
Chair of Software Engineering

Understanding How Developers Link Social
and Technical Assets in GitHub

Masterarbeit von

Arun Kumar Verma

1. Prüfer 2. Prüfer
Dr.-Ing. Sven Apel Prof. Dr. Gordon Fraser

15. März 2020

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goal . 2

1.3 Methodology . 3

1.4 Results . 3

1.5 Discussion . 4

1.6 Contributions . 5

1.7 Structure of the Thesis . 6

2 Background 7

2.1 Collaborative Software Development . 7

2.2 Pull-based Software Development Model 8

2.3 Version Control Systems . 10

2.4 Developers Communication on Software Development 12

2.5 Developers Coordination on Software Development 13

2.6 Communication Model on GitHub . 14

2.7 Relation among GitHub features . 19

3 Related Work 21

ii

Contents

4 Methodology 26

4.1 Research Questions . 26

4.2 Subject Projects . 28

4.3 Data Acquisition . 33

4.4 Operationalization . 35

5 Results 39

5.1 Data Overview . 39

5.2 Answer of RQ1 . 40

5.3 Answer of RQ2 . 42

5.4 Answer of RQ3 . 45

6 Discussion 47

6.1 Comparison with Previous Studies . 47

6.2 Comparing Top 10 Labels Used in General, in Issues (Not Pull Requests),

and in Pull Requests . 48

6.3 A Survey to Investigate Developers’ Opinion about Linking Social and

Technical Assets on GitHub . 50

6.3.1 Design and Planning . 50

6.3.2 Data Collection and Analysis . 51

6.3.3 Evaluation . 60

6.4 Threats to Validity . 61

6.4.1 Internal Validity . 62

6.4.2 External Validity . 62

7 Final Remarks 64

7.1 Conclusion . 64

7.2 Contributions . 66

iii

Contents

7.3 Future Work . 67

Appendix A Survey 69

Bibliography 77

Eidesstattliche Erklärung 90

iv

Abstract

Collaborative software development is a team effort in which success depends on the

ability to coordinate social and technical assets. Version control systems and social net-

work platforms were created to support technical and social assets management. While

version control systems keep track of code changes (i.e., technical assets), social net-

work platforms present a common interface to not only host the project source code,

but also to provide a communication channel among developers (i.e., social assets). On

GitHub social coding platform, developers may link the problem they are solving (i.e.,

the issue) with the solution (i.e., the pull requests). Considering that the pull-based

software development model has well-defined steps and GitHub is able to support these

steps, GitHub becomes an interesting social coding platform to be investigated. Our

goal is to investigate how developers use GitHub facilities for social and technical assets

coordination in practice. To achieve this goal, we performed a two-steps study. First,

we empirically investigate how developers organize and link social and technical assets

investigating 66 GitHub repositories. Second, we ask 100 developers about discrepancies

in the theoretical and practice of the pull-based model, and challenges they have when

contributing to this model. Our results show: (i) developers link 24.67% of the problems

(issues) with related problems and with proposed solutions (pull requests), (ii) devel-

opers link commits with both problems and solutions in 84.26% of the cases, and (iii)

developers link 59.43% of issues with labels, and 61.60% of pull requests with labels. The

v

Contents

results of our survey for the issues and pull requests relationship show that: (i) 59% of

the participants link issues with related issues, (ii) 58% of the participants refer issues in

the body of pull requests, and (iii) 57% of the participants describe pull requests in the

description of issues. Regarding the relationship among issues and commits, we found

that: (i) 84% of the participants refer commits in the description of issues, and (ii) 94%

of the participants link issues with commit messages. Regarding the relationship among

issues and labels, we found that 63% of the participants link issues and pull requests with

labels. In addition, we found that 80% of the participants agreed that relating assets

are useful for project coordination, but they do not create links very often in practice.

The take away message is that: (i) most of the links do not come from the natural flow

(from problem description to solution), the links come from the opposite flow (i.e., from

the solution to the problem description). Hence, developers should pay more attention

to link issues and pull requests in both directions to increase coordination among de-

velopers; (ii) linking labels with issues and pull requests may help developers to refine

communication related to code changes. Hence, we encourage developers to link issues

and pull requests with labels; and, (iii) despite developers agree that they need to link

social and technical assets, they do not link assets frequently in practice. This way, we

recommend that they create links more often.

vi

Acknowledgments

This thesis becomes a reality with the kind support and help of many individuals. I

would like to extend my sincere thanks to all of them.

I express my immense gratitude towards my family and friends for their kind support

and encouragement which helped me towards the completion of this master thesis.

I am highly indebted to the University of Passau and Faculty of Informatics

and Mathematics for their guidance and constant supervision as well as for providing

necessary information regarding this research & also for their support in completing this

endeavor.

I would like to express my special gratitude and thanks to my adviser, Gustavo do Vale

for his guidance and support throughout the thesis work. Without his encouragement

guidance, this thesis would not have materialized.

My thanks and appreciations also go to my colleague and people who have willingly

helped me out with their abilities.

vii

List of Figures

2.1 A GitHub workflow . 15

2.2 The relation between issues, commits and pull requests 20

4.1 Filters applied to projects . 29

4.2 Number of ways to link pull requests and issues 36

5.1 Relation between issues and pull requests 40

5.2 Relation between commits with pull requests and issues 43

5.3 Relation between labels with pull requests and issues 45

6.1 Results of participants’ general background 53

6.2 Results of participants’ GitHub knowledge 55

6.3 Results of participants’ report of use of issues and pull requests 57

6.4 Results participants’ report of use of commits 59

6.5 Results participants’ report of use of labels 59

viii

List of Tables

4.1 Overview of the subject projects . 30

4.2 List of variables of metrics . 34

5.1 Measures for variables of metrics . 39

5.2 Measures for metrics of research question 1 41

5.3 Measures for metrics of research question 2 44

5.4 Measures for metrics of research question 3 46

6.1 List of top 10 labels used in general, in issues (not PR), and in PR . . . 49

ix

1 Introduction

Software development is a collaborative and distributed activity in which success de-

pends on the ability to coordinate social and technical assets [JAM17]. Poor coordi-

nation among developers can reduce the quality of a product because developers need

information from each other in order to carry out their tasks well. In software de-

velopment, effective coordination is a fundamental requirement because it helps team

members to work together, and gives them the opportunity to share their point of view

[Hel18]. There are several coordination channels available for developers such as emails,

or writing a shared document. Social media play an important role in supporting coor-

dination activities within a community of software developers. According to Souza et

al. [Sou+04] the success of software projects depends on coordination among contrib-

utors. Bird et al. [Bir+09] and Sedano et at. [SRP17] also mentioned that the lack

of coordination is a critical problem in distributed software development. In summary,

if coordination is uncertain or inaccurate, it may compromise the project budget and

schedule.

1.1 Motivation

Although software developers make code changes and craft software, they engage in var-

ious types of conversations such as discussion with other developers about bug fixing or

1

1 Introduction

giving feedback for a code review. The pull-based development is an emerging paradigm

for distributed software development that supports developers with isolated develop-

ment and branching techniques. Therefore, many projects are being migrated to various

code hosting platforms such as GitHub and Bitbucket [GPD14]. Git stores source code

and keeps track of the code changes history. GitHub provides a web interface to Git

repositories, facilitates social coding, and supports social networking among developers.

Of course, there is common a large amount of communication in the development of a

project, however, only when the communication is linked with code artifacts it will be

useful for further analyses and to increase the developers’ understanding. Considering it,

tools that facilitate such integration and coordination among technical and social assets

are well regarded in software development, specially in the pull-based software develop-

ment [GPD14]. GitHub provides many features to link social and technical assets such

as issues, pull requests, commits, labels. On GitHub, each issue may address one task

and depending on the scope of the issue further issues are created. A pull request allows

developers to start a discussion or a code review. Developers should map pull requests

with relevant issues (usually referred in pull request description) [RR14]. Furthermore,

developers may assign relevant labels to issues while creating them to facilitate GitHub

grouping or filtering of issues and pull requests.

1.2 Goal

The main goals of this thesis are: (i) to understand which GitHub features developers use

to support their coordination, and (ii) to know how and when developers normally use all

GitHub features to integrate social and technical assets. The understanding of how de-

velopers link social and technical assets can be useful to guide developers of open-source

projects to follow the best practices. Furthermore, it can also be useful for researchers to

2

1 Introduction

refine relationship among social and technical assets when analyzing the communication

of open-source projects. In other words, they can include only communication that is

related to the source code changes of the project.

1.3 Methodology

To achieve our goals we performed a two-step study. First, we performed an empirical

study mining 66 GitHub repositories and collecting information about GitHub issues,

pull requests, commits, and labels of each repository. With this information, we inves-

tigate three relations among assets in both directions: (i) whether developers normally

link the problem description (i.e., a GitHub issue) with the proposed solution (i.e., a

GitHub pull request), (ii) whether developers link commits with the problem and with

their solution and, (iii) whether developers use labels to represent the type of issues

they are working on such as bug, feature, question, and maintenance. Second, we sur-

veyed 100 developers to find out how often developers link social and technical assets in

practice. This two-step study is necessary because while the first presents the working

practice, the second investigates developers’ opinions about linking social and techni-

cal assets on GitHub. Therefore, only with these two studies, we are able to provide

guidelines that will support practitioners coordinating their assets in GitHub.

1.4 Results

Our results for the first relationship (i.e., issues and pull requests) show that developers

link 24.67% of the problems with related problems. Following the natural flow from

problems to the solutions, we found that only 6.74% of the issues are linked with pull

3

1 Introduction

requests. In other direction, we retrieved that 20.55% of pull requests are linked with

issues. For the second relationship (i.e., issues and commits), we see that 84.26% of

the commits are linked with issues, but in the other direction we found that 50.58% of

the issues are linked with commits. Regarding links among commits and pull requests,

developers link 80.92% of the commits in pull requests. On the other direction, we found

that 89.28% of the pull requests in the commit messages. For the third relationship (i.e.,

issues and labels), we found that 59.43% of the issues are linked with labels and that

61.60% of the pull request are linked with labels.

1.5 Discussion

We conducted a survey with 100 valid responses to investigate developers’ opinion about

linking social and technical assets. Regarding the relationship among issues and pull

requests, we found that (i) 59% of the participants link issues with related issues, (ii)

58% of the participants refer issues in the body of pull requests, and (iii) 57% of the

participants describe pull requests in the description of issues. Regarding the relationship

among issues and commits, we found that 84% of the participants refer commits in the

description of issues, and 94% of the participants link issues with commit messages.

Regarding the relationship among issues and labels, we found that the participants use

both default and customized label and assign them to issues and pull requests in 63%

of the cases. Participants reported that relating commits with issues in both directions

is useful for retrieving code changes. The results from the survey are similar to what we

found empirically. Around 80% of the participants agreed that links among issues, pull

requests, commits, and labels are useful, however, they do not relate social and technical

assets very often in practice.

4

1 Introduction

1.6 Contributions

This thesis makes the following main contributions:

• We empirically present evidence that one quarter (24.67%) of the developers link

problem descriptions with solutions.

• We provide evidence that 84.26% of the developers refer commits in the description

of issues.

• We found that developers link 59.43% of the issues with labels and 61.60% of the

pull requests with labels.

• We show that 80% of the participants of our survey agreed that linking social and

technical assets is important for project coordination, however, they do not link

assets very often in practice.

• We provide a list of the top 10 labels used in general, in issues (not pull requests),

and in pull requests. As result, we found that: cla: yes, CLA Signed labels are

the two most related to code (pull requests). FrozenDueToAge, question labels are

the two most related to communication (issues). And, bug, needs_traige, module

labels are related to both issues and pull requests. Assigning labels to assets help

developers to refine communication related to code changes.

• We make our infrastructure publicly available, and the data is also publicly avail-

able [Ver20].

5

1 Introduction

1.7 Structure of the Thesis

The rest of this thesis is structured as follows. In chapter 2, we describe background

on collaborative software development, pull-based software development model, version

control systems, and communication and coordination of developers on collaborative

software development. In chapter 3, we present related work that investigate coor-

dination and communication on software development. In chapter 4, we present our

methodology showing research questions, subject projects, how we get data, and how

we operationalize our analysis. In chapter 5, we present the results obtained to answer

research questions. In chapter 6, we present a comparison of our results with the result

of previous studies, a survey to investigate developers’ opinion about linking social and

technical assets, and threats to the validity our study. Finally, in chapter 7, we conclude

the thesis and present suggestions for future work.

6

2 Background

This chapter presents important concepts to understand this thesis. In Section 2.1, we

present the benefits and challenges of collaborative software development. In Section 2.2,

we present details about pull-based software development model. In Section 2.3, we

provide basic information about version control systems. In Section 2.4, we present

details about developers’ communication on collaborative software development. In

Section 2.5, we present the developers’ coordination in software development, and how

they organize their social and technical assets. In Section 2.6 and 2.7, we present the

communication flow on GitHub and how developers may relate GitHub features.

2.1 Collaborative Software Development

There are lots of factors that influence the success of a project such as communication

media, coordination tools. Having a team full of great individuals will not bring the

desired results if there is not effective collaboration. When developing software, there

is a huge flow of information. It is therefore important for team coordination to be

effective and timely. Good coordination saves time, money, and effort [Inj18]. Poor co-

ordination (or no collaboration) threatens software development project success [Nes19].

The challenges of developing an application or software as a team may be reduced by

7

2 Background

using groupware to coordinate and communicate the complex details concerned within a

project. When developers are geographically separated, their coordination success may

depend on utilizing effective groupware applications [Thi+07]. Groupware is an appli-

cation designed to assist developers concerned in a common task to reach their goals

[JJ91].

Depending on the level of collaboration, groupware can be divided into three categories

as communication, conferencing, and coordination. Communication is an unstructured

interchange of information such as a phone call or a chat. Conferencing can be thought

of as interactive work such as brainstorming or voting. Whilst co-ordination referred as

complex interdependent work [Mah95]. Collaborative management tools facilitate and

manage group activities such as (i) collaborate and share structured data and informa-

tion, (ii) interact and share with clients in a private online environment, and (iii) organize

social relations of groups [Cha98]. Software development teams may have difficulties in

communication remotely without software development collaboration tools. Groupware

is a powerful means for discussing ideas, distributing tasks, monitoring project progress,

communicating with developers, and keeping a team in synchronization [Nes19].

