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Abstract

The influence of a developer’s reputation within an open-source software (OSS)
project on the success of said developer’s contributions to the project is not fully
known. Since it is a key objective to gain a good reputation within an OSS project
for voluntary developers, this is an interesting research objective. For that reason,
we replicate a study by Bosu et al. [BC14] on this topic. They find that developers
with a higher reputation are more likely to receive a faster first-feedback on their
contributions and that they have a lower review interval in general until the accep-
tance. Moreover, they find that developers with a higher reputation are more likely
to get their contributions accepted. In a previous study we were not able to confirm
these results. In this thesis, we try to replicate the results by analyzing the data of
nine different OSS projects using survival analyses.

We are again not able to confirm the results by Bosu et al. We find that the success
of a contribution seems to be dependent on other factors than the reputation of a
developer. The success of a contribution seems to be very project specific and thus
is influenced by different factors for different OSS projects. Developers with a higher
reputation do, in general, not seem to have a shorter first-feedback interval, a higher
feedback rate, a shorter review interval, a higher code-acceptance rate, and do not
need less revisions of a contribution than developers with a lower reputation.
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1 Introduction

Open-Source Software (OSS) development is an ever growing field of modern day
software engineering. Some OSS projects dominate complete aspects in our techno-
logically connected world like Linux is the only used operating system on the top
500 supercomputers in the world.1 Nevertheless, most of the work in OSS projects
is done by volunteers, but why is that? Lakhani et al. [LW05] find that one of the
main reasons for this is that developers seek a good reputation within such projects.
This reflects a common social structure in groups of people.

One socio-technical question that arises from this is whether a good reputation
influences the outcome of the contributions made by a developer to an OSS project.
The outcome of such a contribution is dependent on the review process of an OSS
project in which the contributions is reviewed and checked for flaws or possible
enhancements. Bosu et al. [BC14], investigate said question by conducting an
empirical study based on the data of OSS projects and find, that a better reputation
of developers indeed has a positive influence on their contributions. They find that
this influences the success and duration of the review of a submission. Furthermore,
they find, that there is also an influence on the time span until a developer gets a
first feedback on a contribution. In a previous study [Hec18], we tried to recreate
and confirm these results. We did this by analyzing three OSS projects that use a
different contribution system than the projects Bosu et al. investigate. Moreover, we
used a different metric to measure the reputation of a developer. We were not able
to confirm that developers with a higher reputation have a higher success rate for
their contributions than developers with a lower reputation within an OSS project.

The goal of this thesis is to further study whether the reputation of developers has
an influence on the outcomes of the review of their contributions to OSS projects.
To do this, we use a different approach than before. In many previous studies,
including our own, on this topic, the researchers look at the projects as a whole
from beginning to now. We, on the other hand, split the social network into 9-
month ranges and analyze these separately. We do this because there is a lot of

1https://www.top500.org/statistics/details/osfam/1
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change in contributors during the lifespan of a OSS project. The case studies we
analyze for this thesis are Jailhouse, BusyBox, FFmpeg, GCC, Git, LLVM,
QEMU, U-Boot, and FLAC, for which we obtain the data by mining version-
control systems and mailing-list archives. Moreover, most previous studies, like
our previous study, represented the reputation of a developer by classifying them
into core and peripheral developers. They then assume that core developers have
a higher reputation. In this thesis, we do not classify the developers into groups
but measure their coreness by applying two different network metrics. We do this
because there is no unified approach to classify developers into the two groups and
thus there is a lot of bias in the selection of the method involved that can lead
to corrupted data. Subsequently, we map mails to patches to be able to analyze
the patches on the mailing-lists of the OSS projects, since we only analyze projects
that use a mailing-list as contribution-tool. Finally, we apply Survival Analyses and
other Regression Models to the data, to check whether there is an influence of the
coreness of developers on their contributions.

We are not able to confirm the findings of the original study. They find that develop-
ers with a higher reputation have a shorter first-feedback interval, a shorter review
interval, and a higher code-acceptance rate than developers with a lower reputation
within an OSS project. We are not able to confirm these findings, as we see that this
seems to differ from OSS project to OSS project. The influence of the reputation
on the outcomes of the review process of a contribution seems to be dependent on
other factors than just the reputation of a developer. As for the number of revisions
a developer has to send until the acceptance of a patch, we are not able to show that
this number is lower for developers with a higher reputation within an OSS project.
This follows the findings of the original study.

The rest of the thesis is structured as follows: In Chapter 2, we give an overview
of topics related to this thesis, including details acout OSS development, social-
network analysis, survival analyses, and related work. In Chapter 3, we present the
original study. In Chapter 4, we present the research question, the hypotheses, and
the approach, we use for the analyses. In Chapter 5 we present the results of the
analyses followed by a discussion. In Chapter 6, we present the threats to validity
of this work. Finally, we draw a conclusion and give an outlook on future work in
chapter 7.



2 Background

In the following chapter, we present background knowledge on topics related to this
thesis. Namely, we present information about the open-source software (OSS) de-
velopment process, social-network analysis (SNA), and survival analyses. Moreover,
we present related work.

2.1 OSS Development

To be able to talk about influences on the OSS development process, we have to
explain what this is. In the following we explain the details of this process.

2.1.1 The Patch-Review Process

One of the biggest upsides of OSS development is that any willing developer can
contribute to it. However, this also brings the need for some kind of controlling
instance to prevent bad contributions from getting integrated. For OSS projects,
this is the patch-review Process. Asundi et al. describe this process to be similar to
code-reviews or code-walkthroughs in closed commercial projects [AJ07].

Since contributors to OSS projects can be scattered around the globe, there has to
be a mechanism in place that is not influenced by different time zones and distances.
Zhu et al. identify two such contribution tools: patch-based and pull-request-based
tools [ZZM16]. In this thesis we focus on OSS projects that use a mailing-list as
contribution system. This falls under the category of patch-based tools which is why
we only explain this type of contribution tool in detail.

In Figure 2.1 we illustrate the patch-review process for a project that uses a mailing-
list. After cloning the code-base and working on changes, developers first need to
submit these changes to the mailing-list. These submissions are also called patches.
Said patches are then incorporated into the review process. Reviewers then have
to check the patch for problems. Reviewers have three different ways to react to a
patch. They can accept it, reject it, or request changes by leaving a review comment.
In case there are requested changes, the original author now has to incorporate the
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Figure 2.1: Patch-review process. Developer A originates a patch and submits it via
the mailing-list to the reviewers. They either request changes, accept the patch into
the code base or reject it completely.

requests and resubmit the changed patch, also called a revision. The set of all such
revisions of one patch are called revision set. Once the revision set gets accepted,
the changes are integrated into the code-base and the patch is successfully accepted.

2.1.2 Pros and Cons of the Contribution System

The review of contributions to OSS projects relies on other involved developers of the
project, as we describe in Section 2.1.1. This brings some upsides and some down-
sides with it. Asundi et al. [AJ07] identify some of these. On the positive side, they
state that contributing developers are usually very interested in the project. They
argue that this is based on the fact that most of the contributors in OSS projects are
volunteers. And since voluntary contributors can choose whatever project they like,
they are usually keen on the project’s success. Furthermore, the review is, in most
cases, done by more than one developer. This very likely increases the probability
of errors and other flaws being detected during the review process.

On the negative side, however, they state that the voluntary code review can lead to
contributions being forgotten or taking a long time. This can happen if the contri-
bution of a new developer is not reviewed right away and thus gets forgotten since
no reviewer knows the developer. This can affect the motivation of the developer
whose contribution is under review. With this, the potential of developers leaving
the project arises.

Czerwonka et al. [CGT15], on the other hand, find only downsides to the review
process of OSS projects. Although they review the process of commercial projects
at Microsoft1, their findings can be used as a proxy for OSS projects, since Microsoft
uses the same kind of review process. Czerwonka et al. find that only about 15% of
review comments find functionality errors. 50%, which represents the majority, are

1Microsoft homepage: https://microsoft.com
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only concerned with the long-term maintainability of the project. This leaves room
for speculation, whether or not the review process is as effective as it should be.

2.2 Social Network Analysis

In the following, we present the basics of social-network analysis (SNA). This is
a central part of our study, because we use network analysis metrics to proxy the
reputation of a developer. We do this to see whether the reputation has an influence
on the outcomes of the review process.

A network is a construct that describes a relationship between people or things.
Such networks are usually represented by graphs. The formal notation of such being
G = (V,E), with V describing the set of vertices and E the set of edges between
the vertices. The relationship between two vertices is defined as an edge. Therefore,
the set of edges is defined as E ⊆ V × V . Moreover, an edge can be directed or
undirected. Directed edges have a defined vertex as starting point and one vertex as
endpoint. An undirected edge, on the other hand, is just a link between two vertices
without a direction. Edges can also be simplified. In this process, multiple edges
that represent a connection between the same two vertices are unified into one edge.
This is usually done in terms of making the illustration of a graph easier. [BE05]

Network analysis is a common research approach used in many different fields of re-
search, like electrical engineering, project planning, biology, and many more [BE05].
In our case we analyze social networks. This subclass of networks usually represent
interactions between people. In the context of software engineering such networks
usually describe interactions like mails between developers. Such networks are called
developer networks [LFRGBH09], which we describe in the following.

2.2.1 Developer Networks

Joblin et al. [Job17] identify two base classes of developer networks: coordination
networks and communication networks. These kinds of networks serve as a means to
analyze social structures, like the reputation of a developer, in open-source software
(OSS) projects.

Coordination networks are usually constructed from commit data, extracted from a
project’s version-control system. Such networks are called co-change networks, that
describe the relationship between two developers based on changes done on the same
file or piece of code.

Contrary to that, communication networks describe communication between devel-
opers. Such networks are usually constructed from public mailing-list archive data.

