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Abstract

Today’s commonly used cryptographic algorithms for enforcing the confidentiality of

data and communications are considered as sound. When implemented correctly, for most

of the state-of-the-art cryptographic algorithms there are no known practical attacks that

would allow a third party to read encrypted data.

However, the most popular cryptographic library implementing these algorithms -

OPENSSL - is frequently affected by highly problematic security issues, most notably by

the infamous Heartbleed bug in 2014. These issues are mostly caused by flaws in the ac-

tual implementation. OPENSSL is a highly configurable software written in C with heavy

usage of the C PREPROCESSOR (CPP) to implement variability, resulting in a huge number

of variants. This leads to system variants that contain bugs which are not detected by

current approaches.

Recent academic advances allow us to fully analyze such code: the tool TYPECHEF

enables us to parse C code with preprocessor directives and provides intraprocedural data-

flow analysis of the parsed code. The framework SPLLIFT is able to run interprocedural

data-flow analysis on variable Java Code. In this thesis we will combine both tools for

applying SPLLIFT ’s capabilities on real-world, large-scale C code. Based on this combina-

tion, we develop an interprocedural variability-aware taint analysis and evaluate it on two

cryptography libraries.
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1. Introduction

Since the very first days of software engineering, developers face the challenge of soft-

ware defects (more commonly known as bugs). Although it is said, that one of the first

software defects in history was an actual bug1, in modern software systems a software de-
fect is defined as a false result or unexpected behavior of the software system caused by

incorrect instructions in the source code [noa90].

Despite the presence of defects, today’s society relies heavily on software systems and

its dependency on such systems is growing as we are currently witnessing the rise of the

Internet of Things and see the beginning of the age of autonomous driving. Unfortunately,

a defect in an autonomous driving software system may put people’s live at risk. For this

reason, preventing faults is a very import task in the development process of software

systems. As a result, academia and industry developed many different techniques, such as

automated testing or code review, to detect and consequently avoid defects during code-

development time. One of these techniques is static code analysis. Static code analysis

performs analysis strategies aiming to detect potential defects on the software system’s

source code without actually executing it [NNH15]. It is a very powerful tool to detect

programming errors and is in practice an essential part in the daily life of an developer: for

example development environments, such as INTELLIJ, or compilers such as GCC, support

the developer by issuing warnings for potentially uninitialized variables. Furthermore, in

some security-critical fields, like aviation, static code analysis is a prerequisite before a

software system can go into productive use in these fields [oT-FAA15].

Even though static code analysis is a prerequisite in some fields, it is still imperfect.

OPENSSL, a cryptography library implementing all essential state-of-the-art cryptographic

functions, which is widely used to secure the internet’s communication, claims to use static

code analysis to ensure its code quality2. Nevertheless, this library has been affected by

some major security issues in the past. These issues have not been caused by flaws in

the used cryptography algorithms but rather by defects in the library’s source code. One

of them was the infamous Heartbleed Bug. Briefly described: by sending a malformed

heartbeat message to a webserver using a vulnerable version of the OPENSSL software,

OPENSSL exposed parts of the memory to the attacker in its response. The leaked data
1The anecdote says, in 1945 a moth did block a relay in one of the first electro-mechanical computers

causing erroneous behavior of the machine. To solve this issue, the moth has been removed and the following
entry was entered into the logbook: "First actual case of bug being found."

2As described here: https://wiki.openssl.org/index.php/Static_and_Dynamic_Analysis

https://wiki.openssl.org/index.php/Static_and_Dynamic_Analysis
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contained confidential information like user credentials, private keys, and other sensitive

data3. The bug was part of the library for almost two years before being detected in April

2014. As a first workaround, prior a fixed version was released, users of the library were

advised to recompile OPENSSL without the affected feature as only one certain variant of

the library was affected4.

The previously described defect stands as an example for current shortcomings of

state-of-the-art static code analysis approaches. OPENSSL is written in the programming

language C with heavy usage of the C PREPROCESSOR. With the use of the C preprocessor

one is able to configure during compile-time which parts of the source code, annotated

with preprocessor directives, are ex- or included in the compiled product. This process is

called conditional-compilation and because of its extensive usage to implement variability

in OPENSSL, the library is defined as a highly configurable software system. This fact

leads to a huge number of variants: OPENSSL has 589 configuration options, with which

6.5 x 10175 variants can be derived [LJG+15]. This huge number leads to system variants

that contain bugs which are not detected by current static code analysis approaches as

they would have to check each variant individually.

1.1 Problem Statement and Contribution

Figure 1.1 illustrates a simplified version of a configurable software system written

in C with usage of the C PREPROCESSOR. This example is adopted from the actual high

level interface EVP to access OPENSSL’s cryptographic functions5. It consists of a main

file as seen in Listing 1.1, which contains two functions ctx_init and ctx_do, both are

externally defined in Listing 1.3 and respectively in Listing 1.4 and linked to the main file

during compile-time. Furthermore, the function ctx_init assigns, depending on which

variant (wether configuration option A is enabled or not) is chosen, one of two different

functions, cipher1 or cipher2, to a function pointer c, which gets dereferenced later in

the function ctx_do. cipher1 and cipher2 represent in OpenSSL the concrete implemen-

tation of a certain cryptography algorithm like AES or Blowfish. Current static analysis

approaches would have to analyze all 16 possible variants of the example software system

individually, to recognize that the value of the variable secret will be printed out in two

variants (A ∧ ¬B ∧ C, ¬A ∧ ¬D) by the printf instruction. In practice, this approach is

infeasible for real-life software systems, as potentially millions of possible variants can be

derived [LAL+10].

Recent academic advances allow us to fully analyze such code: the tool TYPECHEF en-

ables us to parse C code with preprocessor directives and provides intraprocedural control-

flow and data-flow analysis of the parsed code [KGR+11, LvRK+13, Lie15]. The frame-

work SPLLIFT is capable to run data-flow analysis, which are formulated as interprocedu-

ral, finite, distributive, subset (IFDS) problems, on variable Java source code [BTR+13].
3For a detailed description of this vulnerability we refer the interested reader to: [DKA+14]
4FAQ-Entry: "How can OpenSSL be fixed?" at the official bug website: http://heartbleed.com
5The interface itself is described in detail here: https://wiki.openssl.org/index.php/EVP

http://heartbleed.com
https://wiki.openssl.org/index.php/EVP


1.1. Problem Statement and Contribution 3

1 #include <minimalLinking.h>

2
3 int main() {

4 struct cipher_ctx *c = malloc

↪→ (sizeof(struct

↪→ cipher_ctx));

5
6 #ifdef A

7 ctx_init(c, &cipher1);

8 #else

9 ctx_init(c, &cipher2);

10 #endif

11
12 int secret;

13 secret = 666;

14
15 int sink = ctx_do(c, secret);

16 printf("%i\n", sink);

17
18 return 0;

19 }

Listing 1.1: main.c

1 #include <minimalLinking.h>

2
3 int cipher1(int i) {

4 int r, x = 1;

5
6 #ifdef B

7 i = x;

8 #endif

9
10 if (i < 0) {

11
12 #ifdef C

13 r = i;

14 #else

15 r = x;

16 #endif

17
18 }

19
20 return r;

21 };

22
23 int cipher2(int i) {

24
25 #ifdef D

26 i = 0;

27 #endif

28
29 return i;

30 };

Listing 1.2: ciphers.c

1 #include <minimalLinking.h>

2
3 void ctx_init(struct cipher_ctx *

↪→ c, int (*f)(int)) {

4 c->func = f;

5 return;

6 }

Listing 1.3: init.c

1 #include <minimalLinking.h>

2
3 int ctx_do(struct cipher_ctx *c,

↪→ int value) {

4 int result = c->func(value);

5 return result;

6 }

Listing 1.4: do.c

Figure 1.1: Running example of a configurable software system: secret is printed if B is
disabled while A and C are enabled or A and D are disabled
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In our approach we will combine both tools, for applying SPLLIFT ’s capabilities on large-

scale C code. Combined together, these tools are able to run interprocedural data-flow

analysis simultaneously on every variant of configurable software systems in C instead of

analyzing each variant individually.

To do so, we will extend TYPECHEF with capabilities to resolve linked function names,

trace the possible destinations of function pointers and provide an interprocedural control-

flow graph. Further, we adjust and consequently improve the lifting mechanism of the tool

SPLLIFT to be fully compatible with the control-flow graph concept of the TYPECHEF in-

frastructure and eliminate all of the tool’s known limitations. Based on this combination,

we develop, as a proof of concept, a simple, assignment-based, interprocedural taint anal-

ysis and apply it on the implementation of the AES-encryption algorithm of two different

configurable real-world open-source cryptography libraries: MBEDTLS and OPENSSL.

1.2 Structure of the Thesis

In Chapter 2, we explain the background topics of this thesis. First, we introduce and

explain configurable software systems in general. We focus on systems using the C Prepro-

cessor (CPP) to implement variability and discuss shortly the benefits and disadvantages

of this technique. Second, we introduce the concept of static code analysis. In particular,

we explain the necessary program representation to perform this kind of analysis, namely

abstract syntax trees, control-flow and data-flow graphs. Further, we highlight the idea of

taint analysis as an example static code analysis method.

Chapter 3 explains the steps we performed to make the parsing infrastructure TYPE-

CHEF meet SPLLIFT ’s upfront requirements. We describe the approach of each extension

we had to add to TYPECHEF in order to provide an interprocedural control-flow graph.

Finally, all modifications to the intermediate source code representation are documented.

In Chapter 4, we present the used data-flow analysis framework used within SPLLIFT.

Afterwards, we formulate the underlying data-flow analysis problem for taint checking

within this framework.

Afterwards in Chapter 5, we present SPLLIFT ’s original lifting strategy for data-flow

analysis problems on every possible variant of a configurable software systems simultane-

ously. In this section, we describe why the proposed lifting strategy is not applicable using

the TYPECHEF infrastructure and present an adapted approach which is more precise and

eliminates all known shortcomings of SPLLIFT.

In Chapter 6, we first show the correctness and scalability of the developed tool-

combination in a series of experiments. Second, we apply the developed static analysis

strategy on the implementation of the AES-encryption algorithm of two different highly

configurable real-world open-source cryptography libraries: MBEDTLS and OPENSSL. Fi-

nally, we discuss the result of the performed analysis.

In Chapter 7 we present an overview of current research, ongoing and finished, re-

garding static code analysis.



2. Background

This chapter describes background knowledge that is fundamental to our challenges

and to our approach to statically analyze variable C code.

2.1 Configurable Software Systems

Most software systems provide mechanism to be configured according to user’s re-

quirements. This is common practice, as different application scenarios (e.g., different

hardware environments) require different variants of a software system. For example, the

LINUX KERNEL is in productive use on servers as well as on mobile devices. Each platform

offers a different hardware environment and needs to provide different functionalities: a

webserver may not support touch input devices, but support load-balancing technologies.

As a result, the LINUX KERNEL offers over 13000 different configuration options [PPB+15].

In general, a configurable software system is a system that can be custom-tailored to fulfill

various roles in different environments and application scenarios [vR16].

Next, we will introduce an existing mechanism to implement the functionality of con-

figuration options.

2.1.1 Implementing Configurable Software Systems with the C Preprocessor

The C PREPROCESSOR (CPP) is a macro processor that is used for source code trans-

formation [KR88]. By the means of different directives the preprocessor provides func-

tionality for file inclusion, text substitution, conditional compilation, line control, and

diagnostics. Its syntax is independent from the underlying programming language. The

preprocessor is intended to be used in the source code of the C programming language

family (C, C++, C# and Objective C), however it can be abused to process other text files.

It is generally executed before the actual compilation task is performed.

In this thesis we focus on conditional compilation, because of its widespread usage for

the implementation of configurable software. However, before we explain the process of

conditional compilation itself, we introduce two mechanisms of the CPP first:

Macro A macro is a named source code or text fragment. Macros can be divided into two

types: (1) object-like macros and (2) function-like macros. Both types are created

by the directive #define followed by an identifier, in case of a function-like macro
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1 #define PI 3.14 // object -like

2
3 #define PERIMETER(r) (2*r*PI) // function -like

Listing 2.1: Preprocessor macros

directly followed by a parameter list and the replacement as shown in an example in

Listing 2.1. After a macro has been defined, the preprocessor replaces all subsequent

appearances in the source code by the macro replacement list. This process is called

macro expansion.

Fileinclusion The directive #include <fileToInclude> includes an external (header) file

in C/C++. A header file is typically used for collecting externally defined declara-

tions and macros in a central place which are shared between several source files.

The include process is precisely equivalent to the process of directly copying the con-

tent of the file to include into the source code file. A common usage of this directive

in the C programming language is to include system header files, which provide for

example basic I/O functions.

2.1.2 Conditional Compilation

Conditional compilation directives, also called conditionals in the offical documenta-

tion, allow the programmer to advise the preprocessor which chunk of code to include or

exclude in the output passed to the compiler. Its syntax follows the classical if-then-else

construct. A conditional group in the C PREPROCESSOR begins with one of the following

directives: #if, #ifdef or #ifndef and ends with the directive #endif. The following

CPP conditional directives exist to implement conditional compilation [KR88, Jan13]:

#ifdef, #ifndef One of the two possible starting conditionals. In Lisitng 2.2 on the fol-

lowing page we see the simplest way of using this directive. The controlled source
code by this directive will be included (#ifdef) or excluded (#ifndef) in the pre-

processed output stream to the compiler if and only if MACRO has been defined

previously by the CPP-directive #define MACRO.

#if This conditional evaluates the value of an arithmetic expression following the di-

rective. The value of this arithmetic expression is calculated at preprocessing-time

and the controlled source code is included in the output if the arithmetic expression

evaluates to nonzero. An example usage of this conditional is shown in Listing 2.3.

defined To test in arithmetic expressions if the name of a macro is defined, the directive

defined is used. If a macro has been defined, it will evaluated during preprocessing

to 1, otherwise to 0. Thus, #if defined MACRO is precisely equivalent to #ifdef

MACRO.
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1 #ifdef MACRO

2 controlled source code

3 #endif

Listing 2.2: Example usage of the
conditional #ifdef

1 #define VALUE 5

2 #if (0 < VALUE)

3 controlled source code

4 #endif

Listing 2.3: Example usage of the
conditional #if

#else This directive provides an alternative that is included into the preprocessed output

if the previous conditional directives, #if, #ifdef, #ifndef or #elif, fail.

#elif Analogues to the previous described #else - directive, this conditional provides an

potential alternative chunk of code to include in the output. It is used to provide

more than one alternative as this conditional evaluates in the same matter as the

directive #if arithmetic expressions. It stands for term else if in common pro-

gramming languages.

#endif This directive ends a conditional group.

2.1.2.1 Build Systems and Configuration Knowledge

In practice, configurable software systems using the CPP and conditional compilation

to implemented configuration options provide a user-friendly interface for configuration.

As this process takes place during compile-time, these systems are called Build Systems.
Well-known and widely used build-systems are for example GNU BUILD SYSTEM1 and

KBUILD2. Both tools offer an interface in which the user chooses desired configuration

options. Afterwards, based on the chosen configuration, the corresponding macro direc-

tives are either defined or undefined and the previously described process of conditional

compilation can start.

However, build systems commonly take dependencies between certain configuration

options into consideration, as not every possible configuration variant is valid: e.g. a

configuration options may exclude one other or a configuration option requires another

option. The tool chain of this thesis is able to respect these dependencies during com-

putation. For our case studies, which we will use in Chapter 6, these dependencies have

been extracted from the underlying build systems as configuration knowledge. The con-

straints between configuration options are represented in a tree-like structure called Fea-
ture Model [ABKS13]. Without considering the feature model our tool chain would be

unable to distinguish results for valid configurations from those for invalid ones.