2.2 Pull-based Software Development Model

GitHub introduced a fork & pull model for collaboration on distributed software de-

velopment. Anyone can create a fork of a repository, use code as their own and make

changes that they may contribute back through pull requests [Jia+17]. Forking is sim-

ilar to creating a local copy of the repository. New contributors with no access to the

main repository can fork the repository and make code changes. A pull request is then

created to tell the maintainers of the main repository that the fork owner has changes

8

2 Background

that need to be pulled into the main repository. A code review is performed prior to the

change being merged into the main repository [She+14]. On GitHub, collaboration is

based upon pull requests which allow us to compare the content of two branches. After

adding or modifying a feature one can open a pull request, which people can start a

discussion about the commits and give feedback [Ern17]. Complex issues require more

effort to close and include several commits. Once the commit with the fix is merged into

the default branch, the issue will be closed [Pip15]. It works the same way as closing an

issue from a commit message does and it works across repositories. It is also possible to

solve more than one issue with a single pull request because some issues are related to

other issues [GPD14].

The pull-based model is widely adopted by open source projects hosted on the modern

collaborative coding platforms such as BitBucket, Gitorius, and GitHub [Yu+15]. On

GitHub, different social media features are integrated with the pull-request mechanism.

Hence, users can freely watch the development activities of popular repositories, fol-

low distinguished developers and comment on others’ contributions [TDH14b]. The so-

cialized pull-request paradigm offers greater conveniences for collaborative development

when compared to the traditional development methods (e.g., email-based patching)

[Yu+16]. The pull-based development model is used to integrate incoming changes into

a project’s code-base. Changes to a software project can be proposed by external con-

tributors, developers without sharing access to the central repository with the core team

[Vas+15]. Instead, they can create a fork of the central repository, work independently

and, whenever ready, request to have their changes merged into the main development

line by submitting a pull-request [Yu+15]. Developers can commit changes on a pull

request that was created from a fork of their repository with permission from the pull

request creator. Developers can only make commits on pull request that: (i) are opened

in a repository that developers have push access to and that were created from a fork of

9

2 Background

that repository; (ii) have permission granted from the pull request creator; and, (iii) do

not have restrictions that will prevent developers from committing [RR14].

2.3 Version Control Systems

Software developers operating in groups are regularly writing new code and changing

(adding or deleting) existing code. The code of a project, app, or software component

is usually organized in an exceedingly folder structure or file tree. One developer in a

team may be working on a new feature whereas another developer fixes an unrelated

bug by changing existing code, every developer could create their changes in several

components of the file tree [HLT09]. Version control systems help teams tracking every

individual change by each contributor, and helping prevent conflicting from concurrent

work [AB02]. Changes created in a part of the software are often incompatible with

those created by another developer working at the same time. This problem ought to

be discovered and solved in an orderly manner while not blocking the work of other

members of the team [GHM98].

Version control systems have seen great enhancements over the past few decades. There

are plenty of version control systems available such as Git, Beanstalk, Perforce, Mercu-

rial. There are three types of version control systems: (i) local version control system

which keeps track of all files existing in local system, (ii) centralized version control sys-

tems which is a centralized server that keeps track of all changes in files, (iii) distributed

version control system of which all information is distributed, and if a server dies then

client repositories can help restoring server data [Kum18]. Distributed version control

systems allow full access to every file, branch, and iteration of a project, and allow every

10

2 Background

user access to a full and self-contained history of all changes [Han19]. Nowadays, devel-

opers are also using GitHub as a coordination channel. To offer a web-based service for

software development, GitHub was created in 2008. Particularly, it takes advantage of

the Git version control system. It makes easier for a team of developers coding together

and thus efficiently handle large projects [Per+16]. GitHub is useful for project man-

agers and web teams that are looking into ways to improve their interaction and work

on different parts of the project.

In GitHub, developers are allowed to make changes, adapt and improve software from

their repositories. Each repository contains all project files, as well as, the revision

history of each file[RC16]. Several developers can collaborate on the same repository

which can be either public or private. For collaboration purposes, GitHub provides a

web interface to the Git repository and management tools, which also supports social

coding. Software developers may think GitHub as a site for social networking in which

they can receive updates for specific projects, communicate with other developers, follow

each other, and rate each other’s work[RC16]. In GitHub, there are three important

terms which are often used by developers: fork, pull request, and merge. A fork is

simply a repository that has been copied from the account of a member to the account

of another member. Forks allow a developer to make modifications without affecting

the original code [Jia+17]. While pull request allows developers to inform others about

the changes pushed into the repository. If the developer would like to share her code

changes, she should send a pull request to the owner of the original repository. GitHub’s

merge feature lets developers integrate modifications into the repository [Kal+16]. If,

after reviewing the code changes, the original owner wants to have it into the repository,

she can accept the modifications and merge them with the original repository.

11

2 Background

2.4 Developers Communication on Software

Development

Communication tools support collaborative software development. Initially, the avail-

able tools were mostly asynchronous forms of communication such as mailing lists or

relying on periodical publications to spread information [Thi+07]. Synchronous and

economical communication was restricted to telephone calls. In general, software devel-

opment requires a great deal of information exchange. Robillard and others [RR00] have

shown that most of a developer’s time is spent on communication activities. Communi-

cation can be hindered by several barriers, such as socio-cultural, linguistic, knowledge,

geographical and temporal barriers [KR19].

Research on communication in collaborative software development is conducted to im-

prove the understanding of the implications of different communication methods on the

success of the development process and the final product. In a collaborative environ-

ment, communication can be achieved either by synchronous media or asynchronous

media. Email is an asynchronous method of exchanging digital messages between de-

velopers using digital devices such as computers, mobile phones and other electronics

[Nii11]. Instant messaging (IM) systems popped out during the 90’s and there are lots

of provides for different systems nowadays. In most companies at least one IM sys-

tem is in use - some even have many of them which makes it even more difficult to do

work without interruptions [CI14]. The problem with IM is that sometimes people miss

the information as they are not at the time on computer. Wiki systems are another

communication channel that is widely used in many organizations. While wiki systems

can be used powerfully to provide information to lots of people, they usually lack the

functionality to notify people about new information [Lan+10].

12

2 Background

While synchronous technologies are audio and video conference, used for communication

between developers in real-time such as Zoom, GoToMeeting and Highfive [NPL09].

Chat systems are good for sharing information for a group of people at the same time.

Also, they do not overload people as much as IM systems because the information can

be read when the person has time and can concentrate on the information. The problem

with these systems is that they are really hard to get back to previous conversations.

Moreover, they do not provide good support with new content whether it is good or bad,

due to lack of notifications. Many social media platforms, such as Facebook (Workplace),

offer tools for companies to have their own, internal, social media channels for their

employees [Lan+10]. This is an interesting way of communication in businesses. Drawing

to a whiteboard or a paper can open new perspectives to the problem, the main issue with

drawing is that it can only be distributed to the people in the same room. Besides, most

of the time drawing requires also some verbal communication to make it understandable.

2.5 Developers Coordination on Software Development

To carry out organizational tasks successfully, an appropriate combination of organi-

zational structure, processes, communication, and coordination mechanisms is required

[Cat+07]. The coordination problems encountered in software development projects de-

pend on an intricate relationship of several factors. First, elements that influence how

closely-coupled the work is, such as complexity and uncertainty of the interfaces, as well

as, whether the work is carried out sequentially or concurrently [Cat+07]. Secondly,

factors that influence the ability to communicate and coordinate, such as geographic lo-

cation, whether the communication is direct or through an intermediary, and the quality

of documentation play a vital role. Moreover, there are some organizational factors that

should also be considered significant mediators. These mediators include processes,

13

2 Background

structure, and goal alignment in the organization. Coordination helps in integrating de-

velopers’ work which turned into a group product. In an organization, technical teams

follow a linkage process which may contain different team design principles and commu-

nication to coordinate their work [KWC94]. Therefore, the scope of software engineering

projects is increased with the advances and enhancement in IT and other formal method-

ologies used for coordination. Before, software development teams used to be very small

in numbers and less disperse, but today software development teams are generally large,

diverse, better trained, and more distributed in nature [HM19]. Furthermore, their tasks

are more advanced, complex, uncertain, and more fluid compared to the past - all this

despite enhancements in hardware and software that have changed individual work and

coordination less burdensome.

2.6 Communication Model on GitHub

As mentioned, communication is a key value in software development transmitting in-

formation between developers. The need to communicate effectively pervades software

development, operations, and support [Thi+07]. In an organization, developers may

use GitHub to improve their communication. In the pull-based software development

model, each developer work in their fork of the repository. This allows developers to

create whatever branches they want without polluting the main repository. Before this,

we had dozens of branches sitting in the main repository that belonged to no one. Now,

each developer manages their branches and does not confuse project newcomers with a

pile of old or incomplete branches [Dau16]. Pull requests include the ability to request

a review from another developer, and even to enforce rules that require a review before

a pull request may be merged. Figure 2.1 presents a sequential process that represents

the pull-based software development model which includes six steps as described below.

14

2 Background

Looking for issues to contribute

Target issue is addressed

Look at labels to support and find issues that you are familiar

Do you find an
interesting issue?

Create a branch to solve the target issue

Assign to address the issue

Add code contribution to solve the issue

Is the issue
addressed?

Do you
need help?

Start discussion
about the issue Submit pull requestGet feedback

Is the pull request
ready to merge?

Improve code
addressing code

suggestions

Deploy,
Merge, and

Push

YES

NO

YES

NO NO

YES

YESNO

(a) (b)

1

2

3

4

5

6

Figure 2.1: A GitHub workflow

15

2 Background

1. Find an issue to solve and discuss the task (e.g., bug fix and new feature

introduction)

The first step when contributing to a project is to visit the project and find an issue.

Developers can collect user feedback, report software bugs, and organize tasks they

would like to accomplish with issues in a repository. Issues are considered as more

than just a place to report software bugs. To stay updated on the most recent

comments in an issue, one can watch an issue to receive notifications about the

latest comments [Bis+13]. With issues, one can:

• Track and prioritize work using project boards.

• Associate issues with pull requests.

• Create issue templates to help contributors open meaningful issues.

• Transfer open issues to other repositories.

• Pin important issues to make them easier to find, preventing duplicated issues,

and reducing noise.

• Track duplicate issues using saved replies.

• Report comments that violate GitHub’s Community Guidelines.

Developers may also look for labels to find issues of their interest. Each label has a

name and color which can be assigned to issues to prioritize and categorize them.

2. Create a new branch (or fork) to address the target issue.

When beginning work on an issue locally, the first thing developers need to do is to

create a branch for that piece of work. Distributed version control systems enable

development in a more independent manner. Each member of a team uses branches

16

2 Background

to have their clones of a project and to work on tasks in parallel with other members

for minimizing the touchpoints between them [Kal+14a]. By moving to a peer-

to-peer configuration, distributed version control systems offer an alternative code

management model, leading to their workflows. Potential contributors do not write

directly to the main repository of a project. Rather than, these contributors make

their changes independent of each other by creating a fork (clone) of the repository.

Hence, a fork is a copy of a repository that allows you to freely experiment with

changes without affecting the original project [Mer15].

3. Assign developers to address the proposed issue

The next step is to assign an issue to work on depending on suitable skill set. On

GitHub, the assignment of issues to developers is considered as part of a work-

flow functionality for solving issues. Research on bugs or defects in open source

projects has been abundant [RK10][Sin13]. However, most of this research focused

on assigning specific bugs to the right developers (“bug triage”), rather than using

issue closure as a development process performance measure. Triaging bug reports

is a labor-intensive and time-consuming task that assigning incoming bug reports

to appropriate bug fixers [MKN09]. There is plenty of research based on ma-

chine learning and information retrieval techniques to triage incoming bug reports

practices of open source development.

4. Solve the issue by code contribution

After creating a branch, developers solve issues locally on their forked branch.

Developers can post their comments to discuss and manage the issue resolution.

They can comment on the solution on the opened issue to get help, if necessary,

and give an opportunity to other developers to provide feedback. Normally, there

are two types of comments [Kal+14b]:

17

2 Background

• Discussion: Comments on the overall content of the pull request. Interested

parties participate in technical discussions concerning the suitability of the

pull request altogether.

• Code Review: Comments on specific sections of the code. The reviewer makes

notes on the commit diff and pinpoint potential improvements.

5. Create a pull-request to integrate their solution referring to the issue

they are solving.

After discussion and code review, developers can change the source code accord-

ingly and tell others by initiating a pull request. Pull requests are tightly integrated

with the underlying repository. Maintainers accept the pull request and can see

exactly what changes are going to be merged. The issue part of the pull request is

used to keep track of the discussion comments. Developers are encouraged to refer

to issues or pull requests in commit messages or in issue comments. GitHub ex-

tracts such references and presents them as part of the discussion flow [Kal+14b].

When a set of changes is ready to be submitted to the main repository, developers

create a pull request, which specifies a local branch to be merged with a branch in

the main repository. A member of the project’s core team is then responsible to

inspect the changes and pull them to the project’s master branch. If changes are

considered unsatisfactory (e.g., as a result of a code review), more changes may be

requested; in that case, contributors need to update their local branches with new

commits [GPD14].

6. Deploy, merge, and push to address the target issue.

In GitHub, a developer can deploy from a branch for final testing in production

before merging to the master branch. Once a pull request has been reviewed and

the branch passes a benchmark of tests, it is time to deploy the changes to verify

18

2 Background

them in production. If the branch causes trouble, the developer can roll it back

by deploying the existing master into production. After verifying the changes in

production, the code should be merged into the master branch. Once merged,

pull requests preserve a record of the historical changes to the code. Because they

are searchable and allows anyone to go back in time to understand why and how

a decision was made. Using some keywords into the text of a pull request can

associate GitHub issues with the code changes. Hence, when the pull request is

merged the related issue should also be closed.

2.7 Relation among GitHub features

GitHub is considered more than an issue tracker. It represents a social network in

which technical assets are also linked to the platform. Its functionalities are used for

discussing different kinds of details such as bugs, and new features. On GitHub, issues

are a great way to keep track of tasks, enhancements, and bugs in a project. Developers

can discuss and review the potential changes, ask for code reviews, and feedback through

pull requests in a projects. Pull requests can be used to close one or more issues by using

a reference keyword. A commit, or revision, is a personal amendment to a file (or set of

files). It is similar to saving a file, except that every time we save Git creates a unique

identifier (i.e. the commit hash) that allows us to keep track of what changes were made,

when, and by who. Commits usually contain a message which is a brief description of

what changes were made. Labels help us to organize issues. Developers can apply labels

to issues and pull requests to indicate priority or category. In repositories, a developer

with write access, can create, assign, edit (name, color, description), or delete labels.

Labels are consistent across repositories, and make easier switching among projects.