Such networks are sometimes constructed with the complete commit or mail data of
an OSS project, meaning all the available data of the complete lifetime of a project.
This brings on a problem in terms of generalizability. Foucault et al. [MF15] find
that there is frequent developer turnover in OSS projects. Such turnover is quite
common in OSS projects and can be a big problem for the project, because there
are always new developers that need to familiarize themselves with the specifics of a
project, which takes a lot of time. In this thesis, we use coreness, which we describe
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in Section 2.2.2, as proxy for the reputation of a developer. This can be strongly
affected by developer turnover. For this reason, we split our developer networks
into subsequent ranges of nine months and analyze the eigenvector-centrality and
hierarchy of these.

In this thesis we analyze both coordination and communication networks. In ad-
dition, we also analyze a combined network containing both co-change and mail
edges.

2.2.2 Coreness in Social Networks

Since we analyze the impact of developer reputation on their contributions to OSS
projects, we have to introduce how we measure the reputation. We use the coreness
of a vertex, i.e., the coreness of a developer within the network, as a proxy for this.
The coreness describes how central a vertex is in the network. To measure this, we
use two different network metrics: eigenvector centrality and hierarchy.

Figure 2.2: Small network example. The vertex with the highest eigenvector cen-
trality is the gray one in the middle, since it is connected to 4 vertices with a degree
of 4. The other ones are all connected to vertices with a lower degree. This figure is
taken from [Job17] Figure 2.4.

Eigenvector centrality is a commonly used measure to determine how central a vertex
is within a network. In detail this metric determines the centrality of a vertex
within its local neighborhood in the network, meaning the centrality of a vertex is
determined by the centrality of the other vertices in its direct neighborhood. The
higher their centrality, the higher the centrality of the vertex under investigation.
Formally, the centrality value xi for each vertex i is calculated with the following
formula:

xi =
1

λ

∑
j∈N(i)

xj (2.1)

N(i) represents the set of neighbors of i and λ represents a proportionality constant
[JAHM17, BE05].

Hierarchy, on the other hand, is a more complex metric to determine the coreness
of a vertex. Joblin et al. [JAHM17] describe this metric as a means to determine



2.3. Survival Analysis 7

Random Network Hierarchical Network

Figure 2.3: A random, unorganized network on the left and a hierarchical network
on the right. The hierarchical network is organized in clusters, which are connected
to each other and thus all together build a larger cluster. The top of the hierarchy
is represented by the vertex in the middle because it exhibits a high degree and a
low clustering coefficient. The figure is taken from [Job17] Figure 2.9.

how local neighborhoods are organized among each other. This is deduced by a
combination of two other metrics: node degree and the clustering coefficient [RB03].

The node degree is the number of outgoing and incoming edges of a vertex. The
clustering coefficient describes how embedded a vertex is within a cluster of vertices.
Moreover, it gives a quantitative measure of the likelihood that the neighbors of a
vertex are connected to each other [JAM17]. The formal definition of the clustering
coefficient ci for a vertex i is defined as:

ci =
2ni

ki(ki − 1)
, (2.2)

ki is the number of edges that are connected to i and ni the number of edges between
the neighbors in a cluster [BLM+06].

Once these values are determined, the hierarchy of a vertex can be extracted. The
higher the degree and the lower the clustering coefficient of a vertex, the higher its
hierarchy.

We define the coreness of a vertex as its eigenvector degree or its hierarchy value.
The higher these values, the higher the coreness. We use these coreness-scores of
developers as a proxy for their reputation within the OSS project, as described in
the following section.

2.3 Survival Analysis

Survival analyses are a type of statistical analyses that originate in the field of
medicine. They usually describe the probability of a patient surviving, given a
certain period of time [RNP+10, LRS17]. In more general words, a survival analysis
is usually used to analyze the time until an event occurs under the influence of some
other variable, e.g., how long two groups of patients survive an illness, where one
group is given a drug and the other is given a placebo. The time variable is usually
called the survival time, while the event is called failure. This failure can either be
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a positive or a negative event, e.g., the death of a patient or the full recovery of a
patient. This depends on the objective of the analysis. [DGK12]

One key element of survival analyses is data censoring. Censoring of data occurs if
the survival time of a subject is not exactly known. There are three main reasons
why this can occur: the event does not occur for a subject before the study ends,
the subject can no longer be traced during the study, or the subject drops out of
the study. This kind of censored data is called right-censored data, because the true
survival time of a subject is greater than or equal to the observed time. Since we
are only concerned with right-censored data in this study, we only explain this type
of censored data. [DGK12]

There are two key building blocks for every survival analysis: the survivor function
and the hazard function. The survivor function denotes the probability of a subject
”surviving”, i.e., not experiencing the event past a specified time. The hazard func-
tion describes the probability of a subject experiencing the event of the study in a
certain time unit, if the subject survived until a specified time. [DGK12]

Although these explanations are all based on survival analyses in the medical field,
there is also a variety of other fields of research that use survival analyses, like in
our case software engineering. In Section 2.4, we give an overview of studies in the
context of software engineering, that use survival analyses.

In this thesis, we use two different survival measures: the Kaplan-Meier method and
the cox proportional hazard. We describe these in the following.

2.3.1 Kaplan-Meier Method

The Kaplan-Meier method or Kaplan-Meier estimator is a method to estimate the
survival probability of a subject at a given point in time. To do this, one first brings
the data into the following form for every group of data, i.e. for all different values
of the influencing variable:

failure times # of failures censored risk set

Table 2.1: Data format for the Kaplan-Meier Method. Taken from [DGK12] page
60

The failure times here denote each points in the study time, starting at 0, where
a failure happens. The number of failures is the number of failures that happen in
a given time interval. Censored describes how many subjects were censored in the
last time interval and the risk set is the number of subjects that are still ”alive” at
the given point in time. [DGK12]

Subsequently, one has to calculate the survival probability S for a given time t. We
start with time 0. The probability here is always 1. The remaining probabilities are
then calculated as follows:

S(t) = S(t− 1) × riskset(t)

riskset(t) − failures(t))
(2.3)
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Once this probability is calculated, one has to apply the log-rank test to compare
the survival probabilities of several groups. The null hypothesis for this test is that
the survival probabilities for all groups are the same.

2.3.2 Cox Proportional Hazard

The cox proportional hazard model is a statistical measure to calculate the instan-
taneous risk of a subject to experience the event at a given point in time, i.e. the
hazard ratio. The formula for this model is as follows:

h(t,X) = h0(t) × e
∑p

i=1 βi×Xi (2.4)

h(t,X) describes the hazard at time t under the influence of the variables X. h0(t)
is the baseline hazard at time t without the influence of any variables, and the
expression at the end is an exponential expression over the sums of the p variables
times an regression coefficient. The p denotes the number of variables for which the
influence on the survival probability is analyzed.

These hazard ratios can then be interpreted as the probability of a subject to en-
counter the event,. [DGK12]

2.4 Related Work

The contribution system of open-source software (OSS) projects is a widely re-
searched field in software engineering. In this section, we present research that is
related to this thesis. This includes work about the success of contributions to OSS
projects, the influence of social factors on reviews, and studies that use survival
analyses in the context of OSS projects. The mostly related work, of course, is the
study by Bosu et al. [BC14], which we replicate in this study. We present their
approach and their results in Section 3.1.

Weißgerber et al. [WND08] investigate how the size of a patch influences the success
and the review interval of a patch. They find, that smaller patches have a higher
success rate than larger patches but that the size does not seem to influence the
review interval of a patch. Another research related to the success of contributions to
OSS projects is the study by Jiang et al. [JAG13]. They investigate how to influence
the success of a patch on the Linux kernel. They find that the maturity of a patch
and the experience of a developer influence the success rate of a submission and
that the choice of reviewer, among other things, influences the review interval of a
contribution. The third study, we present on the topic of the success of contributions
to OSS projects is the study by Rigby et al. [RGS08]. They conduct their research
on the Apache HTTP Server project and are able to find that the majority of
contributions are done by the core group of developers. Moreover, they find that
the overall review interval for patches in this project is very short and conclude that
this means that most of the contributions are very small.

Since we calculate the coreness-score of a developer in an OSS project using network
metrics, we present a study by Joblin et al. [JAHM17] on this topic. They compare
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count-based and network-based metrics for the use of classifying developers into core
and peripheral groups. Although, we do not sort the developers of OSS projects into
core and peripheral groups, we use the same metrics to calculate the coreness-score.
Count-based scores are the commit count and the number of mails a developer sends,
to name a few. Types of network-based metrics are the eigenvector centrality and
the hierarchy, which we presented in Section 2.2.2. They find that classifications
using network-based metrics are more widely agreed with among the developers of
OSS projects but are not better than classifications using count-based metrics.

Another related topic is the influence of social factors on reviews in OSS projects.
Bosu et al. [BCB+17] find that there are four general social factors that influence
the review of a contribution to an OSS project. Although they analyze projects
from Microsoft for their study, they state that since the contribution system is the
same as for most OSS projects, this should also hold for such projects. They find
that a good relationship between the author of a patch and the reviewer can have
a positive effect on the review. Moreover, just like in the original study, they find
that a good reputation of a developer can have a positive effect on the review of
a patch. The third factor they identify to have a positive influence is the area of
expertise of a reviewer. If the reviewer has a lot of experience in the field the patch
lies in, there is a higher probability that the reviewer will prioritize the review of
such a patch. The last factor they identify is that reviewers tend to take on reviews
with low anticipated effort. This is consistent with the findings of Weißgerber et al.
[WND08], that smaller patches have a higher probability of being accepted.

