35

.8
%

41
.9

%
37

.8
%

30
.2

%
72

.9
%

43
.8

%
28

.2
%

56
.0

%
29

.9
%

13
.2
%

55
.8

%
13

.9
%

12
.3

%

LL
V
M

6.
2
%

6.
2
%

5.
8%

9.
5%

5.
5%

5.
2
%

5.
6%

5.
2
%

5.
4
%

5.
8%

5.
2
%

5.
3%

5.
9%

5.
3%

5.
2
%

5.
6%

5.
2
%

5.
2
%

lrz
ip

27
.2
%

28
.2

%
13

.4
%

47
.3

%
27

.3
%

23
.9

%
91

.5
%

36
.0

%
25

.0
%

16
2.
5%

39
.7

%
21

.9
%

13
4.
2
%

25
.1
%

18
.2

%
62

.7
%

18
.3

%
15

.6
%

Po
lly

19
.7
%

12
.7

%
7.
3%

20
.3

%
16

.1
%

15
.5

%
20

.0
%

13
.6

%
14

.0
%

23
.3

%
14

.2
%

14
.9

%
25

.8
%

10
.5
%

11
.8

%
25

.1
%

13
.0

%
10

.3
%

V
P9

10
0.
3%

96
.3

%
45

.3
%

41
3.
0
%

22
4.
2
%

80
.8

%
47

0.
2
%

38
9.
1%

94
.5

%
72

1.9
%

12
5.
0
%

84
.5

%
18

9.
8%

66
.5
%

32
.0
%

80
.6

%
27

.2
%

23
.3

%

x2
64

20
.9

%
11
.9

%
10

.9
%

26
.2

%
40

.4
%

42
.2

%
18

.5
%

22
.2

%
33

.2
%

14
.7

%
10

.0
%

9.
4
%

12
.6
%

8.
8
%

9.
0
%

13
.5

%
9.
2
%

9.
1%

M
ea

n
42

.7
%

28
.3

%
18

.7
%

75
.4

%
51

.0
%

29
.7

%
82

.3
%

62
.0

%
26

.2
%

14
5.
9%

37
.4

%
22

.2
%

78
.9

%
20

.1
%

14
.1
%

46
.0

%
16

.6
%

12
.3

%

52 Distance-Based Sampling of Software Configuration Spaces

3.3 Evaluation

In Section 3.3.1, we present the results regarding RQ1 and in Section 3.3.2 the results regarding
RQ2. In Section 3.3.4,we discuss further findings, the computation effort, and our optimization.
In Section 3.3.5, we discuss threats to validity.

3.3.1 Results RQ1—Prediction Accuracy

In Table 3.3, we show the mean error rates for the different sampling strategies. We show
the results of random sampling in the rightmost column. Again, random sampling requires
the computation of the whole population and does not scale, but it serves as a base line for
our experiments. We mark for each sample-set size the lowest, statistically significant error
rate in green. That is, if two strategies perform similarly and have no statistically significant
difference, we do not mark them. Additionally, we provide the mean error rate (bottom row)
over all subject systems.

There are several observations: Diversified distance-based sampling performs best or
similar to all other sampling strategies for 𝑡=2 and 𝑡=3. Distance-based sampling without
optimization produces partially good results for some systems (e.g., for 7z and LLVM), but
is outperformed for other systems (e.g., JavaGC, lrzip, and VP9).

Solver-based sampling results in inaccurate performance-influence models for most subject
systems and sample-set sizes. Randomized solver-based sampling performs overall better
than solver-based sampling; 𝑡-wise sampling perform best when only a very limited number
of samples are considered (i.e., 𝑡=1).

When we compare the results to random sampling, we make two observations. First, it
seems that a diverse coverage of the configuration (by random selection) yields most accurate
performance-influence models, especially for systems with many configurations (e.g., 7z,
JavaGC, and VP9). Second, we observe that the error rates of diversified distance-based
sampling often come close to the base line of random sampling, especially when the size of
the sample set increases.

When performing Kruskal-Wallis tests for all sample sizes (𝑡=1, 𝑡=2, and 𝑡=3), we observe
p values less than 0.05 (shown on our supplementary web site), indicating that, at least,
two sampling strategies differ significantly for each sample size. To identify these sampling
strategies, we apply one-sidedMann-Whitney U tests pair-wisely and, if significant (p < 0.05),
report the effect sizes in Table 3.4. Specifically, we test whether the sampling strategy of the
row in Table 3.4 has a significantly lower error rate than the sampling strategy of the column.
The first row shows that 𝑡-wise sampling leads to significantly lower error rates than solver-
based sampling, with a small effect size for all sample sizes, and to significantly lower error
rates than distance-based sampling for 𝑡=1. In the fourth row, we see that distance-based
sampling leads to lower error rates than 𝑡-wise sampling for 𝑡=2 and 𝑡=3, with a small effect
sizes. Distance-based sampling has also lower error rates than solver-based sampling for 𝑡=2
and 𝑡=3 with a small effect size and 𝑡=3 with a medium effect size. Solver-based sampling
performs significantly better than distance-based sampling for 𝑡=1, which is also negligible

3.3 Evaluation 53

Ta
bl
e
3.
4:

p
va

lu
es

fr
om

a
on

e-
si
de

d
pa

ir-
w
is
e
M

an
n-
W

hi
tn

ey
U

te
st
,w

he
re

w
e
te
st
ed

pa
ir-

w
is
el
y
w
he

th
er

th
e
po

pu
la
tio

n
fr
om

th
e
ro

w
is

sm
al
le
r

th
an

th
e
po

pu
la
tio

n
fr
om

th
e
co

lu
m
n
fo
rd

iff
er
en

ts
am

pl
e
si
ze

sa
fte

rs
ta
nd

ar
di

za
tio

n.
Th

e
eff

ec
ts

iz
e
is

in
cl
ud

ed
fo
re

ve
ry

si
gn

ifi
ca

nt
re
su

lt
(p

<
0.

05
),

w
he

re
w
e
co

ns
id

er
di

ffe
re
nc

es
as

sm
al
l,
m
ed

iu
m
,a

nd
la
rg

e
w
he

n
̂

𝐴
12

is
ov

er
0.

56
,0

.6
4,

an
d

0.
71

,r
es

pe
ct
iv
el
y.

M
an

n-
W

hi
tn

ey
U

te
st

[p
va

lu
e
(𝐴

12
)]

C
ov

er
ag

e-
ba

se
d

So
lv
er
-b
as

ed
Ra

nd
om

iz
ed

so
lv
er
-b
as

ed
D
is
ta
nc

e-
ba

se
d

D
iv
er
si
fie

d
di

st
an

ce
-b
as

ed
Ra

nd
om

𝑡=
1

𝑡=
2

𝑡=
3

𝑡=
1

𝑡=
2

𝑡=
3

𝑡=
1

𝑡=
2

𝑡=
3

𝑡=
1

𝑡=
2

𝑡=
3

𝑡=
1

𝑡=
2

𝑡=
3

𝑡=
1

𝑡=
2

𝑡=
3

10
−

25
10

−
12

10
−

09
10

−
11

10
−

04
10

−
06

10
−

55
10

−
28

C
ov

er
ag

e-
ba

se
d

(0
.6

3)
(0

.5
9)

(0
.5

7)
(0

.5
9)

(0
.5

4)
(0

.5
6)

(0
.7

0)
(0

.6
4)

10
−

04
So

lv
er
-b
as

ed
(0

.5
4)

10
−

06
10

−
06

10
−

06
10

−
17

10
−

05
Ra

nd
om

iz
ed

so
lv
er
-b
as

ed
(0

.5
6)

(0
.5

6)
(0

.5
6)

(0
.6

1)
(0

.5
5)

10
−

07
10

−
11

10
−

19
10

−
30

10
−

10
10

−
25

D
is
ta
nc

e-
ba

se
d

(0
.5

6)
(0

.5
8)

(0
.6

1)
(0

.6
5)

(0
.5

8)
(0

.6
3)

10
−

15
1

10
−

10
7

10
−

14
7

10
−

11
9

10
−

14
1

10
−

14
6

10
−

07
10

−
78

10
−

49
D
iv
er
si
fie

d
di

st
an

ce
-b
as

ed
(0

.8
4)

(0
.7

8)
(0

.8
3)

(0
.8

0)
(0

.8
3)

(0
.8

3)
(0

.5
7)

(0
.7

4)
(0

.6
9)

10
−

03
10

−
19

6
10

−
15

5
10

−
30

10
−

17
5

10
−

15
1

10
−

15
10

−
17

5
10

−
18

7
10

−
50

10
−

11
9

10
−

83
10

−
27

10
−

11
10

−
10

Ra
nd

om
(0

.5
4)

(0
.8

9)
(0

.8
4)

(0
.6

5)
(0

.8
6)

(0
.8

4)
(0

.6
0)

(0
.8

6)
(0

.8
8)

(0
.6

9)
(0

.8
0)

(0
.7

5)
(0

.6
4)

(0
.5

8)
(0

.5
8)

Ta
bl
e
3.
5:

p
va

lu
es

fr
om

a
on

e-
si
de

d
pa

ir-
w
is
e
F-

te
st
,w

he
re

w
e
te
st
ed

pa
ir-

w
is
el
y
w
he

th
er

th
e
va

ria
nc

es
of

th
e
po

pu
la
tio

n
fr
om

th
e
ro

w
is

sm
al
le
rt

ha
n

th
e
on

e
fr
om

th
e
co

lu
m
n,

fo
rd

iff
er
en

ts
am

pl
e
si
ze

sa
fte

rs
ta
nd

ar
di

za
tio

n.
F-

te
st

(p
va

lu
e)

So
lv
er
-b
as

ed
Ra

nd
om

iz
ed

so
lv
er
-b
as

ed
D
is
ta
nc

e-
ba

se
d

D
iv
er
si
fie

d
di

st
an

ce
-b
as

ed
Ra

nd
om

𝑡=
1

𝑡=
2

𝑡=
3

𝑡=
1

𝑡=
2

𝑡=
3

𝑡=
1

𝑡=
2

𝑡=
3

𝑡=
1

𝑡=
2

𝑡=
3

𝑡=
1

𝑡=
2

𝑡=
3

So
lv
er
-b
as

ed

Ra
nd

om
iz
ed

so
lv
er
-b
as

ed
10

−
20

10
−

46
10

−
45

10
−

09
10

−
16

10
−

25

D
is
ta
nc

e-
ba

se
d

10
−

04
10

−
10

10
−

05

D
iv
er
si
fie

d
di

st
an

ce
-b
as

ed
10

−
36

10
−

19
5

10
−

11
4

10
−

04
10

−
67

10
−

21
10

−
21

10
−

13
2

10
−

81
10

−
09

Ra
nd

om
10

−
10

0
10

−
13

7
10

−
14

1
10

−
37

10
−

32
10

−
34

10
−

74
10

−
83

10
−

10
5

10
−

21
10

−
03

54 Distance-Based Sampling of Software Configuration Spaces

due to the small effect size. Randomized solver-based sampling performs significantly better
than distance-based sampling for 𝑡=1 with small effect size.

When comparing the error rates of diversified distance-based sampling with 𝑡-wise sam-
pling, randomized solver-based sampling, and solver-based sampling, we see that 𝑡-wise
sampling, solver-based sampling, and randomized solver-based sampling lead to higher error
rates for 𝑡=2 and 𝑡=3. The effect size in comparison to 𝑡-wise sampling is large for diversified
distance-based sampling. Moreover, diversified distance-based sampling performs better
than solver-based and randomized solver-based sampling with large effect sizes. Compar-
ing diversified distance-based sampling to random sampling, we see that random sampling
has significantly lower error rates with small to medium effect sizes. This result indicates
that we can reach nearly the same low error rates using distance-based sampling as the
computationally intractable random sampling.

Summary of Research Question 1
Diversified distance-based sampling outperforms all other sampling strategies for 𝑡=2
and 𝑡=3, almost reaching the accuracy of the base line of random sampling, but without
relying on the whole population. For small sample sets (𝑡=1), 𝑡-wise sampling is superior.

3.3.2 Results RQ2—Robustness

Based on 100 runs per experiment, we obtained a distribution of mean error rates for each sam-
pling strategy, which we further aggregated to compute their variances, ẽrror. We compared
the variances as follows: First, we performed Levene’s test (shown on our supplementary
web site), which checks the existence of significantly different variances between, at least,
two sampling strategies over all sampling sizes. Then, we performed pair-wisely one-sided
F-tests. We show the results in Table 3.5. In the second row, we can see that randomized
solver-based sampling has a significantly lower variance than distance-based sampling. In
the third row, we can see that distance-based sampling has a significantly lower variance than
solver-based sampling on all sample sizes. The last row shows that random sampling has the
lowest variance. When it comes to the diversified variant of distance-based sampling, it leads
to a significantly lower variance compared to plain distance-based sampling. The optimization
has a significantly lower error rate than random sampling for 𝑡=2, which requires, however, a
whole-population analysis. Regarding randomized solver-based sampling, the variance of
diversified distance-based sampling is significantly lower for all sample sizes.

We explain these observations as follows: Solver-based sampling either relies also on a
random seed or produces a deterministic set of configurations (not considered here). In the
case of random seeds, the seed defines the first solution found by the solver. Since neigh-
boring solutions are produced very likely in subsequent solver calls, the sample set will be
locally clustered around the first solution. Hence, for different seeds, different clusters are
sampled such that high variations occur in the error rate depending on the representativeness
of the cluster. Randomized solver-based sampling avoids building clusters, and thus the
variance is significantly lower than solver-based sampling. Distance-based sampling uses
also a solver to obtain configurations, but only with a certain distance. Having multiple
configurations with the same distance might lead to clusters similar to solver-based sampling.

3.3 Evaluation 55

This is why we observe a lower variance than for solver-based sampling (we might obtain one
cluster per distance, but not a single cluster in total), but a higher variance than random sam-
pling, randomized solver-based sampling, and diversified distance-based sampling. Reducing
clustering, diversified distance-based sampling yields even lower variances. As diversified
distance-based sampling avoids clusters such as randomized solver-based sampling, the
variances are rather similar. Hence, we conclude that our optimization of distance-based
sampling is effective to increase the variety of configurations and thus lowers the variance of
the prediction error.

Summary of Research Question 2
Diversified distance-based sampling is more robust than other sampling strategies except
for random sampling, but at the benefit of lower computational effort.

3.3.3 Results RQ3—Performance

In Table 3.6, we show the performance of distance-based sampling, diversified distance-
based sampling, randomized solver-based sampling, and solver-based sampling on larger
configurable software systems. We mark for each sample-set size the lowest, statistically
significant performance in green. Note, however, that these performance values depend
heavily on the constraint solver to search for configurations. Exchanging the constraint solver
would result in other performance values. There are several observations: Clearly, using an off-
the-shelf solver to find any arbitrary configuration outperforms the other sampling strategies
by far when using z3. Distance-based sampling and diversified distance-based sampling run
into a timeout in all sample sizes for 5 out of 8 subject systems and have difficulties beginning
with 331 configuration options. The randomized solver-based sampling approach, where the
constraint solver has to be reinitialized for each configuration, runs less often into a timeout
sample sizes than distance-based and diversified distance-based sampling.

For completeness, we also show the performance values of the subject systems used in RQ1
and RQ2 in Table 3.7. In these smaller configurable systems, the picture changes slightly. We
observe that in the configurable systems in RQ1 and RQ2, the distance-based sampling and
diversified distance-based sampling both outperform randomized solver-based sampling.

Summary of Research Question 3
Distance-based sampling and diversified distance-based sampling currently do not scale
well on large feature models using z3. Only solver-based sampling finds samples for each
feature model in reasonable time, even for the Linux kernel.

3.3.4 Discussion

Computational effort: The computational effort of distance-based sampling and its diversified
variant is lower than the effort of random sampling because we include every configuration
found by the solver into the sample set instead of enumerating all valid configurations
and discarding later a large part of it (i.e., configurations not used in the sample set—see

56 Distance-Based Sampling of Software Configuration Spaces

Table
3.6:Perform

anceofdistance-based
sam

pling,diversified
distance-based

sam
pling,random

ized
solver-based

sam
pling,and

solver-based
sam

pling
on

large
subjectsystem

sforsam
pling

10,100,or1000
configurations,respectively.>

3h
m
eansthatthe

sam
pling

strategy
ran

into
a
tim

eout
of3

hours.
D
istance-based

D
iversified

distance-based
Random

ized
solver-based

Solver-based
10

100
1

000
10

100
1

000
10

100
1

000
10

100
1

000
axTLS

80s
4m

01s
4m

03s
2m

42s
34m

31s
>

3h
10s

15m
37s

>
3h

<
1s

<
1s

2s
Buildroot

>
3h

>
3h

>
3h

>
3h

>
3h

>
3h

>
3h

>
3h

>
3h

7s
49s

8m
25s

BusyBox
>

3h
>

3h
>

3h
>

3h
>

3h
>

3h
4m

55s
>

3h
>

3h
<

1s
<

1s
8s

Fiasco
21m

49s
>

3h
>

3h
21m

47s
>

3h
>

3h
8s

13m
00s

>
3h

<
1s

<
1s

2s
Freetz-ng

>
3h

>
3h

>
3h

>
3h

>
3h

>
3h

>
3h

>
3h

>
3h

11s
67s

11m
24s

Linux
>

3h
>

3h
>

3h
>

3h
>

3h
>

3h
>

3h
>

3h
>

3h
21s

2m
46s

28m
02s

toybox
<

1s
1s

2s
<

1s
1s

2s
2s

3m
41s

>
3h

<
1s

<
1s

<
1s

uC
libc-ng

>
3h

>
3h

>
3h

>
3h

>
3h

>
3h

53s
1h

23m
>

3h
<

1s
<

1s
4s

Table
3.7:Perform

anceofdistance-based
sam

pling,diversified
distance-based

sam
pling,random

ized
solver-based

sam
pling,and

solver-based
sam

pling
on

the
othersubjectsystem

sused
forRQ

1 and
RQ

2 .
C
overage-based

Solver-based
Random

ized
solver-based

D
istance-based

D
iversified

distance-based
Random

𝑡=
1

𝑡=
2

𝑡=
3

𝑡=
1

𝑡=
2

𝑡=
3

𝑡=
1

𝑡=
2

𝑡=
3

𝑡=
1

𝑡=
2

𝑡=
3

𝑡=
1

𝑡=
2

𝑡=
3

W
P

7z
<

1s
3s

43s
<

1s
<

1s
11s

5s
17m

32s
>

3h
10s

11s
15s

11s
12s

17s
47m

34s
BerkeleyD

BC
<

1s
<

1s
2s

<
1s

<
1s

<
1s

<
1s

6s
77s

<
1s

<
1s

<
1s

<
1s

<
1s

<
1s

3s
D
une

<
1s

1s
11s

<
1s

<
1s

<
1s

2s
109s

29m
24s

<
1s

<
1s

1s
<

1s
<

1s
1s

4s
H
ipacc

<
1s

7s
82s

<
1s

<
1s

13s
11s

39m
50s

>
3h

2s
3s

8s
3s

3s
9s

109s
JavaG

C
<

1s
3s

40s
<

1s
1s

9s
4s

8m
41s

>
3h

92s
93s

95s
92s

93s
94s

>
3h

LLV
M

<
1s

<
1s

<
1s

<
1s

<
1s

<
1s

<
1s

1s
8s

<
1s

<
1s

<
1s

<
1s

<
1s

<
1s

<
1s

Polly
<

1s
3s

41s
<

1s
<

1s
4s

2s
4m

50s
>

3h
13s

14s
16s

15s
16s

21s
43m

44s
V
P9

<
1s

5s
52s

<
1s

<
1s

11s
4s

10m
54s

>
3h

2m
24s

2m
25s

2m
27s

2m
25s

2m
26s

2m
30s

>
3h

lrzip
<

1s
<

1s
2s

<
1s

<
1s

<
1s

<
1s

6s
22s

<
1s

<
1s

<
1s

<
1s

<
1s

<
1s

1s
x264

<
1s

<
1s

2s
<

1s
<

1s
<

1s
<

1s
2s

22s
<

1s
<

1s
<

1s
<

1s
<

1s
<

1s
<

1s

3.3 Evaluation 57

Section 3.1). Moreover, to reduce computational effort, we do not perform an expensive
optimization as in 𝑡-wise sampling (i.e., minimizing the set of selected configuration options
that are not of interest in the current configuration), but rather include additional constraints
to the constraint solver that define, for example, the number of selected configuration options.
However, as we observed in the evaluation on subject systems with large configuration spaces,
the constraint to find any configuration with exactly 𝑑 configuration options selected, becomes
difficult to process for z3. Clearly, exchanging the constraint solver with another solver that is
designed to process such constraints fast, would also change the picture. The computational
effort of randomized solver-based sampling is high, since the solver has to be reinitialized from
scratch to permute (1) the constraints, (2) the literals, and (3) initial assignment. Interestingly,
distance-based sampling performs better than randomized solver-based sampling on the
subject systems of RQ1 and RQ2 (see Table 3.7), but worse on the subject systems with large
configuration spaces (see Table 3.2). This is because of the lower number of configuration
options of the subject systems, where the overhead of reinitializing the constraint solver for
each configuration exceeds the overhead of searching for a configuration with a distance 𝑑.

Probability distributions: In our experiments, we used exclusively the discrete uniform
distribution for selecting distances, but our algorithm can be parameterized (probabilityDistr).
Preliminary experiments with binomial and geometric distributions suggest that a uniform
coverage of the configuration space is superior, though (see the supplementary web site).

Diversity: Comparing plain distance-based sampling with diversified distance-based sam-
pling, we observe that optimizing for diversity indeed pays off in terms of prediction accuracy
and robustness. Aiming at diversity is optimal in a black-box strategy, where no domain
knowledge is available. However, diversified distance-based sampling only pays off with
larger sample sizes, because the smaller sample sizes do not suffice to cover all configuration
options, at least, once for each distance.

3.3.5 Threats to Validity

Internal validity: To rule out errors in our implementation of (diversified) distance-based
sampling, we have thoroughly tested it. We verified that the produced sample set follows
the given distribution of the configuration distances. We found deviations only when all
configurations of a specific distance were already selected, which occurred only in few cases.

External validity: To increase external validity, we have selected software systems from dif-
ferent domains. We consider software systems ranging from systems with 432 configurations
to systems with 216 000 configurations. We have excluded larger systems because it would
be computationally infeasible for 𝑡-wise sampling and random sampling [95]. However, the
study of Pereira et al. [118] confirms a part of our results on the prediction error. In detail, the
study by Pereira et al. applied different sampling strategies on x264 to study how different
sampling strategies perform for different non-functional properties such as performance
prediction. In this study, distance-based sampling performed well for performance prediction,
but not for predicting the encoding size of a file.

The selection of the machine-learning technique to learn a performance-influence model
may threaten external validity. We used deliberately the same machine-learning technique

58 Distance-Based Sampling of Software Configuration Spaces

for all experiments to increase internal validity. But, other machine-learning techniques have
other strategies to derive information from the sample set and, thus, may lead to different
results. In a parallel line of experiments presented in Section 2.2.4, we compared 6 different
machine-learning techniques and observed that multiple regression is often as accurate as
classification and regression trees and random forests11, which are often used for learning
performance-influence models of configurable software systems. So, we are confident that
our results generalize to other machine-learning techniques.

Another threat to validity is the choice of the constraint solver, as different solvers adopt
different search heuristics and, thus, performs differently in terms of prediction error and
execution time. This, however, might represent a further reason not to rely on solver-based
sampling, as this way the generation of the sample set remains intransparent. For instance, we
observed even worse results for solver-based sampling when using the solver of the Microsoft
solver foundation.

3.4 Summary

Measuring every configuration of a software system to identify the performance-optimal
configuration is often unfeasible due to the sheer size of the configuration space. Addressing
this problem,machine learning based on statistical learning is used to predict the performance
of individual (or all) configurations by deriving information from a small and representative
sample set. Finding a tractably small and representative set of configurations is an impor-
tant but difficult task. To this end, different sampling strategies, such as 𝑡-wise sampling,
solver-based sampling, and random sampling have been proposed, which focus on different
aspects with different strengths and weaknesses. To address the weaknesses, we propose
distance-based sampling, which is based on a user-defined discrete probability distribution
and a distance metric. The key idea is that distance-based sampling spreads the selected
configurations across the configuration space based on a given probability distribution while
not relying on an expensive analysis of the whole population. To compare distance-based
sampling with the state of the art, we learn performance-influence models for 10 real-world
software systems using 6 different sampling strategies and compare the accuracy of the
performance-influence models. Furthermore, we apply different sampling strategies on 8
subject systems with large configuration spaces to assess the execution time of the sampling
strategies.

Our results demonstrate that distance-based sampling, when used in combination with a
diversity optimization, leads to significantly lower error rates than state-of-the-art strategies,
especially for larger sample sizes (𝑡=2, 𝑡=3), and the predictions are more stable than solver-
based sampling with respect to multiple runs using different random seeds. Our results
demonstrate that, based on a distance metric and a probability distribution, we can effectively
sample diverse configurations across the configuration space and without the need for a
whole-population analysis, which makes random sampling unfeasible for highly configurable
software systems. Further, distance-based sampling performs well on smaller subject systems,
but runs into a timeout of 3 hours for all subject systems with more than 150 configuration
options. Exchanging the constraint solver could change this picture, but is an avenue for

11 https://github.com/se-passau/Distance-Based_Data/, last accessed on 02/23/2023.

https://github.com/se-passau/Distance-Based_Data/

3.4 Summary 59

further work. This work provides a new view on sampling based on probability distributions
and paves the way for further research in this area. For instance, using other metrics or
distributions could lead more accurate predictions or improve the prediction robustness.

4
Performance Evolution of Configurable
Software Systems: An Empirical Study

This chapter shares material with the following publication: Christian Kalte-
necker, Stefan Mühlbauer, Alexander Grebhahn, Norbert Siegmund, and Sven
Apel. “Performance Evolution of Configurable Software Systems: An Empiri-
cal Study.” In: Empirical Software Engineering, 28.6 (2023), 152:1–152:41 [61]

One of our goals in this thesis is to identify performance changes in the evolution of config-
urable software systems. A performance change refers to a situation in which the execution time
(or another property such as throughput) of a software system degrades (performance re-
gression) or improves (performance fix or performance optimization) compared to previous
releases.

There is a substantial corpus of previous work on analyzing, detecting, and reverting per-
formance changes [15, 21, 43, 101], considering only a single or few default configurations
across multiple releases of the software. However, performance changes may be configuration-
dependent, that is, they appear only in a subset of configurations of the system in question [44].
As such, configuration-dependent changes could be easily missed by considering only the
default configuration. Given that contemporary software systems are often configurable [44],
this calls for investigating performance changes not only across multiple releases, but simulta-
neously across multiple configurations.

So far, there is no clear picture of how severe and frequent performance changes are in con-
figurable software systems and whether individual configurations or configuration options
play a central role in the evolution of a system’s performance behavior. A systematic analysis
of performance changes of configurable software systems holds the promise of providing
insights beyond just studying default configurations or average performance behavior. Devel-
opers and users are interested in which specific configurations exhibit diverging performance
behavior and which configuration options (or interactions among options) are responsible for
this. At a conceptual level, insights on the nature and prevalence of configuration-dependent
performance changes can be used to improve configuration sampling and performance mod-
eling techniques, where only a representative subset of all software configurations is used for
performance prediction [54, 60, 119, 139].

To learn about performance changes in configurable software systems, we conduct an em-
pirical study on the performance evolution of 12 popular configurable open-source software
systems from different domains across multiple releases and covering the entire configuration

61

62 Performance Evolution of Configurable Software Systems: An Empirical Study

space. To pin down the performance changes to configuration options, we make use of the
structure of performance-influencemodels (obtained bymachine learning—see Section 2.2.4).

In particular, we address the following research questions:

• RQ1.1: What is the fraction of the configuration space containing performance changes
between consecutive releases?

• RQ1.2: How stable is the relative performance of configurations in the presence of
performance changes between consecutive releases?

• RQ2.1: How frequent and how strong are changes of performance influences of individ-
ual configuration options and interactions between consecutive releases?

• RQ2.2: How stable is the relative influence of configuration options and interactions in
the presence of performance changes between consecutive releases?

To answer these research questions, we examine the prevalence and properties of perfor-
mance changes at two levels of abstraction:

• Configuration-level: performance of individual configurations.

• Option-level: performance influence of individual configuration options and interactions.

Thereby, RQ1.1 and RQ1.2 are related to the configuration level, whereas RQ2.1 and RQ2.2
are related to the option level. In a deeper analysis, we contrast the performance change
information from both levels to the change log and commit messages of the respective
software systems.

Overall, we make the following contributions:

• A novel approach to use performance-influencemodels to identify performance changes
in specific configuration options.

• An empirical study of 12popular configurable software systems involving their complete
configuration spaces for a series of releases considering up to 11 years of evolution.

• Insights on what role configurability plays in performance evolution of configurable
software systems, which (kinds of) options and interactions cause performance changes,
and which performance changes are documented.

In a nutshell, we found that almost all 190 releases that we analyzed exhibit, at least, one
performance change in, at least, one configuration. Most performance changes (75%) affect
less than half of the configurations of a system, and most of the performance changes (91%)
affect multiple options (up to 6). Notably, despite the prevalence of performance changes, the
performance ranking of configurations and influences of individual options are in many cases
not affected. That is, developers and users can assume a certain stability of configuration-
dependent performance behavior. About 43% of the performance changes are documented
in change logs and 64% in commit messages. Specific configuration options were mentioned
in 67% of the cases.

Our results have direct implications for configuration sampling, performance modeling,
and transfer learning in the area of configurable software systems. That is, for instance, some

4.1 Related Work 63

performance changes affect only 1% of the configurations and demand for comprehensive
performance measurements to spot performance changes. Additionally, we found that the
relative influence of configuration options and interactions on the performance is stable in
80% of the releases. That is, performance engineers can assume a certain stability also on
the options’ influences while performing transfer learning across different releases [54]. A
deeper analysis of change logs and commit messages shows that using a configuration-aware
performance testing pipeline could help in identifying configuration-specific performance
changes early. Our measurement and analysis framework provides a solid foundation for
further experiments on different software systems and non-functional properties. All results
along with analysis scripts and further information are available at a supplementary web
site1 .

4.1 Related Work

In this section, we discuss related work with respect to (1) the role and evolution of software
performance, (2) methods to analyze the performance changes, and (3) the evolution of
software configurability.

Performance & Software Evolution Root causes of performance changes and their effect
on maintainability have been studied before. Zaman et al. conducted an analysis of over
400 bugs from Mozilla Firefox and Google Chrome [155]. They found that performance
bugs often require more effort to fix and, therefore, are more costly than fixing functional
bugs. A study on Mozilla Firefox, Apache, and MySQL found a strong relation between
configurability and performance: 113 out of 193 bugs were configuration related [44].

Alcocer et al. studied the performance evolution of 19 software systems’ releases. By analyz-
ing the performance of multiple benchmarks, they found that one third of releases introduced
performance bugs. The authors identified 9 patterns for performance changes [3], which
include performance improvements, due to removing redundant method calls or caching, as
well as performance regressions arising from the composition of collection operations. Our
work links both research directions—software configuration and software evolution—and
explores performance of software systems across their configuration spaces and along their
development histories.