19

2 Background

Pull
RequestsCommits Issues

Social assetsTechnical assets

1 2

4

3

Figure 2.2: The relation between issues, commits and pull requests

In Figure 2.2, we present relations among issues, commits and pull requests on GitHub.

In GitHub pull requests is a subset of issues presented as set 4. It means, every pull

request is an issue, but not all issues are pull requests. Developers create issues for

describing different tasks and propose solutions for them through pull requests. With

a pull request one can solve more than an issue, if the issues are related. Commits

are either related to the deletion or addition in the code. Developers link commits with

related issues presented as set 3. Thus, a single commit may help to solve multiple issues.

Commits are technical assets while issues represent social assets. As pull requests are

related to commits and may also retrieve communication among developers, we consider

pull requests a hybrid asset.

20

3 Related Work

In this chapter, we present different studies on how researchers have investigated coordi-

nation in collaborative software development. Furthermore, we provide details of other

studies that have been conducted on coordination for software development.

Communication channels play an essential role in supporting coordination activities

within a community of practice [Sto+14]. Various researchers have investigated devel-

opers’ collaboration through communication channels and tools, such as mailing lists,

IRC chat logs, issue trackers, and social networks (e.g., GitHub and Stack Overflow).

For instance, Bird et al. [Bir+08] investigated the relationship between communication

structure and code modularity. They found a relationship between communication and

code collaboration behavior for sub-communities. Guzzi et al. [Guz+13] analyzed a large

sample of e-mail threads from Apache Lucene’s development mailing list. They found

that developers participate in less than 75% of the threads, and in only about 35% of

the threads source-code details are discussed. LaToza et al. [LVD06] interviewed eleven

developers to discover common practices in software development. They found several

barriers preventing e-mail usage, highlighted advantages of face-to-face communication,

and that the use of more interactive communication channels is more desirable than e-

mails. Panichella et al. [Pan+14] analyzed three communication channels (mailing lists,

issue trackers, and IRCs) and code changes of seven projects. They found that not all

21

3 Related Work

developers use all communication channels, and socio-technical relationships may change

when using different communication channels and tools. Dabbish et. al [Dab+12] ex-

amined how individuals interpreted and made use of information about others’ actions

on code in an open social software repository. They found that four key features of

visible feedback drove a rich set of inferences around commitment, work quality, com-

munity significance, and personal relevance. They believe that collaboration, learning,

and reputation management are supported by these inferences within community.

In an extensive study, Storey et al. [Sto+14] mapped different communication tools, such

as e-mail lists, IRCs, SourceForge, GitHub, and Stack Overflow. They hypothesized that

knowledge in software engineering is embedded in: (i) people’s heads, (ii) project arti-

facts, (iii) community resources, such as forums, blogs, and discussion groups, and, (iv)

social networks. According to their study, GitHub is the only tool able to represent (the

last) three types of knowledge. Nakakoji et. al [NYY10] identified two distinct types

of communication in software development, coordination communication, and expertise

communication. They argued that different sets of design guidelines are necessary for

supporting each type of communication. They also described nine design guidelines to

support expertise communication based on the theories of social capital and models of

supporting collective creativity. Hattori et. al [HL10] built Syde, a tool infrastructure to

re-establish team awareness by sharing change and conflict information across develop-

ers’ workspaces. The novelty of their approach is that they model source code changes

as first-class entities to record the detailed evolution of a multi-developer project. There-

fore, precisely changed and amendment information is sent to interested developers by

Syde. Gutwin et al. [GPS04] looked at requirements and mechanisms for collaborative

development on three open source projects. They found that distributed developers

maintain both a general awareness of the entire team and more detailed knowledge of

people that they plan to work with. They observed that mailing lists and chat tools

22

3 Related Work

were primary channels for maintaining awareness, coordination, and communication. In

an empirical study, Seaman et al. [SB97], showed that developers take less time to com-

municate when they are familiar with one another and when they work in close physical

proximity. Furthermore, an additional effort is required to communicate when certain

mixtures of organizationally close and distant participants interact. The results provide

a better understanding of how organizational structure helps or hinders communication

in software development.

The popularity of the pull-based development model and GitHub has increased the in-

terest of researchers. For example, Singer et al. [Sin+13] and Dabbish et al. [Dab+12]

explored the value of social mechanisms in GitHub. Both studies found that trans-

parency helps developers connect, collaborate, create communities, share knowledge,

and discover new technologies. Tsay et al. [TDH14a] analyzed the association of vari-

ous technical and social measures with the likelihood of contribution acceptance. They

found that pull request acceptance is related to (i) the strength of the social connection

between the submitter and the project manager, (ii) the submitter’s prior interaction,

(iii) the number of comments, and (iv) the current stage of the project. Gousios et

al. [GPD14] analyzed millions of pull requests to study the effectiveness and efficiency

of contributors handling pull requests. They discovered that the time to merge a pull

request is influenced by the developer’s previous track record, the size of the project

and its test coverage, and the project’s openness to external contributions. Liu et al.

[LLH16] conducted a quantitative study on the specific effects of pull requests on the

project. They found that pull requests help to increase the social impact, resulting in

larger development activity.

Different coordination tools and channels are used by software developers to accomplish

their project work. The diversity of these tools has dramatically increased over the past

23

3 Related Work

decade, giving rise to a wide range of socially enabled communication channels and social

media that developers use to support their activities. The availability of such social tools

is leading to a participatory culture of software development, where developers want to

engage with, learn from, and co-create software with others. In an evolutionary study on

coordination channels, Storey et. al [Sto+17] described which channels developers find

essential to their work and gain an understanding of the challenges they face using them.

Their findings lay the empirical foundation for providing recommendations to developers

and tool designers on how to use and improve tools for developers. Furthermore, Tien-

Duy et al. [Le+15] explored links between issue reports and their corresponding commits.

They used ChangeScribe approach which analyzes code changes and creates commit

messages by combining several code summarization techniques. Their approach used a

discriminative model which is used to predict if a link exists between a commit message

and a bug report. It is known as RCLinker, which stands for Rich Context Linker.

They have also presented a comparison of RCLinker against MLink, which is the latest

state-of-the-art bug linking approach.

Despite the number of studies investigating the coordination among contributors, we did

not find any study exploring how contributors in fact link technical with social assets

in the pull-based development model in GitHub. Previously, several studies [Bir+08]

[Guz+13] [LVD06] [Pan+14] [Sto+14] [GPS04] have explored communication channels

and tools, such as mailing lists, IRC chat logs, issue trackers, and social networks. The

pull-based development model and GitHub have already been investigated and used by

various studies [Sin+13], [Dab+12], [TDH14a], [GPD14], and [LLH16] showing the im-

portance of GitHub across different communication channels. Furthermore, few studies

[NYY10] [SB97] have investigated how organizational structure supports communication

in software development. More similar to our study, Tien-Duy et al. [Le+15] provide

a strategy to link social and technical assets. In other words, they have investigated

24

3 Related Work

links between bug reports (social assets) and source code commits (technical assets) via

comparison of textual information in commit messages with textual contents in the bug

reports. Our study, on the other hand, does not provide a strategy, but check how

developers do that link of technical and social assets on GitHub. Hence, we intend to

empirically understand how developers relate technical and social assets, and by means

of a survey to find out why they do not link these assets in all cases.

25

4 Methodology

In this chapter, we present details of our study design. In Section 4.1, we present our

research questions. In Section 4.2, we show subject projects as well as the process to

select them. In Section 4.3, we provide details about variables that we use to fetch data

from repositories. Finally in Section 4.4, we show how we operationalize the answer of

our research questions.

4.1 Research Questions

GitHub provides several features to support coordination among developers such as

issues, pull requests, commits, and labels. Issues are a great way to keep track of tasks,

enhancements, and bugs in a project. Pull requests represent what is going to change

in the code or project. Commits are individual changes to a file (or set of files). Labels

are short-terms to describe the type of an issue.

Linking social and technical assets is important for measuring the quality of various

parts of a software system, predicting defects, improve recommendations of developers

for solving specific bugs, prioritize issues to be solved, and improve software coordination

[Le+15]. In our study, we investigate three relationships among GitHub features. First,

26

4 Methodology

we investigate whether developers link problem descriptions (issues) with the solution

of these problems (pull requests). To get a deeper understanding, we investigate this

relationship among issues and pull requests in both directions. Our first research question

summarize this investigation.

RQ1: Do developers link pull requests with related issues?

Second, we investigate whether developers link commits with the problems their de-

scribed (issues) and addressed (pull requests). Again, we investigate this relationship in

both directions. We summarize this second analysis in the following research question.

RQ2: Do developers link commits with issues?

Last, we investigate whether developers assign labels to the problems (issues) and so-

lutions (pull requests). Labeling allows developers to quickly filter and find issues they

are looking for. To get more profound knowledge, we investigate the relationship be-

tween labels with issues and pull requests. The following research question abstracts

this investigation.

RQ3: Do developers effectively use labels to represent

the type of issues?

27

4 Methodology

4.2 Subject Projects

We use GitHub repositories to collect data that helps in supporting metrics and providing

statistical results. GitHub is one of the largest coding communities and can provide wide

exposure for our study and it has been investigated and used by several studies [Dab+12],

[Kal+14b], [LLH16], [TDH14a], [Yu+15].

Initially, we retrieved 100 most popular repositories on GitHub, as determined by the

number of stars [BV18]. Then, we applied the following five filters: (i) no programming

projects: it excludes projects that do not have a programming language classified as

the main language (i.e., the main file extension), (ii) less than 50 issues and 50 pull re-

quests: it removes repositories which have less than 50 issues and 50 pull requests, (iii)

inactive: it eliminates projects which have less than two commits per month in the last

six months, (iv) not possible to rebuild most merge scenarios: it discards projects that

were not possible to rebuild most of the merge scenarios, and (v) balancing program-

ming language: it excludes JavaScript projects until they represent less than half of the

systems in our dataset of subject systems. Most projects are JavaScript projects, hence,

we removed the last popular projects to not let this programming language dominate

our dataset. Figure 4.1 illustrates how these filters are applied to GitHub repositories

and presents the number of projects remaining after each filter.

In Table 4.1, we present the name of each repository, programming language, the number

of issues, pull requests, commits, labels, and stars, and which filter excluded a target

project. Hence, if the Filter column is empty we selected the project.

28

4 Methodology

100

85

79

76

67

(i)

(ii)

(iii)

(iv)

66

(v)

No programming projects

Less than 50 issues
and 50 pull requests

Inactive

Not possible to rebuild
most merge scenarios

Balancing programming
language

Figure 4.1: Filters applied to projects

29

4 Methodology

Table 4.1: Overview of the subject projects

Id
Project

name

Program.

language
#Stars #Issues #PR #Com #Labels

Fil-

ters

1 freeCodeCamp JavaScript 306270 14017 23314 25050 55

2 996.ICU Rust 247602 - 1806 3019 14 (ii)

3 vue JavaScript 151206 8537 1662 3059 33

4 react JavaScript 138635 8293 8767 12566 50

5 tensorflow C++ 137425 21390 12780 72086 73 (iv)

6 bootstrap JavaScript 136882 18895 10257 19135 31

7 free-programming-books No language 135253 407 3012 5170 13 (i)

8 awesome No language 123542 239 1420 885 8 (i)

9 You-Dont-Know-JS No language 111462 793 747 1563 11 (i)

10 oh-my-zsh Shell 97706 3058 5270 5349 36

11
coding-interview-

university
No language 96626 104 364 1301 10 (i)

12 gitignore No language 93819 - 3242 3194 4 (i)

13 developer-roadmap No language 93416 401 130 241 7 (i)

14 javascript JavaScript 90045 936 1178 1783 16

15 d3 JavaScript 88250 2018 1088 4195 15

16 vscode TypeScript 86754 77805 6268 57427 242 (iv)

17 linux C 82807 - 721 873287 - (ii)

18 react-native JavaScript 82665 18125 8921 18744 166

19 CS-Notes Java 81607 338 445 3500 11

20 flutter Dart 78164 27637 16145 16358 206

21 electron C++ 78136 11763 8952 22704 136

22
system-design-

primer
Python 75627 95 237 274 16

23 awesome-python Python 74959 158 1259 1392 8

24 create-react-app JavaScript 72998 5046 2815 2393 29

25
the-art-of-

command-line
No language 67171 154 496 1185 14 (i)

26 axios JavaScript 66063 1942 562 883 24

27 go Go 65878 34626 894 42061 65

28 node JavaScript 65737 10738 19340 28602 162

29 public-apis Python 64243 114 981 2128 4

30 anima-te.css CSS 62802 663 322 454 15

30

4 Methodology

31
free-programming-

books-zh_CN
No language 62345 342 395 887 7 (i)

32 Font-Awesome JavaScript 61276 15091 584 61 73

33 Java-Guide Java 61006 233 316 1889 12 (i)

34 Python Python 60627 192 1325 1289 19

35 kubernetes Go 60102 32664 52699 85866 187 (iv)

36 angular.js JavaScript 59614 8954 7887 8967 97

37 models Python 58850 4741 2869 3925 21

38
build-your-

own-x
No language 58097 294 127 375 - (i)

39 youtube-dl Python 57223 18281 3565 17361 39

40 three.js JavaScript 56415 9241 8676 30606 20 (iv)

41 javascript-algorithms JavaScript 56263 115 310 789 9 (iii)

42 puppeteer JavaScript 55904 3458 1693 1602 13 (iii)

43 laravel PHP 55890 - 3492 6106 8 (ii)

44 moby Go 55531 20075 20366 38010 126 (iv)

45 TypeScript TypeScript 55219 23840 10258 29209 112

46 computer-science No language 53689 407 222 739 8 (i)

47 angular TypeScript 53477 19119 14198 15923 137

48 ant-design TypeScript 52997 14354 5070 16275 119

49 jquery JavaScript 52414 1933 2548 6438 39

50 java-design-patterns Java 52288 509 532 2286 28

51 material-ui JavaScript 51753 9700 8366 10436 131

52 webpack JavaScript 51632 6683 3135 9774 60

53 awesome-vue No language 51382 157 2941 2810 8 (i)

54 redux JavaScript 51131 1699 1888 2911 13

55 30-seconds-of-code JavaScript 50913 207 797 4643 19

56 atom JavaScript 50266 15165 4585 37289 108

57 thefuck Python 50003 501 493 1542 14

58 swift C++ 49803 - 28188 97163 16 (ii)

59 awesome-go Go 49076 201 2599 3232 16

60 reveal.js JavaScript 48957 1713 810 2341 12

61 socket.io JavaScript 47885 2761 731 1720 24

62 flask Python 47258 1808 1589 3774 16

63 Semantic-UI JavaScript 46686 6027 856 6684 25

64 lantern Go 46131 - 878 6101 45 (ii)