The last related topic, we present in this part of the thesis are studies that use
survival analyses in the context of software engineering. Lin et al. [LRS17] use
survival analyses to find what factors influence developer turnover in OSS projects.
They find that the probability of developers leaving an OSS project is lower if they
start to contribute to the project earlier, mainly modify files instead of creating
them, and mainly write code and not documentation. The next study that uses
survival analyses in the context of OSS development is a study by Ortega et al.
[OI09]. They apply survival analyses to estimate how long a developer stays with an
OSS project. They find that the mean survival time of developers in OSS projects
lies in the interval of 500 to 1,000 days. The last research we present on this topic
is a study by Samoladas et al. [SAS10]. They show how to develop a framework,
using survival analyses, that predicts the probability of termination or continuation
of an OSS project.



3 Original Study

The goal of the study by Bosu et al. is to investigate whether the reputation of
developers has an influence on the success of their contributions to open-source
software (OSS) projects. Meaning, they want to find out if a developer with a better
reputation has a generally better outcome of the patch-submit-review process, which
we introduced in Section 2.1.1. [BC14]

3.1 Hypotheses

To fully be able to present the study by Bosu et al., we have to present their hy-
potheses. The general research question is concerned with whether the reputation of
developers has an influence on their contributions to OSS projects, as we described
in the previous section. Since the reputation of an developer is a very complex so-
cial structure, they have to find some sort of proxy for this. Bosu et al. choose the
core-periphery structure of an OSS project for that. The core-periphery structure is
a classification approach for developers in OSS projects. We present their approach
to classify developers in Section 3.3.

Once the developers are classified, Bosu et al. identify four main metrics to in-
vestigate the success of contributions to OSS projects: the first-feedback interval,
the review interval, the code-acceptance rate, and the number of patch revisions per
review request.

The first-feedback interval is defined as the period between the first submission of
a patch and the fist review comment or answer on this submission. They pose
that the first-feedback interval of core developers is shorter than the interval of
peripheral developers as hypothesis. Moreover, they state this should be because
core developers should know which reviewer to choose for their submission and that
their prior relationship with the reviewer can lead to the reviewer prioritizing the
review.

The review interval is defined as the time that elapses from the first submission of a
patch until the end of the review process. Bosu et al. pose the hypothesis that the
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review interval is shorter for the submissions of core developers than the submissions
of peripheral developers. They state that this should be for similar reasons as the
shorter first-feedback interval for core developers.

The code-acceptance rate is defined as the rate of accepted submissions of a developer
over the number of all submitted patches of a developer. Bosu et al. state that this
rate is higher for core developers than for peripheral developers. The reason for this
is that core developers should be more familiar with the code base than peripheral
developers and thus should be able to produce higher-quality contributions.

Finally, the number of patch revisions per review request is defined as the number of
reworks a developer has to make of his patch until it is accepted. When a reviewer
identifies a problem with a contribution, the developer that sent it has to fix the
problem and resubmit it. The re-submission is called a revision and the set of re-
submissions is called the revision set. Bosu et al. pose the hypothesis that core
developers need less revisions of a patch than peripheral developers.The reasoning
behind this hypothesis follows the reasoning for the code-acceptance rate.[BC14]

3.2 Data Extraction and Network Construction

In Section 3.1, we described the hypotheses of the study by Bosu et al. [BC14]. To
investigate these hypotheses, they extract data of eight different OSS projects. These
projects are Chromium OS, ITK/VTK, LibreOffice, OmapZoom, Open-
Stack, OVirt, Qt Project, and Typo3. While we use OSS projects that use
a mailing-list as contribution system, as we described in Section 2.1.1, Bosu et al.
analyze projects that use GERRIT1. This is a code-review tool where developers
can upload their patches onto the platform. The whole review process is then done
on the platform.

To extract these data sets, Bosu et al. build a miner similar to the one by Mukadam
et al. [MBR13]. They extract the data for the OSS projects under investigation
with this miner.

Subsequently they build developer networks, as we described in Section 2.2, on
the basis of interactions. In detail, they build undirected, weighted, and simplified
networks, i.e. networks with only one edge between developers that interacted with
each other and the edge has the number of interactions as weights.

3.3 Core-Periphery Detection

There are two groups of developers in OSS projects. The core developers and the
peripheral developers [CWLH06]. The core developers are the usually smaller group
containing the people that do most of the work in OSS projects and thus have a
deep knowledge of it. The peripheral developer group contains all other developers.

As we stated before, Bosu et al. use the core-periphery structure as a proxy for
reputation, i.e. core developers have a better reputation than peripheral developers.
For that reason they develop their own approach to classify developers: the Core

1https://www.gerritcodereview.com/
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Identification using K-means (CIK). This approach requires them to first apply some
network metrics to the built network. They use 6 different measures for this. Then
they combine these metrics using the K-means clustering algorithm [Mac67].

Table 3.1 shows an excerpt of the extracted and classified data. One can clearly see
that although the core developers are a significantly smaller amount of people, they
are almost always responsible for the majority of the commits and reviews.

Project
# of
dev

# of core
dev

# of peri-
pheral dev

commits by
the core

reviews by
the core

ChromiumOS 642 79 533 64.7% 72.5%
ITK/VTK 244 19 225 57.0% 77.2%
LibreOffice 207 20 187 37.6% 88.0%
OmapZoom 642 34 608 34.3% 60.2%
OpenStack 1880 128 1752 53.6% 66.0%
OVirt 193 20 173 51.3% 61.1%
Qt Project 888 63 825 55.9% 66.1%
Typo3 387 30 357 56.3% 71.0%

Table 3.1: Excerpt of general project data taken from Table 2 in the study by Bosu
et al. [BC14]. Developers is abbreviated with dev.

3.4 Results

In this part, we present the results of the study by Bosu et al. [BC14] for the
hypotheses, we presented in Section 3.1.

Figure 3.1: Result plot for the first-feedback interval hypothesis of the original study.
It shows that core developers have a significantly shorter interval than peripheral
developers. This figure is taken from Figure 3 of the original study [BC14].

The results for the first hypothesis, the first-feedback interval, are shown in Figure
3.1. They show that the time that elapses from the first submission of a patch
until the first review comment is 1.8 to 6 times lower for core developers than for
peripheral developers. For this reason, Bosu et al. accept the first hypothesis.
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Figure 3.2: Result plot for the review interval hypothesis of the original study.
It shows that core developers have a significantly shorter interval than peripheral
developers. This figure is taken from Figure 5 of the original study [BC14].

The results for the second hypothesis about the review interval suggest, as shown
in Figure 3.2, that core developers have a 2 to 19 times shorter review interval for
their contributions than peripheral developers. This supports the second hypothesis
and thus, they accept it.

Figure 3.3: Result plot for the code acceptance rate hypothesis of the original study.
It shows that core developers have a significantly higher rate than peripheral devel-
opers. This figure is taken from Figure 7 of the original study [BC14].

The third hypothesis is concerned with the code-acceptance rate. The results that
are presented in Figure 3.3 suggest that the code acceptance is significantly higher
for core developers. They accept the third hypothesis.

The fourth hypothesis is about the number of patch revisions per review request.
The results are shown in Figure 3.4. The diagram shows that there does not seem to
be a significant difference between the number of patch revisions for core developers
and the number for peripheral developers. The data even shows that in some cases,
core developers need more patch revisions until their contributions finish the review
process. For this reason, they state that the hypothesis is overall inconclusive.

Finally, although the fourth hypothesis shows no significant results, they accept the
research question. This means that the outcome of their study is that developers
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Figure 3.4: Result plot for the number of patch revisions hypothesis of the original
study. The results for this hypothesis are overall inconclusive. This figure is taken
from Figure 9 of the original study [BC14].

with a higher reputation in an OSS project, indeed seem to have more success with
their contributions.
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4 Thesis Objective

In this chapter, we present the approach, research question, and hypotheses. First,
we pose the research question and hypotheses of this thesis. Subsequently, we present
our approach to generate the necessary data for investigating the hypotheses and
the methodology, we use to investigate them.

4.1 Hypotheses

In this part of the thesis, we present the research question and the hypotheses of
the study. Since we replicate a study by Bosu et al. [BC14], we pose a similar
research question as they do: How does the coreness of a developers influence their
contributions to OSS projects? Contrary to the core-periphery structure that is
used in the original study, we use the coreness of developers, as described in Section
2.2.2, as proxy for the reputation of a developer. Our hypotheses also follow the
hypotheses of the original study with some slight modifications and one addition.
We present the hypotheses in the following.

4.1.1 First-Feedback

Similar to Bosu et al. [BC14], we define the first-feedback interval as the time that
elapses from the first submission of a patch until the first answer on the submission.
This interval should be shorter for developers with a higher coreness score, because
they are usually very good embedded in the project. This means that they should
be well known and have good relationships with several reviewers. Moreover, they
usually know which reviewer to address for their submission. In contrast to the
original study, we investigate not only the interval until a first feedback but also
whether there is a feedback on a patch submission at all. Developers with a higher
coreness score should, for the same reasons as for the interval, have a higher rate
of answered submissions than developers with a lower coreness score. Therefore, we
pose the following hypotheses:

Hypothesis H1. Developers with a higher coreness score have a shorter first-
feedback interval than developers with a lower coreness score.
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Hypothesis H2. Developers with a higher coreness score have a higher feedback
rate than developers with a lower coreness score.

4.1.2 Review Interval

The next objective, we investigate is the review interval. We define this as the time
from submission of a patch until the acceptance of the patch. For similar reasons as
for the first-feedback interval, developers with a higher coreness score should have a
shorter review interval than developers with a lower coreness score. For this reason,
we pose the following hypothesis:

Hypothesis H3. Developers with a higher coreness score have a shorter review
interval than developers with a lower coreness score.