2.1.2.2 Disadvantages of Conditional Compilation

While conditional compilation is extremely flexible and easy to use at first glance,

in real-life software systems it leads to code that is very hard to read and to main-

tain [SLSA14, SSF+12], as shown in the real-life source code excerpt in Listing 2.4. For a
1https://www.gnu.org/software/automake/automake.html
2https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt

https://www.gnu.org/software/automake/automake.html
https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt
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1 #if defined(__GLIBC__)

2 // additional lines of code

3 #elif defined(__MVS__)

4 result = pty_search(pty);

5 #else

6 #ifdef USE_ISPTS_FLAG

7 if (result) {

8 #endif

9 result = ((*pty = open("/dev/ptmx", O_RDWR)) < 0);

10 #endif

11 #if defined(SVR4) || defined(__SCO__) || defined(USE_ISPTS_FLAG)

12 if (! result)

13 strcpy(ttydev , ptsname (*pty));

14 #ifdef USE_ISPTS_FLAG

15 IsPts = !result;

16 }

17 #endif

18 #endif

Listing 2.4: Example of the #ifdef - hell in XTERM

long time, researchers have heavily criticized the usage of conditional compilation, with

characterization of such code as #ifdef - hell [LST+06]. Many problems with C - code

that prevent the full support of current static analysis approaches can be traced back to

the usage of CPP directives [MKR+15, LKA11].

Despite all shortcomings and criticism, conditional compilation is, and probably will

remain, a technique which is used in a wide range of software systems in industry as well

as in open-source software [HZS+16].

2.2 Static Code Analysis

Static code analysis performs analysis strategies aiming to detect potential defects

on the software system’s source code without actually executing it [NNH15]. Despite

being mostly unnoticed by developers, static code analysis is a heavily used technique in

practice. In the same fashion word processing programs highlight spelling errors, modern

Integrated Development Environments (IDE), like ECLIPSE, INTELLIJ or XCODE, support

the developer during coding-time by highlighting potential syntax- or type errors. But

static code analysis is not limited to syntax- and type-checking: a wide range of different

analysis exists in academia and industry to cover not only "spelling" errors, but support the

developer in the means of program verification, bug finding, and security review [CW07].

For example, Liebig et al. use the TYPECHEF infrastructure, which we also use in this thesis,

to implement various intraprocedural static data-flow analyses techniques on C source

code to detect defects according to the Secure Coding Guidelines for C [LvRK+13, Sea05].

As mentioned before, static analysis does operate on the source code without exe-

cuting it. This brings a major benefit, as static analysis is able to indicate potential code

smells during coding-time and before execution-time of the software system. However,

static analysis can not incorporate external program arguments and can therefore only
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reveal potential defects which are independent from external influences. For this reason,

static code analysis techniques are known to produce false positives and false negatives. For

static code analysis a false positive indicates an error when it is actually none, whereas a

false negative does not indicate the presence of a defect despite its presence. Using static

code analysis, one should always keep in mind that this technique can provide proof for

the presence of an potential defect but can not provide evidence of the absence of an bug.

Despite these shortcomings, static code analysis is a mandatory perquisite to ensure the

software quality in security critical fields like aviation [oT-FAA15].

An alternative code analysis technique is Model Checking [BK08]. Like static code

analysis, model checking also analyzes the source code without actually executing it. In

contrast to static code analysis however, model checking transforms the program’s behav-

ior into a finite-state machine and checks if the resulting state-machine fulfills a given set

of specifications (e.g. the absence of deadlocks).

Different techniques exist to perform static analysis. As static analysis works on the

raw source code it reuses technologies derived from compiler construction [NNH15],

namely Abstract Syntax Trees, Control-Flow Graphs and Data-Flow Analysis. These tech-

niques are commonly combined for specific static code analysis methods and will be ex-

plained in the following section.

2.2.1 Variational Abstract Syntax Tree

Analysis strategies for programming languages require a data structure which repre-

sents the syntactic structure of the source code. For this purpose, commonly a tree based

data-structure called Abstract Syntax Tree (AST) is chosen, which represents the syntactic

structure of the source code of a certain programming language in tree form, while ex-

cluding unnecessary syntactic details [Jon03]. Each source code construct is denoted as a

tree node.

Due to the fact that C PREPROCESSOR directives are not a part of the C programming

language [KR88], classic AST representations for C code generally represent preprocessed

code and consequently only one possible variant of a configurable software system written

in C. Since generating individual ASTs for all possible variants of the C source code is

infeasible, but mandatory for a complete analysis, a single variational AST is required. To

do so, we enrich the classic abstract syntax tree representation with information in each

tree node about its presence or absence in the compilation unit according its surrounding

#ifdef directives in the source code as presence-condition (c.f. Section 2.1.1).

Even though parsing C code, especially in the presence of preprocessor directives, is a

highly difficult task, recent advances in academia made such a data structure available for

us. The research parsing infrastructure TYPECHEF by Kästner et al. [KGR+11, KGO11] is

able to parse un-preprocessed C code and provides a sound and complete representation

of C source code annotated with #ifdef directives in a so called variational abstract syntax
tree [WKE+14].
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1 ...

2 int cipher1(int i) {

3 int r, x = 1;

4
5 #ifdef B

6 i = x;

7 #endif

8
9 if (i < 0) {

10
11 #ifdef C

12 r = i;

13 #else

14 r = x;

15 #endif

16
17 }

18
19 return r;

20 };

21 ...

TranslationUnit

FunctionDef

int i Stmt-Block

. . . Choice B

Assignment

i x

ε

if

Condition

x < 0

Then - Block

Choice C

Assignment

r i

Assignment

r x

. . .

Figure 2.1: Minimalistic configurable source code fragment extracted from the running
example with two features and its corresponding AST

The structure of the variational AST representation is analogous to the structure of

a "classic" AST. However, to express variability in the tree, an additional node, called

Choice node, is introduced into the tree’s syntax. This node represents alternative sub-

trees according to the CPP-conditionals and their conditions in the original source code.

Figure 2.1 shows a minimalistic source code example and the corresponding variational

abstract syntax tree. In the source code example both statements in Line 6 as well as

in Lines 12ff are variable by the means of conditional compilation. For example, the

assignment to x in Line 6 is only part of the the preprocessed source code if B is de-

fined. This fact is represented in the variability-aware abstract syntax tree by the tree node

Choice(B, Assignment, ε), where the node indicates under Condition B the assignment is

presented, otherwise it is absent without any alternative. Analogous in Line 11ff we see a

conditional block. This time however an alternative is present if the condition of the #ifdef

- directive does not hold, which is represented by a second non-empty leaf of the corre-

sponding choice node in the abstract syntax tree: Choice(C, Assignment, Assignment).

As described in Section 2.1.1, C PREPROCESSOR directives are also used for file inclu-

sion and macro definition. The TYPECHEF parsing infrastructure resolves both directives.

Files referenced by the #include directive are parsed as well and become a part of the

resulting AST. Macros get expanded and their occurrences in the source code are replaced

in the abstract syntax tree representation according to their definition.

2.2.2 Variational Control-Flow Graph

Solely based on the previously described AST, static code analysis is not able to inspect

the control- or data-flow of a software system. Analysis strategies which take the execution
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path of individual program instructions (such as statements) into consideration, require

a data-structure that represents the possible execution path of the program. Such data-

structures are Control-flow Graphs (CFGs). A CFG is a directed graph which describes all

possible execution paths through a program during its execution-time [All70, NNH15].

3

6

B

9

¬B

B

19

True 12

 C

14

¬C

 C ¬C

Figure 2.2: A variability-aware
control-flow graph for the running
example of Figure 2.1

In the graph representation, a node denotes

a single program instruction, e.g. assignments or

function calls. Directed edges exists between two

nodes if control can flow from the statement rep-

resented by the source node to the statement rep-

resented by the target node. A single node may

have several different in- and outgoing edges, as

control-flow statements, such as if-then-else or

loops, branch the program’s execution path. The

actual control-flow conditions which lead to branch-

ing are normally not evaluated by the CFG, because

not all necessary run-time informations are avail-

able. Consequently, a control-flow graph is only a

approximation of the program’s behavior with po-

tential dead paths within the graph.

Unfortunately, in the presence of conditional-

compilation directives, the successors of a node may

differ according to the chosen configuration. To

project all possible system variants into a single CFG

representation, we have to encode variability into

the graph likewise the previously described AST.

In classic textbook definitions, a CFG is generated

by computing all possible successor statements of a

statement:

succ : CFGStmt→ List[CFGStmt]

As we are already aware of the presence-condition of every single statement in the AST,

we are able to compute the corresponding presence-condition of the resulting edge. In

order to represent variability in the graph, we annotate each edge with the calculated

presence-condition. In the successor function each potential successor node is annotated

according its individual edge presence-condition:

succ : CFGStmt→ List[V [CFGStmt]]

The resulting CFG for the running example of Figure 2.1 is illustrated in Figure 2.2.

The first statement in Line 3 has two potential successors, either the assignment in Line 6
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or the if-statement in Line 9, based on whether configuration option B is chosen or not.

In the visualized graph representation (node numbers refer to the corresponding line of

code), we see two outgoing edges from the first node, one reaching the node representing

the assignment in Line 6, the other one going to the node for Line 9. The edge between

Node 3 and Node 6 is annotated with the presence-condition B as the successor is only

reachable if configuration option B is set. Analogous, Node 9 has three outgoing edges:

(1) if the condition of the corresponding if statement does not hold, Line 19 is directly

reached, (2) if option C is set Line 12 is the successor, and finally (3) if option C is not set,

Line 14 is reached.

The described variational CFG is already provided by the TYPECHEF parsing infras-

tructure.

2.2.3 Data-Flow Analysis

Data-flow analysis is a static code analysis technique which investigates dependencies

and relationships between variables of a computer program [NNH15, KSS09]. Interest-

ing data-flow properties are commonly gathered and propagated along the control-flow

graph. Well-known classic data-flow analysis are for example Reaching Definitions or Live-
ness Analysis. In this thesis we will implement data-flow analysis techniques for function-

pointer destinations and a simple taint-analysis.

Various data-flow analysis techniques differ in the means of precision. In the scope of

this thesis we are using several data-flow analyses with different properties, which we will

introduce next [NNH15, MRR04]:

Intraprocedural vs. Interprocedural Analysis

Intraprocedural analysis analyzes individual procedures of a program in isolation. This

technique assumes that a single procedure does not have any side-effects or assumes al-

ternatively the worst-case scenario.

In contrast to intraprocedural analysis, interprocedural analysis is done across an

entire program. It hereby additionally analyzes relationships between call- and callee-

procedures as well.

Flow-Sensitive vs. Flow-Insensitive

A flow-sensitive analysis takes the control-flow and therefore the execution order be-

tween program instructions into account in its computation. Flow-insensitive analysis

however does ignore the execution order of a program and is as a logical consequence

more imprecise.
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Contex-Sensitive vs. Contex-Insensitive

1 int foo (int *p) {

2 return *p;

3 }

4
5 int main () {

6 int a, b, c, d;

7 a = 0;

8 b = 1;

9
10 c = foo(&a);

11 d = foo(&b);

12
13 return c + d;

14 }

Listing 2.5: Example program for

distinguishing context-sensitivity

A context-sensitive analysis considers

the calling context when analyzing the tar-

get of a function call and analyzes each

call separately according to its context.

Context-insensitive analysis does not dis-

tinguish between different invocation con-

texts for a procedure. The sample pro-

gram in Listing 2.5 illustrates the differ-

ence between both analysis properties. A

context-sensitive analysis would compute

both calls to function foo in Line 10 and

11 separately. The resulting values for vari-

able c and d would correctly differ. In con-

trast, a context-insensitive analysis does

not distinguish between the two different

invocation contexts of foo and would com-

pute a false result with both variables c and d pointing to identical values.

Field-Sensitive vs. Field-Insensitive

Some data-structures in programming languages, like objects or structures, have field

values. A field-sensitive analysis can distinguish between different fields whereas a field-

insensitive analysis encapsulates all fields into the parent variable.

2.2.4 Example Static Code Analysis: Taint Checking

Taint checking is a static code analysis technique which tries to identify potentially

malicious data-flows within the analyzed source code of a program [ARF+14]. A mali-

cious data-flow exists, if a sensitive information (taint) reaches throughout its data-flow

through the program a given sink (e.g. a method printing the information out to the con-

sole) [SAB10]. More generally speaking, taint analysis can be seen as a kind of subclass

of information-flow analysis [SM03]. An information-flow is the transfer of information

from a variable x to a successor variable y [DD77].

To illustrate the principle of taint checking, we consider our running example in Fig-

ure 1.1. The variable secret in Line 12 of the file main.c holds in the scope of our example

configurable software system sensitive information. By carrying out a taint analysis on the

example software system, we want to examine if a potential information-flow from the

variable secret to the method printf in Line 16 exists.

In scope of this thesis, we implement this static analysis strategy as proof of concept

for the combination of the parsing infrastructure TYPECHEF and the data-flow analysis

framework SPLLIFT.



3. Preparing TYPECHEF for SPLLIFT

The tool TYPECHEF focuses on parsing and analyzing C source code in the presence of

CPP-directives: it is hereby able to parse the entire X86 LINUX KERNEL, however it only of-

fers intraprocedural data-flow analysis strategies [Lie15]. On the other hand, SPLLIFT is

able to solve data-flow analysis problems in an interprocedural manner, but is limited

to configurable software systems expressed within the COLORED INTEGRATED DEVELOP-

MENT ENVIRONMENT (CIDE), a research-based extension of the ECLIPSE IDE [FKF+10,

BTR+13]. In CIDE, configurable software systems are written in the Java programming

language and variability in the source code is expressed by marking code fragments with

different colors. Each color hereby represents a single configuration option [Käs10].

In order to solve interprocedural data-flow analysis problems, SPLLIFT itself is inde-

pendent from the used programming language, but requires a variational interprocedural

control-flow graph. Currently, this control-flow graph is provided by the underlying tool

chain of SPLLIFT, namely CIDE, ECLIPSE and SOOT, which causes the limitation on CIDE-

based configurable software systems. In the scope of this thesis, we replace this tool chain

by the parsing infrastructure TYPECHEF to enable the support of SPLLIFT for configurable

software systems written in the programming language C.

In this chapter we describe the extensions we added to the tool TYPECHEF to meet

SPLLIFT ’s requirements of an interprocedural control-flow graph.

3.1 Precise Call Graph

As we have learned in Section 2.2.2, TYPECHEF already provides an intraprocedural

control-flow graph. This control-flow graph can be exploited to become interprocedural

by computing the program’s call-graph. A call-graph indicates which procedures can call

which other procedures, and from which call points within the program [NNH15]. To

retrieve a precise call-graph for complete C programs, it is necessary to identify procedures

located in other (in C language terms linked) source code files and the potential values of

function pointers.

3.1.1 Linked-Function Analysis

One of the most important design principle in software engineering is Separation of
Concerns [Lap07]. The idea behind this principle is to improve the software quality in
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1 int cipher1(int i);

2
3 int cipher2(int i);

4
5 void ctx_init(struct cipher_ctx *c, int (*f)(int));

6
7 int ctx_do(struct cipher_ctx *c, int value);

8
9 struct cipher_ctx {

10 int (*func)(int);

11 }

Listing 3.1: Header file minimalLinking.h of our running example of Figure 1.1

the means of maintainability and reusability by decomposing program functionalities into

distinct sections. In the scope of this thesis we focus on configurable software systems

written in C. One way to achieve separation of concerns within the programming language

C is the usage of header files and linking.

As described in Section 2.1.1 header files are used for collecting externally defined

(function-) declarations in a central place which are shared between several source files.

Our running example in Figure 1.1 includes the header file minimalLinking.h in every sin-

gle source file. However, different functionalities (e.g. initialization, cipher, execution)

are separately implemented in different source code files. During compile-time the corre-

sponding function calls and their destination function definitions are resolved and linked

together.