65 express JavaScript 45968 3165 918 5558 36

66 Chart.js JavaScript 45880 4802 1821 2816 16

31

4 Methodology

67 elastic-search Java 45422 21729 27366 49225 395 (iv)

68 keras Python 45091 9664 3832 5341 26

69 django Python 44945 - 11976 27496 6 (ii)

70 rails Ruby 44510 13160 24446 75043 41 (iv)

71 shadow-socks-windows C# 44155 2285 333 1266 17

72 httpie Python 43609 559 236 1112 16

73 html5-boilerplate JavaScript 43555 1151 996 1760 18

74 json-server JavaScript 43538 816 221 779 8

75 spring-boot Java 43389 15145 3803 23972 34 (iv)

76
Front-end-Developer-

Interview-Questions
HTML 42809 97 446 782 20 (i)

77 storybook JavaScript 42703 4232 4401 22327 89

78 moment JavaScript 42649 3478 1788 3724 35

79 resume.github.com JavaScript 42627 83 173 263 6 (i)

80
awesome-machine-

learning
Python 42359 61 578 1323 7

81 netdata C 42090 4214 3010 9143 48

82 lodash JavaScript 42057 3508 1015 7988 14

83 next.js JavaScript 42045 5102 4082 4432 21

84 element Vue 41924 13163 4112 4349 78

85 markdown-here JavaScript 41581 529 54 807 15

86 meteor JavaScript 41385 8146 2584 21976 72

87 bitcoin C++ 41141 5058 12170 22103 44 (iv)

88 RxJava Java 40876 2794 3268 5589 34

89 requests Python 40651 3005 1991 5921 23

90
every-programmer-

should-know
No language 40535 28 121 231 3 (i)

91 rust Rust 40521 31969 34458 102430 264

92 ansible Python 40384 25302 37497 48264 351

93 redis C 39414 3844 2626 8511 40

94 ionic TypeScript 39406 16359 3344 9919 22

95 material-design-icons CSS 39127 837 98 124 11

96 jekyll Ruby 38992 4030 3709 10666 82

97 react-router JavaScript 38331 5192 1828 4529 8

98 yarn JavaScript 37183 5401 2142 2309 24

99 materialize JavaScript 36674 5052 1397 3871 47 (v)

100 node-v0.x-archive No language 35316 6383 3798 2 103 (iii)

Id: Identifier, PR: Pull requests, Com: Commits

32

4 Methodology

4.3 Data Acquisition

Given that software development is social in nature, we build socio-technical relation-

ships to obtain an authentic representation of developers’ contributions and GitHub

activity. Furthermore, we detail software properties we measure to retrieve developers’

contributions and GitHub activity, as we detail next.

Code contributions: Our strategy for contribution data acquisition consists of five

steps. First, we clone a subject project’s repository. Second, as merge commits can be

identified in Git when the number of parent commits is greater than one, we identify

merge scenarios by filtering commits with multiple parent commits. Third, for each

merge commit, we retrieve a common ancestor for both parent commits (i.e., the base

commit). Fourth, we (re)merge the parent commits and retrieve the measures for the

metrics by comparing the changes that occurred since the base commit until the merge

commit. Finally, we store all data and repeat steps 3 to 5 for each merge scenario found

in step 2. We preferred to use the data of commits that have a context instead of using

random commits that belong to the project.

GitHub activity: Considering experience from previous work presented in Chapter 2

and the benefits, comprehensiveness, and popularity of GitHub when compared to other

communication tools and channels, we chose to rely on our study on the GitHub plat-

form. Another benefit is that by using GitHub, projects normally follow the pull-based

development model which includes three of the four features investigated in this study

(issues, pull requests, and labels). Aware of the drawbacks of using only one communi-

cation channel, we select only projects that extensively use the GitHub communication

mechanism (see filters (ii) and (iii) of Section 4.2). Given a limitation in the number

33

4 Methodology

of calls we can request on the GitHub API, we had to request tokens from several col-

leagues that have a GitHub account. To collect data, we required only three scopes (one

for repository access and two for user access). The scopes are presented as follows:

1. public_repo: Access public repository

2. read:user: Read all user profile data

3. user:email: Access user email addresses (read-only)

Investigated Variables: Aiming at providing different perspectives of our data, we

computed a set of 16 variables. Table 4.2 describes each one of these variables. We use

them to compose equations and answer research questions, as described in Section 4.4.

Table 4.2: List of variables of metrics
Variable name Description

#issues Counts the total number of issues

#issues (not pull requests) Counts the number of issues that are not pull requests

#pull requests Counts the total number of pull requests

#issues related with issues Counts the number of issues which are related to other issues

#issues (not pull requests)

linked with pull requests

Counts the number of links between issues that are not pull

requests with pull requests

#pull requests linked with

issues

Counts the total number of links between pull requests and

issues

#commits Counts the total number of commits

#commits linked with issues Counts the number of links between commits and issues

#commits linked with issues

(not pull requests)

Counts the number of links between commits and issues

that are not pull requests

#commits linked with pull

requests only

Counts the number of links between commits and pull

requests

#issues linked with commits Counts the number of links between issues and commits

#issues (not pull requests)

linked with commits

Counts the number of links between issues that are not pull

requests with commits

#pull requests linked with commits Counts the number of pull requests linked with commits

#issues linked with labels Counts the number of links between issues and labels

#issues (not pull requests)

linked with labels

Counts the number of links between issues that are not pull

requests with labels

#pull requests linked with labels Counts the number of links between pull requests and labels

34

4 Methodology

4.4 Operationalization

We operationalize our research questions through the variables presented in Table 4.2.

To answer RQ1, we measure the number of links between pull requests and issues.

To answer RQ2, we compute the number of links between commits with issues

and pull requests. To answer RQ3, we compute the number of links between

labels with issues and pull requests.

Answering Research Question 1: In a GitHub repository developers may link pull

requests with issues in four ways, as we show in Figure 4.2. These ways are: (i) one pull

request linked with one issue [1:1], (ii) one pull request linked with multiple issues [1:n],

(iii) multiple pull requests are linked with one issue [m:1], (iv) multiple pull requests are

linked with multiple issues [m:n]. For some cases, we expect that developers do not link

issues with pull requests. For instance, when a developer creates an issue to report a

problem when setting the repository up, we only expect that another developer describes

how to set up the repository in the commentary of this issue. This way, no pull request is

expected. We are interested on investigating three relationships between issues and pull

requests. First, a general view of the links among GitHub issues. Second, the percentage

of issues which are not pull requests linked with pull requests. Third, the percentage

of pull requests linked with issues that are not pull requests. These relationships are

described in equations 4.1, 4.2, and 4.3, respectively.

% Issues linked with

other issues
=

#Issues related with issues
#Issues

× 100 (4.1)

35

4 Methodology

PR_1

PR_3

PR_2

Issue_1

Issue_2

Issue_3

PR

Issue_1

Issue_2

Issue_3

PR_1

PR_3

PR_2 Issue

PR_1

PR_3

PR_2

Issue_1

Issue_2

Issue_3

1 : 1 Relation 1 : n Relation

m : 1 Relation m : n Relation

Figure 4.2: Number of ways to link pull requests and issues

% Issues (not pull requests)

linked with pull requests
=

#Issues (not pull requests)

linked with pull requests
#Issues (not pull requests)

× 100 (4.2)

% Pull requests linked with

issues (not pull requests)
=

#Pull requests linked with issues
#Pull requests

× 100 (4.3)

Answering Research Question 2: We are interested in investigating a total of six

relationships among commits with issues and pull requests. First, the percentage of com-

mits linked with issues described in Equation 4.4. Second, the percentage of commits

linked with issues that are not pull requests described in Equation 4.5. Third, the per-

centage of links between commits and pull requests presented in Equation 4.6. Fourth,

36

4 Methodology

the percentage of issues linked with commits formulated in Equation 4.7. Fifth, the

percentage of issues that are not pull requests linked with commits as shown in Equa-

tion 4.8. Last, the percentage of links between pull requests and commits described

in Equation 4.9. These equations are important to investigate whether developers link

commits with the problems they described (issues) and addressed (pull requests).

% Commits linked

with issues
=

#Commits linked with issues
#Commits

× 100 (4.4)

% Commits linked with issues

(not pull requests)
=

#Commits linked with issues

(not pull requests)
#Commits

× 100 (4.5)

% Commits linked with

pull requests only
=

#Commits linked with

pull requests only
#Commits

× 100 (4.6)

% Issues linked

with commits
=

#Issues linked with commits
#Issues

× 100 (4.7)

% Issues (not pull requests)

linked with commits
=

#Issues (not pull requests)

linked with commits
#Issues (not pull requests)

× 100 (4.8)

37

4 Methodology

% Pull requests linked

with commits
=

#Pull requests linked with commits
#Pull requests

× 100 (4.9)

Answering Research Question 3: We are also interested on investigating three re-

lationships among labels with issues and pull requests. First, the percentage of links

between issues and labels presented in Equation 4.10. Second, the percentage of issues

that are not pull requests linked with labels described in Equation 4.11. Third, the

percentage of pull requests linked with labels formulated in Equation 4.12. With these

equations, we investigate whether developers refer labels with the problems (issues) and

solutions (pull requests).

% Issues linked

with labels
=

#Issues linked with labels
#Issues

× 100 (4.10)

% Issues (not pull requests)

linked with labels
=

#Issues (not pull requests)

linked with labels
#Issues (not pull requests)

× 100 (4.11)

% Pull requests linked

with labels
=

#Pull requests linked with labels
#Pull requests

× 100 (4.12)

38

5 Results

In this chapter, we present an overview of our data in Section 5.1. Then, in sections 5.2,

5.3, and 5.4, we answer RQ1, RQ2, and RQ3, respectively.

5.1 Data Overview

In Table 5.1, we present the name of variables (see Section 4.3 for details) and their

values collected from 66 subject projects (see Section 4.2). We found that there is a

total of 693 292 issues, 284 873 of them are pull requests, and the remaining 408 419

issues are not pull requests. We also collected the total number of commits and labels

that are 934 070 and 4 696, respectively. The average number of issues, pull requests,

commits, and labels is 10 504, 4 316, 14 152, and 71 per subject project, respectively.

Table 5.1: Measures for variables of metrics

Variable name Variable value

issues 693 292
issues (not pull requests) 408 419
pull requests 284 873
commits 934 070
labels 4 696

39

5 Results

5.2 Answer of RQ1

RQ1: Do developers link pull requests with related issues?

In Equation 4.1, we calculated the percentage of issues that are linked with other issues,

as represented in Figure 5.1a. There is a total of 171 077 issues that are linked with

other issues and the total number of issues is 693 292. It represents that 24.67% of the

issues are linked with other issues, as presented in Table 5.2.

In Equation 4.2, we calculated the percentage of issues that are not pull requests linked

with pull requests, as represented in Figure 5.1b. There is a total of 408 419 issues that

are not pull requests and only 27 548 of them are linked with pull requests. It represents

that 6.74% of the issues (not pull requests) are linked with pull requests, as presented

in Table 5.2. The percentage is very small because developers do not know the solution

when they describe the problem. They can link the problem with the solution after they

have the solution. Developers should pay more attention to link issues and pull requests

in both directions to increase coordination among developers.

IssuesIssues

Issues (not PR)Pull requests

Pull requests (PR)Issues (not PR)

(a) Relation between issues and other issues

(b) Relation between issues (not PR) and pull requests

(c) Relation between pull requests and issues (not PR)

Eq. 4.1

Eq. 4.2

Eq. 4.3

Figure 5.1: Relation between issues and pull requests

Lastly in Equation 4.3, we calculated the percentage pull requests linked with issues

represented in Figure 5.1c. The total number of pull requests is 284 873 and the total

40

5 Results

number of issues is 693 292, however, only 58 560 pull requests are linked with issues. It

means that 20.55% of the pull requests are linked with issues, as presented in Table 5.2.

The links among problem descriptions and solutions are very important to improve the

quality of the system, despite these developers link only one-fifth of the solution with

problem description. We expected more links because when they have a solution they

normally should know the problem they are solving.

Researchers have to be aware that most of the links do not come from the natural flow

(from problem description to solution), the links come from the opposite flow (i.e., from

the solution to the problem description). In addition, to make links explicitly and more

intuitive, GitHub or external tool builders have the opportunity to provide these links

among issues and pull requests in the order they happened to practitioners looking at

the data generated by developers.

Table 5.2: Measures for metrics of research question 1

Equation Metric Name %

4.1 Percentage of the number of issues linked with other issues 24.67

4.2
Percentage of the number of issues (not pull request) linked

with pull requests
6.74

4.3
Percentage of the number of pull requests linked with issues

(not pull request)
20.55

41

5 Results

Summary: Developers link 24.67% of issues with other issues (including pull re-

quests). Following the natural flow from problem descriptions to solutions, we found

that only 6.74% of the issues are linked with pull requests, but once we changed

the direction (from the solution to the problem description), we retrieved 20.55%

of links. The general average (Eq. 4.1) is greater than the other two equations, it

means that developers link problem descriptions with not only related solutions,

but also with related problems and solutions. For instance, to show that an issue

is duplicated.

5.3 Answer of RQ2

RQ2: Do developers link commit with issues?

In Equation 4.4, we calculated the percentage of commits linked with issues, as repre-

sented in Figure 5.2a. There is a total of 934 070 commits and, 787 106 of them are

linked with issues. It represents that 84.26% of the commits are linked with issues, as

shown in Table 5.3. In Equation 4.5, we computed the percentage of commits linked

with issues that are not pull requests, as represented in Figure 5.2b. The total number

of commits linked with issues that are not pull requests is 108 553. It means that 11.62%

of the commits are linked with issues that are not pull requests. In Equation 4.6, we

explored the relation among commits and pull requests, as represented in Figure 5.2c.

We found that 755 933 commits are linked with pull requests. It represents that 80.92%

of the commits are linked with pull requests, as presented in Table 5.3. On GitHub the

linking of commits with pull requests is automatic, since GitHub retrieve commits that

belong to a branch that represents the pull request.