4.1.3 Code Acceptance

The goal of every contribution to an OSS project is its acceptance. This is the
ultimate goal of every submission by developers and thus a very important objective
to investigate. We state that developers with a higher coreness score should have a
higher probability of acceptance for their patches. The reasons for that are that core
developers are usually more experienced with the project and have a deep knowledge
of the code base. Therefore, they should be able to produce higher-quality code. We
pose the following hypothesis concerning the code acceptance:

Hypothesis H4. Developers with a higher coreness score have a higher code-
acceptance probability than developers with a lower coreness score.

4.1.4 Number of Patch Revisions

The last objective of this thesis is the number of patch revisions a developer needs to
submit until the patch is accepted. A patch revision, as we described in Section3.1,
is a enhancement of a patch following a review comment. Developers with a higher
reputation and thus a deeper knowledge of the OSS project should be able to write
higher-quality patches. For this reason, they should need less revisions of a patch
until its acceptance. Therefore, we pose the following hypothesis:

Hypothesis H5. Developers with a higher coreness score need less patch revisions
until the patch gets accepted than developers with a lower coreness score.

4.2 Approach

In the following, we describe the detailed approach including the data extraction,
data preparation, and the concrete approach to analyze the hypotheses, we posed
in Section 4.1.
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4.2.1 Case Studies

To investigate our research question regarding correctness, we have to analyze OSS
projects. We analyze nine different case studies that all use a mailing-list as a
contribution tool, contrary to the original study [BC14]. We described the concrete
review process using a mailing-list in Section 2.1.1. We use such projects, since
the data is easily available. The nine case studies we investigate are Jailhouse1,
BusyBox2, FFmpeg3, GCC4, Git5, LLVM6, QEMU7, U-Boot8, and FLAC9.

4.2.2 Data Extraction

To analyze the nine case studies, we presented in the previous section, we have to
extract the raw data sets of the OSS projects. The three things, we need to extract
are a list of all commits, a list of all mails, and a list of all authors of the projects.
This is the basis for all our analyses. The data is extracted using Codeface10, a
tool developed by Siemens, which is able to extract all necessary data [JMA+15].
The data is extracted from multiple sources. The commits and authors are extracted
from the version-control system of the projects and the mailing list is extracted from
publicly accessible mbox archives, downloaded from gmane11.

Codeface saves the extracted data into a MySQL database, from where we then
extract it into .csv files using a tool called codeface-extraction12.

4.2.3 Network Construction

Just like Bosu et al. [BC14], we use the extracted data to build developer networks,
which we introduced in Section 2.2.1. To build these networks, we use a R library
named coronet13. This library implements all necessary functionality to read the
data and build configured networks from the data. For visualization reasons we
show an example network, built from the data of Jailhouse, in Figure 4.1.

For this thesis, we first build three different types of developer networks: cochange,
mail, and combined networks. These three types of networks represent the two main
types of developer networks, we introduced in Section 2.2.1. The cochange network
is a developer network where the edges between two developers represent that these
two developers worked on the same file in the OSS project. The mail network, on the
other hand, contains edges that represent a mail interaction between two developers.

1https://github.com/siemens/jailhouse
2https://busybox.net/
3https://www.ffmpeg.org/
4https://gcc.gnu.org/
5https://git-scm.com/
6https://llvm.org/
7https://www.qemu.org/
8https://www.denx.de/wiki/U-Boot/WebHome
9https://xiph.org/flac/

10https://siemens.github.io/codeface/#/home
11http://www.gmane.org
12https://github.com/se-passau/codeface-extraction
13https://github.com/se-passau/coronet
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Figure 4.1: Network plot of Jailhouse.
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The third network includes mail and cochange edges between the developers. We
build all of these networks as directed, unweighted networks.

Since we want to reach a higher generalizability with our study than the original
study, we split our networks into subsequent ranges of nine months. These splitted
networks are then analyzed separately. We do this because there is a high fluctuation
in the developers of an OSS project and thus there is some degree of uncertainty
whether a classification of developers over the whole life span of a project is robust.

4.2.4 Coreness-Score Calculation

Using the generated networks, we can now calculate the coreness score for all devel-
opers in every range they are active in. As we mentioned before, we use the coreness
score as a proxy for the reputation of a developer, i.e. the higher the score the higher
the reputation.

We define the coreness score as the value of the two network metrics, which we
introduced in Section 2.2.2. We calculate these with the help of coronet and
normalize the scores.

Contrary to Bosu et al. [BC14], we do not use these values to classify the developers
into the core and peripheral groups. We do this because there is some uncertainty
as to how exactly to classify them. Some use the 80/20 method [CWLH06], where
all developers with a value over the 80th percentile get classified as core and the
rest into the peripheral group, while others use completely different approaches. To
avoid this, we decided to use the coreness score without the classification for a more
fine-grained approach.

4.2.5 Mapping Patches and Commits

The final step for the analysis of our hypotheses is the mapping of patches and
commits. Since we analyze OSS projects that use a mailing list as contribution
tool, we do not know which mails contain patches and which are just replies or
discussions. Bosu et al. [BC14] are able to extract this data from Gerrit, as well
as the information about the commits that followed a successful patch. We have to
find a way to detect these things.

We do this using a tool for the analysis of patch stacks called PaStA14. The specifics
about what a patch stack is and how it is analyzed using PaStA does not concern
the topic of this thesis so we do not explain it in detail. But PaStA has an addi-
tional feature called the mailbox analysis, which does exactly what we intend to do.
[RLM16]

The first step of the mailbox analysis is the detection of mails containing patches.
These are then marked as patches. Then it uses a similarity analysis to find patches
that are revisions of one and the same patch. Subsequently the analysis maps the
patch set to the resulting commit if there is one. We can then use this data in
coronet, to map the mails containing patches and the commits the patches led to.

14https://github.com/lfd/PaStA
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4.2.6 Approach for the Analysis of the Hypotheses

The last step towards the results of the study is the analysis of the hypotheses
introduced in Section 4.1. Therefore, we use the extracted and prepared data, which
we described in the previous sections. We implement the analyses in R and present
the detailed approach per hypothesis in the following.

For the analysis of the hypotheses H1 through H4, we use survival analyses, as intro-
duced in Section 2.3. Namely, we use the Kaplan-Meier method for the hypotheses
H1 and H3, and the cox proportional hazard for the investigation of H2 and H3.
To apply a survival analysis to the data, we have to bring the data into a certain
format. We present this format in Table 4.1. The first column contains the IDs of
the revision-sets of a casestudy. The second, third, and fourth column are the ones
relevant for the survival analyses. The period column describes the survival time.
The consored column describes whether the event has happened or not. A 0-value
means that the event has not been observed and thus the data-set is censored. The
coreness column represents the coreness value of the developer responsible for the
revision-set. We obtain the coreness value from our into subsequent ranges split
networks, as described in Section 4.2.3.. The coreness represents in detail the rep-
utation of the developers responsible for the revision-sets in the range where they
first submitted the patch. The last column represents this responsible developer.

id period censored coreness author

Table 4.1: Data format for the survival analyses of H1 through H4

For this study, we have two different configuration options. The used network type
and the used coreness metric. Therefore, we have to build this data-set six times
per OSS project. One for every combination of our configurations, e.g., a co-change
network with the eigenvector centrality as coreness metric. Therefore, we also calcu-
late six results per case study and hypothesis. The network types are the co-change
network, the mail network, and a combined network. The coreness metrics are the
eigenvector centrality and the hierarchy.

For the hypotheses H1 and H3, we use the Kaplan-Meier method. Since the log-
rank test for the Kaplan-Meier method can only perform the rating when there is a
grouped or binary variable of influence, we group the coreness values into two groups.
We do this in two different ways. One is to group the data using the 80/20 principle,
which is quite common for grouping developers into the core and peripheral groups
and was introduced in Section 4.2.4 [CWLH06]. And secondly, we compare the 75th
percentile against the 25th percentile. Therefore, we first use R to calculate the
survival curves and the log-rank test for the grouped model. We then present the
survival curves as Kaplan-Meier plots and interpret the results.

For the hypotheses H2 and H4, we use the cox proportional hazard model. We then
present the hazard ratios for every case study and configuration. This is easier to
interpret than the Kaplan-Meier model, since we can interpret the results without
looking at the survival curves. For illustration purposes, we again group the data
and present exemplary plots.
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Finally we investigate hypothesis H5. Since the objective of this hypothesis is not
suitable for survival analyses, as there is no time parameter, we use a linear regression
model to check the hypothesis. Before we do that, we arrange the data into the
format shown in Table 4.2.

id number of revisions coreness author

Table 4.2: Data format for the linear regression analysis of H5

The first, second, and fourth column are the same as their respective columns in the
data format for the survival analyses. The number of revisions column shows how
many revisions of the same patch were needed until it was accepted.

Subsequently, we build a linear regression model and present exemplary scatter-
plots.

For all the statistical tests we use in this thesis, we use the significance level of 5%,
i.e. p-values below 0.05 indicate a significant result.
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5 Results and Discussion

In this chapter, we present the results of our analyses and discuss them in detail.
We only present exemplary plots for the hypotheses so that the chapter does not
overflow with plots. The rest of the plots can be found in the appendix of the thesis.

5.1 Descriptive Statistics and Patch Detection

In Section 4, we presented the way to extract the data necessary for our analyses.
Here, we present an excerpt of the data extracted. In detail, we present the number
of commits, mails, and authors, we obtained per OSS project, the number of patch-
sets of the project, and the number of accepted patch-sets.

5.1.1 Descriptive Statistics of our Subject Projects

Project # commits # mails # authors

LLVM 158,519 708,065 6,407
GCC 158,615 574,165 9,636
QEMU 46,578 430,561 7,205
Git 34,872 338,500 9,246
U-Boot 44,680 319,160 7,924
FFmpeg 80,535 242,295 5,998
BusyBox 14,259 42,013 2,736
Jailhouse 1,786 5,619 131
FLAC 3,815 3,880 594

Table 5.1: Number of the extracted commits, mails, and authors for each project.