As we aim in this thesis to solve data-flow problems interprocedural, we need to re-

solve the location of externally defined functions. But first, we have to distinguish between

externally defined functions of the C standard library and externally defined functions

within the scope of the analyzed configurable software system. The C standard library

provides functions for operating system tasks, like input/output processing (e.g. printf)

or memory management (e.g. malloc). The concrete implementation of theses functions is

system-specific and is considered as a part of the programming language C. Our approach

does not resolve the location of the implementation of functions which are part of the C

standard library or compiler-specific language extensions.

Our strategy to detect which functions are linked together is rather simple: in the

C programming language function declarations generally are visible to the outside for

linking unless they are marked with the language keyword static. The TYPECHEF infras-

tructure already determines for every successfully parsed C source file which functions are

exported for potential linking or are declared externally. However, TYPECHEF currently

does only support the analysis of C source code files one at a time, but typically, large-

scale configurable software systems consist of several hundred files (e.g. OPENSSL has a

total number of 733 source code files). In order to extract and generate a complete match-

ing of corresponding function calls and declarations, our approach analyzes in a first step

each source code file individually and extracts all externally visible function definitions
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along with its signatures and its presence-conditions. Based on this data, in a second step

we map corresponding function calls and the location of their declaration together. This

mapping is used later in the variational control-flow graph to determine the file of the tar-

get of an external function call and, finally, continue the execution path within the linked

file.

3.1.2 Function-Pointer Analysis

The concept of pointers is a fundamental part of the programming language C. A

pointer generally references a concrete location in the memory. In C it is possible to

reference not only the location of data within the memory, but as well as the location of

executable code of a function which should be invoked. These special kind of pointers are

called function pointers. Like in the previous Section 3.1.1, it is essential for a complete

and precise result of interprocedural data-flow analysis, to resolve potential target sites

of such function pointer references. Unfortunately, determining the potential value of

a pointer reference is not a trivial task and pointer analysis in general is considered as

undecidable [Lan92]. Over the last decades, academia has proposed a large amount of

different approaches to solve this problem [Hin01]. Nevertheless, the silver bullet has not

been found yet - each approach provides some tradeoffs between cost and precision.

Our implementation on resolving the destination of function pointers is based on the

initial contribution of Ferreira [FKPA15] to the TYPECHEF infrastructure. Ferreira did

choose the Flow-insensitive Alias (FA)-Pointer analysis by Zhang et al. [ZRL96, Zha98] as

underlying algorithm. However, like TYPECHEF, the initial implementation of the function

pointer analysis strategy is limited to single C source files only with resolving included

file headers but does not take the linking of external files into consideration. Addition-

ally, the existing pointer analysis implementation does not provide a full interprocedural,

field-sensitive precision. In this section we will present the concept of the FA-Pointer anal-

ysis, and our contribution to overcome the described shortcomings for a precise use with

SPLLIFT.

FA-Pointer Analysis

The Flow-insensitive Alias (FA)-Pointer analysis strategy is an inexpensive but precise

pointer analysis technique [MRR04]. It is an alias analysis, which means it determines

pairs of pointers which may reference the same memory location during run-time. Its

complexity is almost linear in respect to the size of the analyzed program [ZRL96]. In

terms of precision, the FA-Pointer analysis is flow-insensitive, context-insensitive, field-

sensitive, and symmetric. The key concept of the analysis is to compute a Pointer-related
Equality (PE) equivalence relation: pointers which may share the same memory location

are hereby partitioned into equivalence classes.

To identify and distinguish pointer variables and referenced memory locations, the FA-

pointer analysis uses object names as intermediate representation from the source code.

In our implementation, a object name consists of two parts: a prefix, which contains
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(minimalLinking§GLOBAL$cipher1, T rue),

(minimalLinking§GLOBAL$cipher2, T rue),

(main§main$&cipher1, A), (main§main$&cipher2, !A),

(main§main$ ∗ c, True), (main§main$c, T rue),

(init§ctx_init$c→ func, True), (init§ctx_init$f, True)

(init§ctx_init$ ∗ c, True), (init§ctx_init$c, True),

(do§ctx_do$ ∗ c, True), (do§ctx_do$c, True),

(do§ctx_do$c→ func, True)

Figure 3.1: Every object name of the running example in Figure 1.1

the filename of variable in the source code file and the scope of the variable within the

file. This prefix is followed by the syntactical name of the variable in the source code

and, if existing, with its surrounding pointer operators, like field access- or pointer (de-

) reference operators. In order to keep the analysis strategy variability-aware, every single

generated object-name is stored along with its presence-condition. To illustrate this, we

recall our running example in Figure 1.1. In our running example, we have a struct which

has a function pointer as field member. This function pointer gets, depending on the

configuration, referenced by two different functions: cipher1 and cipher2. Figure 3.1

shows the resulting set of object names and their corresponding presence-conditions for

our running example.

Extracting all pointer-related object names from the source code is a prerequisite for

the actual algorithm. The algorithm can be divided into two phases: in the first phase the

initial equivalence classes are created. In the second phase each and every pointer-related

assignment statement gets examined and corresponding equivalence classes are merged

together.

The algorithm for constructing the pointer equivalence relation is shown in Algo-

rithm 3.1. It requires the following procedures to compute the PE equivalence relation:

• InitEquivClass(o): initialises a new equivalence class for a given object name o

• Find(o): retrieves the corresponding equivalence class for a given object name o

• Union(e1, e2): merges two equivalence classes e1, e2 into a single one equivalence

class e

In the first phase from Line 1 to 13 the initialisation steps are performed: for every

object name o a corresponding equivalence class is created. Theses individual equivalence

classes consist of two parts: a set of related object names (during the initialisation phase

each equivalence class has the size of one) and a set of prefixes. The prefix set is required

for maintaining the relation to object names in other classes. It is generated in Line 5 to 13
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Algorithm 3.1: Algorithm for Computing the PE - Relation, reproduced
from [Zha98]

Input : A set B with all object names of the program
Output: Equivalence Relation of all object names potentially sharing the same

memory location

CalculatePERelation()
1 foreach o ∈ B do
2 InitEquivClass(o);
3 Prefix(Find(o)) = ∅;
4 end

5 foreach o ∈ B do
6 if o == &o1 then
7 Add(*, o1) to Prefix(Find(o));
8 else if o == *o1 then
9 Add(*, o) to Prefix(Find(o1));

10 else if o == o1.field then
11 Add(field, o) to Prefix(Find(o1));
12 end
13 end

14 foreach x = y in the program do
15 if Find(x) 6= Find(y) then
16 Merge(x, y);
17 end
18 end

Input : Two Equivalence Classes e1 and e2
Output: One merged Equivalence Class e

Merge()
19 e = Union(e1, e2);
20 newPrefix = Prefix(e1);

21 foreach (a, o) ∈ Prefix(e2) do
22 if (a1, o1) ∃ Prefix(e1) && (a == a1) then
23 if Find(o) 6= Find(o1) then
24 Merge(o, o1);
25 end
26 else
27 newPrefix = newPrefix ∪ {(a, o)};
28 end
29 end
30 Prefix(e) = newPrefix;
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PE Relation Set Prefix Set

{(main§main$c, True)} {(∗,main§main$ ∗ c, True)}

{(main§main$ ∗ c, True)} { }

{(init§ctx_init$c, True)} {(init§ctx_init$ ∗ c, True)}

{(init§ctx_init$ ∗ c, True)} {(func, init§init$c→ func, True)}

{(init§ctx_init$c→ func, True)} { }

{(do§ctx_do$c, T rue)} {(∗, do§ctx_do$ ∗ c, True)}

{(do§ctx_do$ ∗ c, True)} {(func, do§ctx_do$c→ func, True)}

{(do§ctx_do$c→ func, True)} { }

Table 3.1: Selected initial equivalence relations set and their corresponding prefix set
for Figure 1.1

by the algorithm. Consequently, every field member access or pointer reference operation

is added to the prefix set of the pointer’s original declaration object name o1 along with

its presence-condition.

In Table 3.1 we see the initial equivalence relation and the corresponding prefix set for

chosen example pointers from our running example in Figure 1.1. Intuitively, we see that

each individual pair of the generated prefix sets (a, o) ∈ prefix(e), and o ∈ e1, represents

a connection, or in graph terms an edge, from e to e1 labeled with the pointer accessor a.

In the second step from Line 15 to 18, the program computes all pointer related as-

signment statements within the program. Pointer related assignments can be classic as-

signment statements, like x = y, but also memory allocations, i.e. memcopy, or function

parameters and function return values. Logically, function parameters and their corre-

sponding call parameters are matched together as an assignment1.

As a recall, in a PE equivalence relation, object names in the same equivalence class

may share the same memory location. It is straightforward in the concept of computing PE

equivalence relation, to merge corresponding equivalence classes of object names which

are part of the same assignment within the analysed program.
1One may notice, that the pointer analysis strategy requires at that point as well the location of externally

linked functions for a complete result. Unfortunately, as the FA-Pointer analysis is by design context- and flow-
insensitive. As a consequence, resolving all linked functions upfront, and consequently recursively for every
linked file of a linked file, causes in practice a high computation time. This is caused by the fact, that real-
life software libraries, like OPENSSL, have different execution paths for individual tasks (e.g. the execution
path for AES-encryption differs to the execution path of certificate validation), which individually does not
visit every single procedure within the library, but as the analysis strategy is context- and flow-insensitive,
these functions would be computed as well. However, by exploiting the fact, that the CFG for SPLLIFT is
flow-sensitive, externally linked functions are only computed, if and only if they are visited when traversing
the execution path of the CFG. We observed, that this lazy calculation technique reduces the calculation costs
without any loss in precision, as unreferenced files are not loaded.
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In our running example the following equivalence classes are created solely based on

assignments without considering the prefix set:

{(main§main$&cipher1, A), (main§main$&cipher2, !A),

(init§ctx_init$c→ func, True), (init§ctx_init$f, True)}

{(ctx_init§ctx_init$c, True), (do§ctx_do$c, True),

(main§main$c, True))}

{(do§ctx_do$c→ func, True)}

As we can see, the object names of the function pointers &cipher1 and &cipher2

were not merged into the same equivalence class together with their referenced struct

field c->func in the procedure ctx_do.

However, as explained before, the prefix set of each equivalence class maintains rela-

tion between its object names and those in other classes. By computing this additional

relation during a merge, such indirect assignments are resolved as well. Every time,

two merged equivalence classes share the same accessor, e.g. * or a field reference, in

their prefix set, the corresponding accessor’s equivalence classes are recursively merged

as well. Let’s examine the assignment of the function call parameter c and the function

parameter *c of the method ctx_do as an explanatory example2:

In the first step, the algorithm would start by uniting the equivalence classes:

{(do§ctx_do$c, True)}

{(main§main$c, True)}

As we can read from Table 3.1, both equivalence classes have a non-empty prefix set

and share the same accessor *. Consequently, both corresponding equivalence classes are

merged as well, however their prefix sets have no matching common accessor, which leads

to the following equivalence class and its prefix set:

{(main§main$ ∗ c, T rue), (do§ctx_do$ ∗ c, True)}

{(func, do§ctx_do$c→ func, True)}

Next, we assume the assignment of the function call parameter c and the function pa-

rameter *c of the method ctx_init are computed by the algorithm. Like before, both

equivalence classes share the same prefix accessor and consequently the referred equiva-

lence classes are merged as well:

{(main§main$ ∗ c, True), (do§ctx_do$ ∗ c, True), (init§ctx_init$ ∗ c, True)}

{(func, do§ctx_do$c→ func, True), (func, init§ctx_init$c→ func, True)}
2Syntactically pointer related call-to parameter assignments, as for example the call foo(x) to the func-

tion int foo(int *y), are treated like int *y; y = x;
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We can see in the resulting prefix set, both merged equivalence classes shared the same

prefix accessor func. As a result both equivalence classes are merged as well:

{(main§main$&cipher1, A), (main§main$&cipher2, !A), (init§ctx_init$f, True),

(init§ctx_init$c→ func, True), (do§ctx_do$c→ func, True)}

Because of the fact, that the function pointers cipher1 and cipher2 are assigned to f and

f gets assigned to to the struct field c->func in the procedure ctx_init, both struct fields

are now correctly in the same equivalence class.

In the original contribution of Ferreira, the matching process for struct field members

did not produce the expected result as defined in the algorithm. We reimplemented from

scratch the prefix set generation and merge mechanism for a more precise result. Addi-

tionally, for C structs and unions, who are initialised by so called curly initializers (i.e.

struct s = { field1, field2 }), no object names were generated. Finally, the pointer

analysis strategy was limited to single C source files only. As mentioned before, our addi-

tion to the mechanism resolves externally linked functions on-the-fly when traversing the

variational interprocedural control-flow graph in SPLLIFT.

3.2 Variability-Aware Interprocedural Control-Flow Graph

As outlined in Section 2.2.2, Liebig et al. [LvRK+13] already implemented a vari-

ational intraprocedural control-flow graph within TYPECHEF. The only requirement of

SPLLIFT is an interprocedural control-flow graph for the target programming language.

Using the previously described additions to the tool TYPECHEF, we are able to construct a

variational interprocedural control-flow graph, which is compatible to the requirements of

SPLLIFT3. In this section, we will present this CFG and describe which transparent modi-

fications to the underlying abstract syntax tree we did apply for compatibility reasons.

3.2.1 Implementation Details

SPLLIFT is written in Java and requires the interface InterproceduralCFG<N,M> (cf. List-

ing 3.2) to be implemented as connector to the underlying interprocedural control-flow

graph (ICFG). The interface itself is generic, its parameters, N and M, represent nodes and

methods of the respective ICFG and AST. Due to the fact, that TYPECHEF is mostly writ-

ten in the programming language Scala4, the ICFG interface and the implementation of

SPLLIFT are on paper fully compatible to the existing TYPECHEF source code base.

As a consequence of the fact, that our implementation of the interprocedural CFG is

based on the existing intraprocedural CFG, we did choose the type V[CFGStmt] for the

generic node parameter N and the type V[CFGFDef] for the parameter M, as these are the
3The CFG provided by TYPECHEF differs from the one provided by SOOT and CIDE in the matter of

variability encoding. As a consequence we did alter SPLLIFT ’s lifting mechanism.
4Scala runs on the Java VM and therefore Scala source code is in theory fully compatible to Java source

code and, except some high order Scala language features, vice versa.
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1 public interface InterproceduralCFG <N,M> {

2
3 public Set <N> allNonCallStartNodes ();

4
5 public FeatureExpr getCondition(N n)

6
7 public Set <M> getCalleesOfCallAt(N n);

8
9 public Set <N> getCallersOf(M m);

10
11 public Set <N> getCallsFromWithin(M m);

12
13 public M getMethodOf(N n);

14
15 public Set <N> getStartPointsOf(M m);

16
17 public List <N> getReturnSitesOfCallAt(N n);

18
19 public List <N> getSuccsOf(N n);

20
21 public List <N> getPredsOf(N n);

22
23 public boolean isCallStmt(N stmt);

24
25 public boolean isBranchTarget(N stmt , N succ);

26
27 public boolean isExitStmt(N stmt);

28
29 public boolean isFallThroughSuccessor(N stmt , N succ);

30
31 public boolean isStartPoint(N stmt);

Listing 3.2: Interface for the implementation of the interprocedural control-flow graph
for SPLLIFT

return types of the the underlying successor function of the intraprodcedural CFG (cf. Sec-

tion 2.2.2).

Following, we present the key procedures5 of the ICFG interface and their implemen-

tation details:

• getSuccsOf: V [CFGStmt] → List[V [CFGStmt]]: This function is the equivalent to

the classic successor function of CFGs. It returns all intraprocedural successor nodes

of a given CFG node n and its individual control-flow presence-condition.

• getCondition: V [CFGStmt] → PC: Returns the presence-condition of the current

node n. Note: in our implementation, this function returns the current incoming

control-flow condition encoded in the CFG node data-type6.

5Not every function defined in the interface is used by the actual implementation of SPLLIFT. We imple-
mented every function of the interface, however in the scope of this thesis, we focus our explanation on used
functions only.

6We will comment on this special behavior in Section 5.7.
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• isCallStmt: V [CFGStmt] → Boolean: Determines wether the current node is a

outgoing call statement to another procedure or not.