42

5 Results

IssuesCommits

Issues (not PR)Commits

Pull requests (PR)Commits

(a) Relation between commits and issues in both direction

(c) Relation between commits and pull requests in both direction

(b) Relation between commits and issues (not PR) in both direction

Eq. 4.4

Eq. 4.7

Eq. 4.6

Eq. 4.9

Eq. 4.5

Eq. 4.8

Figure 5.2: Relation between commits with pull requests and issues

In Equation 4.7, we calculated the percentage of links between issues and commits, as

represented in Figure 5.2a. From a total of 693 292 issues, 350 733 of them are linked

with commits. It represents that 50.58% of the issues are linked with commits. In

Equation 4.8, we calculated the percentage of issues that are not pull requests linked

with commits, as represented in Figure 5.2b. There is a total of 408 419 issues that

are not pull requests, but only 96 375 of them are linked with commits. It represents

that 23.59% of the issues (not pull requests) are linked with commits, as presented

in Table 5.3. Practitioners should know that only one-quarter of the issues (not pull

requests) are linked with commits. We recommend that they always refer the issues

they are solving to the commits they created.

In Equation 4.9, we calculated the percentage of pull requests linked with commits,

as represented in Figure 5.2c. There is a total of 284 873 pull request and 254 358 of

them are linked with commits. It represents that 89.28% of the pull requests are linked

commits, as presented in Table 5.3. We expect that developers solve their problems

43

5 Results

locally before creating pull requests, but our data shows that they normally create a

pull request and start referring to the pull request in the commit message. Once they

want to get feedback from others, this is a more natural working flow. Since others will

see their code only when they pull to the main repository. It should explain this large

of a percentage of pull requests linked with commits.

Equations 4.4 and 4.7 are important to answer this research question. The percentage

of the number of links between commits and issues is greater than the percentage of the

number of links between issues and commits. The reasons are: (i) when developers have

a problem description (such as asking question or feedback), they link commits in the

description of the issue, however in the other direction, they do not explicitly refer issues

they are solving with commit messages, and (ii) in general the total number of commits

is more than the total number of issues, therefore we get great number of commits linked

with issues.

Table 5.3: Measures for metrics of research question 2

Equation Metric Name %

4.4 Percentage of the number of commits linked with issues 84.26

4.5
Percentage of the number of commits linked with issues

(not pull requests)
11.62

4.6
Percentage of the number of commits linked with pull

requests only
80.92

4.7 Percentage of the number of issues linked with commits 50.58

4.8
Percentage of the number of issues (not pull requests)

linked with commits
23.59

4.9
Percentage of the number of pull requests linked with

commits
89.28

44

5 Results

Summary: Developers link 84.26% of the commits with issues, but in the other

direction, they link 50.58% of the issues with commits. We found that 80.92% of

the commits are linked with pull requests. On the other direction, we found that

89.28% of the pull requests in the commit messages. We believe that developers

create pull requests and start referring them in the commit message. We found

that 23.59% of the issues (not pull requests) are linked with commits whereas only

11.62% of the commits are linked with issues (not pull requests).

5.4 Answer of RQ3

RQ3: Do developers effectively use labels to represent the type of issues?

In Equation 4.10, we computed the percentage of issues linked with labels, as represented

in Figure 5.3a. There is a total of 693 292 issues, and 412 092 of them are linked with

labels. It represents that 59.43% of the issues are linked with labels. We recommend

that practitioners link issues with labels to better organize tasks done in their projects.

LabelsIssues

LabelsIssues (not PR)

LabelsPull requests

(a) Relation between issues and labels

(c) Relation between pull requests and labels

(b) Relation between issues (not PR) and labels

Eq. 4.10

Eq. 4.12

Eq. 4.11

Figure 5.3: Relation between labels with pull requests and issues

In Equation 4.11, we obtained the percentage of issues that are not pull requests linked

with labels represented in Figure 5.3b. There is a total of 408 419 issues that are not

45

5 Results

pull requests and 236 592 of them are linked with labels. It represents that 57.92% of

the issues (not pull requests) are linked with labels, as presented in Table 5.4. In Equa-

tion 4.12, we calculated the percentage of pull requests linked with labels represented in

Figure 5.3c. There is a total of 284 873 pull requests and 175 500 of them are linked with

labels. It represents that 61.60% of the pull requests are linked with labels, as presented

in Table 5.4. As pull requests represents code changes that developers did to solve an

issue, we recommend that developers link pull requests with labels because these links

will be useful for them to find similar solutions in the future.

Table 5.4: Measures for metrics of research question 3

Equation Metric Name %

4.10 Percentage of the number of issues linked with labels 59.43

4.11
Percentage of the number of issues (not pull request)

linked with labels
57.92

4.12
Percentage of the number of pull requests linked with

labels
61.60

Summary: Developers link 59.43% of the issues with labels (Eq. 4.10). They also

refer labels to 57.92% of the issues that are not pull requests (Eq. 4.11). Moreover,

developers link 61.60% of the pull requests with labels (Eq. 4.12). We recommend

that practitioners link more labels with social assets to make easier the filtering

process of issues and pull requests, and support the evolution of the project.

46

6 Discussion

In this chapter, we present a comparison with previous studies (Section 6.1). In Sec-

tion 6.2, we compare top labels used in general, in issues (not pull requests), and in pull

requests. In Section 6.3, we present a survey to investigate developers’ opinion about

linking social and technical assets on GitHub. In Section 6.4, we present internal and

external threats to validity our study.

6.1 Comparison with Previous Studies

In this section, we compare our findings on GitHub coordination with related work.

Zhang et al. [Zha+18] explored links between issues and other related issues within the

project or across projects. They describe that linking issues may enhance discussion,

avoid duplication, and even hasten the resolution of the original issue. They determined

that developers link 22.4% of the issues with related issues in a project. In our study, we

also explored the relationship between issues and related issues. We found that 24.67%

of the problem are linked with other similar problems. Different from them, we explored

other relationships such as issues (not pull requests) with pull requests, pull requests

with issues (not pull requests), commits with issues, and issues with labels. Furthermore,

47

6 Discussion

we conducted a survey to get developers’ opinion about their use of issues, pull requests,

labels as well as how they relate these assets.

In another study, Tien-Duy et al. [Le+15] proposed an approach to predict links among

issues and commits. Since, the links between issue reports and their corresponding

commits are often missing. These links are important for software maintenance tasks

including assessing the reliability of a particular part of a software system or predicting

future defective software components. They presented a novel bug linking technique

and compared their approach to MLink, which is the latest state-of-the-art bug linking

approach. They found that 89% of the links were predicted correctly. We explored

the relationship among issues and commits, and found that 84.26% of the commits are

linked with issues. Moreover, we explored other relationships such as commits with

pull requests, and commits with issues (not pull requests) in both directions. We also

conducted a survey to get developers’ opinion about these relationships.

6.2 Comparing Top 10 Labels Used in General, in Issues

(Not Pull Requests), and in Pull Requests

In Table 6.1, we present the list of top 10 labels used in general, in issues that are not pull

requests, and in pull requests. We see that top 3 labels most used in general are: bug,

need_triage, and cla: yes. The top 3 labels most used in issues (not pull requests) are:

bug, FrozenDueToAge, and question. And, the top 3 labels most used in pull requests

are: cla: yes, need_triage, and bug.

From the top 10 labels in general, we found 4 labels that are often assigned with both

issues (not pull requests) and pull requests. These labels are: bug, needs_triage, module,

48

6 Discussion

and support: core. A bug report normally requires code changes and when developers are

coding they will refer it to the pull request. We found 6 labels that are normally used in

issues (not pull requests). These labels are: FrozenDueToAge, question, fixed, resolved,

duplicate, and stale. To illustrate, question label is used 14 859 times and 99.67% of the

references are with issues that are not pull requests. Likewise, FrozenDueToAge label

is used 24 028 times and 99.69% of the references are with issues (not pull requests).

We assume that these labels contain problem description that do not need coding as

questions when using or setting up the project.

Table 6.1: List of top 10 labels used in general, in issues (not PR), and in PR

Top
Label
Name

#general
Label
Name

#Issues
(not PR)

Label
Name

#PR

1 bug 52 534 bug 35 488 cla: yes 32 304

2 needs_triage 40 825
FrozenDue
ToAge

23 955 needs_triage 26 514

3 cla: yes 32 309 question 14 810 bug 17 046
4 module 27 854 needs_triage 14 311 module 16 993

5
FrozenDue
ToAge

24 028 fixed 11 442
support:
community

15 293

6 support:core 23 436 module 10 861 CLA Signed 14 134

7
support:
community

21 458 Resolved 10 457 support:core 13 792

8 question 14 859 duplicate 10 419
needs_
revision

13 644

9 CLA Signed 14 137 support:core 9 644
community_
review

11 057

10
needs_
revision

13 648 stale 9 512 Test 10 804

stands for the number of times the label was used in, PR stands for pull requests

49

6 Discussion

We found 6 labels that are normally used in pull requests. These labels are: cla: yes,

support: community, CLA Signed, needs_revision, community_review, and test. To

illustrate, cla: yes labels is used 32 309 time and 99.98% of the references are with

pull requests. Similarly, CLA Signed labels is used 14 137 and 99.97% of the references

are with pull requests. A contribution license agreement (CLA) is a legal document

which allows developers to contribute to a project. Developers must sign a CLA before

a merging a pull request. Therefore, CLA signed is often used in pull requests. It is

interesting to find labels that are more related with code because researchers may use

this information to refine communication more related to code changes and use it in

their analysis.

6.3 A Survey to Investigate Developers’ Opinion about

Linking Social and Technical Assets on GitHub

Based on the results from our empirical study, we conducted a survey to understand

developers’ opinion about linking social and technical assets on GitHub. In Section

6.3.1, we describe how we design and plan the survey. In Section 6.3.2, we present the

results of the survey. In Section 6.3.3, we compare the results of our empirical study

with the results of the survey.

6.3.1 Design and Planning

We defined 26 questions on Google form and categorized them into 5 groups: (i) Par-

ticipant’s background, to know the background knowledge of developers (e.g., work

experience, working industry, role in industry, education, and gender), (ii) Participants’

50

6 Discussion

GitHub knowledge, to know developers’ experience and knowledge of GitHub features

(i.e., how often they use, purpose to use, contribution with others, size of team, and

familiarity with issues, pull requests, commits, labels), (iii) Participants’ report of use of

issues and pull requests, to know whether and why developers link issues with pull re-

quests, (iv) Participants’ report of use of commits, to know whether and why developers

link commits with issues, and (v) Participants’ report of use of labels, to know whether

and why developers assign labels to pull requests and issues. The complete survey can

be found in Appendix A.

We send 20 emails to the developers (students and colleagues) who use GitHub frequently

and ask them to participate. We also made the survey available on seven web pages

and groups on social platforms (Facebook and Twitter) where GitHub developers are

active. These groups and platforms include GitHub Education1, GitHub for Beginners2,

GitHub Social Coding3, GitHub Community4, GitHub Status5, GitHub Trends6, and

GitHub API7. The survey was online for 15 days from February 10th to February 25th

of 2020.

6.3.2 Data Collection and Analysis

We received responses from 109 participants of which we excluded 1 response because

the participant does not agree to participate in the research study, and we excluded 8

responses because the participants did not have experience with GitHub. At the end,

1https://www.facebook.com/GitHubEducation/
2https://www.facebook.com/groups/githubforbeginners/
3https://www.facebook.com/groups/githubsocialcoding/
4https://twitter.com/GitHubCommunity
5https://twitter.com/githubstatus
6https://www.facebook.com/github.trends/
7https://twitter.com/GitHubAPI

51

6 Discussion

we use data from 100 participants. Next, we present an overview of our data based on

the 5 groups of our survey (see Section 6.3.1).

Participants’ general background: In Figure 6.1a, we show that 7% of the partic-

ipants have from 0 to 1 years of experience, 36% of the participants have from 2 to 3

years of experience, 44% of the participants have from 4 to 5 years of experience, 6% of

the participants have from 6 to 7 years of experience, and 7% of the participants have

from 8 to 10 years of experience . In Figure 6.1b, we see that most of the participants

have worked in information technology (38%), automation (40%), engineering (35%),

education (34%), and other industries (4%). In Figure 6.1c, we show that 37.8% of the

participants work as a software developer, 34.7% of participant work as a web developer,

42.9% of the participants work as a software tester, 38.8% of participant work as a an-

droid developer, and 9% of participant work as a others. In Figure 6.1d, we illustrate

that 65% of the participants have advanced degree such as Master, Ph.D., M.D., 27%

of the participants have bachelor degree, 4% of the participants have associate degree,

3% of the participants have Some college, no degree, and 1% of the participants have

graduate high school. Hence, we see that most of the participants are highly qualified.

In Figure 6.1e, we show that 55% of the participants are males and 45% of the partic-

ipants are females. Despite males are the majority also in real world, we have a great

number of females participating of our survey.

Participants’ GitHub knowledge: In Figure 6.2a, we show that 47.5% of the partic-

ipants always use GitHub, 28.3% of the participants normally use GitHub, and 24.2%

of the participants sometimes use GitHub. In Figure 6.2b, we show that most of the

participants use GitHub for organizational work (59.2%), educational work (53.1%),

personal work (58.2%), and others (1%). In Figure 6.2c, we show that 78% of the par-

ticipants contribute with others on GitHub and 22% of the participant do not contribute

52

6 Discussion

(a) Percentage of developers' experience (b) Percentage of developers in industry

(c) Percentage of developers' role in Industry (d) Educational background

(e) Percentage of gender

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

Figure 6.1: Results of participants’ general background

53

6 Discussion

with others. In Figure 6.2d, we show that 19% of the participants contribute alone on

GitHub, 71% of the participants contribute in teams having less than 10 members, 9% of

the participants contribute in teams having members from 10 to 50, and only 1% of the

participants contribute in teams having 100 or more members. In Figure 6.2e, we show

that 85% of the participants are familiar with GitHub issues, pull requests, commits,

and labels, 10% of them do not feel confident about their knowledge on these features,

and 5% of them are not familiar with all of these features.

Participants’ report of use of issues and pull requests: In Figure 6.3a, we show

that 52% of the participants create issues yearly, 18% of the participants create issues

monthly, 11% of the participants create issues weekly, 3% of the participants create

issues daily, and 16% of the participants never create issues. In Figure 6.3b, we show

that 85% of the participants created less than 5 issues last month, 10% of the participants

created from 5 to 20 issues last month, 2% of the participants created between 20 and 50

issues last month, and 3% of the participants created more than 50 issues last month. In

Figure 6.3c, we show that 51% of the participants creates pull requests yearly, 19% of the

participants create pull requests monthly, 10% of the participants create pull requests

weekly, 4% of the participants create pull requests daily, and 16% of the participants do

not create pull requests. In Figure 6.3d, we show that 83.7% of the participants created

less than 5 pull requests last month, 11.2% of the participants created from 5 to 20 pull

requests last month, 3% of the participants created between 20 and 50 pull requests last

month, and only 2% of the participants created more than 50 pull requests last month.