The extracted data for the OSS projects we analyze differs significantly in terms
of size. We include small projects and large projects in this study to see whether
there is an influence of the size of a project on the study results. The sizes of the
projects can be seen in Table 5.1. These number of extracted data differ slightly
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form the number of data actually used in the study, since the time-frames these
mails or commits lie in differ slightly and to analyze them correctly, we unionize the
time-frames within an OSS project.

5.1.2 Patch Detection and Mapping Results

Project # patches # patch-sets # accepted sets

LLVM 262,537 236,912 3,041
GCC 76,197 59,338 9,873
QEMU 190,308 65,391 35,937
Git 113,560 57,752 24,241
U-Boot 111,561 45,851 32,950
FFmpeg 24,287 14,525 7,466
BusyBox 2,136 1,595 335
Jailhouse 3,210 1,438 1,177
FLAC 414 268 121

Table 5.2: Number of detected patches, patch-sets, and successful patch-sets for
each project.

As we described in Section 4.2.5, we use PaStA to detect patches, group them into
patch-sets, and map these to commits. The results of this analysis are shown in
Table 5.2. Notable is that we detect a very low number of patches for some OSS
projects, like BusyBox. This could mean that the developing community does not
use the mailing-list extensively. The number of accepted patch-sets on the other
hand is very low in relation to the number of patch-sets for some projects, like
LLVM or GCC. This could either mean that there are very few contributions that
are accepted after the review or that the detection has some flaws.

5.2 Results

In this section, we present the detailed results for the hypotheses we introduced
in Section 4.1. We present exemplary plots for each of the hypotheses. Finally,
we decide whether we accept, reject, or have to conclude that the hypothesis is
inconclusive.

5.2.1 Hypothesis H1: First-Feedback Interval

The first results we present are the results for the hypothesis regarding the first-
feedback interval. As stated in Section 4.1.1, we hypothesize that the first-feedback
interval is shorter for developers with a higher coreness score and thus a higher
reputation within the OSS project. Since we are not able to calculate the Kaplan-
Meier curves with a log-rank test for the coreness-scores individually, as described
in Section 4.2.6, we group the values into two groups and analyze these.

The results show mixed indications. There are configurations present - a configu-
ration consisting of project, network type, and classification method - that indicate
the approval of the hypothesis. But there are also results that show developers with
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a lower coreness-score have a higher probability to get a first feedback over time and
even results that show no difference at all.

The plots include the following: The diagram on top shows the Survival probability
over time for the two different groups. The legend above shows the colors of the
survival curve per group. For the 80/20 grouping, the label CL=<80% represents
all developers with a coreness score below the 80% quantile and the label CL=>80%
respresents the group of developers with a coreness-score of over the 80% quantile.
Analogously, the label CL=25th represents the group of developers with a coreness-
score in the 25th percentile and the label CL=75th the group of developers with a
coreness-score within the 75th percentile for the comparison of the two percentiles.
The table on the bottom shows how many developers are still ”alive” per group and
point in time. The event or ”death event” for this analysis is the reception of a first
feedback on a submission. So a lower survival probability indicates a shorter first
feedback interval.

Figure 5.1: The Survival curves for the first-feedback interval of Jailhouse an-
alyzed on the mail-network with an eigenvector-centrality classification with the
80/20 grouping.

The results for Jailhouse with an eigenvector classification on a mail-network, as
seen in Figure 5.1, tend towards the acceptance of the hypothesis. The p-value for
the log-rank test shows a significant difference between the curves of the two groups.
Moreover, the curve for the group with coreness-scores above the 80% quantile shows
a lower survival probability and thus a higher probability to receive a faster first
feedback over time.

The results for FFmpeg with a eigenvector-centrality classification on the combined
network, as shown in Figure 5.2, on the other hand, show the exact opposite. Here
the developers with coreness-scores within the 75th percentile seem to have a signif-
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Figure 5.2: The Survival curves for the first-feedback interval of FFmpeg ana-
lyzed on the combined-network with an eigenvector-centrality classification and the
grouping in 25th and 75th percentile.

icantly lower survival probability over time than the developer with coreness-scores
within the 75th percentile. This tends towards the rejection of the hypothesis.

The rest of the plots for all other case studies with all other configurations are shown
in the Appendix. To summarize them: These results show a similar picture as the
two plots we present here. Sometimes the probability to receive a first-feedback is
higher for developer with a higher coreness-score and sometimes the exact opposite
seems to be the case. In some cases the p-value of the log-rank test indicates no
significant results at all, meaning that there is no observable difference between the
two groups.

In conclusion, we deem the results for hypothesis H1 to be inconclusive, as there
is data that supports either side of the hypothesis and even data showing no sta-
tistically significant results at all.

5.2.2 Hypothesis H2: Feedback Rate

The second hypothesis, we posed is that developers with a higher coreness-score have
a higher feedback rate, so a higher probability of receiving a feedback at all. For this
analysis, we used the cox-proportional hazard model, as described in Section 2.3.2.
This model gives us a hazard rate per OSS project and configuration. A hazard
rate value over 1 shows that the probability of receiving a first feedback increases
with an increasing coreness-score and a value below 1 shows the opposite of that.
Moreover, the cox-proportional hazard model gives us a significance value.

The detailed results for the analysis of H2 are presented in Table 5.3. Here we see,
that although having a lot of significant results, the hazard rates are not consistent.
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This indicates that the hypothesis is neither acceptable nor rejectable. The values
for Git and U-Boot are the only results consistent with the hypothesis, as they
indicate over all configurations that the higher the coreness-score of a developer,
the higher the probability to get a feedback on a submission. Other OSS projects
show inconsistent results, like GCC, where the hazard rate changes from above 1
to below one depending on the configuration. And then there are case studies, like
FFmpeg or Jailhouse that indicate that developers with a lower coreness-score
have a higher probability of receiving a feedback on their submissions.

As described in Section 4.2.6, we then grouped the data again to compare groups
of coreness-scores against each other. These results are then plotted and we present
some of these plots in the following:

The labels for the forest plots are the same as for the survival-curve diagram, which
we explained in the previous section. The upper white part of the diagram shows
the reference group. In our case this is always the group of developers with the lower
coreness-scores. The lower gray part shows the hazard ration for the other group
of developers in relation to the reference group. The N below the labeled of the
groups shows the number of events (feedback receptions) there were in the group of
developers. The value next to the label of the gray group shows the hazard ratio
itself.

Figure 5.3: The forest plot for the Hazard ratio of the first feedback of GCC analyzed
on the co-change network with an eigenvector classification and the grouping with
the 80/20 method.

In Figure 5.3, we present the results for GCC with an eigenvector classification
on the co-change network. This plot shows the same result as the result for this
configuration in Table 5.3. The hazard ratio and thus the probability to receive a
feedback on a submission is higher for developers that have a higher coreness-score
than for developers with a lower coreness-score. This supports the hypothesis.
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Project
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Eigen
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Eigen
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LLVM 0.11*** 1.37*** 1.08 0.44*** 0.44*** 0.13***
GCC 13.73*** 1.04* 12.21*** 7.39*** 0.83*** 35.98***
QEMU 1.59*** 1.02 1.88*** 1.16*** 1.01 1.37***
Git 1.31*** 1.26*** 1.33*** 1.15*** 1.06*** 1.14***
U-Boot 1.26*** 1.23*** 1.23*** 1.25*** 1.25*** 1.23***
FFmpeg 0.34*** 1.04 0.52*** 0.40*** 0.58*** 0.52***
BusyBox 1.16 1.18 1.18 0.75* 0.87 0.73
Jailhouse 0.38*** 0.87 0.55*** 0.29*** 0.42*** 0.32***
FLAC 0.67 1.59 0.38 8.18* 2.99 2.18

Table 5.3: Hazard rates for the feedback rate. Values higher than 1 show a higher
probability to get a feedback for developer with a higher coreness-score. *: p-value <
0.05, **: p-value < 0.01, ***: p-value < 0.001. eigenvector centrality is abbreviated
with Eigen and hierarchy is abbreviated with Hier.

Figure 5.4: The forest plot for the Hazard ratio of the first feedback of FFmpeg
analyzed on the co-change network with an eigenvector-centrality classification and
the grouping in 25th and 75th percentile.
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The plot shown in Figure 5.4 on the other hand shows that for FFmpeg with an
eigenvector classification on the combined network the hazard rate is lower for devel-
opers with a higher coreness-score. This supports the results for this configuration
in Table 5.3.

Figure 5.5: The forest plot for the Hazard ratio of the first feedback of GCC analyzed
on the combined network with a hierarchy classification and the grouping with the
80/20 method.

But the grouping of the developers by coreness-scores also brings some uncertainty
into the model. When we look at the result for GCC with a hierarchy classification
on the combined network in Table 5.3, we see that developers with a higher coreness-
score should have a higher probability of receiving a feedback on their submissions.
But the plot for the grouped developers in Figure 5.5 shows the exact opposite of
this. So we see, that the results for the un-grouped data sometimes show a difference
to the results for the grouped data. We discuss this in detail in Section 5.3.2.

Since there is data that supports the positive and the negative side of the hypoth-
esis, as shown in this section, we conclude the results for H2 to be inconclusive.
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5.2.3 Hypothesis H3: Review Interval

For the analysis of the hypothesis that developers with a higher coreness-score have
a smaller review interval, we have the same limitations regarding the log-rank test
for the Kaplan-Meier estimator as for the analysis of H1. Therefore, we group the
data again using the 80/20 method and the 25/75 method. The results again show
mixed indications including the acceptance of the hypothesis, the rejection of the
hypothesis, and even results that show no difference for the groups.