Performance Change Detection The detection of performance changes has been ap-
proached from different angles, such as using different statistical methods, and taking one or
more performance characteristics of the software system into account. For example, statistical
process control charts were used to capture changes of an observed metric, such as the perfor-
mance of the system, and provide thresholds, which, when exceeded by accumulated change,
indicate a performance degradation [76, 90, 111]. Other statistical approaches rely on testing
and determining whether two observations are statistically different. For example, Heger et
al. compare the performance distributions for different releases with ANOVA [45]. Reichelt
et al. apply different statistical tests to identify performance anomalies from performance
histories [122].

1 https://github.com/se-passau/Distance-Based_Data/tree/dissertation/, last accessed on 07/20/2023.

https://github.com/se-passau/Distance-Based_Data/tree/dissertation/

64 Performance Evolution of Configurable Software Systems: An Empirical Study

Aside from considering only a single performance measure, previous work considers
multiple measures and their relations. Foo et al. mine repositories regarding performance
regression tests and automatically detect performance changes by tracking the correlation of
performance measures over time [31]. Malik et al. analyze performance regression by auto-
matically selecting a subset of performance measures that describe system performance [90].
Using principal component analysis, they correlate the measures to obtain a performance
fingerprint, which then can be compared across releases.

All this work illustrates that performance changes can manifest in many ways. However,
it does not consider configurability and to what extent individual configuration options or
interactions cause performance changes, which is the focus of this paper.

Evolution: Configurability & Performance Mühlbauer et al. devised a prediction tech-
nique for performance changes in software repositories, across releases and configurations [107].
This work is the closest but complementary to ours: While we study the prevalence and prop-
erties of performance feature interactions in the wild, they propose a technique to discover
them with little effort. In principle, we could have used their technique to collect the data
for our study. But, as their approach only approximates performance changes with iterative
sampling, we analyze the configuration space as a whole for accuracy.

Several studies have observed and categorized recurring patterns in the evolution of vari-
ability models, such as the introduction or removal of new configuration options (often called
features) or splitting generic options into more precise ones. There are three relevant patterns:
a new feature is added, a mandatory feature becomes optional, or a mandatory/optional
feature is split into alternative features [115–117, 132]. Our study considers only configuration
options that exist in all releases of the software system,which is themajority, though. However,
for the interpretation of our results (see RQ2.2), these patterns provide some context that can
help map changes in the performance influence across releases. Recent work by Jamshidi et
al. explores the applicability of transfer learning to adapt performance-influence models to
different environments [54]. Their key insight, after investigating 4 configurable software
systems, is that only a subset of configuration options and interactions among them have a
strong influence on performance and that the performance influence is generally preserved
across environments and software releases.

Workload Dependence Clearly, the performance of a software system may change depend-
ing on the workload. There is a substantial corpus of work studying this phenomenon and
providing models and solutions that incorporate workload-dependent performance [30, 83].
The work of Costa et al. and Leitner et al. focuses on studying and improving performance
tests in Java-based open source projects [26, 78]. Our work is complementary in that we study
system configurability, which is a further dimension that influences a system’s performance.
To increase internal validity, we fixed the workload per system in our experiments. Ultimately,
our approach and previous work on workload-dependent performance behavior shall be
combined.

4.2 Software Evolution 65

4.2 Software Evolution

Software systems must evolve constantly to adapt to changes of hardware and user require-
ments [152]. Software evolution is driven by the integration of new functionality or libraries,
refactoring, and bug fixes. Besides functionality, the performance of the system may change
considerably.

Version control systems help developers to keep track of code changes that arise during
software evolution. For this purpose, most version control systems provide the concept of
revisions. A revision is effectively a view on the code base at a certain point in time. In what
follows, RV denotes the set of revisions of a software system. To highlight revisions that (1)
contain prominent changes, (2) are assumed as running stable, or (3) mark major milestones,
a revision can be tagged as release, with R ⊆ RV denoting the set of releases. In our study, we
consider only releases (1) to focus on important revisions, (2) to keep measurement effort
feasible, and (3) releases are usually the revisions that are used in production. Intermediate
revisions are not guaranteed to compile/run without errors since those revisions typically
are incremental modifications and „work in progress“. The rationale behind this is that older
software releases do not compile and run anymore on current operating systems, which limits
the time span that we can observe. Furthermore, we do notmeasure eachminor release in each
software system since measuring each release would require to measure all configurations of
the configuration space again. In this case, we opted to distribute the releases in similar time
frames (e.g., one release per half year) to cover each time frame equally.

Algorithm 4: Learning a performance-influence model
1 Function learn_comparable_models(feature_model, releases, release_performance_data):
2 terms ← ∅
3 foreach release ∈ releases do
4 model ← learn_model(feature_model, release_performance_data[release])
5 terms ← include_terms_from_model(terms, model)
6 end
7 terms ← variance_factor_analysis(terms)
8 models ← ∅
9 foreach release ∈ releases do
10 model ← fit(terms, release_performance_data[release])
11 models ← models ∪ {model}
12 end
13 return models

For the option-level of our study, we learn one performance-influencemodel for each release.
These performance-influence models, however, have the caveat that they cannot be used for
comparison between different releases because of multicollinearity (see Section 2.2.4). To
mitigate this, we follow the approach of Algorithm 4 to bring the performance-influence
models into a comparable form (i.e., all performance-influence models contain the same
terms). In Line 2–6, we learn a performance-influence model (see multiple linear regression
in Section 2.2.4) for each release. This is necessary to identify the performance-relevant
configuration options and interactions. These configuration options and interactions are
included as terms into the model in Line 5. This way, we obtain a set containing all relevant
configuration options and interactions among them. However, this set cannot be immediately
used as a performance-influence model since this step includes configuration options and

66 Performance Evolution of Configurable Software Systems: An Empirical Study

interactions that might be multicollinear. Hence, we remove multicollinear terms by applying
a VIF analysis [28] in Line 7. Note that this does not affect our prediction error sincewe remove
only perfectly multicollinear terms (i.e., terms that are completely interchangeable). After
this step, we use the same terms and fit them for each release in Line 10. These performance-
influence models contain the same configuration options and interactions and can now be
compared.

4.3 Experiment Setup

In this section, we discuss our research questions and how we attempt to answer them.
In particular, we discuss and motivate our research questions in Section 4.3.1. Later, in
Section 4.3.2, we present 12 subject systems we use for our study and discuss the used
workloads in Section 4.3.3. Last, we describe in detail how we evaluate our research questions
in Section 4.3.4.

4.3.1 Research Questions

Our overarching goal is to understand the performance evolution of configurable software
systems. To this end, we study the characteristics of performance changes and their relation
to configurability. For a detailed analysis, we consider two levels of abstraction: configuration
level and option level.

Configuration level As a first approximation, we address our goal at the level of individual
configurations. In particular, we are interested in (1) whether performance changes affect
typically many or only a few configurations and (2) whether performance changes alter
typically the overall ranking of configurations with regard to their performance optimality.

For the first research question (RQ1.1), we compare for each pair of releases each configu-
ration with its successor in terms of the extent to which the performance has changed. This
will allow us to make quantitative statements about how many performance changes exist
in practice and what fractions and kinds of configurations are affected. These insights can
inform sampling strategies and maintenance activities by prioritizing specific configurations
that likely exhibit performance changes.

Research Question 1.1
What is the fraction of the configuration space containing performance changes between
consecutive releases?

For the second research question (RQ1.2), we analyze to what extent performance changes
affect the ranking of configurations with regard to their performance. That is, the slowest
configuration has the lowest rank, the fastest configuration the highest rank, etc. Often de-
velopers and users are less interested in the actual performance values, but rather in their
relative importance, including which configurations are performance-optimal and which fall
below a certain threshold [109]. It might be that performance changes exist but that most of
them do not alter the performance ranking of configurations. That is, the performance ranking

4.3 Experiment Setup 67

of configurations is stable. This would be useful for researchers (e.g., for transfer learning of
performance models [54, 55]) and practitioners (so they can rely on a certain stability in the
relative performance influences).

Research Question 1.2
How stable is the relative performance of configurations in the presence of performance
changes between consecutive releases?

Option level Besides knowing which configurations are affected by a performance change,
we would like to know which configuration options or interactions among options are respon-
sible for this change. As with configurations, we are interested in (1) whether typically many
or only few options or interactions cause performance changes and (2) whether performance
changes alter typically the overall ranking of performance influences of options and inter-
action. To obtain information on the influences of options and their interactions, we learn a
performance-influence model per release and compare their terms and coefficients (see Chap-
ter 2). Since we use linear regression to learn our performance models, multicollinearity
might occur between multiple terms (see Section 2.2.4). As a countermeasure, we apply a
VIF analysis and remove all terms causing perfect multicollinearity. By doing so, 14 out of 702
terms were removed leaving the predictions of our performance-influence models unaffected.

For the first research question (RQ2.1), we compare for each pair of releases each influence
of each model term with its successor regarding the extent to which its influence has changed.
This will allow us to make quantitative statements about how many options and interactions
are responsible for performance changes. Knowing whether many or only few options are
responsible for performance changes helps to understand root causes of these changes and to
guide corresponding actions. Identifying patterns here can inform performance engineers to
guide and improve the detection and tracing of performance bottlenecks [32]. Comparing each
pair of releases further gives us the opportunity to assess the distribution of relative influences
of the configuration options on performance (i.e., all options have a similar influence on
performance, or a few influence performance the most).

Research Question 2.1
How frequent and how strong are changes of performance influences of individual con-
figuration options and interactions between consecutive releases?

For the second research question (RQ2.2), we analyze to what extent performance changes
affect the global ranking of performance influences of configuration options and interactions.
As with configurations, it is often sufficient to knowwhich configuration options have a strong
influence on performance without knowing exact performance values. For instance, when
optimizing for performance, a user may concentrate on the configuration options having a
strong influence on performance and ignore others [152]. When optimizing for performance
in a compression software, the performance-influence model might point out to consider low
instead of high compression levels and to neglect debug options. For a developer, it might be
interesting to confirm own expectations of how configuration options perform, as shown in a
former study [37].

68 Performance Evolution of Configurable Software Systems: An Empirical Study

Research Question 2.2
How stable is the relative influence of configuration options and interactions in the pres-
ence of performance changes between consecutive releases?

Table 4.1: Overview of the subject systems, including application domain, number of thousands of
lines of code (KLOC) in the last measured release, number of valid configurations (|C|) in
each release, configuration options (|O|), releases (|R|), and performance metric.

Name Domain KLOC |C| |O| |R| Performance

brotli Compression 30 181 30 12 Compression time
FastDownward Planning system 90 374 39 9 Solving time
HSQLDB Database 194 864 29 19 Response time
lrzip Compression 16 1 440 27 22 Compression time
MariaDB Database 1 969 972 21 22 Response time
MySQL Database 2 792 972 21 20 Response time
OpenVPN VPN software 80 512 24 12 Response time
opus Audio encoder 54 6 480 31 12 Encoding time
PostgreSQL Database 1 160 864 18 22 Response time
VP8 Video encoder 324 2 736 27 15 Encoding time
VP9 Video encoder 324 3 008 25 7 Encoding time
z3 Constraint solver 415 1 024 13 18 Solving time

4.3.2 Subject Systems

For our experiments, we selected 12 real-world configurable software systems based on the
following criteria: (1) different sizes (number of configurations and configuration options) to
evaluate scalability, (2) different application domains to increase external validity, (3) differ-
ent application architectures (e.g., client-server vs. desktop) to cover different performance
aspects, and (4) actively maintained systems to detect historical changes in a realistic context;
see Table 4.1, for an overview. As of 2023, all systems in our selection are actively maintained,
and we consider lifetimes of 21 months (PostgreSQL) to 137 months (OpenVPN). From the
respective development histories, we extracted all releases, which we identified based on Git
tags and respective documentation. All considered configuration options represent run-time
configuration options. We provide all variability models, selected releases, measurements,
results from our deeper analysis, and a complete description of the configuration options
on our supplementary web site. It is important to note that we performed the performance
measurements on multiple machines in parallel to keep the measurement time manageable.
While we use different machines across different subject systems, we use equally equipped
machines for the measurements in each subject system. Parallelizing our performance mea-
surements this way was possible, since we only compare revisions and configurations in
subject systems and not across subject systems.

Brotli is an open-source file compression tool by Google written in C. We considered 30
configuration options that give rise to 181 configurations, including configuration options

4.3 Experiment Setup 69

setting the window size and compression level. We used uiq22 to generate a general work-
load for compression (see Section 4.3.3 for more detail). As performance measure, we used
compression time. The measurements took place on machines with Intel Core i7-4790 CPUs
at 3.60 GHz with 16 GiB RAM (Debian 9). Overall, we considered 12 releases, from release
0.3.0 to 1.0.7, covering almost 3 years of history.

FastDownward is an open-source domain-independent planning system for optimization.
To identify performance-relevant configuration options and a proper workload, we contacted
a domain expert. Based on the feedback, we considered 39 configuration options that give
rise to 374 configurations. 7 out of 39 configuration options control different search heuristics;
all other configuration options represent parameters for these heuristics. Here, we mainly
consider different heuristics to solve the planning task. Each heuristic comes with its own
parameters (i.e., configuration options). We measured the time to find an optimal solution for
the planning task. All measurements were conducted on machines with Intel Xeon E5-2630
v4 at 2.20 GHz with 256 GiB RAM (Debian 11). Overall, we considered 9 revisions chosen in
cooperation with the domain expert. In total, we cover 5 years of history.

HSQLDB is a lightweight database engine. We considered 29 configuration options that
give rise to 864 configurations. Configuration options include support for different encryption
algorithms, transaction control settings, and incremental backup. We measured throughput
with the benchmarking tool PolePosition3. We have used multiple thousands of read, insert,
and update queries.We also considered nested queries. The tool emulates realistic user interac-
tion by performing a number of insertions, deletions, updates, and queries. All measurements
were conducted on machines with Intel Core i5-4590 CPUs at 3.30 GHz with 16 GiB RAM
(Debian 9). Overall, we considered 19 releases, from release 2.1.0 to 2.4.1, covering over 7
years of history.

lrzip is an open-source file compression tool. We considered 27 configuration options that
give rise to 1 440 configurations. Relevant configuration options are, for instance, different
compression algorithms, compression levels, and processor numbers. We used the same setup
as for Brotli. All measurements were conducted on machines with Intel Xeon E5-2650v2
CPUs at 2.60 GHz with 128 GiB RAM (Debian 10). Overall, we considered 22 releases, from
release 0.530 to 0.631, covering almost 6 years of history.

MariaDB and MySQL are open-source relational database management systems. For both
subject systems, we considered 21 configuration options that give rise to 972 configurations.
Among others, we included different buffer pool sizes, table sizes, and flush methods. We
measured throughput with the benchmarking tool PolePosition. All measurements were
conducted on machines with Intel Xeon E5-2650v2 CPUs at 2.60 GHz with 128 GiB RAM
(Debian 10). For MariaDB, we considered 22 releases, from release 5.5.23 to 10.4.7, covering
over 7 years of history. For MySQL, we considered 20 releases, from release 5.6.10 to 8.0.17,
covering over 6 years of history.

OpenVPN is an open-source software that provides secure communication between com-
puters using virtual private networks. We considered 24 configuration options that give rise to
512 configurations. We included, for instance, support for compression, different encryption

2 http://mattmahoney.net/dc/uiq/, last accessed on 02/18/2023.
3 http://polepos.org, last accessed on 02/18/2023.

http://mattmahoney.net/dc/uiq/
http://polepos.org

70 Performance Evolution of Configurable Software Systems: An Empirical Study

ciphers, authentication methods, and renegotiation settings. We set up an experiment with
one client and one server exchanging files to measure the throughput of the application. All
measurements of OpenVPN were conducted on machines with Intel Xeon E5-2650v2 CPUs
at 2.60 GHz with 128 GiB RAM (Debian 10). Overall, we considered 22 releases, from release
2.1.0 to 2.4.6, covering over 11 years of history.

opus is a codec for lossy audio compression. We considered 31 configuration options, giving
rise to 6 480 configurations. Configuration options include choices of bit rates, sample rates,
and numbers of channels. We measured the performance of opus by repeatedly encoding a
test vector, which has been used to validate the implementation against opus’s file format
specification. All measurements were conducted on machines with Intel Xeon E5-2620v4
CPUs at 2.10 GHz with 256 GiB RAM (Debian 10). Overall, we considered 12 releases, from
release 1.0.0 to 1.3.1, covering almost 7 years of history.

PostgreSQL is an open-source relational database management system. We considered 18
configuration options that give rise to 864 configurations. As configuration options, we include
synchronous commits as well as different sizes of buffers and working memory. As with
HSQLDB, we used the benchmarking tool PolePosition for measurements. All measurements
were conducted with machines with Intel Xeon E5-2650v2 CPUs at 2.60 GHz with 128 GiB
RAM (Debian 9). Overall, we considered 22 releases, from release 9.6.3 to 11.2, covering
almost 2 years of history.

vpxenc (vp8/vp9) is a video encoder that can be customized with different codecs, of
which we study vp8 and vp9. We considered 27 and 25 configuration options that give rise
to 2 736 and 3 008 configurations for vp8 and vp9, respectively. vpxenc provides a variety
of configuration options, for instance, to adjust the quality or bitrate of the encoded video
and multithreading operation. We used the raw trailer from the movie “Sintel” (480p, y4m
format) as a benchmark and measured the encoding time of both codecs, respectively. vp8
was measured on machines with Intel Core i5-4590 CPUs at 3.30 GHz with 16 GiB RAM. vp9
was measured on machines with Intel Xeon E5-2650v2 CPUs at 2.60 GHz with 128 GiB RAM
(Debian 10). For vp8, we considered 15 releases, from release 0.9.1 to 1.8.0, covering almost 9
years of history. For vp9, we considered 7 releases, from release 1.3.0 to 1.8.0, covering over 5
years of history.

z3 is an open-source SMT solver from Microsoft Research. We considered 13 configuration
options that give rise to 1 024 configurations. Configuration options include the generation
of proofs, model validation, and model simplification. As a benchmark, we selected four
scenarios from the International SMT Competition (LRA, QF_FP, QF_LRA, and QF_UFLRA).
We measured and report the execution time for solving these tasks. z3 was measured on
machines with Intel Core i5-4590 CPUs at 3.30 GHz with 16 GiB RAM (Debian 11). Overall,
we considered 18 releases, from release 4.3.2 to 4.8.13, covering more than 7 years of history.

4.3.3 Workloads

For each subject system, we selected one benchmark originated by the respective system
developers or community to obtain a representative workload, this way, increasing external
validity (see Section 4.4.4 and Section 4.1).

4.3 Experiment Setup 71

Audio Encoding (Opus): For the audio encoding, we used test vectors provided by the
developers of Opus4. Test vectors are designed to test all aspects of the implementation of the
audio encoder.

Compression (brotli/lrzip): We used the tool uiq25 to generate a large text compression
workload. It creates a generic and general purpose compression workload of a specified size.
The generated data was the same for both subject systems and has a size of about 100 MB.

Database (HSQLDB/MariaDB/MySQL/PostgreSQL): Each of the database systems sup-
ports SQL queries. We used the SQL benchmark PolePosition6, which was also used in
multiple publications [121, 157]. The benchmark enables us to generate different types of
queries, such as SELECT, UPDATE, nested queries, and complex queries.

Planning System (FastDownward):We applied theworkload data-network-opt18-strips/p057
that was suggested by an experienced user of FastDownward as a general workload. In ad-
dition, this workload does not contain specific characteristics that make the benchmark
unsolvable for certain heuristics.

Solver (z3): We selected multiple benchmarks from the Satisfiability Modulo Theories
Library8 having different types of logics LRA, QF_FP, QF_LRA, and QF_UFLRA. These
benchmarks cover floating point, linear real arithmetic, free sort and function symbols, for-
mulas with and without quantifier, and satisfiable and unsatisfiable formulas, thus, covering
a large range of options provided by z3.

Video Encoding (VP8/VP9): We used the Sintel trailer as a well-established workloadwhen
assessing the quality of different encoders. The Sintel trailer is listed in the Xiph repository9

and has been used in different publications [118, 131].

VPN (OpenVPN): Similar to compression, we created a generic general purpose file using
uiq2 with a size of 1 400 MB. We opted for uiq2 since it generates compression workloads for
the lzo compression, which is a functionality enabled by an option in OpenVPN. We adjusted
the size of the file as suggested by a community guide for performance testing10.

4.3.4 Operationalization

To answer our research questions, for each release, (1) we measured all configurations of a
subject system and (2) learn a performance-influencemodel on the entire set of configurations,
resulting in one model per system and release. S refers to the set of subject systems. For a
system 𝑠 ∈ 𝑆, C𝑠 refers to its set of configurations (see Section 2.1) and R𝑠 to its set of releases.

4 https://opus-codec.org/docs/opus_testvectors-rfc8251.tar.gz, last accessed on 02/18/2023.
5 http://mattmahoney.net/dc/uiq/, last accessed on 02/18/2023.
6 http://polepos.org/, last accessed on 02/18/2023.
7 https://github.com/aibasel/downward-benchmarks/blob/master/data-network-opt18-strips/p05.pddl,

last accessed on 02/18/2023.
8 https://smtlib.cs.uiowa.edu/benchmarks.shtml, last accessed on 02/18/2023.
9 https://media.xiph.org/, last accessed on 02/18/2023.

10 https://community.openvpn.net/openvpn/wiki/PerformanceTesting#Testcases, last accessed on
02/18/2023.

https://opus-codec.org/docs/opus_testvectors-rfc8251.tar.gz
http://mattmahoney.net/dc/uiq/
http://polepos.org/
https://github.com/aibasel/downward-benchmarks/blob/master/data-network-opt18-strips/p05.pddl
https://smtlib.cs.uiowa.edu/benchmarks.shtml
https://media.xiph.org/
https://community.openvpn.net/openvpn/wiki/PerformanceTesting#Testcases

72 Performance Evolution of Configurable Software Systems: An Empirical Study

M𝑟
𝑠 ∶ C𝑠 → ℝ maps the configurations 𝑐 ∈ C𝑠 of release 𝑟 ∈ R𝑠 to their measured performance

values in ℝ. Π𝑟
𝑠 denotes the performance-influence model for revision 𝑟 ∈ R𝑠 of system 𝑠.

Configuration level Conducting performance measurements on the history of a config-
urable software system raises the question of whether the addition and removal of configu-
ration options across releases should be considered. To simplify the analysis, we resort to a
fixed set of options that is available across all releases of a subject system. While this way we
might miss some interesting cases, our data set is still large and diverse enough to answer
reliably our research questions.

The independent variables for RQ1.1 and RQ1.2 are (1) the subject system 𝑠, (2) the release
𝑟, and (3) the configuration 𝑐. The dependent variable is the performance value M𝑟

𝑠(𝑐). A
confounding factor is measurement noise caused by particularities of the hardware and
software platform [71, 105]. To control for this factor, we measured all configurations multiple
times (3 to 5 times depending on the subject system) until the coefficient of variation (i.e.,
standard deviation divided by the mean) of the repetitions is lower than 10%.

To answer RQ1.1, we determine the performance valuesM𝑟
𝑠(𝑐) for each configuration 𝑐 ∈ C𝑠

and each release 𝑟 ∈ R𝑠. We consider a performance change between a configuration of two
consecutive releases relevant if:

∣M𝑟𝑖
𝑠 (𝑐) − M𝑟𝑖+1

𝑠 (𝑐) ∣ > 2 ⋅ max (sd𝑟𝑖
𝑠 (𝑐), sd𝑟𝑖+1

𝑠 (𝑐)) (4.1)

where sd𝑟
𝑠(𝑐) denotes the standard deviation of performance values of a configuration across

repeated measurements. In other words, if a performance change does not exceed twice the
larger standard deviation of the two releases, it is not further considered. The rationale for
this conservative threshold is to filter out measurement noise and tiny performance changes.

Table 4.2: All valid configurations of our exemplary system from Section 2.1, their predicted perfor-
mance values for two different releases, and the performance ranking of the configurations
of the exemplary compression tool. The last column indicates whether the performance
change is relevant according to Equation 4.1.

Release 1 Release 2

Configuration Π(𝑐) Rank (Π(𝑐)) Π′(𝑐) Rank (Π′(𝑐)) Relevant

𝑐1 5 1 5 1 7

𝑐2 8 4 8 4 7

𝑐3 7 3 7 3 7

𝑐4 9 5 9 5 7

𝑐5 6 2 6 2 7

𝑐6 7 3 7 3 7

𝑐7 9 6 9.5 6 3

𝑐8 10 7 10 7 7

𝑐9 8.5 5 9 5 3

𝑐10 9 6 9.5 6 7

4.3 Experiment Setup 73

To answer RQ1.2, we rank the configurations of each release 𝑟𝑖 by their performance value.
For illustration, we show the performance ranking of our exemplary compression tool for
two releases in Table 4.2. 𝑐2 represents the fastest configuration in both releases and 𝑐6 the
slowest configuration. Further, instead of directly comparing the rankings of two consecutive
releases, we first filter out irrelevant performance changes according to our definition in
Equation 4.1. That is, the ranking order of the second release is affected only by relevant
changes. In Table 4.2, we show in the last column which configurations are relevant according
to Equation 4.1, assuming a relative standard deviation of 1%. After filtering, the ranking of
only 𝑐2 and 𝑐5 would be compared, resulting in a perfect correlation, since both configurations
maintain their ranking in both releases (i.e., 𝑐2 < 𝑐5 holds).

To quantify the similarity of two rankings (i.e., the performance rankings of the con-
figurations of the current and the previous release), we use the Kendall’s Tau correlation
coefficient [62]. A correlation value of 1 indicates perfect correlation, a value close to 0 means
no correlation, and −1 indicates that the rankings are fully opposed (i.e., the configuration
with the highest rank in release 𝑟𝑖 has the lowest rank in release 𝑟𝑖+1, the configuration with
the second highest rank in release 𝑟𝑖 has the second lowest rank in release 𝑟𝑖+1, etc.). In other
words, a high correlation indicates that the performance ranking of configurations remains
stable across releases, whereas a low correlation indicates that the ranking changes consid-
erably. We omit computing Kendall’s Tau for releases where the rank changes for less than
two configurations. Calculating the correlation of the relevant configurations in Table 4.2, we
would obtain a perfect correlation of 𝜏 = 1.0.

Option level In RQ2.1 and RQ2.2, we aim at identifying the configuration options and inter-
actions that are responsible for the performance change that we observed at the configuration
level. To identify changes of the performance influence of an individual configuration option
or interaction, we build on previous work by Siegmund et al. [139]: We use multiple linear re-
gressionwith feature forward selection to create for each revision 𝑟 ∈ 𝑅𝑠 a performance-influence
model Π𝑟

𝑠 of the formdescribed in Section 2.2. Note thatwe do not follow a sample-based learn-
ing approach (i.e., one that uses only a subset of configurations). Instead, we learn models
on the whole configuration space. This would be impractical in practice but gives us the most
accurate results. So, the independent variables for RQ2.1 and RQ2.2 are (1) the subject system
𝑠 and (2) the release 𝑟; the dependent variable is the corresponding performance-influence
model Π𝑟

𝑠 for 𝑟 ∈ R𝑠.
To answer RQ2.1, we determine for each 𝑟 ∈ R𝑠 the performance influences 𝛽𝑟

𝑠(𝑡) of
all terms 𝑡 ∈ Π𝑟

𝑠. A term can either consist of the base term (i.e., 𝛽0 in Section 2.2.4), a
configuration option (i.e., 𝛽𝑜 ⋅ 𝑐(𝑜) for 𝑜 ∈ O), or an interaction among multiple options (i.e.,
𝛽𝑜1..𝑜𝑖

⋅ 𝑐(𝑜1) ⋅ ⋯ ⋅ 𝑐(𝑜𝑖) for 𝑜1, … , 𝑜𝑖 ∈ O). Function 𝛽𝑟
𝑠(𝑡) returns the coefficient of the term.

Similar to RQ1.1, we consider a performance change between two coefficients relevant if:

∣ 𝛽𝑟𝑖
𝑠 (𝑡) − 𝛽𝑟𝑖+1

𝑠 (𝑡) ∣ > 2 ⋅ max(sd
𝑟𝑖
𝑠 , sd

𝑟𝑖+1
𝑠).

where sd
𝑟𝑖
𝑠 denotes the mean standard deviation of all configurations of release 𝑟𝑖 ∈ 𝑅𝑠.

As with RQ1.1, if a change of performance influence does not exceed twice the larger av-
erage standard deviation of the two releases, it is not further considered. The rationale of
using the maximum of the mean standard deviation is that we use the entire configuration

74 Performance Evolution of Configurable Software Systems: An Empirical Study

space for learning performance models and thus accumulate the standard deviation over all
configurations.

To answer RQ2.2, we rank the terms 𝑡 ∈ Π𝑟
𝑠 based on their coefficients 𝛽𝑟

𝑠(𝑡). Similar to
RQ1.2, the most influential term has the highest rank, the second most influential term has
the second rank, and so on. As in RQ1.2, we quantify to what extent the ranks between two
releases 𝑟𝑖 and 𝑟𝑖+1 differ by using the Kendall’s Tau correlation coefficient.

4.4 Evaluation

In this section, we summarize our results (Section 4.4.1). We use these results in subsequent
metadata analysis (Section 4.4.2) and discuss the results along with further observations
(Section 4.4.3) and potential threats to validity (Section 4.4.4).

4.4.1 Results

In what follows, we refer to the plots given in Figure 4.1 and Figure 4.2. For each subject
system, there is one plot per figure: the plots in Figure 4.1 show the number of changes (red
line) and the stability of the performance ranking (blue line) at configuration level; and the
plots in Figure 4.2 show the number of changes (red line) and performance ranking stability
(blue line) at the option level.

RQ1.1: What is the fraction of the configuration space containing performance changes between
consecutive releases?

In Figure 4.1, we show the fraction of configurations containing performance changes across
consecutive releases (red lines)—the larger the value, the higher the fraction of configurations
involved in a performance change. In Figure 4.3 (blue line), we provide a cumulative overview
that shows how many of the 178 consecutive releases have a performance change in at
least a certain fraction of configurations. For instance, we see that in more than 40% of the
releases the performance changed in at least 20% of the configurations. Notably, 176 out of 178
(99%) releases have, at least, one configuration with a performance change.11 Further, 2 (1%)
performance changes are observed in the entire configuration space, 133 (75%) performance
changes are observed in less than half of the configuration space, and 26 (15%) performance
changes are observed only in 1% of the configuration space.

In Figure 4.4, we show the intensity of performance changes for VP9. Red color indicates
performance degradation, blue color indicates performance improvement. For releases 1.4.0
and 1.6.0, we observe that the performance behavior of a considerable number of configura-
tions (30%) of VP9 has changed substantially (i.e., the blue and the red colored configura-
tions)—much more than our threshold of twice the standard deviation used in Figure 4.4.

11 We have detected no configurations with performance changes between releases 9.2.0 and 9.2.4 of PostgreSQL
and between releases 2.2.1 and 2.2.2 of OpenVPN.