• getCalleesOfCallAt: V [CFGStmt] → Set[V [CFGFDef ]]: Returns all possible and

valid target function definitions of a function call. Internally, this method examines

the in Section 3.1.2 presented PE equality relation to resolve the potential targets

of function pointers. Further, it resolves externally linked function definitions. In

case the target of a function call is defined in an external file, the corresponding

abstract syntax tree is loaded and transparently included into the control-flow graph.

Additionally, the pointer equivalence relation classes are newly computed in respect

to the added file. The result set contains all potential destination function definition,

such as different function pointer destination for different configurations. Note: in

case of a recursive function call within the function, an empty set is returned.

• isStartPoint: V [CFGStmt] → Boolean: Determines wether the current node is the

entry statement of its surrounding procedure.

• getStartPointsOf: V [CFGFDef ]→ Set[V [CFGStmt]]: Retrieves all statements of a

function, which are executed as entry points.

• isExitStmt: V [CFGStmt] → Boolean: Determines wether the current node is an

exit statement of its surrounding procedure.

• getReturnSitesOfCallAt: V [CFGStmt] → List[V [CFGStmt]]: Retrieves all state-

ments to which a function call could return to. In our implementation, we compute

at this point internally all intraprocedural successor statements of the call state-

ments.

Additionally, our TYPECHEF specific implementation of this ICFG interface provides a few

additional methods. We introduced the following methods for convenience reasons only,

as they provide static information, which are gathered during parsing-time:

• getEntryFunctions: Unit → List[V [CFGFDef ]]: Returns a list of all potential start-

ing methods (such as main) of the currently analyzed case study.

• getTS: V [CFGStmt] → CTypeSystem: Retrieves the variational type-system of

TYPECHEF. With the help of the type-system we are able for example to determine

the field members of a struct.

• getTUnit: V [CFGStmt] → AST : Retrieves the AST of given node. We use this

function to identify globally defined variables, which are logically not visited by the

ICFG.

At last, a side note on a very important implementation detail of the data-types CFGStmt

and CFGFDef. Internally the TYPECHEF infrastructure implements different kinds of AST



3.2. Variability-Aware Interprocedural Control-Flow Graph 24

nodes as Scala case classes. This brings the advantage of using pattern matching to distin-

guish between different kinds of AST nodes. Another language feature of case classes is

structural equality. Per default, the Scala compiler generates an equals method for case

classes which compares two instances of an case class by the properties of their field val-

ues instead of by classic object references in Java. Hence, a comparison of two instances

of the case class representing a single return statement would return true as the distinct

source code position is not a field property of the implemented case class. Despite of the

benefits of this very practical language feature of Scala, this fact lead to unpredictable be-

havior in the underlying solver of SPLLIFT, HEROS. HEROS is written in Java and stores its

intermediate and final computation results in data-structures using hash tables. Addition-

ally, HEROS is partly multi-threaded, so consequently false and non-deterministic results

were computed by HEROS as different AST nodes have been identified as equal nodes de-

spite being unequal in respect to their source code position. Especially, the occurrence of

expanded macros and return statements in the AST caused false behavior, as they occur

commonly more than once within the source code.

To overcome this fundamental shortcoming, we implemented the data-types CFGStmt

and CFGFDef as a wrapper case class for AST nodes with a custom equals method which

still implements structural equality, but additionally compares the location within the orig-

inal source code as well. The most obvious approach however, to implement the described

custom equals method directly on AST nodes is not applicable, since the TYPECHEF infras-

tructure relies on the default equality comparison mechanism of case classes for custom

type definitions in C, such as typedef specifier, during the parsing process. Finally, the

TYPECHEF infrastructure sets for expanded macros the position of the macro definition

rather than the position of the macro usage within the source code for corresponding

AST nodes. Our proposed solution would fail at this point, since we are again unable to

distinguish different AST nodes for such statements since their positions are always the

same. To avoid this faulty behavior, the TYPECHEF-infrastructure must be started with

the flag adjustLines to enforce position information in AST nodes matching to their real

occurrence within the source code.

3.2.2 Modifications to the AST

The C programming language and the resulting AST for C source code files are more

expressive than the analysis framework SPLLIFT can compute. This is caused by the

fact, that the used framework CIDE in the original tool-chain of SPLLIFT enforces dis-

ciplined feature annotations which cover a complete statement node in the control-flow

graph [Käs10]. However, the use of CPP-directives is not bound to any language expres-

sion, which leads to undisciplined annotations as shown in Listing 3.3. This is not only

a theoretical problem, but it is existing in real-life software [LKA11]. Fortunately, theses

limitations can be resolved without losing precision by rewriting incompatible source code

fragments into compatible source code fragments.
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1 int foo(int x, int y) {

2 int bar = x +

3 #ifdef A

4 y

5 #else

6 x

7 #endif

8 ;

9 return bar;

10 }

Listing 3.3: Example for undisciplined
CPP-annotations

1 int foo(int i, int j) {

2 #ifdef A

3 int bar = x + y;

4 #else

5 int bar = x + x;

6 #endif

7
8 return bar;

9 }

Listing 3.4: Duplicated code for
undisciplined CPP-annotations

To transform undisciplined CPP annotations into disciplined annotations we use a

brute force approach of code duplication. We hereby scan the original AST for presence-

conditions nested in statement nodes of the control-flow graph. For every found state-

ment, we replace the original statement node with every possible and valid combination

according to the feature model of this statement in the AST and annotate the entire du-

plicated code fragment with its corresponding presence-condition. An example result for

this process can be seen in Listing 3.4.

Additional rewrite operations are necessary on function calls, which are not supported

by the underlying solving framework HEROS. Incompatible function calls are nested

function calls (e.g. foo(bar(x))) and function calls located in exit statements (such as

return foo(x)). For example, the statement return foo(bar(x)) is replaced within the

AST by the following fully equivalent list of statements:

ReturnTypeOf(bar) tmp = bar(x);

ReturnTypeOf(foo) tmp2 = foo(tmp);

return tmp2;

Rewriting the intermediate source code representation syntactically while preserving

its semantic behaviour is a well-known technique in academia and in practice [Lat08,

NMRW02].



4. Taint Checking as IFDS-Problem

In this chapter, we will present the basic concept of the IFDS-framework and formu-

late an assignment-based information-flow analysis within this framework for software

written in the programming language C. This IFDS based data-flow analysis problem we

will use later to taint check all variants of the implementation of the AES cipher in two

configurable cryptography libraries.

4.1 IFDS-Framework

The IFDS-framework by Reps, Horwitz and Sagiv [RHS95] is a framework for for-

mulating and solving interprocedural, finite, distributive, subset (IFDS) data-flow prob-

lems. These problems are solved in a flow-sensitive, fully context-sensitive manner by the

framework’s algorithm. Data-flow analysis expressed as a IFDS-problem must hold the

following conditions [RHS95]:

• A finite set D of data-flow facts. Data-flow facts hold information regarding the

current analysis objective (i.e. a variable x has been tainted).

• A set of flow functions: F ⊆ 2D → 2D. A flow function transfers a data-flow fact

from a source statement to its successor statement.

• A distributive merge operator u which holds:

∀ a, b ∈ D, f ∈ F : f(a) u f(b) = f(a u b)

If a data-flow analysis problem formulated in this framework fulfils the described con-

ditions, Reps et al. have shown that these problems can be reduced to a pure graph-

reachability problem. Problems which meet these conditions are for example classic

"gen/kill" problems, like e.g. reaching definitions, or live variables, but are not limited

on such problems.

The algorithm works by generating a so called "exploded supergraph" based on the

program’s interprocedural CFG. Similar to the previously described control-flow graph

in Section 2.2.2, nodes of the supergraph denotes to statements of the program and con-

secutive statements are connected together via directed edges. In distinction to the classic

CFG edges, which only represent the execution order between statements, the supergraph

of the IFDS-framework knows four different types of edges:
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normal edge: a intraprocedural edge modelling the flow from a statement to its suc-

cessor statements. Its behaviour is mostly similar to classic CFG edges including

branching, but with the sole difference, this edge is not applicable for call- nor re-

turn statements.

call edge: a interprocedural edge modelling the flow from a call statement to the corre-

sponding entry statement at callee site.

return edge: a interprocedural edge pointing from the return statement of the callee site

to the return-site of the call statement. Note: as normal edges are not applicable for

call statements, this edge points to the intraprocedural successor statements of the

call statement.

call-to-return edge: a intraprocedural edge modelling the flow from a call statement to

a given return-site. As call statements are excluded from normal edges, this edge is

used to preserve flow facts which are not passed on the call edge.

These edges denote the flow of data-flow facts in the exploded supergraph and are

called flow functions according to the edge type (e.g. for a normal edge it is called normal

flow function). So, from a users point of view, to formulate a data-flow analysis problem

within the IFDS-framework, only these flow functions must be defined and implemented

for each type of edge. These four flow functions compute in the scope of the analysis

context which data-flow facts are generated, propagated or killed along the edge they

are modeling. In textbook terms for data-flow analysis, a flow function within the IFDS

framework is the equivalent to a transfer function [NNH15]. This is the very basic concept

of the IFDS framework: based on the exploded supergraph and transfer rules for individ-

ual edges expressed as flow functions, one is able to determine if a data-flow fact from a

source node within the graph may reach a target node or not. At worst case, the algorithm

has a complexity of O(ED3), where E denotes the total amount of control-flow edges of

the analyzed source code and D the number of data-flow facts.

Flow Functions

Figure 4.1 illustrates a composition of flow functions and the corresponding source

code as an explanatory example. To explain the typical gen- and kill- functions of classic

data-flow analysis problems [NNH15] as flow functions, we use a simplified information-

flow analysis (cf. Section 2.2.4).

In the graphical representation of flow functions, nodes in a row represent the state

before and after a single statement: In our explanatory example, the top row represents

the state of data-flow facts before Line 2 of the corresponding source code snippet. Arrows

between two rows of nodes map, which data-flow facts are generated, propagated or killed

at a certain statement. So consequently, the last row of our example is the final state after

the statement in Line 3 has been examined, whereas the middle row describes the state

between Line 2 and 3.
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o

o

o

a b c

a b c

a b c

1 void foo(int b, int c) {

2 int a = 0;

3 c = b;

4 return;

5 }

Figure 4.1: Composition of different
local and non-locally separable flow
functions adopted from [RHS95,
BTR+13] and the corresponding
source code snippet

First, the IFDS-framework knows a special

data-flow fact O, a fact which always holds, as to be

seen at the very left of the example. This special fact

is required to generate new data-flow facts uncondi-

tionally (or as often referred in literature as locally
separable flow function). For example, a data-flow

analysis can generate in this manner the data-flow

fact of a newly introduced variable definition - in

our case the introduction of variable a in Line 2 by

connecting the fact O with fact a, in the upper case.

To express the process of propagating or killing

a certain data-flow fact, the linking arrow between

the origin node and its successor node is either kept

or removed. In Figure 4.1 this is represented at

the very right flow fact c: at the top half, the fact

is propagated with an edge from c to c, where as

in the bottom half the fact c is killed by introduc-

ing a new fact c and consequently the old fact is

no longer reachable in the graph. The introduc-

tion of the fact c is the alternative way of gen-

erating a new data-flow fact. The previously de-

scribed method does not include the values of al-

ready existing facts. However, many data-flow anal-

ysis problems require these facts, e.g. the taint anal-

ysis which we will present in the scope of this the-

sis. Such flow functions are called non-locally sepa-
rable. Our explanatory example models a variable

reassignment: c = b. The previous value of c is no longer valid after the reassignment and

it is not necessary to propagate the fact along the graph anymore. However, the newly

introduced data-flow fact value of c depends on the value of b, which is represented by

the edge from b to c.

4.2 Taint Checking as IFDS Problem

As outlined in Section 2.2.4, taint checking is a static code analysis technique which

aims to identify potentially malicious data-flows within the analyzed source code of a

program [ARF+14]. It hereby traces the data-flow of an interesting input value (= source)

(e.g. the secret key for AES-encryption) to a potential sink (e.g. a instruction which prints

the secret value out to the console). But the definition of potential sources and malicious

sinks depends on the concrete application scenario. In order to keep our taint checking

approach applicable to all different kinds of application scenarios, we formulate a more

general, assignment-based information-flow analysis problem within the IFDS-framework
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as underlying basis for taint checking. Our information-flow analysis problem traces every

potential data-flow from its origin to its end. To finally perform taint checking, we simply

have to filter the resulting set of all detected information-flows for interesting source-

and/or sink-values.

In this section we will formulate first the general information-flow analysis problem

within the IFDS-framework1. In a second step, we will apply this analysis strategy on

a product of our running example configurable software system. We reuse this general

information-flow analysis in Section 6.4 to taint check the used private key in the imple-

mentation of the AES cipher in the cryptography libraries MBEDTLS and OPENSSL.

4.2.1 Information-Flow Analysis

The very basic concept of our assignment-based information-flow analysis shares com-

monalities with the classic data-flow analysis reaching definitions. Reaching definitions is

a static code analysis technique which determines which variable definitions may reach a

certain target variable in the analysed source code fragment [NNH15]. Our idea is not to

trace which variable definition may reach a certain target instruction, but rather to trace

which information may reach a certain target instruction.

1 int flow() {

2 int a, b, c;

3
4 a = 5;

5 b = a;

6 a = 2;

7 c = b;

8
9 return c;

10 }

Listing 4.1: Minimal code

example for information-flow.

To illustrate the idea of information-flow analysis

consider the minimal example illustrated in Listing 4.1.

There are three variables a, b, and c. The first variable a

gets an assignment by the value of 5. During the execu-

tion of the example source code fragment, the variable b

gets an assignment from a. Variable a is reassigned in

following statement and lastly, b is assigned to c. A clas-

sic reaching definition analysis would identify, that the

definition of variable a would reach b, and b reaches

variable c. Nevertheless, it would not detect the flow

of information from a to c. Our analysis aims to detect

such flows of information. Fortunately, we can extend

the concept of a reaching definitions analysis problem to

trace the flow of information within the source code of the analyzed program.

Consider again the code example in Listing 4.1: a classic textbook reaching definition

analysis would model as data-flow fact the origin of a single variable definition. In our

case for variable a the data-flow fact would contain the assignment to a in Line 4. The

same analysis strategy would kill this fact at Line 6 of the example as for variable a a new

definition is introduced and consequently the old value of a is no longer available.

The idea of our approach is to encode in every newly introduced definition data-flow

fact every matching incoming definition in order to propagate this information further
1Please remind, the formulated problem itself will be completely unaware of the challenges of configurable

software systems, as SPLLIFT is lifting IFDS problems transparently for such systems [BTR+13].
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even if the original definition is no longer valid. Applied on the code example of List-

ing 4.1, our "reaching information" analysis strategy would encode the definition of vari-

able a from Line 4 into the definition of b. This way, we are able to trace every potential

flow of information from its origin to its very last sink even if its original definition has

exceeded its life-time.

As previously described, data-flow analysis problem within the IFDS framework are

specified by a number of flow functions F and a finite set of data-flow facts D (cf. Sec-

tion 4.1). For our information-flow problem, we define the following set of data-flow
facts D which follow the previously described principle:

ZERO: The special default data-flow fact O of the IFDS-framework which must always

hold. Consequently, this data-flow fact is transferred at any flow function.

SOURCE: Flow facts of this type hold information about the name, the origin statement

location and the scope of a variable definition. This data-flow fact is field-sensitive
for the C language data types of structs and unions. For data-flow facts of the type

SOURCE we distinguish between two cases:

SOURCEDEFINITION: This data-flow fact is generated for every definition of an

variable. It contains the previously described data and is valid until a new

definition of the corresponding variable is introduced replacing the previous

one. Formally we define this fact as Src[x, s] where x denotes to the variable

name as it does occur in the ordinary source code and s denotes the visibility

scope of the variable’s name. The visibility scope is hereby a numeric range

starting with the value of 0 for globally visible variables and increases by 1 for

every added visibility scope (i.e. a variable visible in a classic method scope

would have the scope value of 1). For simplicity reasons, when not explicitly

referenced as Src[x.f], struct fields are expressed by the expression Src[x],

where x is an abbreviation for s.f .