This means that there are results that show that developers with a higher coreness-
score have a shorter review interval for their submissions, results that show that
developers with a higher coreness-score have a longer review interval for their sub-
missions, and that there is no difference in the results for the two groups at all for
some configurations.

Figure 5.6: The Survival curves for the review interval of U-Boot analyzed on
the co-change network with an eigenvector-centrality classification and the grouping
with the 80/20 method.

The results for U-Boot with an eigenvector-centrality classification on the co-
change network for example, show that the survival probability, i.e., the proba-
bility not to finish the review phase successfully is lower for developer with a higher
coreness-score. The plot for this is shown in Figure 5.6. This indicates that the hy-
pothesis is true for said configuration. As shown in the risk table on the bottom of
the plot, there even is no open submission for developers with a higher coreness-score
after 600 weeks, while it takes approximately 800 weeks in maximum for developers
with a lower coreness-score.

The results for BusyBox with an eigenvector-centrality classification on the mail
network, on the other hand, show that developers with a lower coreness-score have a
higher probability to successfully end the review process earlier than developer with
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Figure 5.7: The Survival curves for the review interval of BusyBox analyzed on
the mail network with an eigenvector-centrality classification and the grouping in
25th and 75th percentile.

a higher coreness-score. This does not support our hypothesis. And the risk table
on the bottom shows that there are even some patch-sets that are still not accepted
after 800 weeks for both groups.

The rest of the results can be found in the appendix of the thesis. These results
show a similar overall picture as the two results we present here. Sometimes, the
results indicate that the hypothesis is false, sometimes not. And some of the results
show no difference for the groups at all.

Therefore, since we have results that show different results, sometimes supporting
the hypothesis and sometimes not supporting it, we conclude the results for the
hypothesis overall to be inconclusive.

5.2.4 Hypothesis H4: Code-Acceptance Rate

The fourth hypothesis centers on the code-acceptance rate of developers in OSS
projects. We hypothesize that developers with a higher coreness-score have a higher
code-acceptance rate, i.e., a higher possibility to having their contributions accepted,
than developers with a lower coreness-score. This hypothesis is analyzed by using
the cox-proportional hazard model. This is analogue to the analysis of H2.

The results per OSS project and configuration are shown in Table 5.4. Just like the
results for H2 that we present in Section 5.2.2, there are mixed results present. The
hypothesis seems to be true for the OSS projects U-Boot and QEMU, but there
are other case studies, like LLVM, where this does not hold. the results for FLAC
indicate that there is no difference in the probability to have a submission accepted
for developers with higher coreness-score or developers with a lower coreness-score.
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Subsequently we present some exemplary plots, again grouping the data using the
80/20 method and the grouping in coreness-scores in the 25th and 75th percentile.

Figure 5.8: The forest plot for the Hazard ratio of the code-acceptance feedback of
GCC analyzed on the co-change network with an eigenvector classification and the
grouping with the 80/20 method.

The plot shown in Figure 5.8, represents the result for GCC with an eigenvector
classification on the co-change network. This result shows, like the result for this con-
figuration without grouping in Table 5.4, that the probability to have a submission
accepted is higher for developers with a higher coreness-score than for developers
with a lower coreness-score.

The plot shown in Figure 5.9, on the other hand, shows the exact opposite for
LLVM with an eigenvector classification on the combined network. Here we see
that developers with a lower coreness-score seem to have a higher probability of
having their submissions accepted than developers with a higher coreness-score.

As we can see in Table 5.4, there are results that support either side of the hypothesis,
just like for the previous three hypotheses. And then there are again results that
show no difference in the probability of having a submission accepted for developers
with a higher coreness-score versus developers with a lower coreness-score.

In conclusion, we have to deem the results for this hypothesis to be inconclusive,
since there are a lot of results that do not support the hypothesis but also some
that do.
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LLVM <0.001*** 0.005*** <0.001*** <0.001*** 0.75*** 1.27
GCC 27.96*** 1.37*** 11.68*** 0.007*** 1.94*** 32.23***
QEMU 2.76*** 1.34*** 2.71*** 1.78*** 1.16*** 1.98***
Git 1.63*** 1.15*** 1.18*** 1.36*** 0.99 1.03
U-Boot 1.90*** 1.43*** 1.47*** 1.28*** 1.43*** 1.41***
FFmpeg 0.70*** 1.89*** 0.96 0.67*** 1.05 0.91**
BusyBox 0.62 0.16*** 0.89 0.58* 0.09*** 0.95
Jailhouse 2.31*** 0.81 0.93 3.71*** 2.23*** 2.91***
FLAC 0.54 1.04 0.95 0,51 0.16 0.17

Table 5.4: Hazard rates for the code-acceptance rate. Values higher than 1 show
a higher probability to have the submission accepted for developers with a higher
coreness-score. *: p-value < 0.05, **: p-value < 0.01, ***: p-value < 0.001

Figure 5.9: The forest plot for the Hazard ratio of the code-acceptance feedback of
LLVM analyzed on the combined network with an eigenvector classification and the
grouping in 25th and 75th percentile.
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5.2.5 Hypothesis H5: Number of Revisions

The last hypothesis for this thesis is centered on the number of patch revisions, a
developer needs to send until a patch is accepted. We hypothesize that a developer
with a higher coreness-score needs to send less revisions of a patch than a developer
with a lower coreness-score. This is the only hypothesis of this thesis we analyze
with a linear regression instead of a survival analysis. We do this, since for a survival
analysis there has to be a time variable and for this hypothesis we do not analyze
some time-specific measure.

Furthermore, we can plot the results of this analysis without grouping the coreness-
scores first. To plot them we use scatter plots with the number of revisions on the
y-axis and the coreness on the x-axis. Every point on the plot represents a patch-set
that needed y revisions and is assigned to a developer with a coreness-score of x. The
red line represents the regression line, i.e., whether the number of revisions needed
increases with increasing coreness-score or decreases with increasing coreness-score.

Project
Eigen

cochange
Eigen
mail

Eigen
combined

Hier
cochange

Hier
mail

Hier
combined

LLVM Yes Yes Yes Yes No Yes
GCC No Yes No No Yes Yes
QEMU Yes Yes Yes Yes Yes Yes
Git Yes No No Yes Yes Yes
U-Boot Yes Yes Yes Yes Yes No
FFmpeg Yes Yes Yes Yes Yes Yes
BusyBox No No No No No No
Jailhouse Yes Yes Yes Yes No Yes
FLAC No No No No No No

Table 5.5: This table shows whether there is a significant influence of the coreness-
score on the number of revisions a developer has to send. Yes means there is an
influence present and No means that there is no significant influence.

The results, whether or not there is a statistically significant influence of a devel-
opers’ coreness-score on the number of patch revisions are shown in Table 5.5. A
Yes-entry means that there is a significant influence, while a No-entry means that
there is no significant influence of the coreness-score on the number of revisions.

But the fact that a result is significant or not is not enough to accept or reject our
hypothesis. Next, we have to examine the scatter plots of the results to see whether
the number of revisions does decrease with increasing coreness-score of a developer,
which would support the hypothesis. Therefore, we examine some exemplary plots
in this section. The rest of the plots can be found in the appendix.

The plot in Figure 5.10 shows the results for LLVM with an eigenvector-centrality
classification on the mail network. Here we can see that the regression line indicates
that the number of revisions decreases for developers with a higher coreness-score.
This can also be seen by looking at the Slope parameter on top of the plot. A
negative number here indicates a falling regression line. So these results support the
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Figure 5.10: The scatter plot for the number of revisions under the influence of a de-
velopers’ coreness-score of LLVM analyzed on the mail network with an eigenvector
classification.

hypothesis. But one other important measure is the R2 value of the model. This can
be found as the Adj R2 value on top of the plot. This is very low for the analysis
of this configuration. But the R2 value is low for all configurations of our analysis,
which brings some uncertainty whether the linear regression is the right model for
the analysis of this hypothesis.

In contrast to the result of LLVM, there are also results like the one presented in
Figure 5.11. This plot represents the analysis results for Jailhouse analyzed on
the mail network with an eigenvector classification. Here, we see that the regression
line is rising, i.e., the number of revisions increases with an increasing coreness-score
of the responsible developer. This supports the opposite of our hypothesis.

Moreover, there are again some statistically insignificant results indicating no influ-
ence of a developers’ coreness-score on the number of patch revisions at all.

Since there are results of the analysis of this hypothesis that support the hypothesis
and also results that do not support the hypothesis, we have to conclude that the
results and thus the hypothesis is overall inconclusive.
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Figure 5.11: The scatter plot for the number of revisions under the influence of
a developers’ coreness-score of Jailhouse analyzed on the mail network with an
eigenvector classification.

5.3 Discussion
In this section, we discuss the results, we presented in Section 5.2. Moreover, we
discuss points of interest regarding the analyses and chosen OSS projects.

5.3.1 Hypothesis H1: First-Feedback Interval

In the first hypothesis following the first hypothesis of the original study [BC14],
we state that developers with a higher coreness-score have a lower first-feedback
interval than developers with a lower coreness-score. Bosu et al. are able to accept
this hypothesis while we have to deem the results to be inconclusive.

The results, we presented show that the results seem to differ from OSS project to
OSS project and even from configuration to configuration sometimes. This indicates
that there might be a dependency of the first-feedback interval on a multitude of
factors, not only the coreness score of a developer. For example, there might be
the directive in the community that contributions of new contributors should be
prioritized to ensure their further commitment to the project. This could explain,
why we observe for some projects and configurations that developers with a lower
coreness-score have a shorter first-feedback interval. Or maybe the interval until
there is a first feedback on a submission is dependent on the importance of the
submission. So to say an important patch to handle a critical security vulnerability
might be reviewed faster than a uncritical documentation change. There might also
be a lot more influencing factors on this.