4.4 Evaluation 75

Brotli

0.3
.0

0.4
.0

0.5
.2

0.6
.0

1.0
.0

1.0
.1

1.0
.2

1.0
.3

1.0
.4

1.0
.5

1.0
.6

1.0
.7

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0
Ke

nd
al

l's
 T

au

FastDownward

20
16

.07

20
17

.01

20
17

.07

20
18

.01

20
18

.07

20
19

.01

20
19

.06

20
19

.12

20
20

.06

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

HSQLDB

2.1
.0
2.2

.0
2.2

.1
2.2

.2
2.2

.3
2.2

.4
2.2

.5
2.2

.6
2.2

.7
2.2

.8
2.2

.9
2.3

.0
2.3

.1
2.3

.2
2.3

.3
2.3

.4
2.3

.5
2.4

.0
2.4

.1

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

lrzip

53
0
54

3
54

4
55

0
55

1
55

2
56

0
57

1
60

1
60

2
60

4
60

6
60

7
60

8
61

1
61

2
61

4
61

5
61

6
62

0
62

1
63

1

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

MariaDB

5.5
.23
5.5

.27
5.5

.29
5.5

.31

5.5
.33

a
5.5

.35
5.5

.38
5.5

.40

10
.0.

17

10
.0.

19
10

.1.
8

10
.1.

12

10
.1.

14

10
.1.

16
10

.2.
6

10
.2.

7

10
.2.

11

10
.2.

14
10

.3.
8

10
.3.

11

10
.3.

14
10

.4.
7

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

MySQL

5.6
.10
5.6

.13
5.6

.15
5.6

.17
5.6

.20
5.6

.22
5.6

.24
5.6

.265.7
.9
5.7

.11
5.7

.14
5.7

.17
5.7

.18
5.7

.20
5.7

.21
5.7

.22
8.0

.12
8.0

.13
8.0

.15
8.0

.17

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

OpenVPN

2.1
.0

2.1
.2

2.1
.4

2.2
.0

2.2
.1

2.2
.2

2.3
.0

2.3
.18 2.3

.9
2.4

.0
2.4

.3
2.4

.6

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

opus

1.0
.0

1.0
.1

1.0
.2

1.0
.3 1.1 1.1

.1
1.1

.2
1.1

.5 1.2 1.2
.1 1.3 1.3

.1

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

PostgreSQL

8.3
.0
8.3

.5
8.4

.0
8.4

.2
9.0

.0
9.0

.4
9.1

.0
9.1

.3
9.2

.0
9.2

.4
9.3

.0
9.3

.4
9.4

.0
9.4

.4
9.5

.0
9.5

.3
9.6

.0
9.6

.3
10

.0
10

.4
11

.0
11

.2

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

VP8

v0
.9.

1
v0

.9.
2
v0

.9.
5
v0

.9.
6
v0

.9.
7

v0
.9.

7-p
1
v1

.0.
0
v1

.1.
0
v1

.2.
0
v1

.3.
0
v1

.4.
0
v1

.5.
0
v1

.6.
1
v1

.7.
0
v1

.8.
0

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

VP9

v1
.3.

0
v1

.4.
0

v1
.5.

0
v1

.6.
0

v1
.6.

1
v1

.7.
0

v1
.8.

0

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

z3

4.3
.2
4.4

.0
4.4

.1
4.5

.0
4.6

.0
4.7

.1
4.8

.1
4.8

.3
4.8

.4
4.8

.5
4.8

.6
4.8

.7
4.8

.8
4.8

.9
4.8

.10
4.8

.11
4.8

.12
4.8

.13

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

Figure 4.1: Fraction of performance changes and stability of performance ranking at configuration
level. The red line indicates the fraction of configurations of the whole configuration space
containing performance changes (in %); the blue line indicates the stability of the ranked
configuration performance as measured by Kendall’s Tau.

76 Performance Evolution of Configurable Software Systems: An Empirical Study

Brotli

0.3
.0

0.4
.0

0.5
.2

0.6
.0

1.0
.0

1.0
.1

1.0
.2

1.0
.3

1.0
.4

1.0
.5

1.0
.6

1.0
.7

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

FastDownward

20
16

.07

20
17

.01

20
17

.07

20
18

.01

20
18

.07

20
19

.01

20
19

.06

20
19

.12

20
20

.06

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

HSQLDB

2.1
.0
2.2

.0
2.2

.1
2.2

.2
2.2

.3
2.2

.4
2.2

.5
2.2

.6
2.2

.7
2.2

.8
2.2

.9
2.3

.0
2.3

.1
2.3

.2
2.3

.3
2.3

.4
2.3

.5
2.4

.0
2.4

.1

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

lrzip

53
0
54

3
54

4
55

0
55

1
55

2
56

0
57

1
60

1
60

2
60

4
60

6
60

7
60

8
61

1
61

2
61

4
61

5
61

6
62

0
62

1
63

1

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

MariaDB

5.5
.23
5.5

.27
5.5

.29
5.5

.31

5.5
.33

a
5.5

.35
5.5

.38
5.5

.40

10
.0.

17

10
.0.

19
10

.1.
8

10
.1.

12

10
.1.

14

10
.1.

16
10

.2.
6

10
.2.

7

10
.2.

11

10
.2.

14
10

.3.
8

10
.3.

11

10
.3.

14
10

.4.
7

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

MySQL

5.6
.10
5.6

.13
5.6

.15
5.6

.17
5.6

.20
5.6

.22
5.6

.24
5.6

.265.7
.9
5.7

.11
5.7

.14
5.7

.17
5.7

.18
5.7

.20
5.7

.21
5.7

.22
8.0

.12
8.0

.13
8.0

.15
8.0

.17

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

OpenVPN

2.1
.0

2.1
.2

2.1
.4

2.2
.0

2.2
.1

2.2
.2

2.3
.0

2.3
.18 2.3

.9
2.4

.0
2.4

.3
2.4

.6

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

opus

1.0
.0

1.0
.1

1.0
.2

1.0
.3 1.1 1.1

.1
1.1

.2
1.1

.5 1.2 1.2
.1 1.3 1.3

.1

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

PostgreSQL

8.3
.0
8.3

.5
8.4

.0
8.4

.2
9.0

.0
9.0

.4
9.1

.0
9.1

.3
9.2

.0
9.2

.4
9.3

.0
9.3

.4
9.4

.0
9.4

.4
9.5

.0
9.5

.3
9.6

.0
9.6

.3
10

.0
10

.4
11

.0
11

.2

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

VP8

v0
.9.

1
v0

.9.
2
v0

.9.
5
v0

.9.
6
v0

.9.
7

v0
.9.

7-p
1
v1

.0.
0
v1

.1.
0
v1

.2.
0
v1

.3.
0
v1

.4.
0
v1

.5.
0
v1

.6.
1
v1

.7.
0
v1

.8.
0

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

VP9

v1
.3.

0
v1

.4.
0

v1
.5.

0
v1

.6.
0

v1
.6.

1
v1

.7.
0

v1
.8.

0

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0

Ke
nd

al
l's

 T
au

z3

4.3
.2
4.4

.0
4.4

.1
4.5

.0
4.6

.0
4.7

.1
4.8

.1
4.8

.3
4.8

.4
4.8

.5
4.8

.6
4.8

.7
4.8

.8
4.8

.9
4.8

.10
4.8

.11
4.8

.12
4.8

.13

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

1.0

0.5

0.0

0.5

1.0
Ke

nd
al

l's
 T

au

Figure 4.2: Fraction of performance changes and stability of performance ranking at option level. The
red line indicates the fraction of options containing performance changes (in %); the blue
line indicates the stability of the ranked options performance as measured by Kendall’s
Tau.

4.4 Evaluation 77

0% 20% 40% 60% 80% 100%

Configurations / Options [%]

0%

20%

40%

60%

80%

100%

R
el

ea
se

s
[%

]
Configurations
Options

Figure 4.3: Cumulative plot on the fraction of involved configurations (blue) or options (orange) in
all performance changes of RQ1.1 and RQ2.1, respectively.

Configurations
v1.8.0

v1.7.0

v1.6.1

v1.6.0

v1.5.0

v1.4.0

v1.3.0

Re
le

as
es

2000

1000

0

1000

2000

Pe
rfo

rm
an

ce
 [s

]

Figure 4.4: Performance changes of VP9 across all configurations (x-axis) and releases (y-axis). We
use a color palette to illustrate performance degradation (> 0, red) and performance
improvement (< 0, blue). The configurations are sorted in ascending order according to
their mean performance over all releases. There are 3 008 configurations on the x-axis; axis
ticks have been omitted for readability.

Summary of Research Question 1.1
Almost every release of every subject contains, at least, one performance change in some
configuration. The majority of performance changes affects less than half of the configura-
tions.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Kendall's Tau

0%

20%

40%

60%

80%

100%

R
el

ea
se

s
[%

]

Configurations
Options

Figure 4.5: Cumulative plot on the stability of configurations (blue) or options (orange) in all perfor-
mance changes of RQ1.2 and RQ2.2, respectively.

RQ1.2: How stable is the relative performance of configurations in the presence of performance
changes between consecutive releases?

78 Performance Evolution of Configurable Software Systems: An Empirical Study

Roo
t

SHA1 ·
 LZ

O

SHA51
2 ·

 LZ
O

RSA SHA51
2 ·

 LZ
O

LZ
O

SHA1

SHA51
2

RSA SHA51
2

SHA51
2 R

SA PRN G
en

.

SHA51
2 P

RN G
en

.

SHA1 P
RN G

en
.

TCP N
o D

ela
y

AES-12
8-C

BC

Configuration Choice

2.4.6
2.4.3
2.4.0
2.3.9

2.3.18
2.3.0
2.2.2
2.2.1
2.2.0
2.1.4
2.1.2
2.1.0

R
el

ea
se

100

0

100

In
flu

en
ce

 D
iff

er
en

ce
 [s

]

Figure 4.6: Performance influence of options and interactions (x-axis) of OpenVPN across all releases
(y-axis). A color palette illustrates performance degradation (> 0, red) and improvements
(< 0, blue).

In Figure 4.2, we show the stability of the performance ranking of configurations, as quantified
by Kendall’s Tau (blue lines). A high value indicates high stability: the performance ranking
of configurations changes only slightly (i.e., the fastest configurations stay the fastest, etc.).
Across all systems and releases, the ranking is largely stable: 𝜏 = 0.74. In Figure 4.5, we
provide an overview of the stability (blue line) between all 178 consecutive releases. 148
(83%) releases have a 𝜏 value higher than 0.5, 105 (59%) releases have a 𝜏 value higher than
0.80, and 64 (36%) releases have a 𝜏 value higher than 0.90. Opus is most stable (𝜏 = 0.98),
PostgreSQL is least stable (𝜏 = 0.36).

Summary of Research Question 1.2
The performance ranking of configurations is largely stable across consecutive releases
(𝜏 = 0.74), with some notable exceptions.

RQ2.1: How frequent and how strong are changes of performance influences of individual configura-
tion options and interactions between consecutive releases?

In Figure 4.2, we show the fraction of how many options or interactions have changed from
one release to another (red line). As explained in Section 4.3.4, the influences were deter-
mined by learning a performance-influence model per release. It is important to note that the
prediction errors of the models were generally low (3.9%, on average), so we are confident
that the influences are accurate.

Frequency: The fraction of configuration options and interactions involved in performance
changes ranges from 0.45% (e.g., lrzip) to 95% (e.g., VP8). In Figure 4.3 (orange line), we
provide a cumulative overview that shows how many of the consecutive releases have a
performance change in at least the certain fraction of configuration options. For instance, we
see that about 12% of the consecutive releases indicate a change on more than 40% of the
configuration options and interactions. On average, the influence of 28% of the configuration
options and interactions change across all releases. While, in most of the changes (91%),
multiple configurations options and interactions are involved, there are cases where just a
single option is responsible for a performance change (PostgreSQL). Figure 4.6 shows the

4.4 Evaluation 79

0 25 50 75 100

Relative Influence
0

20

40

60

80

100

Fr
eq

ue
nc

y
[%

]

All subject systems

0 25 50 75 100

Relative Influence
0

20

40

60

80

100

Fr
eq

ue
nc

y
[%

]

PostgreSQL

Figure 4.7: Distribution of the relative influences of model terms across all subject systems (left) and
for PostgreSQL (right).

intensity of performance influences of individual configuration options and interaction for
OpenVPN: In releases 2.3.0 and 2.4.0, we note substantial performance changes, each of which
is caused by only a subset of options, some of which interact causing the effect (e.g., SHA512
and LZO).
Distribution: In Figure 4.7, we show the distribution of relative performance influences

across all subject systems and releases. 83% of the model terms (options or interactions) have
only a very small influence on performance (less than 7.5%), which is in line with theoretical
considerations of influencing factors in sensitivity analysis [128]. Only 3% have an influence
of 80% and more on the system’s performance. That is, the influence on the performance
is mostly distributed over all configuration options and interactions. A notable exception is
PostgreSQL, where only three terms are relevant, namely the base term, fsync (which enables
synchronized writes), and trackActivities (which enables the collection of information on the
executed commands).

Summary of Research Question 2.1
There is a substantial number of cases where influences of individual configuration op-
tions or interactions change across releases, but only few have a substantial influence
on performance. Most performance changes (91%) are caused by multiple options and
interactions, but there are cases where only a single option is responsible.

RQ2.2: How stable is the relative influence of configuration options and interactions in the presence
of performance changes between consecutive releases?

In Figure 4.2, we show the stability of the performance ranking of individual influences of
options and interactions, as quantified byKendall’s Tau (blue lines).We included a cumulative
overview in Figure 4.5 (orange line). In comparison to RQ1.2, stability ismuch higher: 𝜏 = 0.91.
151 (85%) have a 𝜏 larger than 0.8, and 142 releases (80%) have a 𝜏 larger than 0.9. For two
subject systems (Opus and PostgreSQL), the performance ranking is stable across all releases.
The performance model ranking (i.e., blue line of the right plot) of the consecutive releases
1.3.0 and 1.4.0 in VP9 contain slightly negative values, which indicate larger fluctuations
and even a partial reversal of the ranking (see change of ranking of first and fourth option
between 1.3.0 and 1.4.0 in Figure 4.8).

For illustration, we show in Figure 4.8 the evolution of the ranking of the 5 most influential
configuration options or interactions of VP9. The ranking changes considerably over time,

80 Performance Evolution of Configurable Software Systems: An Empirical Study

v1
.3.

0
v1

.4.
0

v1
.5.

0
v1

.6.
0

v1
.6.

1
v1

.7.
0

v1
.8.

0

Release

5

4

3

2

1

Pe
rfo

rm
an

ce
 R

an
k

Figure 4.8: Evolution of the performance ranking of the 5 most important model terms of VP9. Con-
nected nodes illustrate the change of ranking from one release to another. An unconnected
node means that the ranking in the next release is lower than 5.

where the most changes are in between 1.3.0 and 1.4.0. The reason is a performance regression
in the options realtime and quality encoding, which was fixed in 1.6.0.

Summary of Research Question 2.2
The performance ranking of influences of individual configuration options and interactions
is largely stable across consecutive releases (𝜏 = 0.91), with some exceptions.

4.4.2 Metadata Analysis

To triangulate the results of Section 4.4.1, we have conducted a deeper analysis that aligns the
identified performance changes and influential model terms with reported cases in change
logs and commit messages of the respective subject systems. In particular, we are interested
in to what extent the learned performance models are able to pin down configuration options
or interactions that are involved in a performance change.

Conduct In Figure 4.9, we show the steps of our deeper analysis. In Step I, we check the
performance change of each consecutive release at the configuration level and the option
level (see Figure 4.1 and Figure 4.2). We consider a release as relevant if the performance
change at option or configuration level of one release exceeds 5% of the previous release. We
exclude releases for which only the performance of the base program (i.e., the term base) has
changed. There are two reasons for this: (1) a code change to the common base code affects
all configurations; (2) a code change affects an option that is not included in our analysis.
For instance, changing the default value of an unconsidered configuration option (e.g., by
enabling it by default) can be the reason for performance changes in base. This scenario
occurred only in PostgreSQL, in which in 4 out of 5 relevant releases, only the term base has
a changed performance value.

Applying both filters, 79 out of 181 (43%) releases are relevant for our investigation. opus
is the only subject system with no detectable performance changes. Thus, opus will not be
considered in this analysis. By contrast, all releases of VP8 and VP9 are included in our
analysis.

4.4 Evaluation 81

0. Results

Configurations
v1.8.0

v1.7.0

v1.6.1

v1.6.0

v1.5.0

v1.4.0

v1.3.0

Re
le

as
es

2000

1000

0

1000

2000

Pe
rfo

rm
an

ce
 [s

]

I. Filter releases

> 5% configurations changed (configuration level)

> 5% terms changed (option level)

II. Identify configuration options

Πri+1
−Πri

{o ∈ O | o has changed}

III. Read change log IV. Read commits

V. Compare

Figure 4.9: Methodology of our deeper analysis. Step 0 includes our previously discussed results.
In Step I, we select consecutive releases with certain degrees of performance change. Af-
terwards in Step II, we identify the configuration options with a changed performance
influence from one release 𝑟𝑖 to another 𝑟𝑖+1. In Step III, we read change logs for documented
performance changes to find the cause and extract for each release whether performance
changes were documented or not. In Step IV, we read commit messages of the relevant con-
secutive releases and include the changed configuration options from Step II to our analysis
to aid finding the cause. In this step, we obtain for each release whether a performance
change was documented in the commits and whether at least one affected configuration
option was mentioned or not. Last, in Step V, we compare the results from Step 0, Step III,
and Step IV. In particular, we show in which cases the change log and commit messages
correspond or differ from our results and in which cases the configuration option is men-
tioned.

In Step II, we inspect performance-influence models of Section 4.4.1 in more depth to gather
information on which configuration options and interactions thereof have actually changed.
Based on this information, we search for documented performance changes in the entire
change log between each pair of relevant consecutive releases including the change log for
the current release for documented performance changes in Step III.

In Step IV, we analyze the commit messages between each pair of relevant consecutive
releases. Fortunately, our selected subject systems are open source relying on publicly accessi-
ble version control systems (mostly git). Since reading all commit messages is infeasible for
larger projects, we filter the commit messages using the following keywords similar to other
studies [23, 57]: slow, fast, time, perf (ormance), optim(ize), and regression. Additionally, we
added the name of the configuration options that we identified in Step II and check whether
a configuration option is mentioned. If one of these keywords matches, we analyzed the
commit message in detail.

Finally, in Step V, we contrast the obtained information by comparing them with each other.
In particular, we report in how many cases the commit messages reported a performance
change in comparison to the change log and in how many cases the configuration option was
mentioned. For brevity, we provide only a summary of our analysis in Table 4.3; the full set
of results is available on our supplementary web site.

82 Performance Evolution of Configurable Software Systems: An Empirical Study

Table 4.3: Overview of the number of relevant releases (RR) and releases reporting speed-ups ()
or slow-downs () in the change log and commit messages. The last column indicates the
number of releases where at least one affected configuration option is mentioned in the
commit messages.

System #RR Change log Commit Option

brotli 9 2 0 4 0 5
FastDownward 9 0 0 2 1 5
HSQLDB 8 4 0 1 0 1
lrzip 15 7 0 7 1 9
MariaDB 5 2 0 5 0 5
MySQL 3 2 0 3 0 3
OpenVPN 2 2 0 2 0 2
PostgreSQL 1 0 0 0 0 1
VP8 14 7 0 10 0 12
VP9 6 6 0 6 1 5
z3 16 1 2 15 2 11

To reduce interpretation bias, two authors of the original paper12 performed the analysis
of Step III and Step IV independently. After the analysis, they compared their results and
discussed the differences to reach a consensus. Only in 3 pairs of releases of MariaDB, where
the commit messages were larger than 10 MB, the third author checked and confirmed the
results of the first author’s manual analysis.

Results In Table 4.4, we list an excerpt of the results of our deeper analysis. We provide
the complete list of results on our supplementary web site13. Details on each result are also
included on our supplementary web site14. We show which of the consecutive releases have
reported a speed-up or a slow-down in change logs or in commit messages, and whether the
affected configuration option has been mentioned. The table also includes information which
fractions of configurations improved or decreased performance.

7 out of 88 (8%) consecutive releases do not include a change log. In summary, in 35 out
of 81 (43%) consecutive releases, the change log reported a performance change, whereas 2
reported a slow down and 33 a speed-up. In 56 pairs of releases (64%), the commit messages
reported a performance change. Comparing change log and commit messages, we found that
in 48 out of 81 (59%) consecutive releases, the change log and commit messages correspond
to each other. In the remaining 33 consecutive releases (41%), 26 (32%) list other (and more)

12 Christian Kaltenecker and Stefan Mühlbauer
13 https://github.com/ChristianKaltenecker/PerformanceEvolution_Website/blob/master/

MetadataAnalysis/AnalysisTable.md, last accessed on 02/20/2023.
14 https://github.com/ChristianKaltenecker/PerformanceEvolution_Website/blob/master/

MetadataAnalysis/MetadataAnalysis.md, last accessed on 02/20/2023.

https://github.com/ChristianKaltenecker/PerformanceEvolution_Website/blob/master/MetadataAnalysis/AnalysisTable.md
https://github.com/ChristianKaltenecker/PerformanceEvolution_Website/blob/master/MetadataAnalysis/AnalysisTable.md
https://github.com/ChristianKaltenecker/PerformanceEvolution_Website/blob/master/MetadataAnalysis/MetadataAnalysis.md
https://github.com/ChristianKaltenecker/PerformanceEvolution_Website/blob/master/MetadataAnalysis/MetadataAnalysis.md

4.4 Evaluation 83

Table 4.4: Excerpt of the 88 relevant consecutive releases, the fraction of sped up and slowed down
configurations, whether speed-ups () or slow-downs () are mentioned in the change
log or in the commit message, and whether changes in the identified options/interactions
are reported.

System Release Speed-up (%) Slow-down (%) Change log Commit Option

brotli 0.3.0–0.4.0 54.4 16.1 3

0.4.0–0.5.2 66.1 9.4 7 3

0.5.2–0.6.0 36.1 7.7 3

0.6.0–1.0.0 10.0 27.2 7 7

1.0.2–1.0.3 51.6 14.4 7 7 3

1.0.6–1.0.7 26.1 0.0 7 7 7

HSQLDB 2.1.0–2.2.0 0.3 47.2 7 7

2.2.1–2.2.2 26.6 0.2 7

2.2.5–2.2.6 0.9 15.2 7 7 3

lrzip 530–543 3.8 36.6 7

543–544 25.0 73.1 3

544–550 95.3 3.4 3

552–560 7.7 81.9 7

560–571 85.2 0.6 3

MariaDB 5.5.23–5.5.27 22.5 0.7 3

5.5.35–5.5.38 1.6 4.0 7 3

5.5.40–10.0.17 5.9 25.6 3

10.1.16–10.2.6 5.9 25.6 7 3

10.2.7–10.2.11 17.8 0.1 7 3

MySQL 5.6.26–5.7.9 0.0 51.4 7 3

5.7.22–8.0.12 0.0 92.2 3

8.0.13–8.0.15 2.3 3.0 3

PostgreSQL 9.0.0–9.0.4 50.0 0.0 7 7 3

VP8 1.3.0–1.4.0 40.3 6.2 7 3

VP9 1.3.0–1.4.0 34.31 65.6 3

1.6.0–1.6.1 0.0 100.0 3

z3 4.8.7–4.8.8 8.1 28.9 3

4.8.8–4.8.9 16.2 44.0 3

84 Performance Evolution of Configurable Software Systems: An Empirical Study

0 1 2 3 4 5 6 7 8 9 10 11

Compression Level

1.0.7

1.0.6

1.0.5

1.0.4

1.0.3

1.0.2

1.0.1

1.0.0

0.6.0

0.5.2

0.4.0

0.3.0
Re

le
as

e
10..24 10..24 10..24 10..24 10..24 10..24 10..24 10..24 10..24 10..24 10..24 10..24

Window Size

102

101

100

0

100

101

102

Pe
rfo

rm
an

ce
 [s

]

Figure 4.10: Performance changes of brotli across all releases (y-axis). The color code highlights
performance degradation (> 0, red) and performance improvement (< 0, blue).

performance-relevant information in the commit messages than in the change log. The change
log delivers more performance-relevant information in only 5 consecutive releases (6%). In
total, 60 out of 88 (68%) consecutive releases mention a performance change in the change
log or commit message.

In 4 cases (5%), speed-ups and slow-downs were reported in commit messages. At least
one affected configuration option was mentioned in 59 cases (67%), out of which 14 pairs
of releases (16%) mention only changes in the configuration option’s code base but no
performance changes in the change log or commit messages. In 29 of the cases (33%), no
affected configuration option is mentioned. Moreover, in 7 cases (8%), some configurations
show a minor but relevant performance change while the performance-influence model does
not (i.e., the performance-influence models are similar in these cases). In 12 cases (15%), the
change log or commit messages report speed-ups without mentioning a configuration option.

Details To provide in-depth insight into our deeper analysis, we show in Figure 4.10 the
configuration options WindowSize and CompressionLevel of brotli which control the compres-
sion rate of files. A blue color represents performance increase and a red color a decrease
from one release to another. In the first pair of consecutive releases, 0.3.0 – 0.4.0, an increase
in performance of compression levels 0 – 3 can be observed, which is also mentioned in the
change log and the commit message. However, the speed-up of compression levels 10 and
11 are not directly mentioned and may be a product of memory improvements, which was
another focus of release 0.4.0. In release 0.5.2, the performance is improved for 66% of the
configurations, which is not mentioned in the change log. One commit message, however, ad-
dresses speed and the affected configuration options: „new hasher - improved speed, compression

4.4 Evaluation 85

and reduced memory usage for q:5-9 w:10-16“15
Note that 𝑞 stands for compression level (or quality) and 𝑤 for the window size. The slow-
down in compression level 11, however, is not addressed until the next release 0.6.0 and
mentioned there as fixed. We can see the fix for the compression level 11 only later in release
1.0.0. In release 0.6.0, the developer also report optimizations for mid-level compression
levels (5–9). Another interesting pair are releases 1.0.2 and 1.0.3. Although more than half
of the configurations experience a performance change in this range, there are no direct
relations to these performance changes in the change log or the commit messages. Only a
fix in compression level 10 is reported. The changes are a consequence of a new dictionary
generator that was introduced in this release. In the latest release 1.0.7, where a quarter of
the configurations was sped up but no configuration was slowed down, nothing relevant is
reported in the change log and the commit messages. The changes focus on optimizations on
the ARM architecture. Some of these changes may also affect the x86 architecture where our
experiments were performed on.

Between releases 2.1.0 to 2.2.0 of HSQLDB in Table 4.4, we measured a slow-down in 47%
of the configurations and a speed-up of only 0.3% of the configurations, whereas the change
log reports only a speed-up. With the option-level analysis, we could relate the slow-down to
the configuration option logSize, which controls the size of the log file before an automatic
checkpoint occurs. A deeper analysis of commit messages did not confirm any evidence of a
slow-down.

In Table 4.4, we show notable cases for lrzip. In the pair 530–543, more than 36% of con-
figurations show a slow-down and more than 3% show a speed-up. The change log and
commit messages only mention the latter. In the option-level analysis, we find a slow-down
in different compression algorithms, compression levels, and in multi-threading. The commit
messages mention changes on multi-threading and compression algorithms, but in relation
to decompression, which was not measured. In the next pair of releases, 543–544, we have a
similar situation, with 73% of configurations showing a slow-down and 25% of the configu-
rations showing a speed-up. According to our option-level analysis, similar configuration
options as in the release pair 530–543 are affected. Commit messages report that the way
how threads are spawned has been changed to improve the performance of compression16.
However, this slow-down is addressed between 544–550, where the respective commit was
completely reverted17. Another situation appears in the release pair 552–560. Change logs
and commit messages report only speed-ups and no slow-downs. Again, multiple configura-
tion options, such as compression algorithms, compression levels, and multi-threading are
affected. Moreover, the commit messages do not mention any of the affected configuration
options, only in relation to another operating system (Mac OSX). Later, in the release pair
560–571, more than 85% of the configurations are sped up and less than 1% have a slow-down.
Both change log and commit messages report speed-ups in multi-threading, whereas only
the commit messages also report a minor slow down.

MariaDB and MySQL are also included in the excerpt in Table 4.4 since the first is a fork of
the latter. Both projects use semantic versioning and introduce new functionality in newmajor
releases that may break backward compatibility. In the major release of MariaDB between

15 https://github.com/google/brotli/commit/2048189048, last accessed on 02/20/2023.
16 https://github.com/ckolivas/lrzip/commit/688aa55c7930, last accessed on 02/20/2023.
17 https://github.com/ckolivas/lrzip/commit/8dd9b00, last accessed on 02/20/2023.

https://github.com/google/brotli/commit/2048189048
https://github.com/ckolivas/lrzip/commit/688aa55c7930
https://github.com/ckolivas/lrzip/commit/8dd9b00

86 Performance Evolution of Configurable Software Systems: An Empirical Study

releases 5.5.40–10.0.17 and MySQL between releases 5.7.22–8.0.12, the InnoDB engine was
updated and, in the case of MySQL, some refactoring was applied. Further refactoring of
logging and binlogging was applied in MySQL, between releases 5.6.26–5.7.9, which resulted
in a slow-down. Releases 8.0.13–8.0.15 of MySQL contain further bug fixes that result in
speed-ups. Between releases 5.5.35–5.5.38, MariaDB applied several bug fixes and speed-
up fixes. Later, between releases 10.1.16–10.2.6, the InnoDB engine was updated. Between
releases 10.2.7–10.2.11, MariaDB reverted an InnoDB fix from MySQL18 and performed code
optimization.

Interestingly, we observed that MariaDB and PostgreSQL have the same fixes between
releases 5.5.23–5.5.27 and 9.0.0–9.0.4, respectively. There, forcing fdatasync for physical data
synchronization on Linux causes an improvement in performance and assures that the files
are synchronized on the physical storage, which is important for data recovery in case of
system crashes. Interestingly, MariaDB reports speed-ups in the change log and commit
messages, whereas PostgreSQL does not.

Another interesting case in Table 4.4 includes VP8 and VP9. Both video encoders are
developed in the same repository andVP9 represents the successor of VP8. The consequence is
that the developers compare VP9 with its predecessor in terms of performance, which applies
to the pair 1.3.0–1.4.0. There, the developers report a regression in the commit messages
in comparison to VP8: „Was 20% faster than speed -5 of vp8. Now 20% slower but adds motion
search(...)“19. This change demonstrates that VP9 comes with additional functionality at
the cost of deviating from the performance of VP8. Interestingly, VP9 contains the single
consecutive release 1.6.0–1.6.1 where all configurations indicate a slow down. To increase
confidence in this particular findings, we have additionally executed all configurations of
releases 1.6.0–1.6.1 on another current setup (i.e., another hardware and current operating
system20) and were able to observe the slow-down too. The change log and the commit
messages, however, report only speed-ups. Our performance-influence model related the
changes to multiple configuration options and interactions, some of which are mentioned in
the commit messages.

z3 also contains pairs of consecutive releases (i.e., 4.8.7–4.8.8 and 4.8.8–4.8.9) where the
developer reported a regression already in the change log and the commit message. The
reason behind lies in nightly performance tests that are performed for z3 on different platforms
and, thus, the developers of z3 are informed early about performance changes. However, the
affected configuration options are not mentioned in these releases.