SOURCEDEFINITIONOF: This data-flow fact is equally related to the previous fact

SOURCEDEFINITON, but additionally contains information of a previous source

fact which reaches the definition of the current variable. Its formal representa-

tion SrcOf[x, s, o] is similar to the previously described SOURCEDEFINITON: x

and s denote to the variable name and respectively to the visibility scope. The

parameter o references the incoming reaching SOURCE data-flow fact. For ex-

ample, at the assignment of variable a to b in Listing 4.1 the SOURCE fact of a is

encoded into as parameter o in the generated SOURCEDEFINITIONOF fact of b.

SINK: This data-flow fact holds information about an detected sink of an variable at

a certain source code statement. Note: these facts are only generated to report

potential sinks at a certain statement. For further computation at any flow function,

facts of the type SINK are not evaluated nor transferred.
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Notation Statement Example

x←[ def Definition int x;

x←[ y Assignment x = y;

x←[ y.f Assignment with Field Read x = y.f;

x.f ←[ y Assignment with Field Write x.f = y;

x Expression x < 0;

mCall([cp, fp]) Method Invocation
foo(cp);

foo(int fp){}

x←[ mRet(r) Method Return
x = foo(cp);

int foo(fp) {return r;}

Table 4.1: Examined C statement types by the information-flow analysis

SINKTOASSIGNMENT: This flow fact is generated for every reach of a SOURCE fact

to the right-hand side of an assignment.

SINKTOUSE: This fact is generated for every reach of a SOURCE fact to source code

statement which is not an assignment (i.e. sink because of use as a parameter

in the printf instruction).

The notation of these data-flow facts is equal to the notation commonly used for taint-

checking: the fact Source is the origin value of a certain variable, while the fact Sink repre-

sents the reach of a given source fact at a certain statement. Note: as our information-flow

analysis is more general than a taint analysis, we define every reach of a SOURCE fact as a

sink. For taint checking, the resulting set of sink facts must be filtered for interesting sinks

in the scope of the application scenario as mentioned before.

Next, we formulate the flow functions to compute the previously introduced data-

flow facts at the different types of edges of the exploded supergraph within the IFDS-

framework. The formulated flow functions will evaluate all of in Table 4.1 referenced in-

structions of the C programming language. In general, a flow function of our information-

flow analysis has the following type:

JsKI : 2S × 2D 7→ 2D

S is hereby the set of all statements of the analyzed configurable software system (cf. Ta-

ble 4.1). Since our analysis strategy uses non-locally separable flow functions, we need to

decompose the flow functions into their individual effect on each single incoming data-

flow fact. Therefore, we define a flow function with the argument I, which denotes a set

in 2D consisting of all incoming data-flow facts {d1, ..., dn} for a statement s as follows:

JsK(I) ..= JsK(O) ∪
⋃
d∈I

JsK(d)
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Following, the decomposed flow functions of our analysis strategy, afterwards we will ap-

ply the presented concept on our running example. For simplicity reasons, we abbreviate

the data-flow fact SourceDefinition to Src and SourceDefinitionOf to SrcOf in the

different flow function equations.

4.2.1.1 Initial Data-Flow Facts

Flow functions of the IFDS-framework generate, propagate and kill individual data-

flow facts along edges of the CFG. However, by traversing the CFG our analysis approach

may not visit every potential source of information. This is caused by the fact, that nodes

outside of procedures are not part of the CFG. In the C programming language such nodes

typically represent type-definitions, forward function declarations, etc. but also global

variables. Additionally, we must point the analysis framework to the start of the execution

path of the program. This is mostly likely the main method of a program, but may also be

any other entry point as defined in a unique application scenario.

In order to resolve the mentioned conditions, the IFDS-framework knows an initial

value set, called initial seeds. These initial seeds are a list of tuples consisting of a number

of starting points of the execution path within the analyzed program along with a set of

precomputed data-flow facts.

In our information-flow analysis problem we report in this initial seeds set the analysis’

starting points (in our case if not defined otherwise the function main) and a set of data-

flow facts containing the corresponding Src facts of already assigned global variables. In

order to collect all global variables, we use a identity data-flow problem for IFDS. This

data-flow problem simply traverses the execution path reported by the interprodecudral

CFG without executing any flow function. Afterwards all visited files are reported, we ex-

tract from each visited file any globally assigned variable as a new initial SourceDefiniton

data-flow fact.

4.2.1.2 Normal Flow Function

A normal flow function models the intraprocedural flow from a source statement to

its successor statement within a single procedure. Figure 4.2 illustrates the various de-

composed cases which apply for a normal flow function in our information-flow detection

strategy.

For the normal flow we distinguish between various combinations of the current state-

ment type and the incoming data-flow fact:

• Definition and (Re-) Declaration: in case of definition and (re-) declaration of vari-

ables, we rely on the default data-flow fact of the IFDS-framework O as formulated

in Equation 4.1 and 4.2. For every newly introduced or (re-) assigned variable in the

analyzed program, this default fact generates the corresponding data-flow fact type

Source. This way we are able to trace back the origin and the potential initial value
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Jx←[ defK(O) = {Src[x]} (4.1)

Jx←[ yK(O) = {Src[x]} (4.2)

Jx←[ yK(Src[v]) =


{Src[v], SrcOf[x, Src[v]],

if x 6= v ∧ y = v
Sink[x, Src[v]]}
{SrcOf[x, Src[v]], Sink[x, Src[v]]} if x = v ∧ y = v
∅ if x = v ∧ y 6= v
{Src[v]} otherwise

(4.3)

Jx←[ yK(SrcOf[v, o]) =


{SrcOf[v, o], SrcOf[x, o],

if x 6= v ∧ y = v
Sink[x, SrcOf[v, o]]}
{SrcOf[x, o], Sink[x, SrcOf[v, o]]} if x = v ∧ y = v
∅ if x = v ∧ y 6= v
{SrcOf[v, o]} otherwise

(4.4)

Jx←[ yK(Src[v.f]) =



{Src[v.f], Sink[x.f, Src[v.f]]
if x 6= v ∧ y = v

SrcOf[x.f, Src[v.f]]}
{SrcOf[x.f, Src[v.f]],

if x = v ∧ y = v
Sink[x.f, Src[v.f]]}
∅ if x = v ∧ y 6= v
{Src[v.f]} otherwise

(4.5)

Jx←[ yK(SrcOf[v.f, o]) =



{SrcOf[v.f, o], SrcOf[x.f, o],
if x 6= v ∧ y = v

Sink[x.f, SrcOf[v.f, o]]}
{SrcOf[x.f, o],

if x = v ∧ y = v
Sink[x.f, SrcOf[v.f, o]]}
∅ if x = v ∧ y 6= v
{SrcOf[v.f, o]} otherwise

(4.6)

JxK(Src[v]) =

{
{Src[v], Sink[x, Src[v]]} if x = v
{Src[v]} otherwise

(4.7)

JxK(SrcOf[v, o]) =

{
{SrcOf[v, o], Sink[x, SrcOf[v, o]]} if x = v
{SrcOf[v, o]} otherwise

(4.8)

JsK(Sink[_]) = ∅ (4.9)

default:

JsK(d) = {d} (4.10)

Figure 4.2: Decomposed Normal Flow Function
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of an variable within the scope of the analyzed program. Note: for the C data-type

of structures the flow fact O generates a Source fact only for the struct name but

not yet for its field members. In case of an field declaration, a fact for the field is

generated and finally, in case of an curly initialization of a struct, for every field a

Source fact is generated.

• Right-Hand Side Assignment: in contrast to the previously described flow function

case for declarations at the left-hand side of an assignment, for the right-hand side

of assignment statements we evaluate the incoming Source and SourceOf data-flow

facts. In Equation 4.3 and 4.4 this behavior is outlined in a formal way. As pre-

viously is described, the very basic principle of our analysis strategy is to trace the

flow of information. Consequently, for every incoming flow fact Source or SourceOf,

which is used on the right-hand side of an assignment, we copy the reaching infor-

mation value into a newly generated SourceOf fact for the assignment. This means,

in case the incoming fact is a Source fact, we copy the fact directly into the gen-

erated SourceOf fact; if the incoming fact type is SourceOf we copy the nested

origin Source fact o. Additionally, for every generated SourceOf fact our analysis

reports a potential sink of the incoming Source or SourceOf fact in form of data-

flow fact SinkToAssignment containing the incoming Source or SourceOf and the

assignment statement.

Finally, to cover the killing process of no longer valid Source and SourceOf facts: in

case the variable name v of the incoming data-flow fact equals the name of the newly

assigned variable, the flow fact is killed and no longer propagated along further

edges as its values are replaced by new ones. Otherwise, or in case the incoming

flow fact is not applicable on the statement, the data-flow fact is simply propagated

further.

• Struct Field: for the C data-type of structs the previously described instances of the

decomposed normal flow function apply as well. Nevertheless to keep the analysis

field-sensitive, some additional cases must be considered in the transfer computation

of data-flow facts which concern structs. Currently, we are able to track information

on clean field reads and writes of structs, but we do not cover the case if the parent

of a struct field is used in an assignment or is reassigned. In Equation 4.5 and 4.6

this case is processed: if the incoming data-flow fact contains a field reference to the

corresponding parent struct used in the right-hand side of an assignment, the field

value is copied into a new SourceOf fact of the newly declared struct. In case the

parent struct of a field value is newly assigned and the incoming data-flow fact has

a field reference of this struct, we kill the data-flow fact since it is no longer valid.

• Expression Statements: in our analysis scope, we consider any statement which

does not introduce or alter the declaration or definition of a given variable as an

expression statement. Nevertheless, as our analysis strategy aims to detect every po-

tential information-flow within the analyzed program, we report for every used vari-
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able in expression statements potential sinks as well. Consequently, every incoming

matching data-flow fact for the currently analyzed expression statement node gener-

ates a corresponding SinkToUse fact. Since a expression statement does not end the

life-time of a variable or struct, all data-flow facts of the type Source are transferred

to the successor flow function.

• Visibility Scope: the previously described techniques do consider different visibility

scopes of the same symbol name. As outlined in the description of the used data-

flow facts in our analysis, each Source data-flow fact contains its individual visibil-

ity scope within the analyzed program as an numeric value. In order to avoid false

matching, we filter non-applicable data-flow facts according to their visibility scope

before applying the described transfer functions. In case of normal flow functions we

use the following strategy. First, if the name of the incoming data-flow fact has the

same at the current program location as encoded within the flow fact, the transfer

functions are applied. Second, if the visibility scope value of the incoming data-flow

fact is smaller than the actual scope value for this name at the current statement

location, the fact is propagated further down the execution path, but no flow func-

tion case is applied. This way, the information-flow of globally defined variables is

propagated further down the execution path while being shadowed by a location

definition using the same name. In case the data-flow fact has a greater numeric

visibility scope than the matching symbol at the current source code instruction, the

data-flow fact is killed since we left its visibility scope.

• Default Case: in case none of the presented decomposed flow functions is applica-

ble, the incoming data-flow fact is propagated further along the edge to the successor

node.

4.2.1.3 Call Flow Function

In contrast to the normal flow function, this flow function models the interprocedu-

ral data-flow from a call statement to the target callee method and is formally described

in Figure 4.3. At this case, information encoded in variables or structs can reach the target

callee method only if the corresponding variables are passed as function arguments in the

call statement or are globally defined. To transfer relevant data-flow facts on this edge

type the following strategy applies: likewise to the normal flow function, the default data-

flow fact O generates the initial Source fact with the name of the function parameter fp

at callee site. Further, a parameter cp of the call statement is treated like an assignment

to the corresponding argument fp of the callee function. This way, we can propagate the

flow of information in the same way as for assignments within the normal intraprocedural

flow: every incoming data-flow fact Source or SourceOf which influences the value of the

function parameter is encapsulated into a new SourceOf fact for this parameter. Further,

to indicate a flow of information to a potential sink, likewise to previously described nor-

mal flow function, a SinkToAssignment data-flow fact is generated too. However, as the
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Jx←[ mCall([cp, fp])K(O) = {Src[fp]} (4.11)

Jx←[ mCall([cp, fp])K(Src[v]) =


{SrcOf[fp, Src[v]],

if cp = v
Sink[fp, Src[v]]}
∅ otherwise

(4.12)

Jx←[ mCall([cp, fp])K(SrcOf[v, o]) =


{SrcOf[fp, o],

if cp = v
Sink[fp, SrcOf[v, o]]}
∅ otherwise

(4.13)

Jx←[ mCall([cp, fp])K(Src[v.f]) =


{SrcOf[fp.f, Src[v.f]],

if cp = v
Sink[fp.f, Src[v.f]]}
∅ otherwise

(4.14)

Jx←[ mCall([cp, fp])K(SrcOf[v.f, o]) =


{SrcOf[fp.f, o],

if cp = v
Sink[fp.f, SrcOf[v.f, o]]}
∅ otherwise

(4.15)

default:

JsK(d) = ∅ (4.16)

Figure 4.3: Decomposed Call Flow Function

incoming data-flow fact is not valid in the scope of the callee function, it is killed on the

interprocedural edge.

An exception to this rule are data-flow facts of the type Source which model globally

visible variables. These facts are transferred by the call flow function as their information

is visible at callee-site and may potentially be altered or reach a sink.

Finally, as default behavior for this flow function all other data-flow facts are killed as

they do not reach the target function and their intraprocedural data-flow is computed by

the call-to-return flow function.

Note: for built-in C platform functions or compiler specific functions, we report the

sink to the used call parameter of the currently visited function since no further imple-

mentation details of such functions are available.

4.2.1.4 Return Flow Function

The return flow function computes data-flow facts from the exit statement of a called

function back to the successor statement of the original call statement. The working prin-

ciple of this flow function is similar to the principle of the call flow function: all intrapro-

cedural data-flow facts of the callee function are killed as they are invalid in the scope
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Jx←[ mRet(y)K(O) = {Src[x]} (4.17)

Jx←[ mRet(y)K(Src[v]) =

{
{SrcOf[x, Src[v]], Sink[x, Src[v]]} if y = v
∅ otherwise

(4.18)

Jx←[ mRet(y)K(SrcOf[v, o]) =

{
{SrcOf[x, o], Sink[x, SrcOf[v, o]]} if y = v
∅ otherwise

(4.19)

Jx← [ mRet(y)K(Src[v.f]) =


{SrcOf[x.f, Src[v.f]],

if y = v
Sink[x.f, Src[v.f]]}
∅ otherwise

(4.20)

Jx←[ mRet(y)K(SrcOf[v.f, o]) =


{SrcOf[x.f, o],

if y = v
Sink[x.f, SrcOf[v.f, o]]}
∅ otherwise

(4.21)

default:

JsK(d) = ∅ (4.22)

Figure 4.4: Decomposed Return Flow Function

of the return-to function. No rule without exception: likewise to the call flow, data-flow

facts with a globally visible scope value are transferred and not killed for the same reason

already mentioned at the call flow function.

Nevertheless, information is transferred from the callee site to the call site via return

statements. Again, our decomposed flow functions in Figure 4.4 compute this kind of

information-flow in an assignment based matter. First, the default data-flow fact O gen-

erates the initial fact Source for assigned variables or structures at the call statement.

Second, we reuse the previously described practice and map the argument of the return

statement of the callee function to the assigned variable at call site. Similar to the call

flow approach, every matching data-flow fact is encapsulated in a new fact SourceOf for

the assigned variable while the incoming matching fact itself is killed, as it is no longer

valid. Finally, a SinkToAssignment flow fact is generated for the assignment, to report the

information-flow into the assigned variable or struct.