5.3.2 Hypothesis H2: Feedback Rate

The second hypothesis of this thesis is that developers with a higher coreness-score
have a higher feedback rate, i.e. a higher probability to get a feedback on a contri-
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bution at all, than developers with a lower coreness-score. This hypothesis is not
present in the original study by Bosu et al. [BC14] so we can not say whether this
holds or not for their study.

Our results show that there is no conclusive answer of the hypothesis possible. Some
results indicate that the hypothesis might be true, while others indicate that the
exact opposite might be the case. Some results show no tendency towards or against
the hypothesis at all.

There might be a multitude of reasons why this is the case. The simplest reason is
that there might be a lot of factors that influence whether there is a feedback on a
contribution or not. This follows our assumptions on the results of H1. The example
of a patch containing a critical security fix versus a patch containing documentation
enhancements holds here as well. Moreover, the direct relationship of the author of
the patch to the reviewer could be a influencing factor, e.g. a reviewer that knows
the author personally could be inclined to giving a feedback on the contribution
even if it is an irrelevant patch that could be ignored.

5.3.3 Hypothesis H3: Review Interval

The third hypothesis of our study again follows the original study by Bosu et al.
[BC14]. This hypothesis centers on the review interval of a submission, i.e. the time
from submission of a patch until the acceptance of said patch. We hypothesize that
this interval is shorter for developers with a higher coreness-score than for developers
with a lower coreness-score. The results, like the results for H1 and H2, prove to
be inconclusive. Bosu et al. are able to accept the hypothesis based on their study
results.

The results show that the tendency towards or against the hypothesis differs among
the investigated OSS projects and even within the projects depending on the analysis
configuration. Some results, on the other hand, show no tendency at all. The main
reason for these inconsistencies in the results could either mean that the relationship
between the coreness-score of developers and the review interval of their submissions
might be purely random and not a general observation for OSS projects. So to say,
it might be present in some OSS projects while the length of the review interval
depends on different factors in other OSS projects.

Another influencing factor could again be the importance of the patch as described
in the previous two results discussions. For example a patch containing a criti-
cal enhancement could be pushed through the review process faster than a simple
documentation or maintainability enhancement.

5.3.4 Hypothesis H4: Code-Acceptance Rate

The fourth hypothesis of our thesis deals with the code-acceptance rate of developers,
i.e. the rate of accepted versus not accepted patches a developer submits to an OSS
project. We hypothesize, following the original study by Bosu et al. [BC14], that
this rate is higher for developers with a higher coreness-score than for developers
with a lower coreness-score. Bosu et al. are able to accept this hypothesis while we
have to deem the results to be inconclusive.
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In detail, the results we presented in Section 5.2.4 show that for some OSS projects
and study configuration there is an indication towards the acceptance of the hypoth-
esis, while other results suggest the opposite. Some results again show no tendency
towards a higher code-acceptance rate of developers with a higher coreness-score or
towards a higher code-acceptance rate for developers with a lower coreness-score at
all. This indicates that the coreness-score is not a robust measure to predict the
code-acceptance rate of developers but rather the code-acceptance rate depends on
a combination of the coreness-score with other factors or might even be completely
independent.

One other influencing factor could be the quality of a submission. Although we
hypothesized that developers with a higher coreness-score should be able to pro-
duce higher-quality patches because of their previous involvement and usually deep
knowledge of the code base, there could also be high-quality contributions by new
developers.

5.3.5 Hypothesis H5: Number of Revisions

The last hypothesis of this thesis, following the original study by Bosu et al. [BC14],
is that developers with a higher coreness-score need less revisions until a submission
is accepted. Bosu et al. conclude that the results of their study for this hypothesis are
inconclusive but tend towards the acceptance of the hypothesis. We also conclude
that the results of our study are inconclusive but we are not able to discern a
tendency towards the acceptance or rejection of the hypothesis.

The results indicate that there might be an influence of the coreness-score of devel-
opers on the number of patch revisions they need to send until acceptance. But the
results are not consistent on whether the number of revisions increases or decreases
with an increasing coreness-score of a developer. This seems to differ from OSS
project to OSS project and even within an OSS project depending on the network
type and classification metric. This could either mean that the number of revisions
is independent from the coreness-score of a developer and the results are completely
random or that there are other factors that influence the number of revisions devel-
opers need until their contributions are accepted.

One such influencing factor could be that developers with more experience in an
OSS project might be inclined to take on more difficult tasks and thus produce more
complex contributions that need more review and enhancements until the acceptance
than simpler changes. This would lead to developers with a higher coreness-score
needing more revisions of a patch until acceptance.

5.3.6 Differences to the Original Study

In this thesis, we replicate a study on the same topic by Bosu et al. [BC14]. Since
we use a different approach and analyze different OSS projects than the original
study, we have to emphasize the differences in detail.

Firstly, Bosu et al. analyze OSS projects that use Gerrit as contribution tool.
We analyze only OSS projects that use a mailing-list for this purpose. Moreover,
Bosu et al. build interaction networks for their case studies, while we build three
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different types of developer networks: mail networks, co-change networks, and a
combination of the two. This adds to the probability of not being able to reproduce
the results of the original study. Furthermore, the researchers of the original study
classify the developers of the OSS projects they analyze into core and peripheral
groups, while we mostly only use the coreness-score of a developer as a proxy for the
reputation of a developer. Additional, we use different network metrics to calculate
the coreness-score of a developer than Bosu et al. use to classify the developers into
groups.

The hypotheses of our study and the original study are mostly the same. We adapt
the hypotheses of Bosu et al. to fit our approach and add one more hypothesis.
The added hypothesis is that developers with a higher coreness-score have a higher
feedback rate on their contributions than developers with a lower coreness-score. We
add this hypothesis since it is an interesting research objective on this topic. For
the analysis of the hypotheses, Bosu et al. calculate the mean values of the first-
feedback interval, the review interval, the code-acceptance rate, and the number
of revisions for the core and the peripheral developer groups. Subsequently, they
compare these mean values and decide whether or not they accept their hypotheses
on the basis of these mean values. We, on the other hand, use the data of the
OSS projects we analyze for survival analyses to find the probability of an event to
happen. The events in our case are the reception of a feedback and the acceptance
of the submission. We then interpret these probabilities to decide if we accept the
hypotheses or not. For the hypothesis about the number of revisions a developer
needs to send until a contribution is accepted, we use a linear regression model.

5.3.7 Differences to our Previous Study

Since we have already replicated the study by Bosu et al. [BC14] in a previous
Bachelor Thesis, we have to discuss the differences in the outcomes and the approach
of the previous study and this thesis. In the previous study, we used only three OSS
projects and only built the mail network. Moreover, we followed the classification
approach of Bosu et al. and sorted the developers into the core and peripheral groups
for the analysis. This sorting brings some uncertainty, because there is no unified
approach to do this and thus there is no widely approved consensus of what a core
and a peripheral developer are in terms of their coreness-score. In this study we try
to avoid this uncertainty by not grouping the developers for most of our analyses.
Furthermore, we did not split the networks into ranges for the previous study. The
problem with analyzing the un-split network is that there might be wrong data as
to who is core and who is peripheral. For example a developer that contributes a
lot to an OSS project for one year should be considered core in this time-frame but
is overall classified as peripheral since the one year is not weighted as much when
looking at the whole lifespan of a project. We try to avoid such a scenario in this
thesis by splitting the networks into subsequent nine-month ranges.

As in this thesis, we were not able to reproduce the results of the original study in
the previous study.

5.3.8 Characteristics of the OSS Projects

In this part, we discuss the characteristics of the OSS projects we analyze, which we
presented in Section 4.2.1. The first notable difference between the projects is the
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size. The two biggest OSS projects are LLVM ant GCC. Compared to the smallest
projects, which are Jailhouse and FLAC, these projects have about 150 to 50
times larger in numbers of commits and even larger in numbers of mails. This gives
us a good range for our analyses as we include a variety of very large projects until
as very small projects in the study.

The next notable thing about the different projects are the results for the mapping
of patches and commits. For example when looking at the numbers for LLVM
in Table 5.2, we see that only a very small amount of patch-sets are mapped to
commits. This could either mean that there is a mailing-list containing patches we
did not analyze or that the mailing-list is not used by the majority of contributors
that have accepted contributions. When looking at the number of overall patches
for the project, it could also be that we are not able to map a lot of these patches
to commits although they were accepted.

When looking at the number of mails for BusyBox in Table 5.1 and then looking
at the number of detected patches in Table 5.2, we see that there is only a very
low percentage of patches among the mails. This could again mean that there
is an additional mailing-list for patches, we did not find or that there is a lot of
development going on in the project that is not communicated on the mailing-list.

These uncertainties in the data could of course lead to corrupted results, which we
discuss in the threats to validity of this study in Chapter 6.

5.3.9 The Difference Between Linear Regression and Cor-
relation

For the analysis of the fifth hypothesis of our study, as described in Section 4.2.6,
we use a linear regression. When using this thype of analysis, one has to discuss the
difference between linear regression and correlation.

Correlation describes an analysis that tries to find a relationship between two vari-
ables: and independent x-variable and a dependent y-variable. In our case the
independent variable is the coreness-score of a developer and the dependent variable
is the number of revisions a developer needs to send until a patch is accepted.

Linear regression on the other hand, is a type of analysis that estimates the value of
the dependent variable by looking at the independent variable. So when using the
linear regression, we can not fully say that there is a correlation between the two.
And as we can see from the plots for the linear regression in Section 5.2.5, we see
that there are a lot of values that are far away from the regression line and thus
the estimated value. So when only looking at the results of the linear regression
model, we can not fully decide whether or not there is a correlation between the
coreness-score of a developer and the number of revisions the developer needs to
send until the patch is accepted.
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Subsequent to the presentation and discussion of the study results, we discuss the
threats to validity of our study in this chapter.