Summary of the Metadata Analysis
In most consecutive releases (68%), the developers mention performance changes in the
change log or commit messages. In a similar amount of releases (67%), the developers
mention the affected configuration option in the commit message, but there are cases
(16%) where no performance change but changes in affected configuration options have
been reported.

18 https://github.com/MariaDB/server/commit/cb9648a6b5, last accessed on 02/20/2023.
19 https://github.com/webmproject/libvpx/commit/ea8aaf15b55, last accessed on 02/20/2023.
20 Intel Core i5-4590 CPU with 16 GiB RAM (Debian 11)

https://github.com/MariaDB/server/commit/cb9648a6b5
https://github.com/webmproject/libvpx/commit/ea8aaf15b55

4.4 Evaluation 87

4.4.3 Implications

Insight: Need for prioritization of configurations for testing Our study shows that
change in performance behavior is not the exception but the rule (i.e., 99% of the releases
contain a performance change in RQ1.1) as also confirmed by others [56, 107]. What is
interesting is that most performance changes (78%) affect less than half of the configuration
space and a non-negligible number (16%) only 1% of the configuration space. This is bad news
for developers as, this way, performance problems are more difficult to spot with standard
methods, such as testing default or random configurations (we will get back to this shortly).
Only in few (1%) cases, the whole configuration space is affected by a performance change,
which is easy to discover by measuring the default configuration for instance. This result
is notable and corroborates the need for performance modeling and testing methods that
incorporate configurability. Random testing is unlikely sufficient to reveal cases where only
few configurations are affected by a change. Furthermore, we found that, in 7% of the releases
with a performance change, functional changes on the affected configuration options are
reported but not observable with our models (i.e., a speed-up or slow-down). Combining
configuration testing with performance modeling could help in such cases.

Insight: Mixed-strategy sampling Another notable result is that performance changes
are often caused by multiple configuration options (i.e., in 91% of the changes in RQ2.1).
This includes (1) cases where the performance change is a cumulation of the individual
influences of several options and (2) cases where multiple options interact and, this way,
cause a performance change. Both cases are interesting as they demonstrate that configuration
sampling methods based on simple structured coverage criteria (e.g., 𝑡-wise sampling) or
simple random sampling are doomed to fail. The distribution of influences of options and
interactions shows that only a combination of random and structured sampling methods
is able to sufficiently cover the configuration space. That is, our results demonstrate that
simple pair-wise sampling would miss many relevant interactions—in z3, we found even a
performance-relevant interaction among 6 configuration options! At the same time, pair-wise
sampling would consider way too many pair-wise interactions that are irrelevant, rending
the whole approach expensive or even intractable in practice [123]. A random approach
would likely miss important interactions, too. For example, in the case of PostgreSQL, a
single option is responsible for a substantial performance change between 9.0.0 and 9.0.4.
Our results (in particular, distributions of influences) shall inform recent developments in
combining structured and random sampling to improve sample quality and reduce cost. In
the past, the application of such a combined sampling strategy, distance-based sampling,
already outperformed other sampling strategies with regards to performance [60, 118].

Insight: Configuration sensitivity A further notable result is that, in about 80% of the
releases (see RQ2.2), the ranking of configuration options and interactions is stable (𝜏 > 0.8).
This is good news, as developers and users can assume a certain stability of the relative
performance of individual configurations. In other words, there is no immediate need for re-
configuring the system after a new release. However, there are exceptions such as PostgreSQL,
where the performance ranking changes considerably over time (see Figure 4.1). Knowing
about this general behavior sheds light onto the sensitivity of the system’s performance be-

88 Performance Evolution of Configurable Software Systems: An Empirical Study

havior on configuration. Our results suggest that this sensitivity varies across systems and
developers need to know that for performance testing and tuning.

At the level of individual configuration options and influences, we observe a similar picture.
The sensitivity of individual options regarding performance differs across systems and may
change over time. An option that influences performance to a large extent in one release may
have only a minor influence in the next release. This finding has implications for configuration
sampling across revisions [148] and transfer learning [54, 80]: In both cases, a set of options
is selected based on few revisions and then applied to other revisions (for further sampling or
learning transfer). Our results indicate that this approach may work for most of the cases, but
is too simplistic for the general case, as the set of relevant options and interactions may change
considerably (e.g., VP9). For most cases nevertheless, focusing on the configuration options
or interactions with the highest influence could be a promising way when using sampling,
since their relative influence remains largely the same.

Insight: Diverging performance behavior An interesting aspect of our selection of subjects
is that VP8 and VP9 share some of their history and are still developed in the same repository.
One might expect that this leads to similarities in performance behavior and evolution, since
fixes and optimizations might be transferred easily. Our data do not confirm this expectation.
On the contrary, we even found an opposing performance regression in 1.3.0–1.4.0: VP8 was
sped up for 40% of the configurations and slowed down for only 6.2% of the configurations
whereas VP9 shows a massive slow-down for 65.6% of the configurations. The same holds for
MariaDB and MySQL, where the first is a fork of the later. Both show different performance
changes in their evolution. While this does not have to be a problem per se, our analysis
framework provides proper means for developers to identify such divergences.

Insight: Main-effects sampling still necessary, but not sufficient Moreover, our results
contribute to the new feature-interaction challenge [8]. The idea is that there are different kinds of
feature interactions, at different levels of abstraction, including functional and non-functional
interactions that manifest in externally observable or internal behavior. The goal is to collect
data from many different cases and triangulate results on interactions between options or
features to learn about their nature and to predict one kind of interaction based on information
about another kind [69]. Our results in RQ2.1 and RQ2.2 provide real-world data on likelihood
and properties of performance feature interactions; our measurement and analysis framework
offers a blueprint for conducting further experiments on other kinds of interactions (e.g.,
regarding memory utilization or energy consumption).

Insight: Configuration awareness Another interesting issue of our empirical study is
whether we are able to reveal new information in terms of performance changes in addition to
what is already documented and thus well-known among developers and users. To investigate
whether performance changes are explicitly documented by developers (i.e., the developers
added the performance change intentionally), we manually analyzed the change logs (if
available) of 6 out of 12 systems (i.e., FastDownward, HSQLDB, lrzip, VP8, VP9, z3) in
Section 4.4.2. Several performance changes have been documented by developers, but not
all. We found that developers often report speed-ups in commit messages and change logs
but only rarely slow-downs. The reason may be that developers become aware of these

4.4 Evaluation 89

Figure 4.11: The performance of all configurations (green dots) and the default configuration (blue
dotted line) of VP9. The x-axis shows the releases and the y-axis the execution time in
seconds.

slow-downs only after deployment, as several cases indicate in which the slow-down was
encountered and fixed one or two releases later. Such issues could be detected early by
a configuration-aware continuous performance testing pipeline. Although some software
systems, such as z3 and VP9 use performance tests, these are not configuration-aware. This
could explain why these subject systems report regressions, but only to a certain extent.
Our results suggest that configuration-aware performance testing can indeed provide new
information in an automated manner and simultaneously validates our findings. Interestingly,
in some of the performance changes, we observed a slow-down, although the change logs
reported a speed-up. In particular, release 1.4.0 of VP9 promises faster encoding in change
log, although the change results in a slow-down of 265%, which can be considered as an
unintentional slow-down. The reason behind this discrepancy is that the change log referred
only to the default configurations; all other configurations, however, were affected by amassive
slow-down, possibly untested and unaware by the developers. For illustration, we contrast in
Figure 4.11 the performance of the default configuration and the mean performance of all
configurations. Notably, in release 1.6.0 the performance regression has been fixed resulting
in a speed-up of all configurations; the performance of the default configuration, however,
remains largely unchanged. This performance optimization was achieved by avoiding and
reordering some of the processor instructions for Intel chips and is mentioned in the change
logs. This is an interesting aspect, since such cases demonstrate the importance of automated
support and paves the way for further research in this area.

4.4.4 Threats to Validity

Construct validity To guarantee comparability across releases and to simplify benchmark-
ing, we selected options that are available in all releases.While wemay havemissed interesting
cases, this way, we increase internal validity by ruling out effects from option-specific bench-
marks. Moreover, while performance changes could affect newly included configuration
options that are enabled by default, this would affect either the whole configuration space or
certain configuration options if the configuration option does depend on another configu-

90 Performance Evolution of Configurable Software Systems: An Empirical Study

ration option. Either way, this would be visible in the performance-influence models. This
affected also our deeper analysis and is the reason for why we have excluded consecutive
releases where only the base code changes. In the end, only 4 pairs of consecutive releases
of PostgreSQL were excluded by this filter. In all other cases, the performance-influence
model shows changes in certain configuration options or interactions or does not change at
all. Another threat to validity arises from the selection of the keywords for filtering commit
messages. Choosing another set of keywords may yield other results. However, all selected
keywords were used in related publications [23, 57] that focus on identifying performance
regressions in commit messages or issue lists. One reason for the low number of reported con-
figuration options is that developers may state configuration options under different names
(e.g., q or quality for the compression level in brotli). We have encountered few cases in which
very specific parts of the code were addressed in a commit message, but a clear relation to
a configuration option is hard to discover without domain knowledge and code inspection.
Another reason could be data-flow dependencies between the configuration options. For
instance, in HSQLDB, the configuration option blowfish was not mentioned a single time
in any commit message when a performance change occurred. When other configuration
options affect the data that has to be encrypted by blowfish, then we relate the change to
blowfish as the effect occur here, but the cause resides in code of another option.

Internal validity Measurement noise is not only caused by software but also by hard-
ware [105]. Measurement noise, however, can blur the results of our performance mea-
surements and lead to wrong conclusions. To limit measurement noise, we used identical
hardware per subject system, running with a minimum Debian installation. Furthermore,
we preceded the measurements with a CPU warm-up phase. The measurements of the Java-
based database (HSQLDB) are additionally preceded by a complete benchmark execution
because of the JIT compilation as proposed by Georges et al. [33]. Additionally, we isolated the
benchmark execution of client-server software (i.e., HSQLDB, MariaDB, MySQL, OpenVPN,
and PostgreSQL) by running the server on a different node than the client(s) running the
benchmark. To avoid wrong benchmark results, Costa et al. [26] observe and solve different
bad practices in method-level performance tests. Since we measure the system as a whole and
not individual methods by, for instance, issuing SQL queries to the database system, we are
not affected by these bad practices. We varied the hardware across subject systems, since we
do not need to compare measurements among systems. Furthermore, we used, if possible, the
same release of the libraries over all releases, and we repeated our measurements three to five
times until the relative standard deviation of the repetitions was lower than 10%. To control
measurement noise, we used the standard deviation to pin down performance changes.

The choice of the learning algorithm may threaten internal validity. Other learning al-
gorithms could have produced other results for RQ2.1 and RQ2.2. We used multiple linear
regression with feature forward selection [139] because the structure of models enables us to
compare releases by comparing the coefficients of model terms. Further, choosing always the
best candidate in the feature forward selection (see Lines 11–14 in Algorithm 1) represents
another limitation of our approach, since choosing a worse performing candidate in one
iteration might lead to much better performing candidates in a later iteration. In other words,
our learned models could not represent the optimum models. However, the prediction error
of the models was 3.7% on average, which indicates that the models cover nearly all influences

4.4 Evaluation 91

of options and interactions on performance accurately. To reduce spurious terms, which are
only an artifact of the measurement and learning procedure, we checked the documentation
(i.e., commit messages and change logs, if available) of our subject systems.

Additionally, we have used the variance inflation factor analysis to reduce variance in the
performance-influence models as described in Section 2.2.4. This step removed a few terms
by maintaining the error rate of the performance-influence models. Removing terms that are
not perfectly multicollinear but exceed these thresholds removes important terms needed
to predict specific parts of the configuration space and, thus, the error rate decreases. In a
pre-study, we have applied the variance factor analysis by using the commonly threshold
of 5 [136] on the subject system lrzip. From 230 terms, 160 were removed by the variance
factor analysis but at the cost of increasing the error rate of the performance-influence model
from 6 % to 60 %. In our setup, we removed only terms with perfect collinearity. In Table 4.5,
we show the number of terms of the performance-influence models before and after the VIF
analysis. Overall, we removed 14 out of 702 terms while the performance-influence models’
error rate remained constant.

Table 4.5: The number of terms of the performance-influence model per subject system before and
after the variance inflation factor (VIF) analysis.

System #Initial Terms #Terms after VIF

brotli 166 166
FastDownward 44 41
HSQLDB 21 21
lrzip 220 220
MariaDB 35 33
MySQL 25 23
OpenVPN 13 13
opus 66 66
PostgreSQL 3 3
VP8 40 40
VP9 51 44
z3 18 18

Total 702 688

Finally, our metrics for identifying performance changes may threaten internal validity,
since other metrics would identify other performance changes. For instance, the work of Costa
et al. [26] investigates the performance change of some bad practices at method level of one
single configuration and uses the Wilcoxon non-parametric test and Cliff´s Delta effect size to
identify significant performance changes of their benchmark results. We refrained from using
statistical tests to assess a significant performance change because the number of performance
values per configuration (i.e., 3 or 5 performance values; 1 from each repetition) is far too
low for a significance test and the suggested effect size metric, whereas the work of Costa

92 Performance Evolution of Configurable Software Systems: An Empirical Study

et al. had at least 100 performance values due to a high number of repetitions. Increasing
the number of repetitions on a similar level is infeasible despite the number of releases and
configurations, we measured. Instead, we have used the standard deviation as an effect size
to express the variance of measurement noise across multiple repetitions.

Due to the absence of a baseline, we need to resort to an automated approach, which we
complemented, though, by studying commit messages and change logs manually (see above).

External validity To increase external validity, we chose configurable software systems
from different domains, including throughput-intensive applications (compression tools,
video encoders) and client-server applications (Web servers, databases). In total, our corpus
contains software systems ranging from 181 to 6 480 configurations and 7 to 22 releases.

To keep experiment effort feasible, we limited the selection of configuration options to
a tractable number. This limitation is due to our experiment setup, which aimed for high
internal validity, and is not a principal limitation of our analysis framework. Consideringmore
configuration options would require to sample the configuration space for learning perfor-
mance influence models, instead of considering the whole space. While learning performance-
influence models on small sample sets works well in practice [59], we aimed for high internal
validity, ruling out possible inaccuracies.

The choice of the workload for performance measurement poses another threat to external
validity. We have fixed the workload/benchmark across configurations and releases, this way
gaining internal validity for external validity—see the discussion above. However, we used
established community or developer workloads to catch typical scenarios, which already
provided numerous interesting insights (see Section 4.3.3). For instance, the selection of
the developer workload might be a reason why we found no performance changes in opus.
Varying the workload shall bring even more insights in further studies.

4.5 Summary

Although performance evolution has been extensively studied in the literature, prior work
concentrated on single or few default configurations. Since most software systems are config-
urable, performance changes can easily be missed this way. Specifically, we are interested in
the role of configurability for performance evolution, for example, whether specific configura-
tions exhibit diverging performance behavior and what configuration options (or interactions
among options) are responsible for this.

In an empirical study, we analyzed performance changes of 12 real-world configurable
software systems across 190 releases that span a total of 11 years of history. We found that
almost every release of every subject system exhibits performance changes in some of their
configurations. Notably, the majority of performance changes affects only a small subset of
the configuration space, and most performance changes affect multiple options (up to 6),
either by accumulation of influences or interactions among options.

A deeper analysis of these configurable software systems shows that performance changes
are reported in the change log or the commit messages in most cases. Similarly often, changes
regarding affected configuration options have been mentioned.

4.5 Summary 93

Our results confirm prior beliefs that configuration-dependent performance changes are the
rule, not the exception. This has direct implications for configuration sampling, performance
modeling, and transfer learning in the area of configurable software systems. For example,
our results confirm assumptions that simple random configuration sampling is not sufficient
to catch all relevant performance changes. Likewise, structured sampling strategies likely
overestimate the prevalence of performance-relevant interactions among options. Our results
clearly indicate that combined sampling strategies such as distance-based sampling hit a proper
sweet spot.

A further notable insight is that, despite the prevalence of performance changes, the perfor-
mance ranking of configurations and influences of individual options are in many cases not af-
fected. That is, developers and users can assume a certain stability of configuration-dependent
performance behavior. Still, we found cases where the performance ranking fluctuates consid-
erably across releases. This phenomenon seems to be application- or domain-specific and is
worth further exploring, as it has implications for transfer learning of performance behavior
across releases since more stable applications or domains could focus on the most relevant
configuration options; in other applications and domains such approaches are doomed to fail.
Additionally, our deeper analysis demonstrates that using a configuration-aware performance
testing pipeline could help in identifying configuration-specific performance changes early.
Our measurement and analysis framework offers a solid basis for exploring these and related
issues.

5
Performance Prediction in the Presence
of Workload Variability

The overarching focus of our work is performance modeling. In Chapter 3, we focused on the
configurability of software systems and improved performance modeling by devising a new
sampling strategy for configuration spaces. Afterwards, in Chapter 4, we used performance
modeling to identify performance changes of certain configuration options and interactions
thereof across multiple releases. In this chapter, we go a step further and devise a new
approach by taking into account (1) configurability, (2) evolution, and (3) workloads. Our
focus in this chapter is to assess the limitations of our new approach and to investigate
workload variability in the presence of configurability and evolution.

By workloads, we refer to the input on which configurable systems are executed. For
instance, a compression program can be executed on multiple different files (e.g., music files,
source code, etc.) and can achieve a different file compression efficiency on different types of
files. To give another example with regard to performance, Pereira et al. [118] demonstrate
that the video encoder x264 shows different performance characteristics for the 17 different
video inputs. This means, focusing on only a single workload can obscure the results and lead
to wrong conclusions about the performance of a software system. Even worse, Mühlbauer et
al. [103] and Lesoil et al. [79] both show in recent studies that the impact of configuration
options and interactions thereof depend on theworkload. So, consideringworkload variability
in configurable software systems is substantial. However, the survey by Jiang and Hassan [56]
points out that identifying an appropriate set of workloads that covers all performance-
relevant functionality is a hard endeavor which requires knowledge of the configurable
system.

To the best of our knowledge, the study we present in this chapter is the first one that
explores all three dimensions (i.e., configurability, evolution, and workloads) together to
identify performance changes. Because of the exploratory nature of this study, we use the
case-study research method as proposed by Runeson et al. [127]. This method is used for
an initial investigation on the considered phenomena. In this study, we focus on a single
configurable software system (i.e., the planning software FastDownward [46]) instead of
multiple different software systems. This way, we are sacrificing external validity to the benefit
of internal validity. Moreover, the focus on a single configurable software system enables us
to identify potential limitations of our approach for finding performance changes and relying
on domain knowledge from developers of the configurable software system.

Besides workload variability, FastDownward exposes two new characteristics that were
not present in Chapter 4. First, some functionality of FastDownward (e.g., support for linear
programming solvers) was only added in later releases. Since this functionality represents

95

96 Performance Prediction in the Presence of Workload Variability

performance-critical parts of the software, we consider some configurations only as soon as
they are introduced. In other words, we ignore configurations in older releases if they are not
present. For instance, the linear program solver Soplex1 was only integrated in a release at the
end of 2021. Thus, we ignore configurations using Soplex for releases prior to the end of 2021.
So, compared to Chapter 4, we now vary the configuration space across different releases.
Supporting different configuration spaces across different releases is especially useful to
consider options that are integrated or removed in the configurable software system at a
later stage. In Chapter 4, we missed such configuration options. Second, compared to subject
systems in Chapter 4, some configurations timeout in some workloads and releases. That is,
in a setting of FastDownward, the user specifies a timeout for aborting the run. Specifying
a timeout corresponds to a typical use case in planning competitions [149]. This, however,
can lead to cases where a configuration runs into a timeout in one release, but not in the
subsequent release. Both characteristics represent additional difficulties for our approach.
We address these characteristics by considering different configuration spaces in our analysis
and use imputation [75] for the configurations with a timeout (i.e., we assign the timeouted
configuration to a constant performance value).

Another arising problem while considering configurability, evolution, and workloads
together is the extended combinatorial explosion, since all configurations have to be measured
in all releases and workloads. Even worse, taking into account multiple configurable software
systems adds another multiplying factor to the measurements. In Chapter 4, we take into
account multiple configurable systems, different configurations, and releases, which took
multiple years of CPU time for the measurements that we have presented. For the study in this
chapter, we cannot perform all measurements in a reasonable amount of time and therefore
need to reduce the number of measurements to a reasonable number. To further improve
internal validity and to address the issue of domain knowledge for workload selection [56],
we involve developers of FastDownward in the experiment setup of our study. Consequently,
we are able to reduce the number of configurations by incorporating domain knowledge from
developers. The configurations suggested by the developers are selected in such a way that
they cover different functionality not already covered by other configurations.

A further problem is the high number of workloads of FastDownward (i.e., more than
1 800 workloads). However, developers do not know upfront how the workloads perform for
different configurations. So, to reduce the number of workloads to a reasonable number, we
perform preliminary performance measurements. With the results of the preliminary perfor-
mance measurements, we filter out workloads that run into a timeout in most configurations
and select workloads with a reasonable performance. This way, we reduce the number of
measurements to a feasible amount. In the end, we consider 49 different configurations, 56
workloads, and 6 releases of FastDownward for this study.

After addressing the setup for the performance measurements of FastDownward, we need
to analyze this data to identify performance changes. Since, to the best of our knowledge,
there is currently no analysis approach that considers all three dimensions, we devise a new
approach based on performance-influence models that identifies performance changes across
workloads and takes in consideration different configuration spaces. Similar to Chapter 4,
our approach identifies performance changes at the option level. That is, instead of pointing
out which configurations are affected by a performance change, our approach shows which

1 https://soplex.zib.de/, last accessed on 03/29/2023.

https://soplex.zib.de/

Performance Prediction in the Presence of Workload Variability 97

configuration options or interactions among them are actually affected by the performance
change. This way, performance changes can be spotted and addressed early on by develop-
ers instead of manually analyzing the regressions to detect which configuration option or
interaction is actually affected.

To assess the feasibility and limitations of the approach, we apply it on the performance
data of FastDownward to identify performance changes. Similar to Chapter 4, we use the
configuration level (i.e., the performance of all configurations) and the option level (i.e.,
the performance of configuration options and interactions thereof). Thereby, we compare
the performance changes found at the option level to the performance changes found at the
configuration level. We use the configuration level as a point of reference.

To assess the quality of our approach, we focus on precision (i.e., how many of the detected
performance changes at the option level are visible at the configuration level?) and recall (i.e.,
how many of the actual performance changes at the configuration level were identified at the
option level?). Thus, we aim at answering the following research questions:

• RQ1.1: What is the fraction of identified performance changes at the option level that
can be confirmed at the configuration level?

• RQ1.2: What is the fraction of identified performance changes at the configuration level
that can be confirmed at the option level?

It is important to note that our primary focus is not on achieving the best possible precision
and recall rate, but to investigate wether and which performance changes cannot be identified.
This way, we can reveal possible limitations of our approach.

Further, to assess which role workload variability plays in finding performance changes, we
investigate in an additional research question, how many workloads are necessary to identify
a performance change. This way, we can determine whether multiple workloads should be
used while searching for performance changes. Therefore, we aim at answering the following
research question:

• RQ2: What is the fraction of workloads that are involved in identifying performance
changes at the configuration level?

In summary, our contributions in this chapter are as follows:
• A novel analysis approach to identify performance changes of configuration options

across workloads and different configuration spaces.
• Application of our analysis on the configurable software system FastDownward (fol-

lowing the case-study research method) measuring 49 configurations, 56 different
workloads, and 6 releases of FastDownward.

• Insights into the limitations of our approach by assessing the recall and precision of
our approach.

• Insights into which role workload variability plays in the presence of configurability
and software evolution.

In a nutshell, we identified 7 464 performance changes at the configuration level and 2 674
performance changes at the option level, leading to a precision of 88.2% and a recall of 59.4%.
In a more thorough investigation, we could determine factors that considerably influence the
outcome of the application of our approach for finding performance changes. Further, most

98 Performance Prediction in the Presence of Workload Variability

performance changes (92.4%) could be identified only in a subset of the workloads and one
performance change could even be identified by only 4 (7%) of the workloads.

Our results have multiple implications: Most notably, we can confirm the role that workload
variability plays in the evolution of configurable software systems. We found multiple cases
where only some specific workloads could identify a performance change. In only 7.6% of
the performance changes all workloads identified the performance change. Another notable
insight is that most performance regressions are not fixed in the following release, but, at least,
2 releases later. Further, we have helped to uncover 3 persisting performance regressions in
FastDownward. All results along with our analysis scripts are available at a supplementary
web site2.

5.1 Related Work

Before we discuss workloads in more detail in Section 5.2, we discuss related work in this
section. In particular, we discuss related work with the focus on workload variability, since
we have already discussed related work of configurability in Chapter 3 and related work of
configurability and evolution of configurable software systems in Chapter 4.

There is a substantial corpus of work studying the phenomenon of workloads on the per-
formance of a software system [3, 54, 79, 83, 103, 118]. In an empirical study using x264
with 17 different workloads, Pereira et al. [118] emphasize the role of workload variability in
configurable software systems on different non-functional properties, such as performance.
That is, Pereira et al. demonstrate that different workloads can change the behavior of the
configurable software in such a way that the outcome of the software changes drastically for
all software configurations. In subsequent studies, Lesoil et al. [79] andMühlbauer et al. [103]
both investigated the effect of multiple workloads on the performance of different configura-
tion options using different machine-learning techniques. Both studies show examples where
the influence of a configuration option is different depending on the workload. That is, by
using one workload, a certain configuration option might be very influential on the overall
performance of the software; using another workload might well nullify or even negate this
influence. These studies emphasize that the selection of workloads for performance measure-
ments cannot be neglected in particular for configurable software systems. To counteract,
other studies devise approaches to account for workload variability for configurable software
systems [54, 83]. Jamshidi et al. [54] propose an approach for transfer learning, where the
idea is to minimize the effort of applying performance prediction on configurable software
systems by using and extrapolating existing performancemeasurements. Since their approach
is very general, their approach cannot only be applied for different workloads, but also on
different hardware or software versions. Liao et al. [83] propose an approach for predicting
the performance for configurable software systems using varying workloads. That is, their
approach is able to predict the performance of even unseen workloads. This is established by
relying on log files that include the operations that had to be performed by each workload.
For instance, a log file of a web server would indicate which web requests have been executed.
The line GET /index.html indicates that the web page index.html has been accessed. Serving

2 https://github.com/ChristianKaltenecker/PerformanceEvolutionAndWorkloads_WebSite, last accessed on
07/25/2023.

https://github.com/ChristianKaltenecker/PerformanceEvolutionAndWorkloads_WebSite

5.2 Workloads 99

this web page (i.e., sending it from the server to the client) takes a certain time. So, the idea is
to describe each workload by the actions in the log file. Instead of predicting the influence
on the performance of a workload as a whole, Liao et al. use the operations caused by a
workload to predict the performance. Although this approach was successfully used to find
performance regressions for a mail server (i.e., Apache James) and an open-source health care
system (i.e., OpenMRS), this approach is limited to subject systems which log their performed
actions into a log file.

Researchers already investigated the effect of workloads on the performance of a software
system and even interactions among configurability and workloads in program verifica-
tion [67] or algorithm selection [70]. In these domains, approaches to learn performance
models that map a configuration and a workload to its performance value with the ability to
generalize over workloads have been devised and successfully applied [67, 70].

Other publications concentrate only on the workload dimension. For instance, Kounev et
al. [71] and Menascé et al. [96] present how to characterize and design different workloads.
Moreover, Kounev et al. [71] provide an overview of the different quality attributes of bench-
marks based on past literature. Among others, they provide insights into the relevance of a
benchmark [51, 143].

Alcocer et al. [3] focus on studying the performance evolution of 19 software systems’
releases by analyzing the performance while using multiple workloads. They found, that one
third of the releases introduces performance bugs and identify 9 patterns for performance
changes. However, they measure multiple releases of software systems and workloads, but
do not consider different software configurations.

To the best of our knowledge, the interplay of all three dimensions (i.e., configurability,
evolution, and workload variability) has not been studied before.

5.2 Workloads

Software systems typically process one or more workloads and need a certain processing time,
which we refer to as performance. By workloads, we refer to user-specified input that is fed
into the software system. In many cases, workloads are executed by benchmarks, which are
special tools designed to test and compare software systems [71]. For instance, a compression
program is usually applied on a certain user-specified file with the goal to reduce the size of
the file through the compression process. As another example, we refer to the setting that
we have used in Section 4.3, in which a benchmark such as PolePosition or sysbench can be
used to test the performance of SQL databases such as MySQL, MariaDB, or PostgreSQL
using a fixed number of SQL queries.

The selection of the “right” workload is typically not trivial because (1) the theoretical num-
ber of workloads is infinite—the configuration space and number of releases are finite3—and
(2) it is difficult to assess which workloads depict the user’s behavior best [56, 71, 143].
According to Kounev et al. [71], one of the most important characteristics of a benchmark
and its workloads is relevance, which depicts how similar the benchmark behavior mimics
the behavior of users in the real world. If a benchmark and its workload do not mimic the

3 The Linux kernel is one of the largest configurable systems. Although the configuration space was recently
estimated to offer about 106000 valid configurations [93], the set of configurations are finite.

100 Performance Prediction in the Presence of Workload Variability

behavior of users, the results cannot be used for further optimization of the software system.
Benchmarks that mimic the behavior of users accurately typically do not scale [56, 143].
Consequently, while selecting a suitable benchmark and its workloads, the trade-off between
real-world behavior and scalability has to be taken into account. Moreover, in many cases,
there are no default workloads (as, for instance, in the subject systems in Section 4.4.3),
but rather an always increasing number of benchmarks that are meant to mimic real-world
workloads. However, the absence of default workloads and the high number of real-world
benchmarks makes it especially difficult to select workloads that depicts the real world best.
Instead, such workloads are constructed from usage patterns [16], by comprising multiple
different workloads [56], or by real-world inspired examples [46, 149]. For instance, work-
loads for compression programs stem from the real world (e.g., source code of open-source
software, blog articles, music) and can even be combined into one single file. Another way
to produce workloads for compression is to use file generators such as uiq2, which we have
used previously in Section 4.3.3. uiq2 uses knowledge from the compression algorithm to
create an average compressible file of an arbitrary size. Using such an average compressible
file might be a good decision in many cases, but does not necessarily depict a real-world
workload. This is because the compressibility of a file depends on patterns such as repeating
words. A compression program exploits such patterns by encoding these occurrences in a
representation that uses less bits and, thus, reduces its size. For example, files containing
source code of a program are easily compressible since they contain reappearing keywords;
images, however, are difficult to compress since the image formats (e.g., jpeg or png) store
the picture information already in a compressed format.

When comparing workload variability to configurability and evolution of software, work-
load variability is known to interact with the other dimensions (i.e., a workloadmight perform
faster or slower while changing the configuration and/or the release of the software system),
as pointed out in related work [79, 103] (see Section 5.1). Consequently, workloads are im-
portant means that have to be considered while investigating performance changes. Since
considering only one workload was one threat to validity in Chapter 4, we address this threat
in this chapter by suggesting a novel approach for the analysis of performance changes across
configurations, releases, and workloads. Therefore, we denote W as the set of all workloads
of a software system for the remainder of this work.