4.2.1.5 Call-to-Return Flow Function

Finally, the call-to-return flow function (cf. Figure 4.5) is the transfer function for data-

flow facts from the call statement to its intraprocedural successor statement. In contrast

to the previously described flow functions, this function is rather simple. This function

propagates all incoming data-flow facts further in the exploded supergraph. Except for
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Jx←[ mCall([cp, fp])K(Src[v]) =

{
∅ if x = v
{Src[v]} otherwise

(4.23)

Jx←[ mCall([cp, fp])K(SrcOf[v, o]) =

{
∅ if x = v
{SrcOf[v, o]} otherwise

(4.24)

Jx←[ mCall([cp, fp])K(Src[v.f]) =

{
∅ if x = v
{Src[v.f]} otherwise

(4.25)

Jx←[ mCall([cp, fp])K(SrcOf[v.f, o]) =

{
∅ if x = v
{SrcOf[v.f, o]} otherwise

(4.26)

JsK(Sink[_]) = ∅ (4.27)

default:

JsK(d) = {d} (4.28)

Figure 4.5: Decomposed Call-to-Return Flow Function

matching Source or SourceOf facts which are reassigned or declared at the function call

site (e.g. x at a call statement x = foo()) are killed, as they can no longer reach any

further sink and the according new data-flow facts are introduced by the return flow edge.

These facts are computed, as previously explained, by the call-flow respectively return flow

function, as theses facts are influenced by the target callee procedure. Additionally, all

data-flow facts modeling global symbols are killed as well since they also are propagated

by the call-flow respectively return flow function. The matching strategy for struct fields

equals directly to the method used in the previously presented flow functions.

4.2.2 Exploded Supergraph

1 int cipher2(int i) {

2 return i;

3 };

4 int main() { [...]

5 secret = 666;

6 sink = c->func(secret);

7 printf("%i\n", sink);

8 return 0;

9 };

Listing 4.2: Product variant derived

from a configurable software system

(cf. Figure 1.1)

In Figure 4.6 we illustrate the working princi-

ple of our information-flow analysis strategy. For

that purpose, we apply our analysis on a single

product variant derived from our running exam-

ple of a configurable software system (cf. Fig-

ure 1.1) and display the resulting exploded su-

pergraph. For the sake of the example, we did

choose the product with no enabled feature condi-

tion: ¬(A∧B∧C∧D). Additionally, we inlined the

intermediate function call of the procedure ctx_do

and show the information-flow analysis from the

initial assignment to secret. In Listing 4.2 the re-

sulting product source code is displayed. For sim-

plicity reasons, only interesting data-flow facts for explanation purpose are shown in the

illustration.
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Figure 4.6: Exploded Supergraph of our Information-Flow Analysis applied on the product
in Listing 4.2

In our product example, we trace the information-flow of the variable secret from its

origin definition to a potential sink - in the example encoded as printf statement. The

initial Source fact a for the variable secret is introduced at the very first normal flow

edge by the default data-flow fact of the IFDS-framework O. As successor statement of

the definition of secret we directly reach a function call statement. The target destination

of this function-call statement is the method cipher2 (function pointer assignment is not

shown in Listing 4.2). At the call statement, the data-flow continues on two different

edges of the exploded supergraph: (1) the call-to-return flow edge which targets the

intraprocedural successor statement of the current call statement and (2) the call flow

edge which is destined to the callee location of the call statement. On the call-to-return

flow edge all existing data-flow facts, such as the Source fact a of the variable secret,

are propagated further down the graph, as none of the existing facts is reassigned and

therefore killed. While on the call edge only the default data-flow fact O and a newly

generated data-flow fact d are propagated. This new fact d is not generated by the default

data-flow fact O, but by the Source fact a of secret, as the call parameter matches the

callee parameter i of the method cipher2. As previously explained, this way we are able

to trace the flow of information across assignment boundaries.

Due to the fact, that the target callee function cipher2 consists only of a single return

statement in this product variant, the control- and data-flow immediately return back to

the call-site of the procedure. As formulated in the previous chapter, the flow function

of the return edge of the supergraph transfers information from the return statement to

any assignment at call-site. In the analyzed product variant the value of i is assigned to

the variable sink. This case is expressed in our analysis strategy as follows: first, as the
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value of the callee parameter of i reaches its end of lifetime, the corresponding data-flow

fact d is killed. Second, as the information-flow of secret continues, this data-flow fact

generates a new Source data-flow fact b for the assigned variable of sink back at call-site.

After both flow edges, which originated from the call-site, are joined back together,

a last normal flow edge is computed. This final edge propagates all incoming data-flow

facts of the type Source further down the control-flow within the supergraph as no new

variable or struct is introduced at this line. However, our analysis detects a potential

information leakage as the argument sink of the printf instruction has a the incoming

Source data-flow fact of this variable contains a reference to secret. Our analysis reports

the sink of information to any given statement by generating a short-term data-flow fact

of the type Sink.

4.2.3 Discussion

The presented information-flow analysis problem for the programming language C is

a basic approach. First of all, like similar static code analysis [Lie15] for C, we ignore

the presence of the concept of pointers and treat them like normal variables. Hence, all

potential information-flow caused by pointer aliasing, is not examined. Additionally, as

the concept of arrays in the programming language C is very closely related to the concept

of pointers, our analysis is imprecise at this point as well: array fields are computed field-

insensitive. Finally, in the nature of static code analysis, we do not evaluate arithmetic

expressions.

In the scope of this thesis, we focus on enabling interprocedural data-flow analysis for

configurable software-systems written in C and formulated the presented IFDS problem

as a proof-of-concept data-flow analysis for this task. For a more precise and sophisticated

information-flow analysis, one must introduce an alias analysis into the IFDS abstraction.

However, as previously stated (cf. Section 3.1.2), this is a daunting task.

Another possible approach to trace the flow of information across assignments is the

use of static single assignment (SSA) form [NNH15]. By using static single assignment

form, a variable is defined and declared exactly once. On the other hand, in real-life pro-

gramming languages like C, it is possible to redeclare variables again. As a consequence,

ordinary C source code must be rewritten to match static single assignment form. Despite

the advantage of using SSA form to simplify the analysis strategy, we did choose not to

apply SSA form in our analysis strategy as we focus to enable interprocedural data-flow

analysis on configurable software systems written in C. Our developed analysis strategy is

a proof-of-concept of this approach. In the scope of this thesis, we want to show the univer-

sal correctness and feasibility of this strategy for all kinds of IFDS based data-flow analysis

problem. Consequently, we decided to avoid any analysis specific rewrite operations on

the intermediate source code representation.



5. Variability-Aware Solving of
IFDS-Problems with SPLLIFT

Bodden et al. developed the tool SPLLIFT to lift existing data-flow analysis problems

formulated in the previously described IFDS-framework on configurable software sys-

tems [BTR+13]. To do so, they exploit the fact, that IFDS-based data-flow problems can

be expressed as a data-flow problem in the interprocedural distributive environment trans-
formers-framework (IDE). In this chapter, we introduce the concept of the IDE-framework.

Further, we describe the correlation of the IFDS-framework to the IDE-framework. Fi-

nally, we will explain our adaption of the approach of Bodden to lift data-flow analysis

problems formulated within the IFDS-framework on configurable software systems writ-

ten in C, how we could simplify this approach while improving its generality, precision

with the elimination of existing limitations and illustrate it with our proof of concept data-

flow analysis technique.

5.1 IDE-Framework

Likewise IFDS, the IDE-framework by the same authors, Sagiv, Reps and Horwitz,

is a data-flow analysis framework, which models as well data-flow through edges in an

exploded supergraph, but it is more abstract and expressive than IFDS [SRH96], while its

complexity remains the same as for IFDS: O(ED3).

In contrast to IFDS, data-flow analysis problems in IDE are not limited and reduced

to a simple graph reachability problem, but can additionally compute values from a sep-

arate and independent domain V , called value domain, along the graph’s edges [SRH96,

Bod12]. For every reachable data-flow fact d from the original domain D at a given state-

ment, the IDE’s algorithm computes all values v ∈ V along all valid paths in the exploded

supergraph to d. Hereby, every data-flow fact d of each node in the supergraph gets

mapped to a value v. In order to express data-flow analysis problems formulated in the

IFDS-framework as an IDE-based problems, one can use a binary value domain {⊥,>} ,

which maps d 7→ ⊥ for every data-flow fact d that holds at the current statement, or either

d 7→ > for every fact that does not hold.

Obviously, the described binary value domain is not limited to only two elements, but

can hold a much large value set. This is the main concept of SPLLIFT: by replacing the

binary value domain with a value domain consisting of presence-conditions, one is able to

lift IFDS-based problems on configurable software systems.
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5.2 Lifting Flow Functions

The very basic principle how Bodden et al. analyze configurable software systems

at once is as follows: assume a given source code statement s is annotated with the

presence-condition C. Then it should only have effect to the data-flow computation if its

presence-condition is fulfilled, otherwise not [BTR+13]. To achieve this, Bodden et al.

lift existing flow functions of a given IFDS based data-flow analysis problem at variable

nodes in the CFG. Hereby, they introduce two different IFDS flow functions for variable

statements: fC if the presence-condition C holds and for the alternative case f¬C . These

two flow functions are combined into a single, lifted flow function:

fLIFT ..= fC ∨ f¬C

Bodden et al. formulated a set of rules for this combination process depending on

the individual flow function (i.e. normal flow, call flow) as well as occurring branching

of statements [BTR+13]. These rules are formulated as analysis problem for the data-

flow analysis framework IDE. For this set of rules, they did show that it outperforms an

traditional approach of analyzing each variant individually for CIDE based configurable

software systems. In the concept of this lifting technique, there is no indication, that this

approach can not be applied on configurable software systems written in C as well. Its only

requirement is an interprocedural control-flow graph of the target configurable software

system’s programming language.

5.3 Different Control-Flow Graph Concepts

Unfortunately, Bodden’s approach can not be applied in the proposed way while us-

ing TYPECHEF as provider of the required interprocedural control-flow graph to analyze

configurable software systems written in C. This is caused by the fact, that the interpro-

cedural CFG provided by the underlying tool-chain of SPLLIFT differs significant from the

CFG provided by the TYPECHEF infrastructure in the matter of variability-encoding.

As described in Section 2.2.2, the control-flow graph provided by the TYPECHEF in-

frastructure encodes variability on the graph’s edges as presence-conditions. This concept

leads to individual edges for every possible successor node from a single source node

within the CFG, which is annotated according to its control-flow presence-condition. In

contrast, the control-flow graph concept used by SPLLIFT does not encode variability on

its edges, but only in its nodes as presence-conditions [BRT+13]. Unlike the CFG pro-

vided by TYPECHEF, this CFG does not contain every possible execution path like classical,

textbook-based control-flow graph representations [NNH15], but rather a consecutive or-

der of statements as they occur in the source code. This esoteric type of CFG is called

instrumented CFG [BRT+13]. In Figure 5.1 we illustrate the major difference between

both control-flow graph concepts for a very basic configurable software source code snip-

pet. We can see in the code snippet, that the instruction in Line 4 is only executed if
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1 int foo(int x) {

2 int y = x;

3 #ifdef A

4 y = 2;

5 #endif

6 return y

7 }

2

4

A

6

¬A

A

(a) Variational CFG

2

[A] 4

6

(b) Instrumented CFG

Figure 5.1: Comparison of both CFG concepts with a minimal variable source code frag-
ment

configuration option A is selected. As described, the variational CFG generates unique

edges for the different execution paths. In comparison, in the instrument version of the

CFG, its edges follow the instruction set within the source code and encode variability into

the CFG node. Consequently, not for every potential successor node a direct outgoing edge

from a given source node exists, as for the example source code, no direct edge between

the statements in Line 2 and 6.

The overall complexity of the instrumented CFG is less than the complexity of the

variational CFG while modeling the same control-flow, as the instrument CFG contains

less flow edges. On the other hand, it increases the complexity of the lifting process it-

self, as not every execution path through the graph is represented as an individual edge.

As a consequence, an additional layer of computation must be added to the underlying

IDE problem, which "lifts" IFDS flow functions on variable control-flow nodes in order to

determine under which condition the current flow function influences the data-flow fact

computation or not. Bodden et al. resolved this issue, as previously described, with the

formulation of different combination rules for IFDS flow functions at such variable CFG

nodes. Unfortunately, from a user’s perspective, this lifting process is not as transparent as

promoted [BTR+13]: consider again the minimal code example for comparing both CFG

concepts in Figure 5.1. The used IFDS/IDE solver by SPLLIFT, HEROS, defines in its inter-

face for IFDS flow functions the normal flow function with the following signature to be

implemented by the concrete analysis [Bod12]: getNormalFlowFunction(N src, N succ).

The argument src denotes to the current source node in the CFG, while the argument succ

represents its successor node. Consequently, when using an instrumented CFG, the normal

flow function for the valid execution path Src:= int y = x and Succ:= return y in our

minimal, variable code snippet is never analyzed in the mentioned combination. This will

most likely cause erroneous behavior, if an IFDS data-flow analysis validly computes both

statements, Src and Succ, together.
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5.4 Variability-Aware Solving of IFDS Problems in IDE

As explained before, IFDS problems can be fully expressed within the related IDE-

framework. Likewise IFDS, the IDE-framework uses the same exploded supergraph. We

benefit massively of the fact, that intraprocedural edges of the exploded supergraph map

directly to edges in the variational control-flow graph and outgoing edges from a given

source node in the variational CFG cover all possible variants. This means that separate

control-flow paths for different product variants are modeled exactly in the same way as

branched execution paths introduced by control-flow statements, such as if-then-else, in

the exploded supergraph. Likewise to classically branched control-flows, separate paths

are joined back together in case the branching ends. Since the variational control-flow

graph reports for every edge its individual presence-condition, we are able to reduce

the complexity of the solving process down to the initial computation process of IFDS

problems as single IDE problem. As a result, we must not lift any flow function of the

IFDS-framework by the suggested combination rules.

To trace precisely the individual flow presence-condition of variational execution paths,

we replace the binary value domain V ..= {⊥,>} with a value domain VPC ..= {Φ}, which

encodes presence-conditions as boolean formula Φ. Hereby, we change the value > for

every data-flow fact d which does not hold at the current flow function to the boolean

value of False and the value ⊥ to the presence-condition of the current edge PCE in the

CFG, expressed as boolean formula, for every flow fact d that does hold on this edge.

As distributive join operator for joining points of separate control-flow paths of data-flow

fact through the supergraph, we use the boolean disjunction operation ∨. This way, we

precisely combine all valid variants together for which a data-flow fact holds. Straight-

forward to this concept, the composition operator of consecutive flow functions in the

exploded supergraph is modelled by the boolean conjunction operator ∧, so that a data-

flow fact can only reach a certain target node from its source node within the graph if all

presence-conditions are satisfiable at at least one path through the CFG.

Simply by replacing the binary value domain and using the variational CFG one al-

ready can successfully analyze IFDS based data-flow analysis problems simultaneously on

each possible variant of a configurable software-system. This concept shares commonal-

ities with the underlying principle of the original approach of Bodden et al. in SPLLIFT,

but with the major difference, that we are able to completely waive the various complex

rules for combining flow functions at variable nodes in the instrumented CFG for the

tool-combination of TYPECHEF and SPLLIFT. Further, as every control-flow edge encodes

its individual flow presence-condition, we are able to report for each and every poten-

tial execution path through the analyzed program its distinct flow condition. Last but

not least, our concept brings the tremendous advantage to avoid the possibility that the

formulated combination rules for lifting flow functions are non-exhaustive regarding un-

structured control-flow within the C programming language such as jump statements.
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Additionally, from a user’s perspective, the analysis is solved variability-aware in a

complete transparent way, as the underlying CFG reports all possible execution paths of

different variants, while being able to solve IFDS data-flow analysis simultaneously in-

stead of individually each variant of a configurable software system. This concept is in

line with previous work on data-flow analysis techniques for configurable software systems

using the TYPECHEF infrastructure and is proven to be efficient and scalable [LvRK+13,

LJG+15, Lie15, vR16]. Finally, Bodden et al. did include the feature model of the ana-

lyzed system (cf. Section 2.1.2.1) into the set of combination rules for lifting to distin-

guish valid variants from invalid ones in order to reduce the overall computation costs.