One threat is the selection of OSS projects for the analysis. We only analyze projects
that use a mailing-list as contribution tool and thus can not generalize the findings of
this study to all OSS projects. Since there are a lot of different types of contribution
tools for OSS projects, we only cover a small amount of such projects with our
analyses. Moreover, we can not guarantee that the analyzed mailing-lists are the
only ones containing patches for the analyzed OSS projects. We selected the main
development lists for all of the case studies of this thesis but there might be more
mailing-lists on which the development is done. So we can not guarantee that we
analyze the complete data.

Bosu et al. [BC14] use data mined from Gerrit, as described in Section 3.2. They
are able to mine all data necessary for their analyses from this platform. We, on
the other hand, have to rely on the correctness of the tool we use to extract and
prepare the data. First of all, we have to rely on Codeface to extract all necessary
data for our study from the OSS projects since this data forms the basis of all
our analyses. The next tool we have to rely on is PaStA to detect all patches on
the mailing-lists of the projects and to map all patches that led to commits to their
respective commit. There is some uncertainty regarding this, as the analysis method
of PaStA is a similarity analysis on the text of a patch on the mailing-list. This
type of analysis always brings some uncertainty as to the correctness of the data. As
we can see in the data of LLVM in Table 5.2, there is a very low mapping rate of
patches to commits for some OSS projects. This could be due to some undetectable
mappings.

The next threat to validity is the detection of the coreness-scores of developers.
We calculate these scores with two different network metrics but we are not sure
whether these metric values are a good proxy for the coreness-score of developers in
the analyzed OSS projects.
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One other threat to validity is that there might be an influence of the dependent
variables of our study on the independent ones. For example, if a developer has to
submit a lot of revisions for one patch, the coreness-score increases for the classifi-
cation using the mail network. This is due to the fact that every submitted revision
has to be sent in a mail and thus the developer has more mails and gets a higher
coreness-score in our analysis.

The next threat to validity is the fact that we can only analyze the hypotheses H1
and H3 with the Kaplan-Meier method if we group the coreness-scores of developers.
This grouping can lead to corrupted results, because there is no generalized method
to group the coreness-score of developers and we have to rely on the chosen methods
to be correct forms of grouping.

Moreover, we obtain very low goodness-of-fit (R2) values for the linear regression
analysis of H5. This could mean that although the results are significant in most
cases, there is no correlation between the coreness-score of developers and the num-
ber of revisions they have to submit until a patch gets accepted. This could be
dependent on other factors like the complexity of a patch or the code-quality of a
patch. So we can not generalize the findings of the analysis of this hypothesis.

Finally, we assume that the coreness-score of a developer is a proxy for the devel-
opers’ reputation within a project and that the reputation has an influence on the
outcomes of review requests a developers sends to an OSS project. This might not be
the case. There could be a lot of influencing factors we do not consider in this study.
And these influencing factors could also differ from OSS project to OSS project.
This would then lead to our study not being generalizable for all OSS projects.
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In this chapter of the thesis we summarize the findings of our study. Moreover, we
give an outlook of further work we will conduct on this topic.

7.1 Summary

In this thesis we investigated whether there is an influence of a developers reputation
on the outcomes of the review f contributions a developer makes to an OSS project.
This study is a replication of the work by Bosu et al. [BC14], for the purpose
of confirming or refusing their results. The detailed study objectives surrounding
the review of contributions a developer makes to OSS projects are the time until a
developer gets a first feedback on a contribution, the probability to get a feedback
at all, the time until the acceptance of a contribution, the probability to get their
contributions accepted at all, and the number of revisions a developer has to send
until a contribution is accepted.

To analyze these study objectives, we extracted data of nine different OSS projects
that all use a mailing-list as a contribution tool. These nine projects are: Jail-
house, BusyBox, FFmpeg, GCC, Git, LLVM, QEMU, U-Boot, and FLAC.
Then, we used the coreness-score of developers as proxy for their reputation. For
the calculation of the coreness-scores of developers, we built three different types
of developer networks: mail networks, co-change networks, and a combination of
the previous two. Subsequently, we split the networks into nine-month ranges. We
then applied two different network metrics separately to the split networks to obtain
the coreness-score for the developers of an OSS project. The two network metrics
are the eigenvector centrality and the hierarchy. For the analysis of the hypothe-
ses, we then applied different regression analyses: The Kaplan-Meier method, the
cox-proportional hazard model, and linear regression.

Unlike Bosu et al., we were not able to accept the hypothesis that developers with a
higher reputation have a shorter first-feedback interval than developers with a lower
reputation within an OSS project. We found that this seems to differ between the
analyzed projects. While it seems to be true for some projects, we were not able to
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confirm it for the majority of projects. Furthermore, we were not able to confirm
that developers with a higher reputation are more likely to receive a feedback at all
on their contributions. We were again able to confirm this in some cases while the
majority of the results shows a tendency towards the rejection of the hypothesis.
Therefore, we had to conclude that the results are inconclusive. The next objective
was the review interval of submissions to OSS projects. Unlike the original study,
we were not able to show that this interval is shorter for developers with a higher
reputation within an OSS project. Moreover, we were not able to confirm the results
of Bosu et al. regarding the code-acceptance rate. While the original study shows
that developers with a higher reputation have a higher code-acceptance rate, we can
not confirm this. Our results indicate that this might be dependent on other or more
factors than just the reputation of a developer. The last objective of this thesis and
the original study, was the number of revisions developers need to send until a patch
is accepted. Just like Bosu et al., we were not able to show that developers with a
higher reputation within an OSS project need less revisions.

In conclusion, we could not confirm the findings of the original study by Bosu et
al. The reputation of developers within an OSS project does not seem to have a
generally significant influence on the outcomes of review requests. Therefore, we
can only conclude that the reputation of developers can not be the only factor that
influences the outcomes of the review process within OSS projects.

7.2 Future Work

Since we will conduct further research on this topic by us in the future, we give an
outlook on this here.

The first thing we should do is including more OSS projects into the study. This
would make our research more generalizable over all OSS projects. But to reach a
higher generalization we should also include OSS projects with different contribution
systems. One of the most famous OSS project, we will analyze is the Linux kernel.
This is one of the largest and most used OSS project in the world.

Furthermore, we should make the coreness-score metric more robust. Currently, we
only use the coreness-score of the developer that is responsible for the initial patch
of a revision-set within the range this patch is submitted in. But we should also
consider the coreness-scores of the developers that contribute to the revision-set by
sending a revision. This could be the same developer that sent the initial patch
but there could also be other developers contributing. Moreover, we should consider
the coreness-score not only for the range a developer sends the initial patch but all
coreness-scores of developers that send a revision in the respective range. For this
reason, we could calculate an active range for every revision-set, i.e., from the initial
submission until the acceptance of the revision-set and use the coreness-scores of all
involved developers in this range.

To decrease the problem of the coreness-score of a developer for a patch that is
submitted on the border of the range, we should also introduce a sliding-window
approach for the splitting of the networks or calculate the range individually for
each revision-set, as we described before.
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Next, we have to find a solution for the analysis of the number of revisions a developer
has to submit until the acceptance of a patch. The linear regression model does not
seem to be a good model for this as is evident with the low R2 values for the results
of this analysis. Moreover, we have to find a solution regarding the Kaplan-Meier
method. As we described in the thesis, the log-rank test of this survival analysis
is not able to handle continuous variables, which the coreness-score is. We have to
find a possibility to analyze the hypotheses, we use the Kaplan-Meier method for,
without grouping the coreness-scores.
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A Appendix

In the appendix, we present additional plots for the analysis results. Since there are
too many plots to to display, we only present chosen ones.

Figure A.1: The Survival curves for the first-feedback interval of FLAC analyzed on
the combined-network with an eigenvector-centrality classification and the grouping
in 25th and 75th percentile.
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Figure A.2: The Survival curves for the first-feedback interval of Git analyzed on
the combined-network with an eigenvector-centrality classification and the grouping
in 25th and 75th percentile.

Figure A.3: The Survival curves for the first-feedback interval of BusyBox analyzed
on the combined-network with an hierarchy classification and the grouping in 25th
and 75th percentile.
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Figure A.4: The forest plot for the Hazard ratio of the first feedback of LLVM
analyzed on the co-change network with an eigenvector-centrality classification and
the grouping in 25th and 75th percentile.

Figure A.5: The forest plot for the Hazard ratio of the first feedback of Jailhouse
analyzed on the co-change network with an eigenvector-centrality classification and
the grouping in 25th and 75th percentile.
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Figure A.6: The Survival curves for the review interval of QEMU analyzed on the
mail network with an eigenvector-centrality classification and the grouping in 25th
and 75th percentile.

Figure A.7: The Survival curves for the review interval of GCC analyzed on the
mail network with an hierarchy classification and the grouping in 25th and 75th
percentile.



53

Figure A.8: The forest plot for the Hazard ratio of the code-acceptance feedback of
FFmpeg analyzed on the combined network with an eigenvector classification and
the grouping in 25th and 75th percentile.
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Figure A.9: The forest plot for the Hazard ratio of the code-acceptance feedback of
Git analyzed on the combined network with an eigenvector classification and the
grouping in 25th and 75th percentile.

Figure A.10: The scatter plot for the number of revisions under the influence of
a developers’ coreness-score of FFmpeg analyzed on the mail network with an
eigenvector classification.
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Figure A.11: The scatter plot for the number of revisions under the influence of a
developers’ coreness-score of U-Boot analyzed on the mail network with an eigen-
vector classification.
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