For our study in this chapter, we use the approach in Algorithm 5 to learn the performance-
influence models and assess the performance changes. In essence, this algorithm is based on
Algorithm 4 in Section 4.2 with a few changes, which we describe next. The algorithm needs
another argument—workloads—containing the set of measured workloads of the configurable
software system. The last argument—data—correspondingly contains multi-dimensional data
including releases, workloads, configurations, and the corresponding performance value
in this algorithm. In a similar vein, we are now iterating over the different workloads in
Lines 5–8. That is, we are now learning performance-influence models over different releases
and workloads, and collect the relevant terms. A term is relevant if the term has an influence
on the performance in, at least, one workload. After learning the performance-influence
models, we apply the variance inflation factor analysis [28] for each workload and release in
Lines 10–14 and remove perfect multicollinear terms. We perform the variance factor analysis
for each workload and release since the configuration spaces among the workloads and
releases might differ (i.e., some configurations are not available in the respective release).

5.3 Experiment Setup 101

Algorithm 5: Learning a performance-influence model over consecutive releases and different
workloads

1 Function learn_comparable_models_over_workloads(feature_model, releases, workloads, data):
2 terms ← ∅
3 models ← ∅
4 foreach release ∈ releases do
5 foreach workload ∈ workloads do
6 learned_model ← learn_model(feature_model, data[workload][release])
7 terms ← include_terms_from_model(terms, learned_model)
8 end
9 end

10 foreach release ∈ releases do
11 foreach workload ∈ workloads do
12 terms[workload] ← variance_factor_analysis(terms, data[workload])
13 end
14 end
15 foreach release ∈ releases do
16 foreach workload ∈ workloads do
17 fitted_model ← fit(terms[workload], data[workload][release])
18 models ← models ∪ {fitted_model}
19 end
20 end
21 return models

This typically affects not only specific configurations, but inherently configuration options.
For instance, the linear program solver Soplex4 was only integrated in a release at the end
of 2021 and, thus, is completely missing in some releases of our data. To avoid considering
absent features in these releases, we remove such configuration options by executing the
variance factor analysis (see Section 2.2.4) for each workload in Line 12 [75, 104]. This enables
us to focus on configuration options as soon as they are integrated into the configurable
software system.

In the final step in Lines 16–19, we learn performance-influence models for the remaining
terms. This way, we obtain unambiguous and comparable performance-influence models for
each pair of workload and release. This step is similar to the approach in Chapter 4.

5.3 Experiment Setup

In this section, we discuss and motivate our research questions and how we evaluate them. In
detail, we first present the research questions in Section 5.3.1. In Section 5.3.2, we present the
case study FastDownward and the corresponding selection of the configurations, workloads,
and releases. Later, in Section 5.3.3, we describe how we answer our research questions.

5.3.1 Research Questions

Our overarching goals in this chapter are (1) to assess the feasibility and limitations of our
approach based on performance-influence models for finding performance changes across
configurations, releases, and workloads and (2) to investigate the interplay between workload

4 https://soplex.zib.de/, last accessed on 03/29/2023.

https://soplex.zib.de/

102 Performance Prediction in the Presence of Workload Variability

variability, configurability, and software evolution. Due to the exploratory nature of our
study, we follow the case-study research method [127], which is an initial investigation on
the considered phenomena. Runeson et al. [127] define the case-study research method in
software engineering as follows:

Case-study in software engineering is an empirical enquiry that draws
on multiple sources of evidence to investigate one instance (or a

small number of instances) of a contemporary software engineering
phenomenon within its real-life context, especially when the boundary

between phenomenon and context cannot be clearly specified.

The case-study research method is primarily used for exploratory purposes to seek new
insights. In other words, the focus of this research method is more in-depth and qualitative
by focusing on a single case study than a broad and quantitative investigation on a higher
number of case studies as we previously performed it in Chapter 4. The case-study research
method is used in multiple similar publications, such as Grebhahn et al. [36, 37].

In this chapter, we adopt this method by applying our approach on finding performance
changes across configurations, releases, and workloads by focusing on a single subject system.
This way, we decrease our external validity but improve our internal validity since this
approach enables us to investigate the identified performance changes in much more detail
than in Chapter 4.

Our Approach In this chapter, we now inspect the reported performance changes in terms
of precision and recall. The precision and recall analysis enables us to confirm the identified
performance changes or, alternatively, identify further improvements and limitations of our
approach. Similar to Chapter 4, we evaluate our approach on two different abstraction levels—
configuration level and option level. That is, we assess between each consecutive release and for
each workload which configurations and which configuration options/interactions change.
Afterwards, we use the identified changes at the configuration level as a point of reference to
check whether and when our performance-modeling approach detects performance changes.
Although we demonstrated the feasibility of our approach in Section 4.4.1, we do not know
about the precision and recall of our approach and, thus, how many of the performance
changes are correctly identified and in how many cases we miss performance changes. To
close this gap, we focus at the option level to identify performance changes of configuration
options across workloads.

In a first step, we aim at identifying the precision of our approach to detect performance
changes in configuration options across workloads. To obtain this information, we learn
performance-influence models for each release and workload. Afterwards, we compare their
terms and coefficients (see Section 2.2.4). Similar to Chapter 4, multicollinearity might occur
while learning performance-influence models. To mitigate this, we apply a variance inflation
factor (VIF) analysis and remove terms with perfect multicollinearity (see Section 2.2.4
and Section 5.2). Then, for each workload, we compare the performance-influence models
across all releases. This allows us to gain more information on the performance changes of
configuration options across releases and workloads. To ultimately assess the precision of our

5.3 Experiment Setup 103

approach, we compare the identified performance changes by our performance-modeling
approach from the option level to the performance changes at the configuration level. That
is, we assess in how many cases we can confirm the performance changes identified by our
approach. This provides us with the possibility to investigate cases for pointing out limitations
of our proposed approach, similar to other exploratory studies (e.g., Grebhahn et al. [36]).

Research Question 1.1
What is the fraction of identified performance changes at the option level that can be
confirmed at the configuration level?

In a second step, after determining the precision of our approach, we assess the recall of our
approach. That is, we now assess how many of the performance changes at the configuration
level are covered by our approach at the option level. This way, we can point out cases in
which our approach is unable to identify an performance change as such.

Research Question 1.2
What is the fraction of identified performance changes at the configuration level that can
be confirmed at the option level?

Workload Variability Since we consider the workload variability in addition to config-
urability and software evolution from Chapter 4, we investigate how many workloads could
detect a performance change at the configuration level. Although this does not reveal anymore
knowledge about our approach, this investigation enables us to assess the role of workload
variability while identifying performance changes. For instance, we could find out whether all
workloads identify all performance changes, or some workloads identify some performance
changes. Investigating the role of workload variability in FastDownward is necessary to assess
whether the observations made in other studies [79, 103] apply in FastDownward. Such
insights clarify whether it suffices to measure only one workload rather than a variety of
different workloads. Note that for investigating workload variability, we use the performance
changes at the configuration level instead of performance changes at the option level due to
the fact that our approach at the option level could miss some performance changes.

Research Question 2
What is the fraction of workloads that are involved in identifying performance changes at
the configuration level?

5.3.2 Fast Downward

In this chapter, we introduce FastDownward5 as our subject system for our evaluation. Fast-
Downward is a classical planning software based on different search heuristics [46]. In
essence, FastDownward is used to solve deterministic planning problems, such as transporta-
tion problems [46] or the towers of Hanoi [156]. A planning problem defines an initial state
and a final state (i.e., the goal) that has to be reached. Further, a planning problem belongs to

5 https://www.fast-downward.org/, last accessed on 04/23/2023.

https://www.fast-downward.org/

104 Performance Prediction in the Presence of Workload Variability

Initial state Planning Final state

Figure 5.1: The tower of Hanoi planning problem. The left side presents the initial state and the right
side the final state that has to be reached by the planner.

a domain and a domain can contain multiple planning problems. A domain typically defines
different actions to change the state with a certain cost. The planner then has to find a series
of actions to reach the final state from the initial state of the problem. The planner cannot only
be used to find a series of actions to reach the final state, but also to find an optimal solution
with respect to the cost. Each planning problem represents a workload.

For demonstration, we refer to the tower of Hanoi planning problem in Figure 5.1. The
tower of Hanoi is a planning problem with multiple pegs and disks; three pegs and four
disks in our case. These disks are initially arranged on one peg as we show in Figure 5.1,
arranged bottom-up in descending size order. The goal is to arrange all disks in the same
order on another peg. The initial state and the final state in Figure 5.1 represent the planning
problem. To reach the final state, the domain defines that one disk can be moved from one
peg to another if it fulfills multiple constraints [49]:

• Only a single disk can be moved at a time.

• Only the top disk on any peg can be moved.

• Larger disks cannot be stacked on smaller disks.

In essence, each movement represents an action. In an optimal solution for this planning
problem, a minimal set of movements has to be found to reach the final state. That is, a
planning system can be applied on this planning problem to find the minimal number of
steps to reach the goal. The tower of Hanoi planning problem can then be further adjusted by
adding more pegs and disks. These different problems of the tower of Hanoi belong to the
same domain, but have different difficulties.

A planning problem from another domain is the transportation planning task [46] that
represents package delivery on a street network represented by a graph. We show the trans-
portation planning task in Figure 5.2. The graph consists of vertices and edges. The vertices
represent the drop-off and pick-up points of the packages and the edges represent the streets
connecting the drop-off or pick-up points or cities. The goal of this planning task is to deliver
the packages at their destination. To reach this goal, the planner can perform different actions:

• Move a car from one node to another if the nodes are connected and the nodes are in
the same city.

• Move a truck from one city to another if the cities are connected.

• A car/truck picks up a package if the current node contains a package.

5.3 Experiment Setup 105

Figure 5.2: The transportation problem for package delivery consists of multiple cities interconnected
by roads (dashed line), interconnected pick-up and drop-off points in the cities, cars for
the transportation inside the city, trucks for the transportation between cities, and boxes
with a certain destination.

• A car/truck drops off the carried package at the current node.

Each action has a certain cost. Similar to the towers of Hanoi, the optimal solution would
utilize as less actions as possible. For example, the only action for the package in City 1 from
Figure 5.2 is to transport it with a truck from City 1 to City 2. Every other choice that involves
this package would not result in an optimal solution. The transportation problem instance
from Figure 5.2 is only one instance; further instances differ in the number of cities, nodes,
cars, packages, packages’ destinations, and connections. This means, each different setting
forms a different workload.

Planning systems such as FastDownward can be applied to find any solution or even the
optimal solution of such planning problems. Although multiple different planning systems
can find an optimal solution, the time until the solution is determined, plays a crucial role.
One example are planning competitions [149], which compare different planning software
in terms of different characteristics, such as performance. Such competitions emphasize the
role of performance of such planning systems. Our contribution to identify performance
changes can help by enabling us to find performance regressions in FastDownward. Such
performance regressions could then be addressed by the developers of FastDownward to
pinpoint or even improve the performance of the planning system.

Experiment Setup

For our experiment setup and our evaluation, we employ domain knowledge by contacting
developers of FastDownward6. This way, we obtain access to domain knowledge, which
represents a better means than the official documentation for selecting the configurations
and workloads for FastDownward. Our overall goal is to find performance changes across
configurations, workloads, and releases.

Configuration selection One important fact about FastDownward that further empha-
sizes the role of configurability is that the planning software does not represent a single

6 The developers that help us in our experiment setup are Jendrik Seipp, Silvan Sievers, and Florian Pommerening.

106 Performance Prediction in the Presence of Workload Variability

(0.) Data

All Workloads ×
Configurations ×
Release

(1.) Measurements (2.) Result Analysis

All Workloads ×
Configurations ×
Release

Preselected
Workloads

Figure 5.3: Overview of our preliminary measurements to select a suitable set of workloads. First, we
measure more than 1 800 workloads and configurations for a specific release. Then, we
use the results to filter out workloads that are too slow (i.e., run into a timeout for most
configurations) and select one workload from each domain.

planning heuristic, but can be thought of as a collection of different planning heuristics.
In other words, FastDownward is a configurable software system that allows the user to
select between different heuristics for finding a solution. Furthermore, these heuristics can
be fine-tuned by providing further parameters specific to the heuristic. Since our aim is to
measure different configurations of different releases and several workloads, we reduced the
number of configurations to a reasonable number. Therefore, we contacted the developers
of FastDownward and selected 49 different configurations that cover different heuristics
and different performance-relevant functionality in heuristics (e.g., we used two different
linear program solvers CPLEX7 and SoPlex8). Note that these 49 configurations were chosen
in a collaboration with the three developers (i.e., all three developers were involved while
selecting the configurations). In summary, we covered 11 different heuristics suggested by
the developers. Furthermore, some heuristics offer random seeds that can influence their
performance. We decided to use only a single random seed since our aim is not to assess how
stable heuristics are with regards to random seeds, but to cover different performance-relevant
source code. Choosing other random seeds would not change the amount of performance-
critical source code that is executed. In the end, only 2 out of 11 heuristics use a random seed,
which appear in 4 out of 49 configurations. We show the feature model of FastDownward in
Figure A.1 in the appendix.

Another heuristic (i.e., counter-example-guided abstraction refinement [25]) allows for
multiple combinations of parameters. In this case, we decided to measure each parameter in
isolation, which enables us to pinpoint possible performance changes in these parameters
more easily.

The parameters of the heuristics can also be used to tune the heuristic to the workload. We
decided to leave this out since our aim is to get a general view of performance changes and,
thus, use the default values where possible. This way, we achieve a similar setup to planning
competitions [149]. Note that default values might change across different releases of the
software and therefore, could be the cause for a performance change. To rule out performance
changes induced by changes to the default values, we compared the documentation containing
every heuristic and its parametrization and assured that the default values stayed the same
between releases.

In our measurements, we investigate all releases of FastDownward from January 2019 to
December 2022. In total, this results in 6 different releases in the investigated time period.

7 https://www.ibm.com/de-de/analytics/cplex-optimizer/, last accessed on 04/23/2023.
8 https://soplex.zib.de/, last accessed on 04/23/2023.

https://www.ibm.com/de-de/analytics/cplex-optimizer/
https://soplex.zib.de/

5.3 Experiment Setup 107

(0.) Data
Domains

d1

d2

Workloads

w1

w2

w3

w4

Configurations

49 selected

configurations

Release
22_06

(1.) Preliminary
Measurements

1 827 workloads ×
49 configurations ×
1 release

(2.) Preliminary
Results Analysis

Domain Workload #Configs Avg. Runtime

d1 w1 30/49 160s
d1 w2 19/49 200s
d1 w3 40/49 90s
d2 w4 49/49 50s

Domain Workload #Configs Avg. Runtime

d1 w1 30/49 160s
d2 w4 49/49 50s

Filter:
• ≥ 30 configurations without timeouts
• highest avg. runtime in domain

Figure 5.4: Detailed overview of our preliminary measurements to select a suitable set of workloads.
In the initial Step (0.), we select the workloads, configurations, and the release of Fast-
Downward we measure. Note that each workload belongs to one planning domain. We
highlighted the dimensions with developer involvement using the symbol . We measure
all workloads, given configurations in the specified release of FastDownward in Step (1.).
Afterwards, in Step (2.), we analyze the results and obtain information about the fraction
of configurations without a timeout (column #Configs) and the average runtime over all
configurations without timeout. Finally, we filter these results by selecting workloads for
which (1), at least, 30 configurations do not have timeouts and (2) which have the highest
average runtime in the domain.

Workload Preselection After determining the configurations and releases in our perfor-
mance measurements, we discuss the workloads next. Our goal is to shrink the number of
workloads to a suitable number for our final performance measurements. Due to the high
number of workloads, the workload preselection cannot be done with domain knowledge,
but has to be done using preliminary measurements. For further illustration, we show this
workload selection process in Figure 5.3. Overall, we first measure all configurations and all
workloads in Step (1.). After measuring the data, we use the results to filter out workloads
running into a timeout and to select a set of workloads fulfilling our criteria, afterwards.

In detail, we show theworkload selection process in Figure 5.4. In the case of FastDownward,
each planning problem represents a workload. Each workload belongs to exactly one domain
(e.g., towers of Hanoi or transportation planning problem), as shown in Step (0.) in the
figure. A large number of different workloads are comprised in a repository9. In summary,
the repository contains 4 330 different planning problem instances; each associated to one of
133 domains. To reduce the number of domains, we focused on domains where an optimal
solution (e.g., the minimal number of movements in tower of Hanoi) has to be found. The
rationale behind this filter is that the performance on problems where an optimal solution
has to be found is much more stable with regard to performance than for finding an arbitrary
solution. After applying the filter, we had 1 827 different planning problem instances in 65
domains. Since this still results in an amount that is computationally infeasible to measure,
we had to further reduce the number of workloads. This, however, was not possible without

9 https://github.com/aibasel/downward-benchmarks/, last accessed on 04/23/2023.

https://github.com/aibasel/downward-benchmarks/

108 Performance Prediction in the Presence of Workload Variability

executing all configurations on all heuristics, at least, once, to assess which workloads result
in a timeout of 5 minutes and which find an optimal solution (depicted in Step (1.)). The
timeout was suggested by one of the developers that helped us and corresponds to the typical
setup following in planning competitions [149]. It is important to note that the different
heuristics of FastDownward perform quite different on the workloads. Some heuristics find
an optimal solution in seconds, whereas other heuristics fail to find an optimal solution in
5 minutes10. The performance of a heuristic on a workload cannot be fully determined by
the developer. Therefore, we executed all configurations of the latest release (i.e., December
2022 – Release 22.1211) on all workloads, resulting in 89 524 preliminary measurements.
Afterwards, in Step (2.), we selected the workloads where, at least, 30 configurations found
a solution in the specified time frame of 5 minutes. Furthermore, we selected the workload
with the highest average execution time from each remaining domain. The rationale behind
selecting the workloads with the highest average execution time is that many runs achieved
an average execution time of less than 1 second. Since our performance measurements contain
measurement noise [71], it is less likely to find performance changes in workloads with a low
execution time than in workloads with a higher execution time. In 9 out of 65 domains, our
filter could not find any fitting problem because most of the configurations timeouted in all
workloads of these domains. Overall, we identified 56 different workloads from 56 different
domains for our measurements.

In summary, we selected 49 configurations, 6 releases, and 56 workloads of FastDownward
for our further measurements and repeat each execution 5 times to counteract to measurement
noise [71].

Timeout for Final Measurements Previously, we used a timeout of 5 minutes in the
preliminary measurements. To further reduce the amount of configurations running into
a timeout in our final measurements, we set the timeout of the final measurements to 15
minutes. Despite increasing the timeout for our final measurements, some configurations
can still indicate a timeout in some workloads and releases and should be considered in our
performance-modeling approach. If timeouts would not be considered, we would certainly
miss important performance changes. In theory, timeouts represent a form of censored data,
in which we know that a configuration needs, at least, a certain time (i.e., at least, 15 minutes),
but cannot determine exactly howmuch time the configuration needs. In predictive modeling,
censored data is typically handled as missing data, which can be treated in multiple ways [75].
One possible treatment is to remove the data of some configurations for some workloads.
Removing the data of some configurations, however, results in even more different configura-
tion spaces. Consequently, it might happen that we miss data on whole configuration options
in some workloads due to timeouts and, thus, would ignore it. Another possibilty is to use
imputation, where the missing data is replaced by another value (e.g., mean performance or
median value) [5]. In our setting, we opted to impute a value higher than our timeout (i.e., 30
minutes). This enables us to identify regressions if the execution time of some configurations
is close to a timeout in one release and timeouts in another, which would not be possible in
the case of mean performance values.

10 Not only the instance size, but also special workload characteristics might turn a workload unsolvable for a
heuristic. For instance, some greedy heuristics might not perform well with actions with no cost.

11 https://github.com/aibasel/downward/releases/tag/release-22.12.0/, last accessed on 04/23/2023.

https://github.com/aibasel/downward/releases/tag/release-22.12.0/

5.3 Experiment Setup 109

Performance Measurements We executed all measurements on computing nodes using
the Non-Uniform Memory Access (NUMA) architecture equipped with two Intel Xeon E5-
2630 v4, 256 GB of RAM and an NVME SSD. Since the computing nodes consist of two Intel
processors, each with its own RAM bus, further measurement noise could arise while using
both processors and RAM buses interchangeably. To reduce measurement noise, we limited
our computing resources on using the first processor with its associated RAM bus. Our
preliminary measurements were executed with no repetitions because of the high number of
measurements. All other measurements were executed with 5 repetitions and were repeated
again if the relative standard deviation was higher than 10% or the performance was lower
than 0.1 seconds. The incentive behind this is that we expect our performance measurements
to indicate a certain level of measurement noise, which is especially present in very short
measurements.

5.3.3 Operationalization

To answer our research questions, for each release, (1) we measure the configurations of
FastDownward specified in the previous section and (2) learn a performance-influence
model on the entire set of configurations, resulting in one model per workload and release.
For the subject system FastDownward, CFastDownward refers to the set of configurations (see
Section 2.1), RFastDownward to its set of releases, and WFastDownward to its set of workloads.
Note that we will omit the subscript FastDownward in the following definitions for brevity.

Configuration Level We use the configuration-level measurements as our point of refer-
ence for finding performance changes. Although we might miss some performance changes
throughout the history of FastDownward, we contacted the developers to cover the most
important functionality. Compared to other subject systems in this thesis, the smaller config-
uration space of 49 configurations in FastDownward also enables us to inspect our approach
in more detail, which is the ultimate goal in our exploratory study.
M𝑟,𝑤 ∶ C → ℝ ∪ {⟂} maps the configurations 𝑐 ∈ C of release 𝑟 ∈ R and workload 𝑤 ∈ W

to their measured real-valued performance values or to ⟂ in case the configuration does not
exist in the release, yet. In contrast to Chapter 4, where C was fixed across all releases of the
subject systems, we change this for FastDownward in this chapter since not all configurations
are available in all releases. Overall, this affects the first 3 out of 6 releases, where not all
configurations based on linear program solvers are available. In the first two releases (releases
19.06 and 19.12), measured only 39 out of the 49 selected configurations, and in the third
release (release 20.06), we measured 44 out of 49 configurations.

We consider a performance change between a configuration of two consecutive releases
relevant if:

∣M𝑟𝑖,𝑤𝑗(𝑐) − M𝑟𝑖+1,𝑤𝑗(𝑐) ∣ > 2 ⋅ max(sd𝑟𝑖,𝑤𝑗(𝑐), sd𝑟𝑖+1,𝑤𝑗(𝑐)), (5.1)

where sd𝑟,𝑤(𝑐) denotes the standard deviation of performance values of a configuration across
repeated measurements. In other words, if a performance change does not exceed twice the
larger standard deviation of the two releases, it is not further considered. The rationale for
this conservative threshold is to filter out measurement noise and tiny performance changes.

110 Performance Prediction in the Presence of Workload Variability

The independent variables for the configuration-level data used as a point of reference in
RQ1.1 and RQ1.2 and used in RQ2 are the three dimensions: (1) the configuration 𝑐 ∈ C, (2)
the release 𝑟 ∈ R, and (3) the workload 𝑤 ∈ W . The dependent variable is the performance
valueM𝑟,𝑤(𝑐). As a confounding factor, measurement noise caused by particularities from the
software and hardware biases our results [71, 105]. To counteract, we repeat eachmeasurement
5 times until the coefficient of variation (i.e., standard deviation divided by the mean) of the
repetitions is lower than 10% or the performance is lower than 0.1 seconds.

Option Level Our performance-modeling approach allows us to detect performance
changes at the option level, as formerly demonstrated in Chapter 4. Still, our goal in this
exploratory study is to find out in how many cases we can detect the performance changes
and in which cases we do not.

Formally, Π𝑟,𝑤 denotes the performance-influence model for revision 𝑟 ∈ R and workload
𝑤 ∈ W of FastDownward. Further, TΠ𝑟,𝑤 denotes the terms of the performance-influence
model Π𝑟,𝑤. Note that we do not follow a sample-based learning approach (i.e., one that
uses only a subset of configurations as in Chapter 3). Instead, we learn models on the whole
configuration space defined together with the developers. This would be impractical in
practice but gives us the most accurate results since applying a sampling approach would
likely miss important configuration options such as heuristics. So, the independent variables
for our performance-modeling approach from the option level investigated in RQ1.1, RQ1.2
are (1) the workload 𝑤 ∈ W and (2) the release 𝑟 ∈ R; the dependent variable is the
corresponding performance-influence model Π𝑟,𝑤 for 𝑟 ∈ R and 𝑤 ∈ W .

To find the performance changes at the option level, we determine for each 𝑟 ∈ R and
𝑤 ∈ W the performance influences 𝛽𝑟,𝑤(𝑡) of all terms 𝑡 ∈ TΠ𝑟,𝑤. A term can either consist of
the base term (i.e., 𝛽0 in Section 2.2.4), a configuration option (i.e., 𝛽𝑜 ⋅ 𝑐(𝑜) for 𝑜 ∈ O), or an
interaction among multiple options (i.e., 𝛽𝑜1..𝑜𝑖

⋅ 𝑐(𝑜1) ⋅ ⋯ ⋅ 𝑐(𝑜𝑖) for 𝑜1, … , 𝑜𝑖 ∈ O). Function
𝛽𝑟,𝑤(𝑡) returns the coefficient of the term. We consider a performance change between two
coefficients relevant if:

∣ 𝛽𝑟𝑖,𝑤𝑗(𝑡) − 𝛽𝑟𝑖+1,𝑤𝑗(𝑡) ∣ > 2 ⋅ max(sd
𝑟𝑖,𝑤𝑗, sd

𝑟𝑖+1,𝑤𝑗), (5.2)

where sd
𝑟𝑖,𝑤𝑗 denotes the mean standard deviation of all configurations of release 𝑟𝑖 ∈ R

and workload 𝑤𝑗 ∈ W . If a change of performance influence does not exceed twice the larger
average standard deviation of the two releases, it is not further considered. The rationale of
using the maximum of the mean standard deviation is that we use the entire configuration
space for learning performance models and thus accumulate the standard deviation over all
configurations.

Reducing Wrong Detections Before diving into the operationalization of the research
questions, we discuss an issue that appears with optional configuration options and alter-
native groups in FastDownward (see corresponding feature model in Figure A.1). Through
this issue, a direct comparison of performance-influence models would produce too many
invalid performance changes. For the demonstration of the issue, we use the example in
Figure 5.5 with an alternative group. There, we demonstrate a general problem that arises
with mandatory alternative groups (see top left of the figure). In the bottom left, we show
exemplary performance measurements using the alternatives A and B. Deriving a feature

5.3 Experiment Setup 111

Feature Model

Parent

A B

Measurements

Parent A B V1 V2

1 1 0 10s 15s
1 0 1 20s 20s

Performance-Influence Models

Version Parent A B

V1 0 10 20
V2 7 8 13

Initial
Performance-
Influence Models

Version Parent B

V1 10 10
V2 15 5

+

Performance-
Influence Models
After VIF Analysis

Version Parent B

V1 10 20
V2 15 20

Performance-Influence
Models For Comparison

Performance Changes
(Option Level)

From–To Parent B

V1–V2 5 −5

From–To Parent B

V1–V2 5 0

Figure 5.5: Minimal example for the adjustments performed on the performance-influencemodels. The
issue appears in mandatory alternative groups (shown in the top left) and optional config-
uration options. In the bottom left, we show the according performance measurements (in
seconds) for two releases V1 and V2 of this example. We show the performance-influence
models in the center. The first performance-influence model represents the performance-
influence model using multiple linear regression. Afterwards, we apply the VIF analysis
to eliminate multicollinearity. Comparing the coefficients (right) of these performance-
influence models would still detect performance changes in unaffected configuration op-
tions (i.e., configuration option B has not changed from V1 to V2) wrongly. To reduce these
wrong detections, we add the values of Parent to B.

model from the performance data of releases V1 and V2 would result in the influence model
in the top center. Each row contains one performance-influence model per release and each
column the coefficients of the terms. Since the mandatory option Parent is multicollinear to
A and B (i.e., Parent is only selected in configurations where either A or B are selected), the
performance-influence models are no longer unique (see Section 2.2.4 for further information
on multicollinearity). In particular, the coefficient values can shift between A and B, and the
mandatory option Parent since Parent can be represented by A and B (i.e., either A or B are
selected on when Parent is selected). So, Parent is perfectly multicollinear to A and B. We
depict this shift in the first performance-influence model in Figure 5.5, where V1 assigns 0
to Parent, whereas the value 7 is shifted from A and B to Parent in V2. Note that we cannot
exactly determine the influence of Parent, A, and B since there is no configuration where only
Parent is selected and A and B are not. Overall, this value shifts would bias our comparison
and is ultimately the reason for the application of the VIF analysis. However, the VIF analysis
would remove either A or B to resolve the multicollinearity. In our case, the VIF analysis
removes A. Note that now the only term that relates to the first configuration is term Parent.
Also note, that because of the removal of A by the VIF analysis, B could also be represented as
an optional configuration option. That is, B can either be selected or deselected. Typically, A
would be selected if B is deselected. But, because of the removal of A, this is no longer the case
from the data point of view. So, the following flaw does also apply on optional configuration
options.

112 Performance Prediction in the Presence of Workload Variability

Configuration-Level
Performance Changes

(Positives) (Negatives)

Option-Level
Performance Changes

FN TN

FPTP

Figure 5.6: Visualization of True Positives (TP), False Positives (FP), True Negatives (TN), and False Nega-
tives (FN). The positives (left) are the performance changes identified on the configuration
level; the negatives (right) are performance changes that are not identified at configuration
level. The ellipsis in the middle represents the identified performance changes by our
approach at the option level.

The flaw thatmakes a subsequent comparison of the performance-influencemodels difficult
is the following: Performance changes of the removed alternative are propagated to the
other alternatives. This is because the column Parent relates to both configurations in the
measurement data, but the performance of only one configuration changes. However, tomodel
the performance change from 10 seconds to 15 seconds in the first configuration, the only term
that addresses this configuration is Parent. But, to compensate that there is no performance
change in the second configuration, the multiple linear regression now fits a value that is
10 − 15 = −5 seconds smaller than in the previous release. A subsequent comparison of
these performance-influence models would wrongly indicate that B changed. To solve the
problem, we reverse this effect by adding the influence value of the term Parent to the other
alternative terms for the comparison (see dashed arrow in the figure). This step invalidates
our performance-influence models in general (i.e., the performance-influence models cannot
be used for performance prediction anymore), but eliminates the described flaw inmandatory
alternative groups and for optional options. These were the only modifications necessary to
improve the performance-influence models Π𝑟,𝑤 for the comparison to identify performance
changes at the option level. By applying this approach in our analysis, we can reduce the
number of invalid performance changes detected by our approach at the option level.

Research Questions After presenting the necessary changes for our comparison, we
present the operationalization for the research questions, next. To provide a better under-
standing of precision and recall for RQ1.1 and RQ1.2, we show the True Positives (TP), False
Positives (FP), True Negatives (TN), and False Negatives (FN) in Figure 5.6. In particular, we
interpret the notions as follows:

True Positives (TP): The performance changes identified at the configuration level and the
option level.