The variability-aware control-flow graph as well does incorporate the feature model in its

successor computation and reports only valid execution paths in the source code according

to the feature model.

Because of this reasons, we favor the variational control-flow graph over the instru-

mented one. Further, the use of the variability-aware control-flow graph allows us to

simplify the lifting mechanism in SPLLIFT, as the combination of different flow functions

into a lifted function is no longer necessary.

5.5 Application to the Running Example

Likewise to the illustration of our information-flow analysis in Figure 4.6, we show

in Figure 5.2 a truncated version of the supergraph applied on the example configurable

software system from Figure 1.1 using the same information-flow analysis. However, this

time we do not analyze a single variant in isolation, but use the presented solving strategy

to analyze all potential variants simultaneously in a single analysis run. As we can see,

the computation result detects the violating flow of information for both affected variants

as outlined in the problem statement of this Thesis: (A ∧ ¬B ∧ C) ∨ (¬A ∧ ¬D).

The most prominent difference between the previously presented exploded super-

graph in Figure 4.6 for a single variant and the current variability-aware version, is the

additional outgoing call flow edge from the call statement in the main function. Based

on the chosen configuration, the destination of the function pointer c->func() targets ei-

ther method cipher1 or cipher2. As a logical consequence, our solving strategy annotates

both call flow edges with their corresponding flow presence-condition: in our case A for

the edge targeting cipher1 and ¬A for the edge describing the flow to cipher2. Every

single data-flow fact which is transferred over the described edges is conjuncted with the

corresponding presence-condition of the propagation edge. In our illustration the newly

generated Source data-flow facts for both function parameters are propagated with the

presence-condition of either A or ¬A in respect to the target callee function.

To describe the working principle of conditional normal flow edges, we continue the

control-flow at the method cipher2. Depending on the configuration, the statement i = 0

is either executed or not. As outlined before, our CFG concept reports for such variable

statements two different execution paths. Note: these execution paths are annotated only
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with the surrounding presence-condition of D or ¬D since the CFG itself is intraproce-

dural at this point and consequently unaware of any call-to-callee flow constraints. But

both displayed incoming data-flow edges are annotated with the correct points-to flow

presence-condition. So, for both flow edges of the default flow fact O at the entry point

of the function cipher2, we can report the correct flow condition as we conjunct the in-

coming flow condition together with the reported intraprocedural flow condition by the

variational CFG. With this strategy we detect, that a reference to the information of vari-

able secret is only propagated further if both conditions, A and D, do not hold, as un-

der condition D variable i is reassigned and on this single execution path all incoming

data-flow facts matching to i are killed, which includes the reference fact to the variable

of secret.

Within the method of cipher1 we continue the same way of proceeding. This time

however, we want to explain the join mechanism for conditionally branched execution

paths. Our variability-aware CFG reports three possible successor statements for the con-

trol statement if. In case the condition of the if-clause is fulfilled, two different execution

paths are executed depending on the chosen configuration, while the fall-through path is

equal in every configuration. Consequently, the default data-flow fact O is propagated

further in the supergraph on three different edges. Since all three edges eventually meet

again at the function’s exit statement, their individual flow conditions are merged together

by the boolean disjunction operation and the fact O is finally transferred back to the return

site of the call under condition A. In the same manner we detect, that only in one specific

configuration a malicious information-flow through function cipher1 exists.

Since both return flow edges of cipher1 and cipher2 report that the value of secret

is encoded in the variable reaching each function’s own return statement, the return flow

function generates for the assigned value of sink by the function-call statement a Source

data-flow fact which references secret. Likewise to the previously presented product-

based approach, our information-flow analysis indicates a sink of information referencing

the value of secret to the printf instruction. This time however, the potential information-

leakage is reported under which configurations of the analyzed software system it occurs:

(A ∧ ¬B ∧ C) ∨ (¬A ∧ ¬D).

5.6 Further Improvements

Additionally, our presented approach allows us to overcome some limitations of the

existing SPLLIFT lifting mechanism. The implementation of the data-flow analysis frame-

work SPLLIFT is not as sensitive to presence-condition annotations as it could be, as it

completely ignores aliasing at call-site. Consider again our motivating example from the

beginning in Figure 1.1: depending on the chosen configuration, the function pointer

of c->func() points to either the procedure cipher1 if condition A holds, and otherwise to

procedure cipher2, which is correctly determined by our function-pointer target analysis

strategy (cf. Section 3.1.2). SPLLIFT ’s internal call flow lifting rules do not compute the
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presence-condition for different target destinations and assumes for these edges the flow

presence-condition of True.

Bodden et al. did propose a potential solution for this limitation by handling the

points-to analysis as part of the IFDS abstraction. In a first attempt, we did try to solve this

issue by means of the proposed solution, but recognized that it would massively violate the

idea of transparent lifting of IFDS-based data-flow analysis problems, as we would have

had to encode the current flow condition into every single data-flow fact of the performed

analysis. However, we did solve this short-coming by a combination of two aspects: First

by extending the control-flow graph interface by an additional method, which reports the

correct presence-condition of the flow between the call- and its target callee-statement in

case of aliasing:

getPointsToCondition: V [CFGStmt]× V [CFGFDef ]→ PC

With the use of this function, we can set the correct flow presence-condition for call and

return edges during computation-time. Second, by resolving a imprecision within the used

solver HEROS. We comment on this essential fix in the following section.

5.7 Implementation Details on the Correct Tracing of Control-

Flow Presence-Conditions

As mentioned before, to solve variability-unaware IFDS data-flow analysis variability-

aware, we express them as IDE problem and replace the binary value domain with a

domain consisting of presence-conditions. An IDE analysis uses the exact exploded super-

graph like IFDS and consequently uses exactly the same graph edges (cf. Section 4.1).

5.7.1 Edge Functions

Remember: as explained in Section 2.2.2, the successor function of the control-flow

graph provided by the TYPECHEF infrastructure encodes the presence-condition of the

flow edge between the source statement and its successors in every individual successor

node: succ : CFGStmt→ List[V [CFGStmt]]. Beginning at the initially selected starting

node, all further visited nodes by the IDE algorithm are consequently provided by this

successor function. In its low-level implementation, this successor function remains in-

traprocedural, as it is a basic requirement of the normal edge in the exploded supergraph

of the IDE/IFDS-framework (cf. Section 4.1). The surrounding control-flow graph pro-

vides the required mechanism for interprocedural control-flow (cf. Section 3.2.1). In order

to determine the exact presence-condition PCEdge for different flow edges in the exploded

supergraph, we need to compute the presence-condition of the incoming edge together

with the presence-condition of the outgoing edge using the following rules:
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normal edge: the default intraprocedural edge within the supergraph knows its source

node Src and its successor node Succ. The presence-condition of this edge is deter-

mined by combining the presence-condition of the incoming edge of the Src node

together with the presence-condition of its outgoing edge to its successor Succ:

PCEdge
..= PC(Src) ∧ PC(Succ) (5.1)

call edge: a interprocedural edge modelling the flow from a call statement to the corre-

sponding callee site. This time we are aware of the presence-condition of the incom-

ing edge of the Call node. Likewise to the previous edge, the resulting PCEdge is

the combination of both presence-conditions. This is sound and precise, as long no

aliasing occurs, since for the target callee node we only know its condition according

to its presence within the source code. To avoid imprecision in case of aliasing, our

graph interface offers an additional procedure, which returns the presence-condition

for call flows with aliasing:

PCEdge
..= PC(Call) ∧ PC(Dest) ∧ PointsT oPC(Call,Dest) (5.2)

return edge: an interprocedural edge pointing from the return statement of the callee

site to the return-site of the call statement. This edge is similar to the computation

of the presence-condition of the call edge, however this time we have to compute

additionally the presence-condition of the edge from the Exit node to the intrapro-

cedural successor of the call node, ReturnSite.

PCEdge
..= PC(Call) ∧ PC(Dest) ∧ PointsT oPC(Call,Dest)

∧ PC(Exit) ∧ PC(ReturnSite)
(5.3)

call-to-return edge: since call statements are excluded from normal edges, this edge

models the flow from the Call node to its intraprocedural successor node called

ReturnSite. Consequently, its presence-condition is determined in the same manner

as for the normal edge:

PCEdge
..= PC(Call) ∧ PC(ReturnSite) (5.4)

5.7.2 Additions to the IDE/IFDS Solver HEROS

During the phase of implementation and evaluation of our previsiouly presented IFDS

"lifting" methodology we witnessed, that our approach did generate for some information-

flows an imprecise, and consequently false result. Hereby we observed, that for intrapro-

cedural flow edges of the exploded supergraph in IDE within conditionally called pro-

cedures, a false CFG-flow presence-condition was reported: the condition under which

the call occurred was missing. However, every already existing and additionally every
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newly generated data-flow fact which was propagated over the return edge of the cur-

rently examined procedure, did report its own correct flow presence-condition. At first,

we estimated that our approach has some unidentified flaw in its concept or implementa-

tion. We assumed, that the underlying IDE/IFDS-solver HEROS of SPLLIFT should provide

a sound solving result because of its widespread usage in several other reviewed data-flow

analysis projects. Nevertheless, during extensive debugging we traced the origin of the

falsely reported flow condition back to the implementation of the used solver. We identi-

fied, that the solver propagates for edges from call-site to callee-site the identity function
of graph edges. In case IFDS data-flow problems are expressed in the classical, variability-

unaware way within the IDE-framework, in our opinion this behavior should be correct as

the identity function basically expresses the value ⊥ of the binary value domain V which

represents the binary value for all holding data-flow facts on a given supergraph edge.

However, in our approach this tiny implementation detail did create the observed impre-

cision as the identity function reports a flow presence-condition of True. Hence, we did

not compute occurring flow presence-condition on this edge. This issue lead to the fact,

that every subsequently generated data-flow fact was missing the presence-condition of

the flow edge.

To overcome this fundamental issue, we removed the propagation of the identity func-

tion at this point in the solver implementation. Instead, we propagate the composition of

the incoming edge from the predecessor node in the supergraph together with the call

edge function. This solution does not alter the behavior for the classic expression of IFDS

problems within IDE in any way, but correctly propagates all previously computed data-

flow fact conditions further down the execution path along with the extracted call flow

presence-condition in our approach.

Additionally, in this process we identified and resolved another potential cause for im-

precision and yet in the original implementation of SPLLIFT completely ignored location

of variability. As previously described, the IDE/IFDS framework does compute a set of

upfront data-flow facts at its starting point called initial seeds. In our information-flow

analysis strategy we use these initial seeds to propagate the initial values of global vari-

ables. Unfortunately, these seeds are introduced with the identity function of graph edges.

Consequently, these seed data-flow facts are all propagated with the presence-condition

of True. But, these seeds may not be present in every possible configuration of the an-

alyzed software-system. To resolve this additional imprecision, we added an mechanism

which propagates initial data-flow facts according to their unique presence-condition at

the starting point of the analysis.



6. Evaluation

In a series of experiments we evaluate in this chapter the correctness, feasibility and

scalability of our approach to analyze data-flow problems formulated within the IFDS-

framework simultaneously on all possible variants of configurable software systems writ-

ten in the programming language C. We use these experiments to answer the following

research questions about our implementation:

RQ1: Does our analysis strategy compute a correct result?

RQ2: Is our technique efficient (scalable) on real-life and large-scale configurable soft-

ware systems?

Finally, we discuss our experiences of applying the presented information-flow analysis

as taint checking technique on the implementation of the AES-encryption algorithm of two

different configurable real-world open-source cryptography libraries.

6.1 Subject Systems

To conduct our experiments we choose two different real-world configurable subject

software systems: MBEDTLS and OPENSSL. Both software systems are open-source cryp-

tography libraries and implement all essential state-of-the-art cryptographic functions.

6.1.1 MBEDTLS

MBEDTLS1, formerly known as POLARSSL, is a light-weighted cryptography library

designed to fit on small embedded devices. It is highly configurable: each feature, such as

a cryptographic function, can be configured independently from the rest of the library. In

our experiments we used version 2.2.1 of the library. This version in numbers: 249 distinct

feature options for configuration and a total number of 54 809 lines of source code in 120

different source code files. These numbers include an example set of 34 programs which

show ways how to use the library. Since software libraries are commonly not designed to

be used as standalone modules, we use these example programs as entry points for our

experiments. MBEDTLS is in practical use in well-known real-world open-source projects

such as OPENVPN or is embedded in internet of things hardware-devices such as network-

routers by the firm LINKSYS.
1https://tls.mbed.org/

https://tls.mbed.org/
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6.1.2 OPENSSL

In contrast to MBEDTLS, OPENSSL2 is the aged and bloated alternative version of a

cryptography library. Since OPENSSL is the de-facto standard cryptography library used by

web servers to ensure the confidentiality and integrity of communication over the internet,

we examined this library as well. We used OPENSSL version 1.0.1 with 233 450 lines of

source code in 733 different files and a total of 589 configuration options. In contrast to

MBEDTLS, OPENSSL does not provide a set of example programs. Notwithstanding, in

order to analyze OPENSSL in similar fashion to MBEDTLS, we used the provided example

in the documentation of OPENSSL3 for facilitating AES encryption with OPENSSL. Our

example uses the C based implementation of AES and omits the implementation using the

AES new instruction set of modern CPUs, because this implementation is completely written

in assembler. Unfortunately, this reason limits our experiments to the implementation of

the AES cipher in OPENSSL. But, there is no known obstacle to apply our approach on

other parts of the library as well, given a potential entry point for the analysis.

6.2 Experiment Setup

To answer both of our research questions, we use the following experimental setup to

retrieve sufficient data for that task.

Before we can conduct our experiments some upfront preparation tasks need to be

performed. As outlined in Section 3.1.1, to resolve the potential destination file of ex-

ternally defined and locally called functions, in a first step each source code file of the

target case study needs to be analyzed to collect all necessary information for acquiring

a linking map. For this task, we are required to run TYPECHEF once on each source code

file. Hereby, a variational AST is build after lexing and parsing the input file. The resulting

AST is type-checked by the TYPECHEF infrastructure in order to extract the signatures of

locally and externally defined functions. After every single file has been analyzed, a global

linking map is generated based on the type-check results of every single file reporting

all exported and imported function definitions along with their signatures and presence-

conditions. Since we are forced to parse each individual source code file prior our actual

experiments, we exploit this fact and save all generated ASTs. This way we are able to

reduce significant the overall time of our experiments as we are no longer required to lex

and parse a source code file for every single analysis run which may take up to several

minutes. After this initial precomputing task, we are able to conduct our experiments.

In order to answer our research questions we compare the classic approach of analyz-

ing single variants of a configurable software systems against our approach of analyzing

every variant simultaneously in a single run. Therefore two data sets are required for ev-

ery independent analysis run: (1) a set of all found information-flows and (2) benchmark

values regarding the run-time of interesting parts within the analysis.
2https://www.openssl.org/
3https://wiki.openssl.org/index.php/EVP_Symmetric_Encryption_and_Decryption

https://www.openssl.org/
https://wiki.openssl.org/index.php/EVP_Symmetric_Encryption_and_Decryption
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To collect the described data, we setup our analysis infrastructure as follows: for every

program from our experiment set we apply our information-flow analysis. In this analysis

process, we use the precomputed AST representation of the individual source code file. Ex-

ternally linked files, as detected by the linking map, are loaded on-the-fly into the analysis

scope. At this point, we use the precomputed AST representation as well. Since we want

to analyze single products too, our testing infrastructure provides mechanism to derive a

certain product from a given configuration. This product derivation process takes as input

the previously precomputed variational AST representation of a source code file and a set

of activated and/or deactivated configuration options. Based on this configuration set and

the configuration knowledge encoded in the feature model, we are able to generate a valid

product configuration. An AST representation for the generated configuration is produced

by pruning all irrelevant branches of the input variational AST, so that no variability re-

mains. For every single analysis run, regardless wether variational or product-based, we

log each found information-flow data-flow fact, and in case of variability-aware analysis,

the reported CFG flow presence-condition. Our analysis logs for every run a set of run-

time values for different analysis tasks, such as AST (re-)loading, AST rewrite operations,

product generation and solving time of the information-flow problem. In order to avoid

bias due to external influences on our testing machines, we measure the elapsed process

CPU execution time reported by the Java Virtual Machine (VM) between two time marks.