In Figure 6.3e, we show that 48% of the participants sometimes refer issues with pull

requests, 5% of the participants normally refer issues with pull requests, 5% of the

participants always refer issues with pull requests, and 42% of the participants do not

refer issues with pull requests. In Figure 6.3f, we show that 41% of the participants

54

6 Discussion

(a) Percentage of developers use GitHub (b) Percentage of developers' purpose to use GitHub

(c) Percentage of developers Contribute to GitHub (d) Percentage of developers in team

(e) Percentage of developers familiar with
GitHub features

%

%

%

%

Figure 6.2: Results of participants’ GitHub knowledge

55

6 Discussion

sometimes refer pull requests with issues, 13% of the participants normally refer pull

requests with issues, 3% of the participants always refer pull requests with issues, and

43% of the participants do not refer pull requests with issues. In Figure 6.3g, we show

that 43% of the participants sometimes refer issues with related issues, 10% of the

participants normally refer issues with related issues, 6% of the participants always refer

issue with related issues, and 41% of the participants do not refer issues with related

issues. In Figure 6.3h, we show that more than 82% of the participants who believe

that relating pull requests with issues is useful for project coordination, 16% of the

participants who do not feel confident that relating pull requests with issues is useful

for project coordination, and only 2% of the participants who do not think that relating

pull requests with issues is useful for project coordination. For instance, P48 said that

relating issues and pull requests help to keep track of the changes of a project. P41 and

P44 said that these links are useful to find problems and related solutions.

Participants’ report of use of commits: In Figure 6.4a, we show that 41.4% of

the participants daily create commits, 31.3% of the participants weekly create commits,

12.1% of the participants monthly create commits, 10.1% of the participants yearly

create commits, and 5.1% of the participants do not create commits. In Figure 6.4b, we

show that 75.8% of the participants created less 10 commits last month, 20.2% of the

participants created from 10 to 20 commits last month, 3% of the participants created

between 20 to 50 commits last month, and only 1% of the participants created more

than 100 commits last month.

In Figure 6.4c, we show that 54% of the participants always refer issues with commits,

17% of the participants normally refer issues with commits, 23% of the participants

sometimes refer issues with commits, and 6% of the participants do not refer issues with

commits. In Figure 6.4d, we see that 48% of the participants always refer commits in the

56

6 Discussion

(a) Percentage of developers
create issues

(c) Percentage of developers
create pull requests

(b) Percentage of developers
create issues last month

(d) Percentage of developers create
pull requests last month

(e) Percentage of issues referred
in pull requests

(g) Percentage of issues referred
in other issues

(f) Percentage of pull requests
referred in issues

(h) Percentage of developers think links between
pull requests and issues are useful

Figure 6.3: Results of participants’ report of use of issues and pull requests

57

6 Discussion

description of issues, 15% of the participants normally refer commits in the description of

issues, 21% of the participants sometimes refer commits in the description of issues, and

16% of the participants do not refer commits in the description of issues. In Figure 6.4e,

we show that more than 86% of the participants who think that relating commits to issues

are useful for project coordination, 13% of the participants who do not feel confident

that relating commits to issues are useful for project coordination, and only 1% of the

participants who do not think that relating commits to issues are useful for project

coordination. For instance, P9 said that links among commits and issues are important

because it makes easier to retrieve code changes. P18 mentioned that referring issues

with commits is helpful for code review and tracking solutions.

Participants’ report of use of labels: In Figure 6.5a, we show that 62% and 67%

of the participants use default and customized labels, respectively, and 13% of the par-

ticipants do not use labels. In Figure 6.5b, we show that 63% of the participants assign

labels to issues and to pull requests, and 22% of the participants do not assign labels.

In Figure 6.5c, we show that 79% of the participants who think that assigning labels

to issues or pull requests is useful for project coordination, 14% of the participants who

do not feel confident that assigning labels to issues or pull requests is useful for project

coordination, and only 7% of the participants who do not think that assigning labels

to issues or pull requests is useful for project coordination. For instance, P9 and P15

said that assigning labels to issues make filtering easy and help in categorizing multiple

problem descriptions. Two other (P22 and P25) mentioned that labels are useful to

distinguish issues from one another and for better organize the work of the project.

58

6 Discussion

(a) Percentage of developers
create commits

(b) Percentage of developers
create commits last month

(c) Percentage of issues
referred in commits

(d) Percentage of commits
referred in issues

(e) Percentage of developers think links between
commits and issues are useful

Figure 6.4: Results participants’ report of use of commits

(a) Percentage of labels used by
developers

(b) Percentage of labels assigned
to GitHub assets

(c) Percentage of developers who
think labels are useful

%

%

%

%
%

%

Figure 6.5: Results participants’ report of use of labels

59

6 Discussion

6.3.3 Evaluation

In this section, we compare the use of GitHub features by the participants of the survey

and the results of our empirical study with the results of the survey.

Discussion: Looking at the results of our survey, we can see that around 80% of the

participants agree that linking social and technical assets is important for the project

coordination. However, the participants reported that 41.4% of them create commits

daily and 31.3% of them create commits weekly. We found that 52% and 51% of the

participants create issues and pull requests yearly, respectively. Regarding relationships

among GitHub features, we see that 5% of participants always link issues with pull

requests, 3% of the participants always link issues with pull requests, and 6% of partic-

ipants always link issues with other issues in practice. On the other hand, 54% of the

participants always link issues with commits and 48% of the participants always link

commits with issues. This way, we conclude that participants are more familiar with

commits and as expected issues and pull requests need more time to be addressed and

are normally created by core developers of projects hosted on GitHub, because normally

only them have permission to create these assets.

Research question 1: In Section 5.2, we showed that developers link 24.67% of the

problems with related problems and solutions. In the survey, we found that 59% of the

participants (43% sometimes + 10% normally + 6% always) refer issues with related

issues. Our empirical study shows that developers link 20.55% of the pull request with

issues, and the participants of the survey reported that 57% of them (41% sometimes +

13% normally + 3% always) link pull requests in the description of issues. Furthermore,

in Section 5.2, we showed that 6.74% of the issues are linked with pull requests . In the

survey, we found 58% of the participants (48% sometimes + 5% normally + 5% always)

refer issues in the body of pull requests. Developers think that relating issues with pull

60

6 Discussion

requests provide contextual information, and allow tracking of problem and solutions.

However, they do not link these assets often in practice.

Research question 2: Our empirical study shows that 84.26% of the developers link

commits in the description of the issues. In the survey, we found that 84% of the

participants (21% sometimes + 15% normally + 48% always) link commits with issues

while addressing them. In other direction, we found in empirical study that developers

link 50.58% of the issues with commits (see in Section 5.3). In the survey, we found that

94% of the participants (23% sometimes + 17% normally + 54% always) always refer

issues in the commit message. Developers believe that linking commits with issues in

both directions makes it easier to retrieve code changes and tracking partial solutions.

Research question 3: In Section 5.4, we found that developers link 59.43% of the

issues with labels and 61.60% of the pull requests with labels. In the survey, we found

that 63% of the participants relate issues and pull requests with labels. They reported

that labeling issues and pull requests allow them to categorize, filter, and distinguish

issues/pull requests.

The results from the survey are similar to what we found empirically. Around 80% of

the participants of our survey agreed that links among issues, pull requests, commits,

and labels are useful. However, despite of the importance, they do not relate social and

technical assets very often in practice.

6.4 Threats to Validity

In this section, we discuss internal and external threats to validity our study. We elimi-

nate threats when possible and decrease their effect when the elimination was not pos-

sible.

61

6 Discussion

6.4.1 Internal Validity

Internal validity is threatened by five factors. First, we selected projects from dif-

ferent programming languages and one language could have dominated our dataset. To

minimize this threat, we check if one programming language dominated our dataset and

excluded the less popular JavaScript projects, as described in Section 4.2. Second, we

looked at only one social network platform. However, other platforms such as GitLab,

Bitbucket the links between social and technical assets may be different. We choose

GitHub because it is one of the most used social coding platform, hence we believe that

this platform reflects the real working practice. Anyway, our results are valid only for

GitHub projects.

Third, we get data from all developers, however, some developers may have more ex-

perience than others and it may also impact our analysis. Since we want to provide a

general overview, the experience of developers do not affect our analysis. Fourth, we

do not check the correctness of retrieved links. We believe that our links are correct

because we retrieve links that are explicitly presented in the GitHub. Nevertheless, if

developers created false links we retrieved them. Fifth, we only look at links between

issues, pull requests, commits, and labels from the same projects. We do not retrieve

links across projects. Looking at links across projects is out of our scope, but more links

can be found and support developers addressing similar tasks.

6.4.2 External Validity

External validity is threatened by three factors. First, we explored only GitHub as a

platform to understand how developers link technical and social assets. Generalization

of our study with other platforms, projects, and development models is limited. This

62

6 Discussion

limitation of the sample was necessary to reduce the influence of confounds, increasing in-

ternal validity, though [SS15]. More research is required to generalize with other version

control systems, development models, and platforms. We believe that we selected and

analyzed a practically relevant platform and a substantial number of software projects

from various domains, and coordination practices. In addition, our filters applied during

subject project selection (Section 4.2) guarantee, that we sampled projects that actively

use GitHub as a social coding tool, for instance.

Second, we selected 66 GitHub repositories and collected data as the number of issues,

pull requests, commits, and labels. However, these numbers change daily with the

progress of the repository. Hence, our results are valid for the period of our analysis

(from the project creation up to November 2019). Anyway, we believe that our results

remain true for other time slots.

Third, we conducted a survey based on our empirical study and received responses

from developers. We assume that participants have knowledge of GitHub features. To

mitigate this threat, we filtered participants based on their experience with GitHub. We

excluded participants who have no experience with GitHub and who do not consent to

participate in the survey.

63

7 Final Remarks

7.1 Conclusion

Open source software development is often characterized as a fundamentally new way to

develop software [Fri+02]. Software development is a collaborative activity where suc-

cess depends on the ability to coordinate social and technical assets. GitHub is one of the

most used social coding platform by developers who contribute to collaborative projects

in an open manner [Sto+17]. Several studies investigate the developers’ behavior on

GitHub. However, none of them has investigated which GitHub features developers use

to support their coordination and how they link social and technical assets in practice.

We defined three research questions (see Section 4.1) based on how developers relate as-

sets on GitHub. There are several features on GitHub like issues, pull requests, commits,

and labels, which facilitate coordination among developers. We select 66 GitHub repos-

itories and collect data from them, as described in Section 4.2. We investigated three

relationships among GitHub features: (i) whether developers link their problem descrip-

tions (issues) with the problems they solved (pull requests), (ii) whether developers link

commits with the problems their described (issues) and addressed (pull requests), and

(iii) whether developers assign labels to problems (issues) and solutions (pull requests).

64

7 Final Remarks

Furthermore, we use 16 variables and formulated 12 equations to support our answers

to the three research questions, as described in Section 4.4.

To answer research question 1, we investigated links between issues and pull requests.

We found that developers link 24.67% of the problems with related problems and so-

lutions. Following the natural flow from problems to the solutions, we found that only

6.74% of the issues are linked with pull requests. Once we changed the direction (from

solution to problem description) we retrieved 20.55% links. To answer research question

2, we investigated links among commits with issues and pull requests. We found that

developers link 84.26% of the commits in the description of the issues, but in the other

direction they link 50.58% of the issues with commits. Developers link 80.92% of the

commits in pull requests. On the other direction, we found that 89.28% of the pull re-

quests in the commit messages. Moreover, we found that 23.59% of the issues (not pull

requests) are linked with commits whereas only 11.62% of the commits are linked with

issues that are not pull requests. To answer research question 3, we investigate links

between labels with issues and pull requests. We found that 59.43% of the developers

link issues with labels. They also refer labels with 57.92% of the issues that are not pull

requests. Furthermore, 61.60% of the developers link pull requests with labels.

After our empirical study, we conducted a survey and to investigate if GitHub users

agree with our findings. We got 100 valid responses. The survey contains 5 groups to

explore participants’ background and their experience with GitHub features. Regarding

links between issues and pull requests, we found that: (i) 59% of the participants relate

problems with related problems, (ii) 58% of the participants refer issues in the body of

pull requests, and (iii) 57% of the participants describe pull requests in the description

of issues. Regarding links among issues and commits, we found that: (i) 84% of the

participants refer commits in the description of issues, and (ii) 94% of the participants

65

7 Final Remarks

refer problems in the commit messages. Regarding links among issues and labels, we

found that participants use both default and customized labels, and in 63% of the cases

they assign labels to issues and pull requests.

We realized that developers link 20.55% of the problem they addressed (issues) with the

solution they proposed (pull requests). However, we expect more links between issues

and pull requests. Hence, we encourage that developers should specify in the description

of issues which pull requests solve the problem. For instance, after finishing an issue

they should come back to the issue and comment the number of the pull request that

fix the target issue. In the other direction, they should also describe in the body of pull

requests which issues are addressed. Moreover, developers should explicitly link issues

with related issues. Developers link 84.26% of commits with issues whereas in the other

direction they link 50.58% of the issues with commits. We recommend developers that

they should link issues with commits by writing issues id in commit messages. They

should also link commits with issues by writing commit hash in the description of issues.

Furthermore, we realized that developers link labels with 59.43% of the issues. We

encourage developers to assign labels to more issues to better organize project work and

make easier the filtering process of issues. In general, developers agree that creating

links between social and technical assets helps in project coordination, however, they do

not relate assets very often in practice. Therefore, we suggest that developers should

create more links among social and technical assets to increase coordination.

7.2 Contributions

This thesis makes the following main contributions:

• We empirically present evidence that one quarter (24.67%) of the developers link

problem descriptions with solutions.

66

7 Final Remarks

• We provide evidence that 84.26% of the developers refer commits in the description

of issues.

• We found that developers link 59.43% of the problem descriptions (i.e., issues)

with labels and 61.60% of the pull requests with labels.

• We show that 80% of the participants of our survey agreed that linking social and

technical assets is important for project coordination, however they do not link

assets very often in practice.

• We provide a list of the top 10 labels used in general, in issues (not pull requests),

and in pull requests. As result, we found that: cla: yes, CLA Signed labels are

the two most related to code (pull requests). FrozenDueToAge, question labels are

the two most related to communication (issues). And, bug, needs_traige, module

labels are related to both issues and pull requests. Assigning labels to assets help

developers to refine communication related to code changes.

• We make our infrastructure publicly available, and the data is also publicly avail-

able [Ver20].