False Positives (FP) : The performance changes identified at the option level but not at the
configuration level.

5.3 Experiment Setup 113

True Negatives (TN) : The performance changes identified neither at the option level nor at
the configuration level.

False Negatives (FN) : The performance changes identified at the configuration level but not
at the option level.

Note that we use the performance changes identified at configuration level as our positives
since we use the performance changes identified at configuration level as the point of refer-
ence. Hence, the negatives are all performance changes that are not identified at configuration
level.

RQ1.1: Since we have already described how we determine the performance changes from
the point of reference at the configuration level above, we now present how we assess the
precision of our approach. The precision is a performance metric which is used to assess in
how many cases a certain approach is correct. In other words, we determine the fraction of
true positives (TP) in all found performance changes of the option level. That is, we assess in
how many cases the performance change is correct.

For the changes at the configuration level, we denote CC𝑟𝑖,𝑟𝑖+1 as the set containing all
configurations indicating a performance change between consecutive releases 𝑟𝑖, 𝑟𝑖+1 ∈ R in,
at least, one workload:

CC𝑟𝑖,𝑟𝑖+1 = {𝑐 ∣𝑐 ∈ C ∧ ∃𝑤 ∈ W ∶ ∣M𝑟𝑖,𝑤𝑗(𝑐) − M𝑟𝑖+1,𝑤𝑗(𝑐) ∣ > 2 ⋅ max(sd𝑟𝑖,𝑤𝑗(𝑐), sd𝑟𝑖+1,𝑤𝑗(𝑐))}

For the changes at the option level, we denote T C𝑟𝑖,𝑟𝑖+1 as the set containing all terms
indicating a performance change between consecutive releases 𝑟𝑖, 𝑟𝑖+1 ∈ R in, at least, one
workload and TΠ𝑟,𝑤 as the set of terms of the performance-influence model Π𝑟,𝑤 of release 𝑟
and workload 𝑤:

T C𝑟𝑖,𝑟𝑖+1 = {𝑡 ∣ 𝑡 ∈ TΠ𝑟𝑖,𝑤∩TΠ𝑟𝑖+1,𝑤∧∃𝑤 ∈ W ∶ ∣ 𝛽𝑟𝑖,𝑤(𝑡)−𝛽𝑟𝑖+1,𝑤(𝑡) ∣ > 2⋅max(sd
𝑟𝑖,𝑤, sd

𝑟𝑖+1,𝑤
)}

Note that we only check for terms that are present in both consecutive releases. This is
necessary since some configurations are not available in some releases. Also note that we do
not distinguish between performance changes that appear in one and performance changes
that appear in multiple or all workloads in our research questions since we are interested in
performance changes in general. However, we take a closer look into performance changes
and the workloads in RQ2.

We denote the function affectedConfigs𝑟𝑖,𝑟𝑖+1 as a function that maps a term (i.e., an option
or an interaction) to the set of configurations corresponding to the term between releases
𝑟𝑖, 𝑟𝑖+1 ∈ R:

affectedConfigs𝑟𝑖,𝑟𝑖+1 ∶ TΠ → P(C)

where TΠ represents the set of all terms that are relevant in, at least, one release:

TΠ = ⋃
𝑟𝑖,𝑟𝑖+1∈R

TΠ𝑟𝑖,𝑟𝑖+1

114 Performance Prediction in the Presence of Workload Variability

Next, to determine the confirmed performance changes, we split this set into multiple
different sets: T C𝑟𝑖,𝑟𝑖+1

TP denotes the confirmed performance changes (i.e., TP in Figure 5.6),
and T C𝑟𝑖,𝑟𝑖+1

FP denotes the performance changes that were wrongly identified as such (i.e.,
FP in Figure 5.6). We confirm the terms indicating a performance change by inspecting the
affected configurations in the set CC𝑟𝑖,𝑟𝑖+1 using the function affectedConfigs:

T C𝑟𝑖,𝑟𝑖+1
TP = {𝑡 ∣𝑡 ∈ T C𝑟𝑖,𝑟𝑖+1 ∧ ∃𝑐 ∈ affectedConfigs𝑟𝑖,𝑟𝑖+1(𝑡) ∶ 𝑐 ∈ CC𝑟𝑖,𝑟𝑖+1}

If none of the affected configurations is included in CC𝑟𝑖,𝑟𝑖+1, we mark the term as a false
positive (i.e., FP in Figure 5.6):

T C𝑟𝑖,𝑟𝑖+1
FP = T C𝑟𝑖,𝑟𝑖+1\T C𝑟𝑖,𝑟𝑖+1

TP

The precision over all releases is then assessed as follows:

Precision =
∑𝑟𝑖,𝑟𝑖+1∈R card(T C𝑟𝑖,𝑟𝑖+1

TP)

∑𝑟𝑖,𝑟𝑖+1∈R card(T C𝑟𝑖,𝑟𝑖+1)

where card denotes the cardinality of a set.

RQ1.2: Next, to assess the sensitivity of our approach, we determine the recall of our
approach. The recall is another performance metric that assesses how many of all cases a
certain approach covers. In other words, we determine all positives (i.e., all performance
changes in our case) and verify, how many of them have been covered.

We define the function affectedTerms𝑟𝑖,𝑟𝑖+1 as a function that maps a configuration to the
terms that contain this configuration between releases 𝑟𝑖, 𝑟𝑖+1 ∈ R:

affectedTerms𝑟𝑖,𝑟𝑖+1 ∶ C → P(TΠ𝑟𝑖,𝑟𝑖+1)

For instance, the map would return the terms B and Parent for the second configuration
{Parent,B} in the example of Figure 5.5. For the first configuration, it would return only
Parent since this is the only term containing the configuration.

Similar to RQ1.1, we split the set of all performance changes on configuration level CC𝑟𝑖,𝑟𝑖+1

into two sets: CC𝑟𝑖,𝑟𝑖+1
TP denotes the set of all configurations that could be confirmed at the

option level (i.e., TP in Figure 5.6), and CC𝑟𝑖,𝑟𝑖+1
FN denotes the set of all configurations that could

not be confirmed at the option level (i.e., FN in Figure 5.6). We confirm the configurations
indicating a performance change by inspecting the terms corresponding to the configuration:

CC𝑟𝑖,𝑟𝑖+1
TP = {𝑐 ∣ 𝑐 ∈ C, ∃𝑡 ∈ affectedTerms𝑟𝑖,𝑟𝑖+1(𝑐) ∶ 𝑡 ∈ T C𝑟𝑖,𝑟𝑖+1}

If none of the corresponding terms is included in T C𝑟𝑖,𝑟𝑖+1, we mark the configuration as a
false negative:

CC𝑟𝑖,𝑟𝑖+1
FN = CC𝑟𝑖,𝑟𝑖+1\CC𝑟𝑖,𝑟𝑖+1

TP

The recall over all releases is assessed as follows:

Recall =
∑𝑟𝑖,𝑟𝑖+1∈R card(CC𝑟𝑖,𝑟𝑖+1

TP)

∑𝑟𝑖,𝑟𝑖+1∈R card(CC𝑟𝑖,𝑟𝑖+1)

5.4 Evaluation 115

19
_06

 - 1
9_1

2

19
_12

 - 2
0_0

6

20
_06

 - 2
1_1

2

21
_12

 - 2
2_0

6

22
_06

 - 2
2_1

2

Releases

0

20

40

60

80

100

Co
nf

ig
ur

at
io

ns
 [%

]

(a) Configuration-level changes

19
.06

 - 1
9.1

2

19
.12

 - 2
0.0

6

20
.06

 - 2
1.1

2

21
.12

 - 2
2.0

6

22
.06

 - 2
2.1

2

Releases

0

20

40

60

80

100

Te
rm

s [
%

]

(b) Option-level changes

Figure 5.7: Relative number of identified performance changes at the configuration level (a) and of
the identified performance changes at the option level (b).

where card denotes the cardinality of a set.

RQ2:Next, we focus on the workload-specific research question, which assesses the number
of workloads that are involved in the identification of a performance change. We use the
changes at the configuration level to avoid bias that is introduced by our approach at the
option level. We denote WF as a function that maps a configuration 𝑐 ∈ C between a pair of
releases 𝑟𝑖, 𝑟𝑖+1 ∈ R to the number of workloads that identified a performance change:

WF 𝑟𝑖,𝑟𝑖+1 ∶ C → ℕ

WF 𝑟𝑖,𝑟𝑖+1(𝑐) = card({𝑤 ∣ 𝑤 ∈ W ∶ |M𝑟𝑖,𝑤(𝑐) − M𝑟𝑖+1,𝑤(𝑐) | > 2 ⋅ max(sd𝑟𝑖,𝑤(𝑐), sd𝑟𝑖+1,𝑤(𝑐)})

In other words, WF 𝑟𝑖,𝑟𝑖+1 returns the number of workloads between consecutive releases 𝑟𝑖
and 𝑟𝑖+1 in which the configuration 𝑐 exceeds the threshold of twice the maximum standard
deviation (see Equation 5.1). It is important to note that WF 𝑟𝑖,𝑟𝑖+1(𝑐) would return 0 if there
is no performance change in 𝑐 ∈ C between releases 𝑟𝑖, 𝑟𝑖+1 ∈ R.

5.4 Evaluation

In this section, we present the results of our exploratory study on detecting performance
changes from FastDownward in Section 5.4.1. Later, in Section 5.4.2, we discuss the appli-
cability and limitations of our approach as well as further insights. We discuss threats to
validity in Section 5.4.3.

116 Performance Prediction in the Presence of Workload Variability

0

20

40

60

80

100

Pr
ec

isi
on

 [%
]

0

20

40

60

80

100

Re
ca

ll
[%

]

Figure 5.8: Overview of the precision (left) and the recall (right) of our approach at the option level
compared to the performance changes at the configuration level over different workloads.

5.4.1 Results

In what follows, we summarize the performance changes identified at the configuration level
and the performance changes identified at the option level in Figure 5.7. In Figure 5.7 (a), we
show the relative number of changed configurations for all workloads and for each pair of
consecutive releases (x-axis). We see that between each pair of releases, 38% to 81% of con-
figurations had a performance change at the configuration level. In total, 7 464 performance
changes are identified at the configuration level. In Figure 5.7 (b), we show the relative num-
ber of changed options/interactions for all workloads and for each pair of consecutive releases
(x-axis). Clearly, the number of terms changing from one release to another is lower than at
the configuration level, ranging between 2% of the options/interactions for releases 19.06 to
19.12 until 17% for releases 20.06 to 21.12. In total, our approach identified 2 674 performance
changes at the option level. Note that the changes at the configuration level cannot be directly
compared to the changes at the option level since many of the configuration-level changes
can be comprised in a single term at the option level. For instance, a single performance
change affecting every configuration at the configuration level can be comprised using only
the option root.

RQ1.1: What is the fraction of identified performance changes at the option level that can be confirmed
at the configuration level?

For the evaluation of this research question, we check in how many cases the identified
performance changes of the option level can be confirmed at the configuration level. In
Figure 5.8 (left), we show the precision of our approach for each workload. That is, we show
in how many cases our approach is „right“(in regards to the configuration level). The exact
values can be found in Table A.1 in the appendix. The precision per workload spans between
37.98% for the workload movie/prob29 and 100% for the workload driverlog/p08 with a
standard deviation of 11.5%. Overall, the average precision of the identified performance

5.4 Evaluation 117

changes of our approach is 88.2%. That is, 88.2% of the identified performance changes at the
option level could be confirmed at the configuration level. In other words, the 88.2% of the
identified performance changes at the option level are true positives (TP); the rest are false
positives (FP).

Summary of Research Question 1.1
The precision of our approach per workload is between 37.98% and 100%. On average,
the majority (88.2%) of the identified performance changes at the option level could
be confirmed at the configuration level. That is, our approach identifies most of the
performance changes „right“(with regards to the performance changes at the configuration
level).

RQ1.2: What is the fraction of identified performance changes at the configuration level that can be
confirmed at the option level?

For this research question, we check in how many cases the identified performance changes
at the configuration level can be confirmed at the option level. So, compared to RQ1.1, we
check how many of the performance changes were missed by our approach. In Figure 5.8
(right), we show the recall of our approach for each workload. Again, the exact values can
be found in Table A.1 in the appendix. The recall spans between 10.3% for the workload
gedopt14strips/d76 to 100% for the workload movie/prob29 with a standard deviation of
23.3%. Overall, the average recall of the identified performance changes of our approach is
59.4%. That is, a performance change identified at the configuration level is identified in more
than half of the cases at the option level.

Summary Research Question 1.2
The recall of our approach per workload is between 12.6% and 100%. On average, the bare
majority (59.4%) of the identified performance changes at the configuration level could
be confirmed at the option level. That is, our approach identifies more than half of all
performance changes.

RQ2: What is the fraction of workloads that are involved in identifying performance changes at the
configuration level?

In Figure 5.9, we show the frequency of how many workloads identified a performance
change at the configuration level. In total, 225 performance changes are identified at the
configuration level in, at least, one workload. The highest number of performance changes
(i.e., 17 out of 225) are revealed by all 56 workloads. A single performance change was
identified by a minimum of 4 out of 56 (7.6%) workloads. The majority of the performance
changes (208 out of 225—92.4%) could not be identified by all workloads. On average, 33 out
of 56 (59%) workloads identified a performance change.

118 Performance Prediction in the Presence of Workload Variability

0 10 20 30 40 50
#Workloads

0

5

10

15

Fr
eq

ue
nc

y

0 20 40 60 80 100
Workloads [%]

Figure 5.9: Overview of howmany performance changes (y-axis) have been found by a certain number
of workloads (x-axis). The higher the number of workloads, the more workloads could
identify a performance change.

Summary Research Question 2
At least 4 and at most all 56 workloads identified performance changes. The highest
frequency of performance changes are revealed by all 56 workloads, but the majority of
92.4% of performance changes could not be identified by all workloads.

5.4.2 Discussion

In this section, we discuss the limitations of our proposed approach for identifying perfor-
mance changes at option level in Section 5.4.2. Thereby, we discuss the results from RQ1.1 and
RQ1.2. In Figure 5.4.2, we discuss RQ2 and further insights that we obtained in this study.

Limitations of Our Approach

In this section, we address the limitations of our approach. Therefore, we inspect our results
to pinpoint reasons for these results and point out limitations of our approach.

Optimizations and Regressions Until now, we focused on identifying and comparing
performance changes at the configuration level and at the option level. But, we have not
distinguished between a performance optimization and a performance regression. However,
distinguishing between a performance optimization and a performance regression is crucial
for understanding performance changes of the system. Identifying an actual performance
regression as a performance optimization would mislead users and developers. So, we as-
sessed the precision and recall while also considering the direction of the change. That is,
a performance optimization or regression at the option level is now only considered if the
configuration level also indicates a performance optimization or regression, respectively.
Considering also the direction of a performance change, decreases our precision from 88.2%
to 84.5% and the recall from 59.4% to 43.5%. Overall, we found that the decrease in precision
and recall is in many cases due to the learning error and because of low performance values.

5.4 Evaluation 119

Feature Model

P

A

Performance Measurements
(Configuration Level)

P A V1 sdV1 V2 sdV2 Result Relevant

1 0 1s 0.01s 1s 0.01s 0 ≯ 0.02 7
1 1 300s 3s 304s 3.04s 4 ≯ 6.08 7

Performance-Influence Model

Version P A

V1 1 300
V2 1 304

Performance Changes
(Option Level)

Term V1–V2 Result Relevant

P 0 0 ≯ 3.05 7
A 4 4 > 3.05 3

sdV1 sdV2

1.505 1.525

Figure 5.10: Example for a performance change that is identified at the option level but not at the
configuration level. In this example, A is by 4 seconds slower in V2 than in V1. The
performance-influence model contains this performance regression (see second line and
right column in the performance-influence model table) and the option level identifies
this regression as a relevant performance change. We added the standard deviation values
and the results when applying the metrics at the configuration level and the option level,
respectively. Note thatwe have omitted theworkload since it is not relevant in this example.

Precision For assessing the precision, we analyzed how many performance changes at the
option level could be confirmed at the configuration level. We obtain a precision of 88.2% and
identified an important reason that influences this result.

While investigating the false positives, one important reason for the false positives we
identified are the metrics that we used to identify performance changes at the configuration
level (see Equation 5.1) and at the option level (see Equation 5.2). In the metric at the config-
uration level, we use the standard deviation (sd𝑟𝑖+1,𝑤); at the option level, we use the average
standard deviation of all configurations (sd

𝑟𝑖,𝑤). The rationale behind this conservative met-
ric at the option level is that we are using the entire configuration space for learning the
performance-influence models. Since we are learning performance-influence models on all
configurations, we correspondingly used the average standard deviation of all configurations.
This discrepancy between the metrics, however, can lead to neglecting many performance
changes at the configuration level. In particular, some of the configurations of FastDownward
need less than a second of runtime for certain workloads, whereas other configurations need
multiple minutes. In particular, we have seen an interesting effect for configurations that
indicate a runtime above the average runtime. In this case, the following holds for the specific
configuration 𝑐 ∈ C, the workload 𝑤 ∈ W , and the consecutive releases 𝑟𝑖, 𝑟𝑖+1 ∈ R:

2 ⋅ max(sd
𝑟𝑖,𝑤, sd

𝑟𝑖+1,𝑤
) < 2 ⋅ max(sd𝑟𝑖,𝑤(𝑐), sd𝑟𝑖+1,𝑤(𝑐))

where the left-hand side is the threshold for identifying performance changes at the option
level and the right-hand side is the threshold for identifying performance changes at the
configuration level. So, the option level would identify smaller changes than the configuration
level. In Figure 5.10, we show an example of this discrepancy. In this example, there are
only two options, P and A and two releases V1 and V2. We omitted the workload since
the workload is not relevant for this example. The measurements of V1 and V2 indicate a
regression of 4 seconds when A is selected. We assume a relative standard deviation of 1% in

120 Performance Prediction in the Presence of Workload Variability

this example and show the standard deviation values at the configuration level and the option
level, respectively. At the option level (right bottom), we can see that A is slower by 4 seconds
while P remains unchanged. Applying themetric for the option level from Equation 5.2 on this
change (mean value is 152.5) results in 4 > 3.05 and, thus, would identify the performance
change. However, the performance change would not be identified at the configuration level
(left bottom). When applying the metric from Equation 5.1, it would result in 4 ≯ 6.08 and,
thus, the configuration level neglects the change.
To determine how many of the false positives are affected by using different metrics, we opted
to adjust the metric of how performance changes at the configuration level are identified. In
detail, we changed the right-hand side of Equation 5.1 to match to Equation 5.2:

∣M𝑟𝑖,𝑤(𝑐) − M𝑟𝑖+1,𝑤(𝑐) ∣ > 2 ⋅ max(sd
𝑟𝑖,𝑤, sd

𝑟𝑖+1,𝑤
)

where the configuration is any configuration that is affected by the term
𝑐 ∈ affectedConfigurations(𝑡). The function affectedConfigurations returns a set of config-
urations, M𝑟𝑖,𝑤(𝑐) denotes the performance value in release 𝑟𝑖 ∈ R and sd

𝑟𝑖,𝑤 returns the
mean performance value of all configurations of release 𝑟𝑖 and workload 𝑤. This way, we
can determine how many of the false positives are due to the discrepancy in the metrics. By
applying the adjusted metric, we found that more that more than half of the false positives
(i.e., 190 out of 316 false positives) could then be found, which increases the precision by
7.1% to 95.3%.

We also found that about 78 of the remaining 126 false positives relate to configurations
indicating a performance value of less than 0.1 seconds. In many of these configurations, we
observed measurement deviations of more than 10%. Additionally, learning performance-
influence models introduces a learning error, which makes the performance-influence models
more imprecise. We found that the performance-influence models of 2 workloads indicated a
error higher than 10% (see Section 5.4.3), which was mainly because of a major drawback of
our learning error metric (i.e., mean absolute percentage error). For the remaining 54 work-
loads, the average learning error is always below 10% and 0.2% on average. A combination of
both the measurement deviations and the learning error of the performance-influence models
are another reason for the remaining false positives. So, considering the learning error of
a model in our metrics would be another step that decreases the amount of false positives,
since this affects all false positives.

Recall For assessing the recall, we analyzed how many performance changes at the config-
uration level could be confirmed at the option level. In more than half of the performance
changes at the configuration level, we could confirm the performance changes at the option
level. We identified two reasons that influence this result. The most important reason are
the different metrics at the configuration level and at the option level. This discrepancy be-
tween the metrics can lead to neglecting many performance changes at the option level, too.
Interestingly, this effect is the opposite to when calculating the precision. Again, some of the
configurations of FastDownward need less than a second of runtime for certain workloads,
whereas other configurations need multiple minutes. Using the average performance for
all configurations then leads to neglect very small changes. In the case of configurations

5.4 Evaluation 121

Feature Model

P

A

Performance Measurements
(Configuration Level)

P A V1 sdV1 V2 sdV2 Result Relevant

1 0 1s 0.01s 1.1s 0.011s 0.1 > 0.022 3
1 1 300s 3s 300s 3s 0 ≯ 6 7

Performance-Influence Model

Version P A

V1 1 300
V2 1.1 300

Performance Changes
(Option Level)

Term V1–V2 Result Relevant

P 0.1 0.1 ≯ 3.011 7
A 0 0 ≯ 3.011 7

sdV1 sdV2

1.505 1.525

Figure 5.11: Example for a performance change that is identified at the option level but not at the
configuration level. In this example, the configuration where A is deselected is by 0.1
seconds slower in V2 than in V1. The performance-influence model contains this perfor-
mance regression (see second line and right column in the performance-influence model
table) and the option level identifies this regression as a relevant performance change.
We added the standard deviation values and the results when applying the metrics at
the configuration level and the option level, respectively. Note that we have omitted the
workload since it is not relevant in this example.

indicating a lower runtime than the average runtime, the following holds for the specific
configuration 𝑐 ∈ C, the workload 𝑤 ∈ W , and the consecutive releases 𝑟𝑖, 𝑟𝑖+1 ∈ R:

2 ⋅ max(sd
𝑟𝑖,𝑤, sd

𝑟𝑖+1,𝑤
) > 2 ⋅ max(sd𝑟𝑖,𝑤𝑗(𝑐), sd𝑟𝑖+1,𝑤𝑗(𝑐))

where the left-hand side is the threshold for identifying performance changes at the option
level and the right-hand side is the threshold for identifying performance changes at the
configuration level. In detail, we show another example in Figure 5.11. Again, our example
consists of two configuration options, P and A and two consecutive releases, V1 and V2. In
this case, the regression is introduced at V2 in the configuration where A is deselected. The
regression is about 0.1 seconds and we assume a relative standard deviation of 1%. At the
configuration level, the metric would identify the performance change because it relates to
the performance value instead of the average performance value of all configurations. In
particular, when applying Equation 5.1 on our example, it results in 0.1 > 0.022. However, at
the option level, we relate to the average performance values. When applying Equation 5.2)
on our example, it results in 0.1 ≯ 3.011 and, hence, this performance change is not relevant
on the option level.

To determine how severe the metric discrepancy affects our analysis, we executed our recall
analysis again but used the standard deviation andmean value of the respective configuration
𝑐 ∈ C:

∣ 𝛽𝑟𝑖,𝑤(𝑡) − 𝛽𝑟𝑖+1,𝑤(𝑡) ∣ > 2 ⋅ max(sd𝑟𝑖,𝑤(𝑐), sd𝑟𝑖+1,𝑤(𝑐)).

where 𝑡 ∈ affectedTerms(𝑐) denotes any term affecting this configuration, affectedTerms
is a function that returns a set of terms affected by the configuration, 𝑤 ∈ W denotes the
workload, and 𝑟𝑖, 𝑟𝑖+1 ∈ R denote the consecutive releases. By adjusting the metric to identify
performance changes at the option level, most of the false negatives become true positives,
increasing the recall by 35.7% from 59.4% to 95.1%. So, only adjusting the metric at the option
level accounts for most of the false negatives.

122 Performance Prediction in the Presence of Workload Variability

Another reason for a part of the remaining false negatives is the learning error of the
performance-influence models. We observed that in 2 out of 56 workloads the learning
error was higher than 10% (see Section 5.4.3). This suggests that using performance-influence
models with multiple linear regression for finding performance changes at option level might
not always work and can lead to wrong conclusions. In total, the high learning error accounts
for another 1.5% of the recall.

Summary To sum up, we have addressed multiple limitations in this section and investi-
gated them. First and foremost, we observed that the different metrics to identify a perfor-
mance change at the configuration level and at the option level represent the main reason for
the false positives in the precision and the false negatives in the recall. In our investigation, we
determined that matching themetrics of identifying performance changes at the configuration
level and at the option level would largely increase the precision and recall to over 95%. So,
using different metrics at the configuration level and option level represents one limitation.
Other limitations are that low performance values in combination with the learning error is
currently not considered, which again affects precision and recall. A further limitation of our
approach is distinguishing between optimizations and regressions.

Besides, we found no indication on false negatives or false positives that are caused by
different configuration spaces and, thus, conjecture that our approach can be used with
different configuration spaces. This is essential to cover software evolution in practice since
configuration options are typically added or removed over time [114].

Moreover, we also found that using imputation was a good choice since it enabled us to
immediately see a performance change when a configuration was running into a timeout
in a newer release or recovering from a timeout. Removing such configurations completely,
would have lead to missing many performance changes.

Implications

Insight: Workload sensitivity In RQ2, we investigated how many different workloads
could identify a performance change. Interestingly, 92.4% of the performance changes at
the configuration level were identified only in a subset of the workloads. Thus, different
workloads identify different performance changes. This insight confirms findings of recent
publications [79, 103]. Besides, for a further categorization ofwhichworkloads identify similar
performance changes at the configuration level, we created a dendrogram. In Figure 5.12, we
show a dendrogram using the performance change information at the configuration level
and also consider the direction (i.e., regression or optimization). In general, the dendrogram
indicates how similar some workloads are to each other by clustering them. The x-axis is the
average distance between groups of workloads and the y-axis contains the 56 workloads that
we measured. The higher the distance, the more different performance changes have been
identified by the different groups of workloads. We observe that the dendrogram mostly
clusters domains with similar names together. For instance, openstacksopt08strips/p12 and
openstacksopt11strips/p07 are similar domains and, according to the dendrogram, identify
similar performance changes. A further observation is that some other workloads such as
airport/p07airport2p2 and tidybotopt11strips/p01 differ much more from the rest than other
workloads. That is, that these workloads identify other performance changes than the rest of

5.4 Evaluation 123

freecell_prob45
snakeopt18strips_p04
tetrisopt14strips_p024

airport_p07airport2p2
movie_prob29

organicsynthesisopt18strips_p09
tidybotopt11strips_p01

satellite_p06pfile6
mprime_prob02

organicsynthesissplitopt18strips_p01
miconic_s132

visitallopt11strips_problem06full
psrsmall_p48s101n5l3f30

woodworkingopt08strips_p24
woodworkingopt11strips_p05

logistics98_prob31
pathways_p04

floortileopt11strips_optp01002
trucksstrips_p08

mystery_prob30
logistics00_probLOGISTICS71

visitallopt14strips_p057
pipesworldtankage_p31net4b14g3t20

pipesworldnotankage_p12net2b10g4
gedopt14strips_d76

pegsol08strips_p25
pegsolopt11strips_p15

nomysteryopt11strips_p17
zenotravel_p11

elevatorsopt08strips_p24
elevatorsopt11strips_p20

datanetworkopt18strips_p13
sokobanopt08strips_p22

grid_prob02
sokobanopt11strips_p17
transportopt14strips_p14

transportopt08strips_p04
transportopt11strips_p06

storage_p14
barmanopt11strips_pfile01001

depot_p10
openstacksstrips_p07

openstacksopt14strips_p20_3
hikingopt14strips_ptesting234

openstacksopt08strips_p12
openstacksopt11strips_p07

scanalyzer08strips_p06
scanalyzeropt11strips_p12

gripper_prob07
termesopt18strips_p18

driverlog_p08
parcprinter08strips_p25

parcprinteropt11strips_p10
blocks_probBLOCKS100

rovers_p07
tpp_p06

0 20 40 60 80 100 120

Average Manhattan Distance

Figure 5.12: Dendrogram for clustering all 56 workloads (y-axis) with regards to the performance
changes the respective workloads have identified at the configuration level. The x-axis is
the average Manhattan distance between clusters. The higher the Manhattan distance, the
more different performance changes have been identified by these clusters. Each of the 2
clusters is surrounded by a differently colored rectangle.

124 Performance Prediction in the Presence of Workload Variability

0.00

0.05

0.10

0.15

1 2 3 4 5 6 7 8 9 10
Number of clusters k

A
ve

ra
ge

 s
ilh

ou
et

te
 w

id
th

Figure 5.13: Overview of the average silhouette width [126] on different number of clusters. According
to the average silhouette width, 𝑘 = 2 is the best choice.

the workloads. Here, using a diverse set of workloads in terms of the performance changes
they identify, could help practitioners to identify performance changes early on. In essence,
selectingworkloads fromdifferent clusters would help in diversifying theworkload variability
with respect to uncovering performance changes. To select a suitable set of workloads using
the dendrogram, the number of workloads to measure has to be identified. We denote this
number as 𝑘, split the dendrogram in 𝑘 different clusters, and choose one workload from each
cluster. For demonstration, we use the average silhouette approach [126] in Figure 5.13 to
determine a suitable number of clusters. In essence, the average silhouette approach measures
the quality of a clustering using the distances within clusters and between clusters [126].
The higher the value, the better. In our case, the average silhoette approach determines that
𝑘 = 2 is the optimal number of clusters. We show the different clusters in Figure 5.12 and
would then select one workload for each of both clusters. For instance, airport/p07airport2p2
and satellite/p06pfile6 are very dissimilar to each other, belong to different clusters and,
thus, would be suitable candidates for performance testing. Choosing only these 2 workloads
already find 154 of a total of 398 (38.7%) different performance changes at the configuration
level (when considering the direction).

In further experiments, we observed that with 𝑘 = 7 workloads, we find 255 out of 398
(64%) performance changes and with 𝑘 = 10 workloads, we find 292 out of 398 (73.3%)
performance changes.

Insight: Duration of performance regressions The introduction of a performance regres-
sion is often not detected immediately. Inmany cases, it takes some time until the performance
regression is notified by users or developers and, afterwards, fixed. In Chapter 4, we observed
many cases where regressions have been addressed by the developers only a few releases
later. To investigate this, we assessed the number of releases until a performance regression is
optimized again and obtains nearly the original performance (depending on the standard
deviation of the measurement). In Figure 5.14, we show for FastDownward the number
of releases until a configuration obtained its original performance. In total, we found 418
performance regressions that were fixed after a number of releases. In most cases (i.e., 261
out of 418), a performance regression was fixed after 2 releases. Only rarely a regression

5.4 Evaluation 125

1 2 3 4
#Releases Until Fixed

0

100

200

Fr
eq

ue
nc

y

Figure 5.14: Overview of the number of releases until a regression was fixed.

was fixed after 3 or 4 releases. Such performance changes could be detected early on using a
configuration-aware and workload-aware continuous performance testing pipeline.

Reported performance bugs In our exploratory study, we found several performance
changes. Some of these performance changes were optimizations, others were regressions.
Many of the identified performance changes have been fixed in the latest release 22.12; oth-
erwise, the number of reported performance changes would be much higher. After the
evaluation of the performance changes at the configuration level, we could also identify 3
persisting performance regressions and reported these performance changes to the develop-
ers12. Interestingly, one of the 3 performance regressions was only persisting in 2 out of 56
workloads; in the other workloads, this regression was fixed. The developers responded to
our reports and started an investigation.

5.4.3 Threats to Validity

Construct Validity To select a reasonable set of workloads for our performance measure-
ments, we executed preliminary performance measurements with over 1 800 workloads and
selected afterwards 56 workloads from 56 different domains. However, given our setup, we
could havemissed important performance changes. Clearly, we couldmitigate this by choosing
a larger set of workloads. This, however, would have resulted in an even smaller configuration
space or smaller amount of releases, due to limited resources. Moreover, we already tried to
maximize the variation between workloads by using different domains (i.e., different types of
planning problems for FastDownward) and selected workloads used in competitions [149].
This makes us confident that we identified the most important performance changes.

For the evaluation of our research questions, we rely on comparing our results at the
configuration level and use it as a point of reference. The missing ground truth represents
another threat. In theory, the best point of reference is a ground truth that contains all
performance changes of FastDownward. This, however, is not feasible in practice since all
possible code paths (i.e., control flow) have to be taken into account to get precise data. A
white-box analysis typically needs a lot of resources in terms of processing power and time

12 Since we reported the performance regressions on the Discord server of FastDownward for further investigation
by the developers, we cannot provide a link to the report.

126 Performance Prediction in the Presence of Workload Variability

for large subject systems such as FastDownward with thousands of lines of codes. So, we
resort to use the performance data at the configuration level as point of reference, which
represents a well established means to detect performance changes [71].

We selected the timeout for our preliminary performance measurements (i.e., 5 minutes)
and for our overall performance measurements (i.e., 15 minutes) to correspond to a competi-
tion setting. The problem is that choosing other timeouts would change our results in this
chapter. However, it is difficult to choose a reasonable timeout. In fact, we also tried a timeout
of 24 hours and still observed some timeouts with some configurations in some releases and
workloads. Developers of FastDownward suggested a timeout of 5 minutes. This way, we
reduced the time needed for measurements, but also adapt the setup to real world scenarios
in terms of planning competitions [149]. For our overall performance measurements, we
increased the timeout from 5 minutes to 15 minutes to reduce the number of configurations
where we had to impute a value.

The way howwe treat a timeout in our measurement data is another threat. We imputed the
value 1 800 seconds (i.e., 30 minutes—double the timeout) in all configurations that resulted
in a timeout. The problem is that choosing another value than 1 800 for the imputation could
change our results. For instance, selecting 900 seconds (i.e., 15 minutes, which is our timeout)
would have been another candidate and would have resulted in less performance changes
since a few configurations indicate performance values in some workloads and releases that
are near to 15 minutes. For instance, a configuration that needs about 899 seconds in one
release for a workload and runs into a timeout in the next release, would not be detected at
the configuration level, as we demonstrate in the following example using our formula to
identify performance changes at the configuration level from Equation 5.1:

∣M𝑟𝑖,𝑤𝑗(𝑐) − M𝑟𝑖+1,𝑤𝑗(𝑐) ∣ > 2 ⋅ max(sd𝑟𝑖,𝑤𝑗(𝑐), sd𝑟𝑖+1,𝑤𝑗(𝑐))

In this example, the configuration has a runtime of 899 in release 𝑟𝑖 and runs into a timeout
in release 𝑟𝑖+1 (i.e., the imputed value will be 900). Further, we assume an average runtime of
100 seconds and a maximum standard deviation of 1%, which is well below our maximum
standard deviation of 10%. This results in the value of 2 for max(sd𝑟𝑖,𝑤𝑗(𝑐), sd𝑟𝑖+1,𝑤𝑗(𝑐)). This
results in the following: |899 − 900| ≯ 2 ⋅ 2. Clearly, we would miss such small configuration
changes when using 900 for imputation. Since we do not know the real performance values
of configurations that run into a timeout and we wanted to maximize the number of detected
performance changes for our exploratory study, we used the double of the timeout as the
imputed value.

Internal Validity Measurement noise is typically present in both, software and hard-
ware [105]. Measurement noise, however, is a problem that threatens the reproducibility of
our data. To counteract, we used identical hardware with a minimum Debian installation,
which corresponds to the mitigations used in Chapter 3 and Chapter 4. We repeated our
measurements 5 times except for the preliminary measurements, where we did not repeat our
measurements. We repeated these measurements for configurations where the performance
exceeded 0.1 seconds and 10% standard deviation. Note that we had to neglect repeating
the measurements for configurations faster than 0.1 seconds since the performance noise
was considerably higher in these measurements, which led to a higher variance (up to 80%
standard deviation). The standard deviation, however, was considered in our analysis and,

5.4 Evaluation 127

thus, is likely to neglect cases where performance noise is the reason for the performance
change.

We used the variance inflation factor (VIF) analysis to reduce multicollinearity in our
performance-influence models. The problem is that we did not follow community thresholds
and removed only perfectly multicollinear terms, instead. Furthermore, we used metrics to
decide whether a configuration on configuration level or an option/interaction on option level
indicates a performance change. Other publications that focus on performance changes used
different metrics. This represents an internal threat to validity since choosing other metrics
would change the outcome of our analysis. We have already discussed the use of the metrics
in Section 4.4.4 in more detail.

Our performance-modeling approach is based onmultiple linear regression. Usingmultiple
linear regression with feature forward selection poses another threat to internal validity. The
problem is that using other machine-learning approaches or using multiple linear regression
differently would produce other results. We selected multiple linear regression because
it produces better interpretable models in terms of the additive structure of the models.
But, always choosing the best candidate in the feature forward selection process might not
represent the best strategy. Instead, choosing a worse performing candidate could result in
much better performance models in a later iteration. In other words, our performance models
could present only a local optimum instead of a global optimum.

For assessing the learning error in our performance-modeling approach, we use the mean
absolute percentage error (MAPE). Again, choosing other metrics to assess the prediction
error influences our results. It is important to note that one of the drawbacks of using MAPE
for assessing the learning error is that the prediction is extremely high for values that are
very cloes to zero [52]. As a reminder, we use the following formula to calculate the MAPE:

MAPE =
1
|C| ⋅ ∑

𝑐∈C

|ℙ(𝑐) − Π(𝑐)|
ℙ(𝑐) ⋅ 100

where ℙ denotes the function that maps the configuration to its measured performance
value and Π(𝑐) denotes the performance-influence model that maps the configuration to its
predicted performance value. For instance, estimating 3.1 seconds for a configuration that
takes about 0.003 seconds leads to the following error:

𝜖 =
|3.1 − 0.003|

0.003 ⋅ 100 = 103 230

In this example, we obtain a percentage error of 103 230%. This is an actual example from
the workload visitallopt11strips/problem06full. In total, 2 out of 56 (i.e., visitallopt11strip-
s/problem06full and miconic/s132) workloads indicate learning errors of over 10% because
of this drawback. Although small values close to zero can be avoided by changing the mea-
surement unit from seconds to miliseconds, we decided to maintain the measurement unit
used by FastDownward for easier interpretation.

External Validity Although we demonstrated that our approach can identify performance
changes at the option level for FastDownward in this chapter and also demonstrated in
Chapter 4 that a similar approach can identify performance changes across configurations
and releases for 12 different subject systems, we cannot state whether our approach will

128 Performance Prediction in the Presence of Workload Variability

perform good on other subject systems. Since our approach is not designed specifically for
FastDownward, it can be used also for other subject systems. But, there may be even more
special cases such as themandatory alternative groups presented in Section 5.3.3. For instance,
the issue with mandatory alternative groups also applies for mandatory or groups. To the
best of our knowledge, or groups are only rarely used in practice and do not appear in subject
systems we have investigated in this thesis. Since our approach is not specifically designed for
the subject system FastDownward, our analysis is also applicable on other subject systems
that do not contain or groups.

5.5 Summary

Although performance changes have been extensively studied in the literature and in Chap-
ter 4, prior work has not focused on investigating three different dimensions: configurability,
software evolution, and workload variability. In this work, we addressed all three dimensions
at one and devised a novel approach to identify performance changes using the information
of all three dimensions. Our main focus was on assessing the limitations of a novel approach
for identifying performance changes at option level. In an exploratory study, we analyzed per-
formance changes of a single configurable software system over 49 configurations, 6 releases,
and 56 workloads. Overall, we identified 7 464 performance changes in different configu-
rations and workloads and 2 674 performance changes in different configuration options
or interactions among them. Comparing these results, our approach obtains a precision of
88.2% while having a recall of 59.4%. While analyzing the precision and recall in-depth, we
observed that the precision and recall could be increased by aligning the metrics to identify
performance changes at the configuration level or the option level.

Our results emphasize the role of workloads for identifying performance changes in con-
figurable software systems since the majority (92.4%) of performance changes was identified
only in a subset of the workloads. Interestingly, we found one performance change that was
identified only by 4 out of 56 workloads. Further, we cluster the workloads according to the
performance changes each workload identifies and demonstrated how this clustering can
be used to identify a suitable set of workloads for identifying performance changes. We also
found that using only 2 different workloads already finds 38.7% of the performance changes,
whereas increasing it to 10 different workloads finds 73.3% of the performance changes.

Another notable insight is that none of the performance regressions was fixed in the
subsequent release, but, at least, 2 releases later. Using a testing pipeline that considers
configurations and workloads alike to find such regressions early on could help in identifying
or even avoiding performance regressions. Our performance analysis helped in uncovering
3 persisting regressions in FastDownward and, thus, demonstrates that it can be used to
uncover performance regressions.

6
Concluding Remarks

Configurable software systems are widely established since they allow users to adapt the
software to different application scenarios, user requirements, or hardware requirements.
The flexibility of this adaptation comes with a price: Many software systems offer too many
configuration options [152]. Due to this high number of configuration options it is unclear how
the software system performs and, thus, which configuration exposes the best performance
characteristics for a given environment. This unclarity is further aggravated by software
evolution and workload variability, which are known to affect the performance of software
systems.

6.1 Contributions of this Thesis

The contributions of this thesis are to extend and use performance modeling to (1) improve
performance prediction and (2) to investigate how software evolution and workload variabil-
ity affect the performance of configurable systems. We address contribution (1) by proposing
a novel sampling approach to improve performance modeling. We address contribution (2)
by investigating in an empirical study and an exploratory study the influence of performance
while considering software evolution and workload variability, respectively.

Specifically, we made the following contributions:

1. We have proposed a novel sampling strategy, distance-based sampling, with the goal to
overcome the disadvantages exposed by state-of-the-art sampling strategies. The idea
of distance-based sampling is to diversify the configurations selected by a constraint
solver by using a distance metric. Since only using a distance metric did not diver-
sify the configurations enough, we expanded distance-based sampling to consider the
frequency of configuration options. In an empirical comparison on 10 real-world config-
urable software systems, we have compared distance-based sampling to other sampling
strategies. The evaluation has shown that distance-based sampling outperforms other
sampling strategies and comes close to random sampling. Besides, we identified current
limitations in terms of scalability while sampling on large configuration spaces, which
leaves further room for improvement. Our evaluation provides important insights into
the merits of using a distance-based metric for sampling configuration spaces.

2. In an empirical study, we have used performance modeling to assess how performance
changes and investigated software evolution of up to 15 years in 12 real-world config-
urable software systems. To assess the practicability of using performance modeling
for identifying performance changes, we have performed a meta-data analysis on the

129

130 Concluding Remarks

change log and commit messages of these real-world configurable software systems.
Our results indicate that most performance changes appear only in some specific config-
uration options. Further, we have found that most performance changes in general and,
specifically the affected configuration options, are reported by developers in the change
log or commit messages. Our empirical study provides important insights into the role
of software evolution and configurability since it confirms prior beliefs that performance
changes appear in only some configuration options. Our insights do have implications
on other domains, such as transfer learning (i.e., the most relevant configuration options
remain most relevant during software evolution). Our results demonstrate that using
a performance testing pipeline during development helps in identifying performance
changes early on.

3. In an exploratory study, we have investigated the role of workload variability, config-
urability, and software evolution together. To this end, we have investigated 49 con-
figurations and 56 different workloads among 6 different releases of FastDownward.
We found that 92.4% of the changes were identified only in a subset of the workloads.
Further, we have used the exploratory study to assess how using performance modeling
performs for finding performance changes. In our evaluation, we obtained a precision
of 88.2% and a recall of 59.4%. A deeper inspection of these results revealed limitations
of our approach and, on the base of that, suggested further improvements. Throughout
this study, we found 3 persisting performance regressions, which we reported to the
developers of FastDownward. This exploratory study helps in assessing whether perfor-
mance modeling can be used to identify performance changes and confirms findings of
other studies investigating the role of workload variability in presence of configurability.

Overall, we contributed to the field of performance modeling of configurable software sys-
tems by (1) proposing a novel sampling strategy designed to cover configuration spaces with
regards to performance; (2) lifting how performance changes affect software configurability
in practice; (3) demonstrating how performance modeling can be used to find performance
changes while including workload variability. This way, we provide better means for software
developers and users to identify performance changes in configurable software systems. To
the best of our knowledge, we are the first to consider configurability, evolution, andworkload
variability of configurable software systems at once. Our contributions have implications to
other domains, such as transfer learning.

6.2 Avenues of Future Work

Sampling Strategies Sampling is a problem not only specific to configurable software
systems. Thus, a large variety of different sampling strategies have been proposed in the past.
But despite the large variety of different sampling strategies, there is currently no guide on
which sampling strategy should be used and in which cases. One prominent example for such
sampling strategies is a graph-based algorithm for uniform sampling by Sharma et al. [133].
A promising step into the direction of providing a guide is undertaken by Acher et al. [2] by
proposing a framework that combines many of the sampling strategies. Using this tool in an
extensive study to compare this variety of sampling approaches would clarify the picture

6.2 Avenues of Future Work 131

of which sampling strategy is most suitable for certain situations and, thus, is a promising
avenue of future work.

Detection of Performance Changes Another avenue for future work is to improve the
metrics for detecting performance changes even further. Although we have used performance
modeling in an empirical and in an exploratory study, we conclude that there is still some
room for improvement given the current precision and recall of our approach before applying
the approach in the wild. The most important addition is to enhance our approach to support
or groups.Without the support of or groups, our approach cannot be applied on any arbitrary
configurable software system. Another addition to improve the outcome of our approach is
to include the prediction error of the learned performance-influence models in the metrics
for detecting performance changes.

Bibliography

[1] Mathieu Acher, Hugo Martin, Luc Lesoil, Arnaud Blouin, Jean-Marc Jézéquel, Djamel
Khelladi, Olivier Barais, and Juliana Pereira. “Feature Subset Selection for Learning
Huge Configuration Spaces: The Case of Linux Kernel Size.” In: Proceedings of the
International Systems and Software Product Line Conference (SPLC). ACM, 2022, pp. 85–
96.

[2] Mathieu Acher, Gilles Perrouin, and Maxime Cordy. “BURST: A Benchmarking Plat-
form for UniformRandom Sampling Techniques.” In: International Systems and Software
Product Line Conference (SPLC). ACM, 2021, pp. 36–40.

[3] Juan Alcocer and Alexandre Bergel. “Tracking Down Performance Variation Against
Source Code Evolution.” In: Proceedings of the Symposium on Dynamic Languages (DLS).
ACM, 2015, pp. 129–139.

[4] David Allen. “Mean Square Error of Prediction as a Criterion for Selecting Variables.”
In: Technometrics 13.3 (1971), pp. 469–475.

[5] Paul Allison. Missing Data. Sage Publications, 2001.
[6] David Andrews. “A Robust Method for Multiple Linear Regression.” In: Technometrics

16.4 (1974), pp. 523–531.
[7] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-Oriented Software

Product Lines: Concepts and Implementation. Springer, 2013.
[8] Sven Apel, Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, and Brady

Garvin. “Exploring Feature Interactions in the Wild: The New Feature-Interaction
Challenge.” In: Proceedings of the International Workshop on Feature-Oriented Software
Development (FOSD). ACM, 2013, pp. 1–8.

[9] Andrea Arcuri and Lionel Briand. “A Practical Guide for Using Statistical Tests
to Assess Randomized Algorithms in Software Engineering.” In: Proceedings of the
IEEE/ACM International Conference on Software Engineering (ICSE). IEEE / ACM, 2011,
pp. 1–10.

[10] David Benavides, Sergio Segura, and Antonio Ruiz Cortés. “Automated Analysis
of Feature Models 20 Years Later: A Literature Review.” In: Information Systems 35.6
(2010), pp. 615–636.

[11] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof Czar-
necki. “A Study of Variability Models and Languages in the Systems Software Do-
main.” In: Transactions on Software Engineering 39.12 (2013), pp. 1611–1640.

[12] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of Satisfiability. Vol. 185.
IOS press, 2009.

133

134 bibliography

[13] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. Handbook of Satisfia-
bility - Second Edition. Vol. 336. Frontiers in Artificial Intelligence and Applications.
IOS Press, 2021.

[14] Markus Blatt and Peter Bastian. “The Iterative Solver Template Library.” In: Proceedings
of the Workshop on State-Of-The-Art in Scientific and Parallel Computing (PARA). Springer.
2007, pp. 666–675.

[15] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. “WISE: Automated Test Generation
for Worst-Case Complexity.” In: Proceedings of the IEEE/ACM International Conference
on Software Engineering (ICSE). IEEE / ACM, 2009, pp. 463–473.

[16] Maria Calzarossa, Luisa Massari, and Daniele Tessera. “Workload Characterization:
A Survey Revisited.” In: ACM Computing Surveys 48.3 (2016), 48:1–48:43.

[17] Colin Cameron and Frank Windmeijer. “An R-Squared Measure of Goodness of Fit
for Some Common Nonlinear Regression Models.” In: Journal of Econometrics 77.2
(1997), pp. 329–342.

[18] Supratik Chakraborty, Daniel Fremont, Kuldeep Meel, Sanjit Seshia, and Moshe Vardi.
“Distribution-Aware Sampling andWeightedModel Counting for SAT.” In: Proceedings
of the Association for the Advancement of Artificial Intelligence (AAAI). AAAI Press, 2014,
pp. 1722–1730.

[19] Supratik Chakraborty, Kuldeep Meel, and Moshe Vardi. “A Scalable and Nearly
Uniform Generator of SAT Witnesses.” In: Proceedings of the International Conference on
Computer Aided Verification (CAV). Springer, 2013, pp. 608–623.

[20] Samprit Chatterjee and Jeffrey Simonoff. Handbook of Regression Analysis. Vol. 5. John
Wiley & Sons, 2013.

[21] Jinfu Chen and Weiyi Shang. “An Exploratory Study of Performance Regression
Introducing Code Changes.” In: Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2017, pp. 341–352.

[22] Tsong Chen, Hing Leung, and Iengkei Mak. “Adaptive Random Testing.” In: Pro-
ceedings of the Asian Computing Science Conference (ASIAN). Springer. 2004, pp. 320–
329.

[23] Zhifei Chen, Bihuan Chen, Lu Xiao, Xiao Wang, Lin Chen, Yang Liu, and Baowen Xu.
“Speedoo: prioritizing performance optimization opportunities.” In: Proceedings of the
International Conference on Software Engineering (ICSE). IEEE / ACM, 2018, pp. 811–821.

[24] Jiezhu Cheng, Cuiyun Gao, and Zibin Zheng. “HINNPerf: Hierarchical Interaction
Neural Network for Performance Prediction of Configurable Systems.” In: Transactions
on Software Engineering and Methodology 32.2 (2023), 46:1–46:30.

[25] EdmundClarke,OrnaGrumberg, Somesh Jha, YuanLu, andHelmutVeith. “Counterexample-
Guided Abstraction Refinement.” In: Proceedings of the International Conference on Com-
puter Aided Verification (CAV). Vol. 1855. Lecture Notes in Computer Science. Springer,
2000, pp. 154–169.

[26] Diego Costa, Cor-Paul Bezemer, Philipp Leitner, and Artur Andrzejak. “What’sWrong
with My Benchmark Results? Studying Bad Practices in JMH Benchmarks.” In: IEEE
Transactions on Software Engineering (TSE) 47.7 (2021), pp. 1452–1467.

bibliography 135

[27] Johannes Dorn, Sven Apel, and Norbert Siegmund. “Mastering Uncertainty in Per-
formance Estimations of Configurable Software Systems.” In: Proceedings of the In-
ternational Conference on Automated Software Engineering (ASE). IEEE, 2020, pp. 684–
696.

[28] Johannes Dorn, Sven Apel, and Norbert Siegmund. “Mastering Uncertainty in Perfor-
mance Estimations of Configurable Software Systems.” In: Empirical Software Engi-
neering 28.2 (2023), p. 33.

[29] Rafael Dutra, Kevin Laeufer, Jonathan Bachrach, and Koushik Sen. “Efficient Sampling
of SAT Solutions for Testing.” In: Proceedings of the IEEE/ACM International Conference
on Software Engineering (ICSE). IEEE / ACM, 2018, pp. 549–559.

[30] Dror Feitelson. “Workload Modeling for Performance Evaluation.” In: Performance
Evaluation of Complex Systems: Techniques and Tools. Springer, 2002, pp. 114–141.

[31] King Foo, Zhen Jiang, Bram Adams, Ahmed Hassan, Ying Zou, and Parminder Flora.
“Mining Performance Regression Testing Repositories for Automated Performance
Analysis.” In: Proceedings of the International Conference on Quality Software (QRS). IEEE,
2010, pp. 32–41.

[32] Hormozd Gahvari, Allison Baker, Martin Schulz, Ulrike Yang, Kirk Jordan, and
William Gropp. “Modeling the Performance of an Algebraic Multigrid Cycle on HPC
Platforms.” In: Proceedings of the International Conference on Supercomputing (ICSP).
ACM, 2011, pp. 172–181.

[33] Andy Georges, Dries Buytaert, and Lieven Eeckhout. “Statistically Rigorous Java
Performance Evaluation.” In: Proceedings of the Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, (OOPSLA). ACM,
2007, pp. 57–76.

[34] Vibhav Gogate and Rina Dechter. “A New Algorithm for Sampling CSP Solutions
Uniformly at Random.” In: Proceedings of the International Conference on Principles and
Practice of Constraint Programming (CP). Springer. 2006, pp. 711–715.

[35] Jingzhi Gong and Tao Chen. “Does Configuration Encoding Matter in Learning
Software Performance? An Empirical Study on Encoding Schemes.” In: Proceedings of
the International Conference on Mining Software Repositories (MSR). ACM, 2022, pp. 482–
494.

[36] Alexander Grebhahn, Christian Kaltenecker, Christian Engwer, Norbert Siegmund,
and Sven Apel. “Lightweight, Semi-Automatic Variability Extraction: A Case Study
on Scientific Computing.” In: Empirical Software Engineering 26.2 (2021), p. 23.

[37] Alexander Grebhahn, Carmen Rodrigo, Norbert Siegmund, Francisco Gaspar, and
Sven Apel. “Performance-Influence Models of Multigrid Methods: A Case Study
on Triangular Grids.” In: Concurrency and Computation Practice and Experience 29.17
(2017).

[38] Alexander Grebhahn, Norbert Siegmund, and Sven Apel. “Predicting Performance of
Software Configurations: There is no Silver Bullet.” In: Computing Research Repository
(2019). Available at https://arxiv.org/pdf/1911.12643.pdf.

136 bibliography

[39] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej Wa-
sowski. “Variability-Aware Performance Prediction: A Statistical Learning Approach.”
In: Proceedings of the International Conference on Automated Software Engineering (ASE).
IEEE, 2013, pp. 301–311.

[40] Jianmei Guo, Dingyu Yang, Norbert Siegmund, Sven Apel, Atrisha Sarkar, Pavel Valov,
Krzysztof Czarnecki, AndrzejWasowski, andHuiqun Yu. “Data-Efficient Performance
Learning for Configurable Systems.” In: Empirical Software Engineering 23.3 (2018),
pp. 1826–1867.

[41] Huong Ha and Hongyu Zhang. “DeepPerf: Performance Prediction for Configurable
Software with Deep Sparse Neural Network.” In: Proceedings of the IEEE/ACM In-
ternational Conference on Software Engineering (ICSE). IEEE / ACM, 2019, pp. 1095–
1106.

[42] Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin, and
Benoit Baudry. “Test Them All, Is It Worth It? Assessing Configuration Sampling on
the JHipster Web Development Stack.” In: Empirical Software Engineering 24.2 (2019),
pp. 674–717.

[43] Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang, and Tao Xie. “Performance
Debugging in the Large via Mining Millions of Stack Traces.” In: Proceedings of the
IEEE/ACM International Conference on Software Engineering (ICSE). IEEE / ACM, 2012,
pp. 145–155.

[44] Xue Han and Tingting Yu. “An Empirical Study on Performance Bugs for Highly
Configurable Software Systems.” In: Proceedings of the International Symposium on
Empirical Software Engineering and Measurement (ESEM). IEEE / ACM, 2016, 23:1–
23:10.

[45] Christoph Heger, Jens Happe, and Roozbeh Farahbod. “Automated Root Cause Isola-
tion of Performance Regressions During Software Development.” In: Proceedings of
the ACM/SPEC International Conference on Performance Engineering (ICPE). ACM, 2013,
pp. 27–38.

[46] Malte Helmert. “The Fast Downward Planning System.” In: Journal of Artificial Intelli-
gence Resesearch 26 (2006), pp. 191–246.

[47] Christopher Henard, Mike Papadakis, Mark Harman, and Yves Le Traon. “Combin-
ing Multi-Objective Search and Constraint Solving for Configuring Large Software
Product Lines.” In: Proceedings of the IEEE/ACM International Conference on Software
Engineering (ICSE). IEEE / ACM, 2015, pp. 517–528.

[48] Ruben Heradio, David Fernández-Amorós, José Galindo, David Benavides, and Don
Batory. “Uniform and Scalable Sampling of Highly Configurable Systems.” In: Empiri-
cal Software Engineering 27.2 (2022), p. 44.

[49] Andreas M. Hinz, Sandi Klavzar, Uros Milutinovic, and Ciril Petr. The Tower of Hanoi -
Myths and Maths. Birkhäuser, 2013.

bibliography 137

[50] Claus Hunsen, Bo Zhang, Janet Siegmund, Christian Kästner, Olaf Leßenich, Martin
Becker, and SvenApel. “Preprocessor-Based Variability in Open-Source and Industrial
Software Systems: An Empirical Study.” In: Empirical Software Engineering 21.2 (2016),
pp. 449–482.

[51] Karl Huppler. “The Art of Building a Good Benchmark.” In: TPC Technology Confer-
ence on Performance Evaluation & Benchmarking (TPCTC). Vol. 5895. Lecture Notes in
Computer Science. Springer, 2009, pp. 18–30.

[52] Rob Hyndman and Anne Koehler. “Another Look at Measures of Forecast Accuracy.”
In: International Journal of Forecasting 22.4 (2006), pp. 679–688.

[53] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction
to Statistical Learning. Vol. 112. Springer, 2013.

[54] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner, Akshay Patel,
and Yuvraj Agarwal. “Transfer Learning for Performance Modeling of Configurable
Systems: An Exploratory Analysis.” In: Proceedings of the International Conference on
Automated Software Engineering (ASE). IEEE, 2017, pp. 497–508.

[55] Pooyan Jamshidi, Miguel Velez, Christian Kästner, and Norbert Siegmund. “Learning
to Sample: Exploiting Similarities Across Environments to Learn Performance Models
for Configurable Systems.” In: Proceedings of the Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE). ACM, 2018, pp. 71–82.

[56] Zhen Jiang and Ahmed Hassan. “A Survey on Load Testing of Large-Scale Software
Systems.” In: Transactions on Software Engineering 41.11 (2015), pp. 1091–1118.

[57] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. “Understanding
and Detecting Real-World Performance Bugs.” In: Conference on Programming Language
Design and Implementation (PLDI). ACM, 2012, pp. 77–88.

[58] Fagereng Johansen, Øystein Haugen, and Franck Fleurey. “An Algorithm for Gen-
erating T-Wise Covering Arrays from Large Feature Models.” In: Proceedings of the
International Software Product Line Conference (SPLC). ACM. 2012, pp. 46–55.

[59] Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, and Sven Apel. “The
Interplay of Sampling and Machine Learning for Software Performance Prediction.”
In: IEEE Software 37.4 (2020), pp. 58–66.

[60] Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, Jianmei Guo, and
Sven Apel. “Distance-Based Sampling of Software Configuration Spaces.” In: Proceed-
ings of the IEEE/ACM International Conference on Software Engineering (ICSE). IEEE /
ACM, 2019, pp. 1084–1094.

[61] Christian Kaltenecker, Stefan Mühlbauer, Alexander Grebhahn, Norbert Siegmund,
and Sven Apel. “Performance Evolution of Configurable Software Systems: An Em-
pirical Study.” In: Empirical Software Engineering 28.6 (2023), 152:1–152:41.

[62] Maurice Kendall. “A New Measure of Rank Correlation.” In: Biometrika 30.1/2 (1938),
pp. 81–93.

138 bibliography

[63] AndyKenner, ChristianKästner, SteffenHaase, and Thomas Leich. “TypeChef: Toward
Type Checking #ifdef Variability in C.” In: Proceedings of the International Workshop on
Feature-Oriented Software Development (FOSD). ACM, 2010, pp. 25–32.

[64] Chang Hwan Peter Kim, Christian Kästner, and Don S. Batory. “On the Modularity
of Feature Interactions.” In: Proceedings of the International Conference on Generative
Programming and Component Engineering (GPCE). ACM, 2008, pp. 23–34.

[65] Alexander Knüppel, Thomas Thüm, StephanMennicke, Jens Meinicke, and Ina Schae-
fer. “Is There a Mismatch Between Real-World Feature Models and Product-Line
Research?” In: Proceedings of the Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM, 2017, pp. 291–302.

[66] Alexander Knüppel, Thomas Thüm, Carsten Pardylla, and Ina Schaefer. “Understand-
ing Parameters of Deductive Verification: An Empirical Investigation of KeY.” In:
Proceedings of the International Conference on Interactive Theorem Proving (ITP). Springer,
2018, pp. 342–361.

[67] Ugur Koc, Austin Mordahl, Shiyi Wei, Jeffrey Foster, and Adam Porter. “SATune: A
Study-Driven Auto-Tuning Approach for Configurable Software Verification Tools.”
In: Proceedings of the International Conference on Automated Software Engineering (ASE).
IEEE, 2021, pp. 330–342.

[68] Sergiy S. Kolesnikov, Norbert Siegmund, Christian Kästner, Alexander Grebhahn,
and Sven Apel. “Tradeoffs in Modeling Performance of Highly Configurable Software
Systems.” In: Software and Systems Modeling. 18.3 (2019), pp. 2265–2283.