7.3 Future Work

As suggestions of future work, we see four promising directions. First, we suggest to

replicate our study in other social network platforms such as GitLab and Bitbucket to

determine developers’ coordination and how it impacts in our analysis. Second, we sug-

gest to divide our projects in the different programming languages to see if developers

link differently depending on the programming language. Third, we suggest a study

67

7 Final Remarks

investigating the use of labels in issues and pull requests to find which labels are more

and less related to code. This kind of study could help researchers to refine communi-

cation related to code changes. Fourth, we suggest extending the survey to investigate

additional techno-social challenges faced by developers. Asking developers personally

may help us to understand their reasons to ignore linking social and technical assets.

68

A Survey

In this appendix, we present the survey that investigate developers’ opinion about linking

social and technical assets. The results of the survey were presented in Section 6.3. It

was divided into 6 sections: (i) Survey on GitHub communication, (ii) Background, (iii)

GitHub knowledge, (iv) GitHub issues and pull requests, (v) GitHub commits, and (vi)

GitHub labels.

Section 1: Survey on GitHub Communication

You are receiving this survey as our initial investigation identified you as a GitHub user.

In this survey, we want to know your opinion regarding importance and adaptability of

GitHub features for communication among developers. We plan to include the results

of this survey in a scientific publication. Should you be interested in being informed

about the outcome of this study or any resulting publication, you will be provided an

opportunity to indicate this and provide us with your email address.

Electronic consent: Please select your choice below. Selecting the ”yes” option below

indicates that: i) you have read and understood the above information, ii) you voluntarily

agree to participate, iii) you agree that your answers can be used for research purpose,

and iv) you are at least 18 years old. If you do not wish to participate in the research

study, please decline participation by selecting ”No”. I consent to participate in this

research study.

69

A Survey

() Yes

() No

Section 2: Background

1. How many years experience you have in software development?

(ex: 0, 1, 2, 3...10...)

2. In which industry you are working / have worked?

() Information Technology

() Automation

() Engineering

() Education

() Other

3. What of these roles fits with you in industry?

() Software Developer

() Web Developer

() Software Tester

() Android Developer

() Other

4. What is your level of education?

() Less than high school

() Graduate high school

() Some college, no degree

() Associate degree

() Bachelor’s degree

70

A Survey

() Advanced degree (Master’s, Ph.D., M.D.)

() Other

5. What is your gender?

() Male

() Female

() Prefer not to say

Section 3: GitHub Knowledge

6. How often do you use GitHub?

() Never

() Sometimes

() Normally

() Always

7. What is your purpose of use of GitHub?

() Organizational work

() Educational work

() Personal work

() Other

8. Do you normally contribute with others in GitHub?

() Yes

() No

9. With how many members compose your team?

() Alone

() Less than 10

71

A Survey

() 10-50 members

() 100 or more members

10. Are you familiar with GitHub features such as issues, pull requests, commits and

labels?

() Yes

() No

() Maybe

Section 4: GitHub Issues and Pull Requests

11. How often do you create issues?

() Never

() Daily

() Weekly

() Monthly

() Yearly

12. How many issues did you create on GitHub in last month?

() Less than 5 issues

() 5-20 issues

() 20-50 issues

() More than 50 issues

13. How often do you create pull requests?

() Never

() Daily

() Weekly

72

A Survey

() Monthly

() Yearly

14. How many pull requests did you create on GitHub in last month?

() Less than 5 pull requests

() 5-20 pull requests

() 20-50 pull requests

() More than 50 pull requests

15. While solving an issue, do you normally refer to the issue in the description or

body of the pull request you are creating? Why do you think it is important?

() Never

() Sometimes

() Normally

() Always

Comment: ———————————

16. Before close an issues that is solved, do you explicitly describe which pull requests

solve the problem? Why do you think it is important?

() Never

() Sometimes

() Normally

() Always

Comment: ———————————

17. Do you describe in the body of an issue about similar or related issues? Why do

you think it is important?

() Never

73

A Survey

() Sometimes

() Normally

() Always

Comment: ———————————

18. Do you think that relating pull requests with issues is useful for project coordina-

tion?

() Yes

() No

() Maybe

Comment: ———————————

Section 5: GitHub Commits

19. How often do you commit on GitHub?

() Never

() Daily

() Weekly

() Monthly

() Yearly

20. How many commits did you do on GitHub in last month?

() Less than 10 commits

() 10-20 commits

() 20-50 commits

() More than 50 commits

21. Do you explicitly refer to the issue you are addressing in the commit message?

() Never

74

A Survey

() Sometimes

() Normally

() Always

Comment: ———————————

22. In the issue body or description, do you explicitly refer the commit hash related

to it?

() Never

() Sometimes

() Normally

() Always

Comment: ———————————

23. Do you think that relating commits to issues are useful for the project coordina-

tion?

() Yes

() No

() Maybe

Comment: ———————————

Section 6: GitHub Labels

24. Which type of labels do you use?

() Default

() Customized

() None

25. Do you assign labels on GitHub?

() No

75

A Survey

() To issues

() To pull requests

26. 26. Do you think that assigning labels to issues or pull requests are useful for the

project coordination?

() Yes

() No

() Maybe

Comment: ———————————

Section 7: Email Information (optional)

Please enter your e-mail if you would like to receive a copy of our study. We will not link

your e-mail address to your survey responses, nor will we publish your e-mail address

in any which way. Participation in the survey is voluntary. If you do not wish to

participate, please go ahead and submit the survey below. If you do wish to participate,

please enter your e-mail address and then submit the survey. We thank you for your

participation in this research!

———————————

76

Bibliography

[AB02] Ulf Asklund and Lars Bendix. “A study of configuration management in

open source software projects”. In: IEE Proceedings-Software 149.1 (Feb.

2002), pp. 40–46. url: https://digital-library.theiet.org/content/

journals/10.1049/ip-sen_20020196 (cit. on p. 10).

[Bir+08] Christian Bird et al. “Latent Social Structure in Open Source Projects”.

In: Proceedings of the 16th ACM SIGSOFT International Symposium on

Foundations of Software Engineering. SIGSOFT ’08/FSE-16. Atlanta, Geor-

gia: Association for Computing Machinery, Nov. 2008, pp. 24–35. isbn:

9781595939951. doi: 10.1145/1453101.1453107. url: https://doi.

org/10.1145/1453101.1453107 (cit. on pp. 21, 24).

[Bir+09] Christian Bird et al. “Does distributed development affect software quality?

An empirical case study of Windows Vista”. In: Proceedings of the 31st

international conference on software engineering. IEEE Computer Society.

June 2009, pp. 518–528. isbn: 978-1-4244-3453-4. doi: 10 . 1109 / ICSE .

2009.5070550 (cit. on p. 1).

77

Bibliography

[Bis+13] Tegawendé F Bissyandé et al. “Got issues? who cares about it? a large scale

investigation of issue trackers from github”. In: 2013 IEEE 24th international

symposium on software reliability engineering (ISSRE). IEEE. Jan. 2013,

pp. 188–197. isbn: 978-1-4799-2366-3. doi: 10.1109/ISSRE.2013.6698918

(cit. on p. 16).

[BV18] Hudson Borges and Marco Tulio Valente. “What’s in a GitHub star? un-

derstanding repository starring practices in a social coding platform”. In:

Journal of Systems and Software 146 (Dec. 2018), pp. 112–129. url: https:

//doi.org/10.1016/j.jss.2018.09.016 (cit. on p. 28).

[Cat+07] Marcelo Cataldo et al. “On coordination mechanisms in global software

development”. In: International Conference on Global Software Engineering

(ICGSE 2007). IEEE. Sept. 2007, pp. 71–80. isbn: 978-0-7695-2920-2. doi:

10.1109/ICGSE.2007.33 (cit. on p. 13).

[Cha98] Dave Chaffey. Groupware, Workflow and Intranets: Re-engineering the En-

terprise with Collaborative Software. Gulf Professional Publishing, 1998 (cit.

on p. 8).

[CI14] Hui-Jung Chang and Wan-Zheng Ian. “Instant Messaging usage and inter-

ruptions in the workplace”. In: International Journal of Knowledge Content

Development & Technology 4.2 (Dec. 2014), p. 25. url: http://dx.doi.

org/10.5865/IJKCT.2014.4.2.025 (cit. on p. 12).

[Dab+12] Laura Dabbish et al. “Social Coding in GitHub: Transparency and Collab-

oration in an Open Software Repository”. In: Proceedings of the ACM 2012

Conference on Computer Supported Cooperative Work. CSCW ’12. Seat-

tle, Washington, USA: Association for Computing Machinery, Feb. 2012,

pp. 1277–1286. isbn: 9781450310864. doi: 10.1145/2145204.2145396.

78

Bibliography

url: https://doi.org/10.1145/2145204.2145396 (cit. on pp. 22–24,

28).

[Dau16] Robin Daugherty. “A Branching and Releasing Strategy That Fits GitHub

Flow”. In: Hackernoon (Feb. 2016). url: https : / / hackernoon . com /

a - branching - and - releasing - strategy - that - fits - github - flow -

be1b6c48eca2 (cit. on p. 14).

[Ern17] Michael Ernst. “How to create and review a GitHub pull request”. In: Com-

puter Science & Engineering, University of Washington (Mar. 2017). url:

https://homes.cs.washington.edu/~mernst/advice/github-pull-

request.html (cit. on p. 9).

[Fri+02] Peter Fritzson et al. “The open source Modelica project”. In: Proceedings of

The 2th International Modelica Conference. 2002, pp. 18–19 (cit. on p. 64).

[GPD14] Georgios Gousios, Martin Pinzger, and Arie van Deursen. “An Exploratory

Study of the Pull-Based Software Development Model”. In: Proceedings of

the 36th International Conference on Software Engineering. ICSE 2014. Hy-

derabad, India: Association for Computing Machinery, May 2014, pp. 345–

355. isbn: 9781450327565. doi: 10.1145/2568225.2568260. url: https:

//doi.org/10.1145/2568225.2568260 (cit. on pp. 2, 9, 18, 23, 24).

[GHM98] John Grundy, John Hosking, and Warwick B Mugridge. “Inconsistency man-

agement for multiple-view software development environments”. In: IEEE

Transactions on Software Engineering 24.11 (Nov. 1998), pp. 960–981. issn:

0098-5589. doi: 10.1109/32.730545 (cit. on p. 10).

[GPS04] Carl Gutwin, Reagan Penner, and Kevin Schneider. “Group Awareness in

Distributed Software Development”. In: Proceedings of the 2004 ACM Con-

ference on Computer Supported Cooperative Work. CSCW ’04. Chicago,

79

Bibliography

Illinois, USA: Association for Computing Machinery, Nov. 2004, pp. 72–81.

isbn: 1581138105. doi: 10.1145/1031607.1031621. url: https://doi.

org/10.1145/1031607.1031621 (cit. on pp. 22, 24).

[Guz+13] Anja Guzzi et al. “Communication in open source software development

mailing lists”. In: Proceedings of the 10th Working Conference on Min-

ing Software Repositories. IEEE Press. Oct. 2013, pp. 277–286. isbn: 978-

1-4799-0345-0. doi: 10.1109/MSR.2013.6624039 (cit. on pp. 21, 24).

[HM19] Martine Haas and Mark Mortensen. “The Secrets of Great Teamwork”. In:

Harvard Business Review (Mar. 2019). url: https://hbr.org/2016/06/

the-secrets-of-great-teamwork (cit. on p. 14).

[Han19] Git Handbook. “Understanding the Git flow”. In: Waydev #1 Git Analytics

Platform for Engineering Productivity (Sept. 2019). url: https://waydev.

co/understanding-the-git-flow/ (cit. on p. 11).

[HL10] Lile Hattori and Michele Lanza. “Syde: A Tool for Collaborative Software

Development”. In: Proceedings of the 32nd ACM/IEEE International Con-

ference on Software Engineering - Volume 2. ICSE ’10. Cape Town, South

Africa: Association for Computing Machinery, May 2010, pp. 235–238. isbn:

9781605587196. doi: 10.1145/1810295.1810339. url: https://doi.org/

10.1145/1810295.1810339 (cit. on p. 22).

[Hel18] Heikki Hellgren. “Communicating in software development”. In: Hackernoon

Newsletter (Mar. 2018). url: https://hackernoon.com/communicating-

in-software-development-f3434c52eb23 (cit. on p. 1).

[HLT09] Konrad Hinsen, Konstantin Läufer, and George Thiruvathukal. “Essential

Tools: Version Control Systems”. In: Computing in Science & Engineering 11

80

Bibliography

(Nov. 2009), pp. 84–90. url: https://doi.org/10.1109/MCSE.2009.194

(cit. on p. 10).

[Inj18] Injection-Marketing. “Communication can Save you Money and Time”. In:

Milacron Blog (Feb. 2018). url: https://www.milacron.com/mblog/

2018/02/14/communication-can-save-you-money-and-time/ (cit. on

p. 7).

[Jia+17] Jing Jiang et al. “Why and how developers fork what from whom in GitHub”.

In: Empirical Software Engineering 22.1 (May 2017), pp. 547–578. issn:

1382-3256. url: https://doi.org/10.1007/s10664-016-9436-6 (cit. on

pp. 8, 11).

[JAM17] Mitchell Joblin, Sven Apel, and Wolfgang Mauerer. “Evolutionary trends of

developer coordination: A network approach”. In: Empirical Software En-

gineering 22.4 (Nov. 2017), pp. 2050–2094. issn: 1382-3256. doi: https:

//doi.org/10.1007/s10664-016-9478-9 (cit. on p. 1).

[JJ91] Peter Johnson-Lenz and Trudy Johnson-Lenz. “Post-mechanistic groupware

primitives: rhythms, boundaries and containers”. In: International Journal

of Man-Machine Studies 34.3 (Mar. 1991), pp. 395–417. url: https://

doi.org/10.1016/0020-7373(91)90027-5 (cit. on p. 8).

[Kal+14a] Eirini Kalliamvakou et al. “The code-centric collaboration perspective: Ev-

idence from github”. In: The Code-Centric Collaboration Perspective: Ev-

idence from Github, Technical Report DCS-352-IR, University of Victoria

(2014). doi: 10.1.1.728.2463 (cit. on p. 17).

[Kal+14b] Eirini Kalliamvakou et al. “The Promises and Perils of Mining GitHub”. In:

Proceedings of the 11th Working Conference on Mining Software Reposi-

tories. MSR 2014. Hyderabad, India: Association for Computing Machin-

81

Bibliography

ery, May 2014, pp. 92–101. isbn: 9781450328630. doi: 10.1145/2597073.

2597074. url: https://doi.org/10.1145/2597073.2597074 (cit. on

pp. 17, 18, 28).