[69] Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, and Sven Apel. “On the
Relation of Control-flow and Performance Feature Interactions: A Case Study.” In:
Empirical Software Engineering 24.4 (2019), pp. 2410–2437.

[70] Lars Kotthoff. “Algorithm Selection for Combinatorial Search Problems: A Survey.” In:
Data Mining and Constraint Programming - Foundations of a Cross-Disciplinary Approach.
Vol. 10101. Lecture Notes in Computer Science. Springer, 2016, pp. 149–190.

[71] Samuel Kounev, Klaus-Dieter Lange, and Jóakim von Kistowski. Systems Benchmarking
– For Scientists and Engineers. Springer, 2020.

[72] Eugene Krause. Taxicab Geometry: An Adventure in Non-Euclidean Geometry. Courier
Corporation, 1986.

[73] Rahul Krishna, Chong Tang, Kevin J. Sullivan, and Baishakhi Ray. “ConEx: Efficient Ex-
ploration of Big-Data System Configurations for Better Performance.” In: Transactions
on Software Engineering 48.3 (2022), pp. 893–909.

[74] WilliamKruskal and AllenWallis. “Use of Ranks in One-Criterion Variance Analysis.”
In: Journal of the American Statistical Association 47.260 (1952), pp. 583–621.

[75] Max Kuhn and Kjell Johnson. Applied Predictive Modeling. Vol. 26. Springer, 2013.
[76] Donghun Lee, Sang Cha, and Arthur Lee. “A Performance Anomaly Detection and

Analysis Framework for DBMS Development.” In: IEEE Transactions on Knowledge and
Data Engineering 24.8 (2012), pp. 1345–1360.

bibliography 139

[77] YuLei, RaghuKacker, RichardKuhn,VadimOkun, and James Lawrence. “IPOG/IPOG-
D: Efficient Test Generation for Multi-Way Combinatorial Testing.” In: Software Testing,
Verification and Reliability 18.3 (2008), pp. 125–148.

[78] Philipp Leitner and Cor-Paul Bezemer. “An Exploratory Study of the State of Practice
of Performance Testing in Java-Based Open Source Projects.” In: Proceedings of the
ACM/SPEC on International Conference on Performance Engineering (ICPE). ACM, 2017,
pp. 373–384.

[79] Luc Lesoil, Mathieu Acher, Arnaud Blouin, and Jean-Marc Jézéquel. “Input Sensitivity
on the Performance of Configurable Systems an Empirical Study.” In: Journal of Systems
and Software (2023), p. 111671.

[80] Luc Lesoil, Hugo Martin, Mathieu Acher, Arnaud Blouin, and Jean-Marc Jézéquel.
“Transferring Performance between Distinct Configurable Systems : A Case Study.”
In: Proceedings of the International Workshop on Variability Modelling of Software-Intensive
Systems (VaMoS). ACM, 2022, 10:1–10:6.

[81] HowardLevene. “Robust Tests for Equality of Variances.” In:Contributions to Probability
and Statistics. Essays in Honor of Harold Hotelling. Stanford University Press, 1961,
pp. 279–292.

[82] Jia Liang, Vijay Ganesh, Krzysztof Czarnecki, and Venkatesh Raman. “SAT-Based
Analysis of Large Real-World FeatureModels is Easy.” In:Proceedings of the International
Software Product Line Conference (SPLC). 2015, pp. 91–100.

[83] Lizhi Liao, Jinfu Chen, Heng Li, Yi Zeng, Weiyi Shang, Jianmei Guo, Catalin Sporea,
Andrei Toma, and Sarah Sajedi. “Using Black-Box Performance Models to Detect Per-
formance Regressions Under Varying Workloads: An Empirical Study.” In: Empirical
Software Engineering 25.5 (2020), pp. 4130–4160.

[84] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael Schulze.
“An Analysis of the Variability in Forty Preprocessor-Based Software Product Lines.”
In: Proceedings of the IEEE/ACM International Conference on Software Engineering (ICSE).
IEEE / ACM, 2010, pp. 105–114.

[85] Jörg Liebig, Christian Kästner, and Sven Apel. “Analyzing the Discipline of Prepro-
cessor Annotations in 30 Million Lines of C Code.” In: Proceedings of the International
Conference on Aspect-Oriented Software Development (AOSD). ACM, 2011, pp. 191–202.

[86] Jörg Liebig, Alexander von Rhein, Christian Kästner, Sven Apel, Jens Dörre, and
Christian Lengauer. “Scalable Analysis of Variable Software.” In: Proceedings of the
Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM, 2013, pp. 81–
91.

[87] Jörg Liebig. “Analysis and Transformation of Configurable Systems.” PhD thesis.
University of Passau, 2015.

[88] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej Wa-
sowski. “Evolution of the Linux Kernel Variability Model.” In: Proceedings of the
International Systems and Software Product Line Conference (SPLC). Vol. 6287. Lecture
Notes in Computer Science. Springer, 2010, pp. 136–150.

140 bibliography

[89] Scott Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model Predic-
tions.” In: Proceedings of the Annual Conference on Neural Information Processing Systems
(NIPS). 2017, pp. 4765–4774.

[90] Haroon Malik, Hadi Hemmati, and Ahmed Hassan. “Automatic Detection of Perfor-
mance Deviations in the Load Testing of Large Scale Systems.” In: Proceedings of the
IEEE/ACM International Conference on Software Engineering (ICSE). IEEE / ACM, 2013,
pp. 1012–1021.

[91] Henry Mann and Donald Whitney. “On a Test of Whether One of Two Random
Variables is Stochastically Larger than the Other.” In:Annals of Mathematical Statististics
18 (1947), pp. 50–60.

[92] Dusica Marijan, Arnaud Gotlieb, Sagar Sen, and Aymeric Hervieu. “Practical Pairwise
Testing for Software Product Lines.” In: Proceedings of the International Software Product
Line Conference (SPLC). ACM. 2013, pp. 227–235.

[93] Hugo Martin, Mathieu Acher, Juliana Pereira, Luc Lesoil, Jean-Marc Jézéquel, and
Djamel Khelladi. “Transfer Learning Across Variants and Versions: The Case of Linux
Kernel Size.” In: Transactions on Software Engineering 48.11 (2022), pp. 4274–4290.

[94] John McGregor. “Testing a Software Product Line.” In: Proceedings of the Pernambuco
Summer School on Software Engineering (PSSE). Vol. 6153. Lecture Notes in Computer
Science. Springer, 2007, pp. 104–140.

[95] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel. “A
Comparison of 10 Sampling Algorithms for Configurable Systems.” In: Proceedings of
the IEEE/ACM International Conference on Software Engineering (ICSE). IEEE / ACM,
2016, pp. 643–654.

[96] Daniel Menascé, Virgílio Almeida, Rodrigo Fonseca, and Marco Mendes. “A Method-
ology for Workload Characterization of E-Commerce Sites.” In: Proceedings of the ACM
Conference on Electronic Commerce (EC). ACM, 1999, pp. 119–128.

[97] MarcílioMendonça,Moises Branco, andDonald Cowan. “S.P.L.O.T.: Software Product
Lines Online Tools.” In: Proceedings of the Companion to the Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA). ACM, 2009, pp. 761–
762.

[98] Tom Mens and Serge Demeyer, eds. Software Evolution. Springer, 2008.
[99] Nicholas Metropolis and Stanislaw Ulam. “The Monte Carlo Method.” In: Journal of

the American statistical association 44.247 (1949), pp. 335–341.
[100] Leonardo deMoura andNikolaj Bjørner. “Z3: An Efficient SMT Solver.” In: Proceedings

of the International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS). Springer, 2008, pp. 337–340.

[101] Stefan Mühlbauer, Sven Apel, and Norbert Siegmund. “Accurate Modeling of Perfor-
mance Histories for Evolving Software Systems.” In: Proceedings of the International
Conference on Automated Software Engineering (ASE). ACM, 2019, pp. 640–652.

[102] Stefan Mühlbauer, Sven Apel, and Norbert Siegmund. “Identifying Software Per-
formance Changes Across Variants and Versions.” In: Proceedings of the International
Conference on Automated Software Engineering (ASE). IEEE, 2020, pp. 611–622.

bibliography 141

[103] Stefan Mühlbauer, Florian Sattler, Christian Kaltenecker, Johannes Dorn, Sven Apel,
and Norbert Siegmund. “Analyzing the Impact of Workloads on Modeling the Perfor-
mance of Configurable Software Systems.” In: Proceedings of the IEEE/ACM Interna-
tional Conference on Software Engineering (ICSE). to appear. IEEE / ACM, 2023.

[104] Raymond Myers. Classical and Modern Regression with Applications. Vol. 2. Duxbury
press Belmont, 1990.

[105] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter Sweeney. “Producing
Wrong Data Without Doing Anything Obviously Wrong!” In: Proceedings of the Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). ACM, 2009, pp. 265–276.

[106] Arnaud De Myttenaere, Boris Golden, Bénédicte Le Grand, and Fabrice Rossi. “Mean
Absolute Percentage Error for Regression Models.” In: Neurocomputing 192 (2016),
pp. 38–48.

[107] Stefan Mühlbauer, Sven Apel, and Norbert Siegmund. “Identifying Software Per-
formance Changes Across Variants and Versions.” In: Proceedings of the International
Conference on Automated Software Engineering (ASE). ACM, 2020.

[108] NicoNagelkerke. “ANote on aGeneral Definition of theCoefficient ofDetermination.”
In: Biometrika 78.3 (1991), pp. 691–692.

[109] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. “Using Bad Learners to
Find Good Configurations.” In: Proceedings of the Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE). ACM, 2017, pp. 257–267.

[110] Subhash Narula and John Wellington. “Prediction, Linear Regression and the Mini-
mum Sum of Relative Errors.” In: Technometrics 19.2 (1977), pp. 185–190.

[111] Thanh Nguyen, Meiyappan Nagappan, Ahmed Hassan, Mohamed Nasser, and Par-
minder Flora. “An Industrial Case Study of Automatically Identifying Performance
Regression-Causes.” In: Proceedings of the Working Conference on Mining Software Repos-
itories (MSR). ACM, 2014, pp. 232–241.

[112] JehoOh, Don Batory,MargaretMyers, andNorbert Siegmund. “FindingNear-Optimal
Configurations in Product Lines by Random Sampling.” In: Proceedings of the JointMeet-
ing of the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE). 2017, pp. 61–71.

[113] Robert M O’brien. “A Caution Regarding Rules of Thumb for Variance Inflation
Factors.” In: Quality & quantity 41 (2007), pp. 673–690.

[114] Leonardo Passos and Krzysztof Czarnecki. “A Dataset of Feature Additions and
Feature Removals from the Linux Kernel.” In: Proceedings of the Working Conference on
Mining Software Repositories (MSR). ACM, 2014, pp. 376–379.

[115] Leonardo Passos, Rodrigo Queiroz, Mukelabai Mukelabai, Thorsten Berger, Sven
Apel, Krzysztof Czarnecki, and Jesús Padilla. “A Study of Feature Scattering in the
Linux Kernel.” In: IEEE Transactions on Software Engineering (TSE). IEEE, 2018.

142 bibliography

[116] Leonardo Passos, Leopoldo Teixeira, Nicolas Dintzner, Sven Apel, Andrzej Wasowski,
Krzysztof Czarnecki, Paulo Borba, and Jianmei Guo. “Coevolution of Variability
Models and Related Software Artifacts - A Fresh Look at Evolution Patterns in the
Linux Kernel.” In: Empirical Software Engineering 21.4 (2016), pp. 1744–1793.

[117] Xin Peng, Yijun Yu, and Wenyun Zhao. “Analyzing Evolution of Variability in a
Software Product Line: From Contexts and Requirements to Features.” In: Information
& Software Technology 53.7 (2011), pp. 707–721.

[118] Juliana Alves Pereira, Mathieu Acher, Hugo Martin, and Jean-Marc Jézéquel. “Sam-
pling Effect on Performance Prediction of Configurable Systems: A Case Study.” In:
Proceedings of the ACM/SPEC on International Conference on Performance Engineering
(ICPE). ACM, 2020.

[119] Tobias Pett, Thomas Thüm, Tobias Runge, Sebastian Krieter, Malte Lochau, and Ina
Schaefer. “Product Sampling for Product Lines: The Scalability Challenge.” In: Pro-
ceedings of the International Systems and Software Product Line Conference (SPLC). ACM,
2019, 14:1–14:6.

[120] Quentin Plazar, Mathieu Acher, Gilles Perrouin, Xavier Devroey, and Maxime Cordy.
“Uniform Sampling of SAT Solutions for Configurable Systems: AreWe There Yet?” In:
Proceedings of the International Conference on Software Testing, Validation and Verification,
(ICST). IEEE, 2019, pp. 240–251.

[121] Mario Pukall, Christian Kästner,Walter Cazzola, SebastianGötz, Alexander Grebhahn,
Reimar Schröter, and Gunter Saake. “JavAdaptor - Flexible Runtime Updates of Java
Applications.” In: Software: Practice and Experience 43.2 (2013), pp. 153–185.

[122] David Reichelt and Stefan Kühne. “How to Detect Performance Changes in Software
History: Performance Analysis of Software System Versions.” In: Proceedings of the
International Conference on Performance Engineering (ICPE). ACM, 2018, pp. 183–188.

[123] Alexander von Rhein, Jörg Liebig, Andreas Janker, Christian Kästner, and Sven Apel.
“Variability-Aware Static Analysis at Scale: An Empirical Study.” In: Transactions on
Software Engineering and Methodology 27.4 (2018), 18:1–18:33.

[124] Marco Ribeiro, Sameer Singh, and Carlos Guestrin. “”Why Should I Trust You?”:
Explaining the Predictions of Any Classifier.” In: Proceedings of the ACM International
Conference on Knowledge Discovery and Data Mining(SIGKDD). 2016, pp. 1135–1144.

[125] Pau Rodríguez, Miguel Bautista, Jordi Gonzàlez, and Sergio Escalera. “Beyond One-
Hot Encoding: Lower Dimensional Target Embedding.” In: Image and Vision Computing
75 (2018), pp. 21–31.

[126] Peter Rousseeuw. “Silhouettes: A Graphical Aid to the Interpretation and Validation
of Cluster Analysis.” In: Journal of Computational and Applied Mathematics 20 (1987),
pp. 53–65.

[127] Per Runeson, Martin Höst, Austen Rainer, and Björn Regnell. Case Study Research in
Software Engineering - Guidelines and Examples. Wiley, 2012.

[128] Andrea Saltelli. Global Sensitivity Analysis: The Primer. Wiley, 2008.

bibliography 143

[129] Atri Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel, and Krzysztof Czarnecki.
“Cost-Efficient Sampling for Performance Prediction of Configurable Systems (T).”
In: Proceedings of the International Conference on Automated Software Engineering (ASE).
IEEE, 2015, pp. 342–352.

[130] Klaus Schmid, Rick Rabiser, and Paul Grünbacher. “A Comparison of Decision Mod-
eling Approaches in Product Lines.” In: Proceeddings of the International Workshop
on Variability Modelling of Software-Intensive Systems (VaMoS). ACM International
Conference Proceedings Series. ACM, 2011, pp. 119–126.

[131] Ismael Seidel, Bruno de Moraes, Emilio Wuerges, and José Güntzel. “Quality Assess-
ment of Subsampling Patterns for PEL Decimation Targeting High Definition Video.”
In: Proceedings of the International Conference on Multimedia and Expo (ICME). IEEE,
2013, pp. 1–6.

[132] Christoph Seidl, Florian Heidenreich, and Uwe Aßmann. “Co-Evolution of Models
and Feature Mapping in Software Product Lines.” In: Proceedings of the International
Software Product Line Conference on (SPLC). ACM, 2012, p. 76.

[133] Shubham Sharma, Rahul Gupta, Subhajit Roy, and Kuldeep Meel. “Knowledge Com-
pilation meets Uniform Sampling.” In: Proceedings of the International Conference on
Logic for Programming, Artificial Intelligence and Reasoning (ICLP). Vol. 57. EPiC Series
in Computing. EasyChair, 2018, pp. 620–636.

[134] Steven She. “Feature Model Synthesis.” PhD thesis. University of Waterloo, Canada,
2013.

[135] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof Czar-
necki. “The Variability Model of The Linux Kernel.” In: Proceedings of the International
Workshop on Variability Modelling of Software-Intensive Systems (VaMoS). Vol. 37. ICB-
Research Report. Universität Duisburg-Essen, 2010, pp. 45–51.

[136] Simon Sheather. A Modern Approach to Regression with R. Springer Science & Business
Media, 2009.

[137] Galit Shmueli. “To Explain or to Predict?” In: Statistical Science 25.3 (2010), pp. 289–
310.

[138] Norbert Siegmund. “Measuring and Predicting Non-Functional Properties of Cus-
tomizable Programs.” PhD thesis. Otto-von-Guericke-Universität Magdeburg, 2012.

[139] Norbert Siegmund,AlexanderGrebhahn, SvenApel, andChristianKästner. “Performance-
Influence Models for Highly Configurable Systems.” In: Proceedings of the IEEE/ACM
International Conference on Software Engineering (ICSE). IEEE / ACM, 2015, pp. 284–
294.

[140] Norbert Siegmund, Sergiy Kolesnikov, Christian Kästner, Sven Apel, Don S. Batory,
Marko Rosenmüller, and Gunter Saake. “Predicting Performance via Automated
Feature-Interaction Detection.” In: Proceedings of the IEEE/ACM International Conference
on Software Engineering (ICSE). IEEE / ACM, 2012, pp. 167–177.

144 bibliography

[141] Norbert Siegmund, Marko Rosenmüller, Christian Kästner, Paolo Giarrusso, Sven
Apel, and Sergiy Kolesnikov. “Scalable Prediction of Non-functional Properties in
Software Product Lines: Footprint and Memory Consumption.” In: Information &
Software Technology 55.3 (2013), pp. 491–507.

[142] Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Christian Kästner, Sven
Apel, and Gunter Saake. “SPL Conqueror: Toward Optimization of Non-Functional
Properties in Software Product Lines.” In: Software Quality Journal 20.3-4 (2012),
pp. 487–517.

[143] Kevin Skadron, Margaret Martonosi, David August, Mark Hill, David Lilja, and Vijay
Pai. “Challenges in Computer Architecture Evaluation.” In: Computer 36.8 (2003),
pp. 30–36.

[144] George Snedecor and Cochran William. Statistical Methods. Tech. rep. International
Statistical Institute, 1989.

[145] Chico Sundermann,Kevin Feichtinger, Dominik Engelhardt, RickRabiser, andThomas
Thüm. “Yet Another Textual Variability Language?: A Community Effort Towards
a Unified Language.” In: Proceedings of the International Systems and Software Product
Line Conference (SPLC). ACM, 2021, pp. 136–147.

[146] Syncsort. Assessing the Financial Impact of Downtime. 2018.
[147] Reinhard Tartler, Daniel Lohmann, Christian Dietrich, Christoph Egger, and Julio

Sincero. “Configuration Coverage in the Analysis of Large-Scale System Software.”
In: Operating Systems Review 45.3 (2011), pp. 10–14.

[148] Thomas Thüm, Leopoldo Teixeira, Klaus Schmid, EricWalkingshaw,MukelabaiMuke-
labai, Mahsa Varshosaz, Goetz Botterweck, Ina Schaefer, and Timo Kehrer. “Towards
Efficient Analysis of Variation in Time and Space.” In: Proceedings of the International
Systems and Software Product Line Conference (SPLC). ACM, 2019, 69:1–69:8.

[149] Mauro Vallati, Lukás Chrpa,Marek Grzes, Thomas LeoMcCluskey,Mark Roberts, and
Scott Sanner. “The 2014 International Planning Competition: Progress and Trends.”
In: AI Magazine 36.3 (2015), pp. 90–98.

[150] Andras Vargha and Harold Delaney. “A Critique and Improvement of the ”CL” Com-
mon Language Effect Size Statistics of McGraw and Wong.” In: Journal of Educational
and Behavioral Statistics 25.2 (2000), pp. 101–132.

[151] Elaine Weyuker and Filippos Vokolos. “Experience with Performance Testing of
Software Systems: Issues, an Approach, and Case Study.” In: Transactions on Software
Engineering 26.12 (2000), pp. 1147–1156.

[152] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and Rukma
Talwadker. “Hey, You Have Given Me Too Many Knobs! Understanding and Dealing
with Over-Designed Configuration in System Software.” In: Proceedings of the Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering (ESEC/FSE). ACM, 2015, pp. 307–
319.

bibliography 145

[153] Andy Yoo, Morris Jette, and Mark Grondona. “SLURM: Simple Linux Utility for
Resource Management.” In: Proceedings of the International Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP). Vol. 2862. Lecture Notes in Computer Science.
Springer, 2003, pp. 44–60.

[154] Shahed Zaman, Bram Adams, and Ahmed Hassan. “Security Versus Performance
Bugs: ACase Study on Firefox.” In:Proceedings of the IEEE/ACM International Conference
on Software Engineering (ICSE). ACM, 2011, pp. 93–102.

[155] Shahed Zaman, Bram Adams, and Ahmed Hassan. “A Qualitative Study on Perfor-
mance Bugs.” In: Proceedings of the Working Conference on Mining Software Repositories
(MSR). IEEE, June 2012, pp. 199–208.

[156] Neng-Fa Zhou and Jonathan Fruhman. “Toward a Dynamic Programming Solution
for the 4-peg Tower of Hanoi Problem with Configurations.” In: Computing Research
Repository abs/1301.7673 (2013).

[157] Pieter van Zyl, Derrick Kourie, and Andrew Boake. “Comparing the Performance of
Object Databases and ORM Tools.” In: Proceedings of the Annual Research Conference
of the South African Institute of Computer Scientists and Information Technologists on IT
Research in Developing Countries (SAICSIT). South African Institute for Computer
Scientists and Information Technologists, 2006, pp. 1–11.

A
Appendix

In this chapter, we present further material for this thesis. In Section A.1, we list all constraints
of the exemplary subject system Comp after one-hot encoding (see Section 2.1.5). The remain-
der is supplementary material for Chapter 5. In particular, we present the feature model from
FastDownward in Figure A.1 and the exact recall and precision values from Section 5.4.1 in
Table A.1.

147

148 Appendix

a.1 Constraints after One-Hot Encoding

In the following, we present the constraints of the subject system Comp after the one-hot
encoding:

𝑐(root)
𝑐(Encryption) ⇒ 𝑐(root)
𝑐(Compression) ⇒ 𝑐(root)
𝑐(CompressionLevel)
𝑐(CompressionLevel) ⇒ 𝑐(root)
𝑐(CompressionLevel_0) ⇒ 𝑐(CompressionLevel)
𝑐(CompressionLevel_1) ⇒ 𝑐(CompressionLevel)
𝑐(CompressionLevel_2) ⇒ 𝑐(CompressionLevel)
𝑐(Algorithm) ⇒ 𝑐(Compression)
𝑐(A1) ⇒ 𝑐(Algorithm)
𝑐(A2) ⇒ 𝑐(Algorithm)
𝑐(Compression) ⇒ 𝑐(Algorithm)
𝑐(Algorithm) ⇒ (𝑐(A1) ∨ 𝑐(A2))
𝑐(A1) ⇒ ¬𝑐(A2)
𝑐(A2) ⇒ ¬𝑐(A1)
𝑐(CompressionLevel) ⇒ (𝑐(CompressionLevel_0) ∨ 𝑐(CompressionLevel_1) ∨ 𝑐(CompressionLevel_2))
𝑐(CompressionLevel_0) ⇒ ¬𝑐(CompressionLevel_1)
𝑐(CompressionLevel_0) ⇒ ¬𝑐(CompressionLevel_2)
𝑐(CompressionLevel_1) ⇒ ¬𝑐(CompressionLevel_0)
𝑐(CompressionLevel_1) ⇒ ¬𝑐(CompressionLevel_2)
𝑐(CompressionLevel_2) ⇒ ¬𝑐(CompressionLevel_0)
𝑐(CompressionLevel_2) ⇒ ¬𝑐(CompressionLevel_1)
𝑐(Compression) ⇒ (𝑐(CompressionLevel_1) ∨ 𝑐(CompressionLevel_2))
𝑐(CompressionLevel_0) ⇒ ¬𝑐(Compression)

A.1 Constraints after One-Hot Encoding 149

Table A.1: Precision and recall for each workload of FastDownward.

Workload Precision Recall

airport/p07airport2p2 92.31% 41.38%
barmanopt11strips/pfile01001 91.78% 68.79%
blocks/probBLOCKS100 96.83% 77.56%
datanetworkopt18strips/p13 80.00% 77.86%
depot/p10 87.80% 89.71%
driverlog/p08 100.00% 34.01%
elevatorsopt08strips/p24 100.00% 76.22%
elevatorsopt11strips/p20 95.24% 86.88%
floortileopt11strips/optp01002 83.33% 89.55%
freecell/prob45 93.33% 90.38%
gedopt14strips/d76 64.00% 10.34%
grid/prob02 82.35% 74.07%
gripper/prob07 89.47% 67.28%
hikingopt14strips/ptesting234 90.16% 72.33%
logistics00/probLOGISTICS71 98.00% 84.91%
logistics98/prob31 72.73% 54.22%
miconic/s132 92.59% 48.89%
movie/prob29 37.98% 100.00%
mprime/prob02 95.65% 86.55%
mystery/prob30 71.43% 64.66%
nomysteryopt11strips/p17 100.00% 40.94%
openstacksopt08strips/p12 75.00% 18.75%
openstacksopt11strips/p07 68.97% 20.41%
openstacksopt14strips/p20/3 64.00% 13.71%
openstacksstrips/p07 88.89% 74.62%
organicsynthesisopt18strips/p09 72.97% 53.12%
organicsynthesissplitopt18strips/p01 100.00% 50.00%
parcprinter08strips/p25 93.88% 43.23%
parcprinteropt11strips/p10 94.00% 46.20%
pathways/p04 77.36% 76.24%
pegsol08strips/p25 80.56% 59.06%
pegsolopt11strips/p15 91.18% 33.33%
pipesworldnotankage/p12net2b10g4 86.21% 20.49%
pipesworldtankage/p31net4b14g3t20 83.87% 35.57%
psrsmall/p48s101n5l3f30 85.71% 64.29%
rovers/p07 96.88% 80.27%
satellite/p06pfile6 85.07% 88.65%
scanalyzer08strips/p06 100.00% 72.67%
scanalyzeropt11strips/p12 98.53% 66.48%
snakeopt18strips/p04 92.86% 12.63%
sokobanopt08strips/p22 90.48% 80.77%

150 Appendix

sokobanopt11strips/p17 98.39% 66.45%
storage/p14 87.80% 71.54%
termesopt18strips/p18 100.00% 64.57%
tetrisopt14strips/p024 87.88% 40.70%
tidybotopt11strips/p01 96.43% 43.08%
tpp/p06 94.23% 76.09%
transportopt08strips/p04 94.44% 71.32%
transportopt11strips/p06 92.86% 69.63%
transportopt14strips/p14 100.00% 69.50%
trucksstrips/p08 90.00% 37.34%
visitallopt11strips/problem06full 83.33% 24.39%
visitallopt14strips/p057 95.52% 92.57%
woodworkingopt08strips/p24 93.94% 47.10%
woodworkingopt11strips/p05 90.32% 46.43%
zenotravel/p11 100.00% 35.92%

A.1 Constraints after One-Hot Encoding 151

B
as

e

H
eu

ri
st

ic
s

B
li

nd
M

er
ge

A
nd

Sh
ri

nk
M

ax
L

M
C

ut
LM

C
ou

nt
IP

D
B

C
E

G
A

R
D

iv
er

se
P

ot
en

ti
al

O
pe

ra
to

rC
ou

nt
in

g
A

ll
St

at
es

P
ot

en
ti

al
Sa

m
pl

eB
as

ed
P

ot
en

ti
al

M
et

ho
d

A
ll

T
ra

ns
it

io
nS

ys
te

m
s

W
it

hF
ix

po
in

t
T

w
oT

ra
ns

it
io

nS
ys

te
m

s

Sh
ri

nk
St

ra
te

gy

B
is

im
ul

at
io

n
F

H

LM
Fa

ct
or

y

E
xh

au
st

H
M

R
H

W
ZG

O
pt

im
al

E
xh

au
st

O
nl

y
C

on
ju

nc
ti

ve
LM

O
nl

yC
as

ua
lL

M
D

is
ju

nc
ti

ve
LM

U
se

O
rd

er
s

Su
bt

as
ks

La
nd

m
ar

ks
G

oa
ls

O
ri

gi
na

l

C
on

st
ra

in
tG

en
er

at
or

s
U

se
In

te
ge

rO
pe

ra
to

rC
ou

nt
s

L
P

So
lv

er

D
el

et
eR

el
ax

at
io

nC
on

st
ra

in
ts

St
at

eE
qu

at
io

nC
on

st
ra

in
ts

U
se

In
te

ge
rV

ar
s

U
se

T
im

eV
ar

s

C
P

LE
X

So
P

L
E

X

M
an

da
to

ry
op

tio
n

O
pt

io
na

lo
pt

io
n

A
lte

rn
at

iv
e

gr
ou

p

Fi
gu

re
A
.1:

Fe
at
ur

e
M

od
el

of
Fa

st
D
ow

nw
ar
d

	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Goals
	1.3 Contributions and Key Results
	1.4 Outline

	2 Background
	2.1 Configurable Software Systems
	2.1.1 Configuration Issues
	2.1.2 Feature Modeling
	2.1.3 Non-Functional Properties
	2.1.4 Interactions
	2.1.5 One-Hot Encoding of Numeric Configuration Options

	2.2 Performance Modeling
	2.2.1 Overview
	2.2.2 Sampling
	2.2.3 Performance Measurements
	2.2.4 Performance-Influence Models

	3 Distance-Based Sampling of Software Configuration Spaces
	3.1 Sampling
	3.1.1 Approach

	3.2 Experiment Setup
	3.2.1 Research Questions
	3.2.2 Operationalization
	3.2.3 Subject Systems

	3.3 Evaluation
	3.3.1 Results RQ1—Prediction Accuracy
	3.3.2 Results RQ2—Robustness
	3.3.3 Results RQ3—Performance
	3.3.4 Discussion
	3.3.5 Threats to Validity

	3.4 Summary

	4 Performance Evolution of Configurable Software Systems: An Empirical Study
	4.1 Related Work
	4.2 Software Evolution
	4.3 Experiment Setup
	4.3.1 Research Questions
	4.3.2 Subject Systems
	4.3.3 Workloads
	4.3.4 Operationalization

	4.4 Evaluation
	4.4.1 Results
	4.4.2 Metadata Analysis
	4.4.3 Implications
	4.4.4 Threats to Validity

	4.5 Summary

	5 Performance Prediction in the Presence of Workload Variability
	5.1 Related Work
	5.2 Workloads
	5.3 Experiment Setup
	5.3.1 Research Questions
	5.3.2 Fast Downward
	5.3.3 Operationalization

	5.4 Evaluation
	5.4.1 Results
	5.4.2 Discussion
	5.4.3 Threats to Validity

	5.5 Summary

	6 Concluding Remarks
	6.1 Contributions of this Thesis
	6.2 Avenues of Future Work

	 Bibliography
	A Appendix
	A.1 Constraints after One-Hot Encoding