[Kal+16] Eirini Kalliamvakou et al. “An In-Depth Study of the Promises and Perils

of Mining GitHub”. In: Empirical Softw. Engg. 21.5 (Oct. 2016), pp. 2035–

2071. issn: 1382-3256. doi: 10.1007/s10664-015-9393-5. url: https:

//doi.org/10.1007/s10664-015-9393-5 (cit. on p. 11).

[KWC94] Sara Kiesler, Douglas Wholey, and Kathleen M Carley. “Coordination as

linkage: The case of software development teams”. In: Organizational link-

ages: Understanding the productivity paradox 52 (1994), pp. 96–123 (cit. on

p. 14).

[KR19] Joe Kochitty and Rajshekhar Ratrey. “Barriers of Communication: Types of

Barriers to Effective Communication”. In: Toppr (Oct. 2019). url: https:

//www.toppr.com/guides/business-correspondence-and-reporting/

communication/barriers-in-communication/ (cit. on p. 12).

[Kum18] Krishna Kumar. “Learn The Three Different Types Of Version Control

Systems”. In: Eduonix Blog (Mar. 2018). url: https://blog.eduonix.

com/software-development/learn-three-types-version-control-

systems/ (cit. on p. 10).

[Lan+10] Filippo Lanubile et al. “Collaboration tools for global software engineering”.

In: IEEE software 27.2 (Feb. 2010), pp. 52–55. issn: 0740-7459. doi: 10.

1109/MS.2010.39 (cit. on pp. 12, 13).

[LVD06] Thomas D. LaToza, Gina Venolia, and Robert DeLine. “Maintaining Men-

tal Models: A Study of Developer Work Habits”. In: Proceedings of the

28th International Conference on Software Engineering. ICSE ’06. Shang-

82

Bibliography

hai, China: Association for Computing Machinery, May 2006, pp. 492–501.

isbn: 1595933751. doi: 10.1145/1134285.1134355. url: https://doi.

org/10.1145/1134285.1134355 (cit. on pp. 21, 24).

[Le+15] Tien-Duy B. Le et al. “RCLinker: Automated Linking of Issue Reports

and Commits Leveraging Rich Contextual Information”. In: Proceedings of

the 2015 IEEE 23rd International Conference on Program Comprehension.

ICPC ’15. Florence, Italy: IEEE Press, May 2015, pp. 36–47 (cit. on pp. 24,

48).

[LLH16] Jing Liu, Jiahao Li, and Lulu He. “A comparative study of the effects of

pull request on github projects”. In: 2016 IEEE 40th Annual Computer

Software and Applications Conference (COMPSAC). Vol. 1. IEEE. Aug.

2016, pp. 313–322. isbn: 978-1-4673-8846-7. doi: 10.1109/COMPSAC.2016.

27 (cit. on pp. 23, 24, 28).

[Mah95] A Mahon. “Groupware-Communication, Collaboration and Coordination”.

In: Intranet Journal (1995). url: https : / / web . archive . org / web /

20110713051554/http://www.intranetjournal.com/faq/lotusbible.

html (cit. on p. 8).

[MKN09] Dominique Matter, Adrian Kuhn, and Oscar Nierstrasz. “Assigning bug

reports using a vocabulary-based expertise model of developers”. In: 2009

6th IEEE international working conference on mining software repositories.

IEEE. June 2009, pp. 131–140. isbn: 978-1-4244-3493-0. doi: 10.1109/

MSR.2009.5069491 (cit. on p. 17).

[Mer15] Ines Mergel. “Open collaboration in the public sector: The case of social

coding on GitHub”. In: Government Information Quarterly 32.4 (Oct. 2015),

pp. 464–472. url: https://doi.org/10.1016/j.giq.2015.09.004 (cit.

on p. 17).

83

Bibliography

[NYY10] Kumiyo Nakakoji, Yunwen Ye, and Yasuhiro Yamamoto. “Supporting ex-

pertise communication in developer-centered collaborative software develop-

ment environments”. In: Collaborative Software Engineering. Springer, Feb.

2010, pp. 219–236. isbn: 978-3-642-10293-6. url: https://doi.org/10.

1007/978-3-642-10294-3_11 (cit. on pp. 22, 24).

[Nes19] Anna Nesmiyanova. “Effective Collaboration Is the Secret to Your Software

Development Project Success”. In: Steel Kiwi (Mar. 2019). url: https://

steelkiwi.com/blog/collaboration-is-a-key-to-project-success/

(cit. on pp. 7, 8).

[Nii11] Tuomas Niinimaki. “Face-to-face, email and instant messaging in distributed

agile software development project”. In: 2011 IEEE Sixth International Con-

ference on Global Software Engineering Workshop. IEEE. Nov. 2011, pp. 78–

84. isbn: 978-1-4577-1839-7. doi: 10.1109/ICGSE-W.2011.15 (cit. on

p. 12).

[NPL09] Tuomas Niinimaki, Arttu Piri, and Casper Lassenius. “Factors affecting

audio and text-based communication media choice in global software de-

velopment projects”. In: 2009 Fourth IEEE International Conference on

Global Software Engineering. IEEE. Aug. 2009, pp. 153–162. isbn: 978-

0-7695-3710-8. doi: 10.1109/ICGSE.2009.23 (cit. on p. 13).

[Pan+14] Sebastiano Panichella et al. “How developers’ collaborations identified from

different sources tell us about code changes”. In: 2014 IEEE International

Conference on Software Maintenance and Evolution. IEEE. Dec. 2014, pp. 251–

260. isbn: 978-1-4799-6146-7. doi: 10.1109/ICSME.2014.47 (cit. on pp. 21,

24).

[Per+16] Yasset Perez-Riverol et al. Ten simple rules for taking advantage of Git and

GitHub. July 2016. doi: 10.1371/journal.pcbi.1004947 (cit. on p. 11).

84

Bibliography

[Pip15] Achilleas Pipinellis. GitHub essentials. Packt Publishing Ltd, 2015 (cit. on

p. 9).

[RR14] Mohammad Masudur Rahman and Chanchal K. Roy. “An Insight into the

Pull Requests of GitHub”. In: Proceedings of the 11th Working Conference on

Mining Software Repositories. MSR 2014. Hyderabad, India: Association for

Computing Machinery, May 2014, pp. 364–367. isbn: 9781450328630. doi:

10.1145/2597073.2597121. url: https://doi.org/10.1145/2597073.

2597121 (cit. on pp. 2, 10).

[RK10] Cobra Rahmani and Deepak Khazanchi. “A study on defect density of open

source software”. In: 2010 IEEE/ACIS 9th International Conference on

Computer and Information Science. IEEE. Sept. 2010, pp. 679–683. isbn:

978-1-4244-8198-9. doi: 10.1109/ICIS.2010.11 (cit. on p. 17).

[RR00] Pierre N Robillard and Martin P Robillard. “Types of collaborative work in

software engineering”. In: Journal of Systems and Software 53.3 (Sept. 2000),

pp. 219–224. url: https://doi.org/10.1016/S0164-1212(00)00013-3

(cit. on p. 12).

[RC16] Margaret Rouse and Meredith Courtemanche. “What is GitHub? - Def-

inition from WhatIs.com”. In: SearchITOperations (2016). url: https :

//searchitoperations.techtarget.com/definition/GitHub (cit. on

p. 11).

[SB97] Carolyn B Seaman and Victor R Basili. “Communication and organization

in software development: an empirical study”. In: IBM Systems Journal 36.4

(1997), pp. 550–563. issn: 0018-8670. doi: 10.1147/sj.364.0550 (cit. on

pp. 23, 24).

85

Bibliography

[SRP17] Todd Sedano, Paul Ralph, and Cécile Péraire. “Software Development Waste”.

In: Proceedings of the 39th International Conference on Software Engineer-

ing. ICSE ’17. Buenos Aires, Argentina: IEEE Press, May 2017, pp. 130–

140. isbn: 9781538638682. doi: 10.1109/ICSE.2017.20. url: https:

//doi.org/10.1109/ICSE.2017.20 (cit. on p. 1).

[She+14] Jyoti Sheoran et al. “Understanding Watchers on GitHub”. In: Proceedings

of the 11th Working Conference on Mining Software Repositories. MSR

2014. Hyderabad, India: Association for Computing Machinery, May 2014,

pp. 336–339. isbn: 9781450328630. doi: 10.1145/2597073.2597114. url:

https://doi.org/10.1145/2597073.2597114 (cit. on p. 9).

[SS15] Janet Siegmund and Jana Schumann. “Confounding parameters on program

comprehension: a literature survey”. In: Empirical Software Engineering 20.4

(May 2015), pp. 1159–1192. issn: 1382-3256. url: https://doi.org/10.

1007/s10664-014-9318-8 (cit. on p. 63).

[Sin+13] Leif Singer et al. “Mutual Assessment in the Social Programmer Ecosystem:

An Empirical Investigation of Developer Profile Aggregators”. In: Proceed-

ings of the 2013 Conference on Computer Supported Cooperative Work.

CSCW ’13. San Antonio, Texas, USA: Association for Computing Machin-

ery, Feb. 2013, pp. 103–116. isbn: 9781450313315. doi: 10.1145/2441776.

2441791. url: https://doi.org/10.1145/2441776.2441791 (cit. on

pp. 23, 24).

[Sin13] Sandeep Singh. “Analysis of bug tracking tools”. In: International Journal of

Scientific & Engineering Research 4.7 (July 2013), p. 134. issn: 2229-5518

(cit. on p. 17).

[Sou+04] Cleidson R. B. de Souza et al. “How a Good Software Practice Thwarts

Collaboration: The Multiple Roles of APIs in Software Development”. In:

86

Bibliography

SIGSOFT Softw. Eng. Notes 29.6 (Oct. 2004), pp. 221–230. issn: 0163-

5948. doi: 10.1145/1041685.1029925. url: https://doi.org/10.1145/

1041685.1029925 (cit. on p. 1).

[Sto+14] Margaret-Anne Storey et al. “The (R) Evolution of Social Media in Software

Engineering”. In: Proceedings of the on Future of Software Engineering.

FOSE 2014. Hyderabad, India: Association for Computing Machinery, May

2014, pp. 100–116. isbn: 9781450328654. doi: 10.1145/2593882.2593887.

url: https://doi.org/10.1145/2593882.2593887 (cit. on pp. 21, 22,

24).

[Sto+17] Margaret-Anne Storey et al. “How Social and Communication Channels

Shape and Challenge a Participatory Culture in Software Development”.

In: IEEE Trans. Softw. Eng. 43.2 (Feb. 2017), pp. 185–204. issn: 0098-

5589. doi: 10.1109/TSE.2016.2584053. url: https://doi.org/10.

1109/TSE.2016.2584053 (cit. on pp. 24, 64).

[Thi+07] M. Rita Thissen et al. “Communication Tools for Distributed Software De-

velopment Teams”. In: Proceedings of the 2007 ACM SIGMIS CPR Confer-

ence on Computer Personnel Research: The Global Information Technology

Workforce. SIGMIS CPR ’07. St. Louis, Missouri, USA: Association for

Computing Machinery, Apr. 2007, pp. 28–35. isbn: 9781595936417. doi:

10.1145/1235000.1235007. url: https://doi.org/10.1145/1235000.

1235007 (cit. on pp. 8, 12, 14).

[TDH14a] Jason Tsay, Laura Dabbish, and James Herbsleb. “Influence of Social and

Technical Factors for Evaluating Contribution in GitHub”. In: Proceedings of

the 36th International Conference on Software Engineering. ICSE 2014. Hy-

derabad, India: Association for Computing Machinery, May 2014, pp. 356–

87

Bibliography

366. isbn: 9781450327565. doi: 10.1145/2568225.2568315. url: https:

//doi.org/10.1145/2568225.2568315 (cit. on pp. 23, 24, 28).

[TDH14b] Jason Tsay, Laura Dabbish, and James Herbsleb. “Let’s Talk about It: Eval-

uating Contributions through Discussion in GitHub”. In: Proceedings of the

22nd ACM SIGSOFT International Symposium on Foundations of Soft-

ware Engineering. FSE 2014. Hong Kong, China: Association for Computing

Machinery, Nov. 2014, pp. 144–154. isbn: 9781450330565. doi: 10.1145/

2635868.2635882. url: https://doi.org/10.1145/2635868.2635882

(cit. on p. 9).

[Vas+15] Bogdan Vasilescu et al. “Quality and Productivity Outcomes Relating to

Continuous Integration in GitHub”. In: Proceedings of the 2015 10th Joint

Meeting on Foundations of Software Engineering. ESEC/FSE 2015. Berg-

amo, Italy: Association for Computing Machinery, Aug. 2015, pp. 805–816.

isbn: 9781450336758. doi: 10.1145/2786805.2786850. url: https://

doi.org/10.1145/2786805.2786850 (cit. on p. 9).

[Ver20] Arun Kumar Verma. Feb. 2020. url: https://sites.google.com/view/

master-thesis-verma-20/ (cit. on pp. 5, 67).

[Yu+15] Yue Yu et al. “Wait for It: Determinants of Pull Request Evaluation Latency

on GitHub”. In: Proceedings of the 12th Working Conference on Mining

Software Repositories. MSR ’15. Florence, Italy: IEEE Press, May 2015,

pp. 367–371. isbn: 9780769555942 (cit. on pp. 9, 28).

[Yu+16] Yue Yu et al. “Reviewer Recommendation for Pull-Requests in GitHub”. In:

Inf. Softw. Technol. 74.C (June 2016), pp. 204–218. issn: 0950-5849. doi:

10.1016/j.infsof.2016.01.004. url: https://doi.org/10.1016/j.

infsof.2016.01.004 (cit. on p. 9).

88

Bibliography

[Zha+18] Yang Zhang et al. “Within-Ecosystem Issue Linking: A Large-Scale Study

of Rails”. In: Proceedings of the 7th International Workshop on Software

Mining. SoftwareMining 2018. Montpellier, France: Association for Com-

puting Machinery, 2018, pp. 12–19. isbn: 9781450359757. doi: 10.1145/

3242887.3242891. url: https://doi.org/10.1145/3242887.3242891

(cit. on p. 47).

89

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich diese Masterarbeit selbstständig und ohne Benutzung

anderer als der angegebenen Quellen und Hilfsmittel angefertigt habe und alle Aus-

führungen, die wörtlich oder sinngemäß übernommen wurden, als solche gekennzeichnet

sind, sowie, dass ich die Masterarbeitin gleicher oder ähnlicher Form noch keiner anderen

Prüfungsbehörde vorgelegt habe.

Passau, 15. März 2020

Arun Kumar Verma

90