We conducted all of our experiments on LINUX machines running on Intel Xeon E5-2690

CPUs at 3.0 GHz. Since our testing machines are part of a shared high-performance com-

puter cluster, we reserved exclusively for every running instance of the Java VM 16GB of

RAM and 4 CPU cores. We configured the VM to use 12GB maximal heap space and to use

the G1 garbage collector.

6.3 Research Questions

Following we answer the previously formulated research questions with the help of

our testing infrastructure.

6.3.1 RQ1: Correctness

Since we altered Bodden’s original approach of solving variability-unaware IFDS data-

flow problems transparently in variability-aware manner, we need to re-ensure that our

approach as well reports a correct result and is not overly restrictive. In contrast to Bodden

et al. [BTR+13], we do not have a second analysis tool to cross-check our computation re-

sult, since we are to our knowledge the first ones to conduct this kind of data-flow analysis

on variable C code using the TYPECHEF infrastructure in combination with the data-flow

analysis framework IFDS. That being said, we still are able to validate the correctness of

our results in the matter of variability-awareness.

The most naive approach to validate, that our variability-aware solving strategy of

IFDS data-flow problems is reporting correct results would be to cross-check the results
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of our strategy against the reported results of every single possible product variant of a

configurable software system. However, as previously outlined in the problem statement,

this task is infeasible. In order to reduce the number of configurations to check against

our approach, we did choose the following approach using the previously described ex-

perimental setup. First, we run our analysis on every program of our experiment set using

the presented variational solving strategy. Hereby, we log every information-flow reported

by our IFDS data-flow analysis along with the reported product configuration of each

individual information-flow. By this approach, we avoid testing unaffected or already cov-

ered variants [KBBK10]. Based on this result set, we generate every product for that our

analysis reported an information-flow and analyze these products as well. Afterwards we

compare, if every reported flow of information for a specific product variant is found as

well in the corresponding product. Further we cross-check, if the analysis strategy reports

any information-flows which are not covered by our approach. Ideally for a correct result,

the number of found information-flows is equal in the product-based verification analysis

to the number of reported information-flows by our presented variational approach.

In order to cross-check our results the other way around, we use a heuristic. Due to

the fact, that analyzing each variant individually is infeasible, we use knowledge about de-

pendencies between configuration options and derive sample sets of configurations which

we then analyze. Sampling is a well-known technique to reduce the testing space of vali-

dating software [NL11]. Several different heuristics exist in order to perform sampling: in

the scope of this thesis, we did choose Code Coverage as sampling heuristic. This heuristic

aims to generate a minimal set of configurations of the analyzed target configurable sys-

tem, that cover every single code fragment of the source code base in at least one valid

configuration. This way, we ensure that every instruction is analyzed once. Given the fact

that we are analyzing C software, we have to address the issue of header files in respect

to code coverage. The concept of including header files is very common in the C program-

ming language and header files even include additional header files. For example, the

well-known "Hello, World" program in C includes a total of 19 different header files from

the C standard library4. Likewise plain C source code files (*.c), header files (*.h) as well

contain variable code fragments controlled by CPP directives. But as outlined, the number

of included header files is relatively large even for very basic C programs. Although we are

using an optimized algorithm for generating code coverage configurations [TLD+11], this

fact increases the computation cost significant. Further, we observed for the subject system

OPENSSL, that including header variability blows up the configuration set with product

variants that do not affect the experiment program at all, since these header files contain

instructions which are used somewhere in the OPENSSL library, but not in the program

used in our experiments. Likewise similar experiment setups using the TYPECHEF infras-

tructure for data-flow analysis [Lie15], we ignore variability introduced by header files

and focus on C source code files.
4http://blogs.grammatech.com/visualizing-include-graphs

http://blogs.grammatech.com/visualizing-include-graphs
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To validate our information-flow analysis approach with sampling, we proceed as fol-

lows. We analyze every code coverage variant for each program from our benchmark set

and log every detected information-flow for each variant. This result set we compare to

the reported information-flows of our variability-aware analysis approach. We consider

our approach as valid, if all information-flows detected by the code coverage sampling

heuristic are also reported by our variability-aware approach in the same configuration as

for sampling.

Results

During our experiments we found, that our approach does report a correct result: all

flows of information detected using the code coverage sampling heuristic are reported

as well by our variability-aware solving strategy with a presence-condition satisfiable by

the comparable code coverage configuration. Further we observed, that by the use of

the code coverage sampling heuristic, we would cover on average 84% of all reported

information-flow by the variability-aware approach. For 37% of our program set the sam-

pling based approach reports an identical set of detected information-flows. But on the

other hand, we also witnessed programs for which sampling only detected less than 27%

of the information-flows reported by the variability-aware solving strategy.

Finally, all information-flows reported by the variability-aware strategy are detected

in the affected products too and all information-flows reported in the product-based veri-

fication approach are detected by the variability-aware strategy.

In order to validate the correctness of our approach, 26 programs of MBEDTLS5 and

one program of OPENSSL were analyzed. For MBEDTLS 97 individual source code files

were examined because of linking, whereas for OPENSSL 22 different source code files

were investigated. Since we did compare our approach with a classical approach of an-

alyzing a specific program variant of a configurable system in isolation, for MBEDTLS a

total of 478 variants were analyzed to cover all detected information-flows in different

products while for OPENSSL 16 variants were necessary. Finally, our sampling approach

of code coverage lead to 348 individual analysis runs for all programs in MBEDTLS and

for OPENSSL to 7 different configurations to cover all instructions of our minimal AES

program.

6.3.2 RQ2: Efficiency

To answer this research question, we investigate the collected run-time data of the

experiments to answer RQ1. This means, we have insights about the run-time for 26 pro-

grams of the MBEDTLS case-study and one program of the OPENSSL case-study. Further,

we can compare our approach against two benchmarks: (1) a sampling based and (2) an

affected products based approach. For both benchmarks the general evaluation strategy is
5We had to exclude eight problematic programs for which our cross-check strategy ran into a timeout.

Nevertheless, until the timeout occurred, no missed information-flow was reported. All presented numbers
and plots have been generated after excluding the problematic programs.
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Benchmark LIFTED SOLVING

time in s

mean± sd max

MBEDTLS 183±251 936

0 100 2000 100 200

OPENSSL 379±0 379

250 400250 400

Benchmark AFFECTED PRODUCTS∑
time in s max time in s # configurations % coverage

mean± sd max mean± sd max mean± sd max mean± sd min

MBEDTLS 3903±8140 29625 144±220 912 18±24 79 100±0 100

0 3000 70000 3000 7000 0 50 1500 50 150 0 20 600 20 60 60 100 14060 100 140

OPENSSL 5791±0 5791 355±0 355 16±0 16 100±0 100

4000 70004000 7000 250 400250 400 10 14 18 2210 14 18 22 60 100 14060 100 140

Benchmark CODE COVERAGE∑
time in s max time in s # configurations % coverage

mean± sd max mean± sd max mean± sd max mean± sd min

MBEDTLS 1153±2134 10740 125±191 908 13±10 35 84±28 9

0 1000 25000 1000 2500 0 50 1500 50 150 5 15 25 355 15 25 35 65 75 85 9565 75 85 95

OPENSSL 1895±0 1895 331±0 331 7±0 7 81±0 81

1500 25001500 2500 200 300 400200 300 400 4 6 8 104 6 8 10 50 70 9050 70 90

Table 6.1: Measurement results for different analysis strategies: results include mean (±),
standard deviation (sd) and maximum (max) time for performing a solving task in sec-
onds; same for the number of configurations analyzed per program (# configurations) and
covered information-flow facts (% coverage) but for that value the minimal (min) cover-
age rate is shown; box plots show the corresponding distributions (excluding outliers)
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the same: for each program included in our experiment set, we have a set of individual

configurations. In case of sampling, as previously outlined, these configurations are a min-

imal set to cover all lexical source code instructions of the analyzed program together with

externally linked source code instruction at least once. As for the affected-products based

approach, the set of configurations consists of all product variants for which our solving

strategy did report an information-flow. This a pretty useful configuration set, because this

way we are able to compare the run-time of our solving approach against the run-time of

exactly every single affected product. For both configuration sets, we measure the total

run-time for all variants of a program and the run-time for analyzing a single program

variant.

In Table 6.1 we show our performance measurement results for the individual analy-

sis approaches. Run-time results are shown in total for all configurations as well as single

times for separate configurations. For run-time we measured the sole execution time

spent for solving the data-flow analysis problem excluding all preparation times, such as

AST loading, rewrite operations, etc. All run-times are displayed in seconds as the mean

of all analyzed programs along with standard deviation (sd) and maximum (max) time.

For the presented solving strategy in this thesis only the single run-time is displayed, since

our approach analyzes all variants simultaneously. Same for the number analyzed config-

urations, they include the mean along with standard deviation (sd) and maximum (max)

number of analyzed configurations. The final column of the affected products- and code

coverage table shows the coverage rate of detected information-flows by the approach

compared to our variability-aware approach. Again, the coverage percentage rate are dis-

played by the mean and standard deviation (sd), in contrast to the other columns the

minimal coverage rate is displayed.

As the table shows, our approach outperforms both approaches clearly compared to

the total run-time, since our approach only requires one analysis run to cover all variants

of the analyzed configurable software systems. More interestingly is the comparison of

our approach against the run-time of a single analysis run of a concrete product variant.

For that purpose, we did choose to compare our approach against the most expensive

single run-time of an individual product variant. We did choose the most expensive sin-

gle run-time for the following reasons: first we witnessed, that some configurations of

MBEDTLS have surprisingly low run-times in a single-digit range. This is caused by the

fact, that depending on the chosen configuration, two different main functions are ap-

plicable, one version that actually performs the program’s purpose, and another version

which only prints out to the console, that the program is incompatible to chosen configu-

ration. Consequently, for some valid configurations of the cryptography library MBEDTLS,

only a program consisting of one file with one function and one instruction is analyzed.

Another reason, why we did choose the most expensive single run-time, is that this config-

uration commonly represents the most heavy-weighted program variant. As our approach

analyzes all potential variants simultaneously, the most heavy-weighted program variant

is included as well at our approach.
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Of course, our approach can not beat the single run-time of the most heavy-weighted

program, but we observe that our approach does not add significant more time because of

additional edges within the exploded supergraph introduced by variable execution paths

in the program. At worst, our analysis adds an additional run-time of 48 seconds compared

to the most expensive analysis run time, observed at the AES implementation of OPENSSL.

However, since analyzing this single product already took 331.3 seconds, the run-time to

analyze all variants simultaneously increases only up to 379.0 seconds or in a relative

view, the analysis run-time slows down by 14.5%. On the hand, analyzing all 16 affected

variants individually in the classical way would have taken a total time of 5791.9 seconds

or 96 minutes. For the program set of MBEDTLS, we witness the same effect. In our

experience, the increase of run-time introduced by our approach would not be received

badly in a real-life analysis setting by an developer.

6.4 Experience with Taint Checking on Cryptography Libaries

For a real-life example application of our developed information-flow analysis, we

did choose to taint check the implementation of the AES cipher of our subject systems:

MBEDTLS and OPENSSL. As previously described (cf. Section 2.2.4), in order to perform

a taint check analysis, one must define the interesting taint value or sink depending on

the concrete application scenario. In our case, we choose as tainted secret the initial key

value used to perform AES encryption or decryption. Fortunately for us, the variable

representing the secret AES key in the corresponding implementation base of MBEDTLS

and OPENSSL, are named key. So, in order to taint check the secret key value, we trace

the information-flow originating from the first assignment of the variable key throughout

our example programs to facilitate the AES cipher of our subject cryptography libraries. In

a naive way of thinking, one would expect that the key reaches in every variant the actual

implementation of the AES cipher algorithm. This reach we use as a very basic sanity

check for our information-flow analysis problem formulated for the IFDS-framework.

An important note upfront: our taint check strategy is limited to the application scope

of the presented information-flow analysis. As previously described (cf. Section 4.2.3),

our analysis is unable to detected the flow of information caused by pointer aliasing.

Further, since we do not evaluate arithmetic expressions of control instructions in the C

programming language, such as if statements, our information-flow analysis is not able

to detect any information-flow caused by insufficient memory boundaries checks in the

source code. This means, any potential information-leakage caused by buffer overflows

is not detected by our approach. That being said, our analysis still is able to detect both

obvious and subtle information-flow traps that can be traced via assignments, such as

for example a debug instruction to print the taint secret out to the console encoded in a

temporary variable.

In detail we present the observed flow of information caused by the AES key within

OPENSSL. First of all, we observed that the key definition eventually reaches the C imple-

mentation of the AES cipher algorithm in all variants that provide AES. More precisely:
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Figure 6.1: Simplified and truncated version of the reported information-flow for
OPENSSL

we were able to trace the input key to the point where it is expanded into a number of sep-

arate round keys as defined by the underlying Rijndael’s key schedule procedure [DR99].

Second, by the means of our analysis strategy, we did not detect any instruction reached

by the key value, that we consider as malicious instruction which may cause leakage of

the key. But, we did gain an interesting, real-life insight about variability concerning the

propagation of the secret key value from its definition to its final destination in the actual

implementation of the AES algorithm.

Figure 6.1 shows a simplified and truncated version6 of the information-flow reported

by our analysis strategy of the tainted AES key from its initial definition to the key ex-

pansion process in the actual implementation of the AES cipher algorithm. The presented

flow-graph encodes variable statements as colored nodes and variable flow edges as col-

ored arrows. We can separate the information-flow of our tainted AES key in three individ-

ual phases: (1) initialization of OPENSSL’s EVP cryptography interface, (2) initialization

of the AES cipher and (3) start of the AES algorithm, namely key expansion. However,

only in phase two we witnessed variability affecting the information-flow of the AES key,

with no outside effects, since outgoing flows of this phase eventually propagate informa-

tion of the key further down to the key expansion process in all program variants. In the

affected phase, the AES cipher options are set: these options include whether to perform

encryption or decryption, the used mode of operation, such as cipher block chaining or

6The plain version of the information-flow graph is provided on the appendix DVD of this thesis because
of its size.
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1 #ifdef VPAES_ASM

2 #define VPAES_CAPABLE (OPENSSL_ia32cap_P [1]&(1 < <(41 -32)))

3 #endif

4
5 [...] // some more code

6 static int aes_init_key () {

7 if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)

8 && !enc)

9 #ifdef BSAES_CAPABLE

10 if (BSAES_CAPABLE && mode== EVP_CIPH_CBC_MODE)

11 aes_set_decrypt_key (); // aes key init for decryption

12 else

13 #endif

14 #ifdef VPAES_CAPABLE

15 if (VPAES_CAPABLE)

16 vpaes_set_decrypt_key (); // aes key init for decryption

17 else

18 #endif

19 aes_set_decrypt_key (); // default aes key init for decryption

20 else

21 // same code from hell again , but for

22 // the aes key init for encryption

23 return 1;

24 };

Listing 6.1: #ifdef - hell for AES key initialization extracted from e_aes.c in OPENSSL

counter mode, the used cipher block size, the used key in respect to the set key-length

and further additional options. Since we did not observe variational information-flow in

phase one and three, we omitted most of these statements in the presented graph for an

improved readability.

Interestingly, we found out that the detected variational information-flow during the

initialization phase of the AES cipher occurs at source code that can be seen as a textbook

example for #ifdef - hell. The observed flow does not introduce any malicious sink, but

it is a very good example to illustrate some key features of our analysis strategy and to

discuss some limitations of static code analysis in general and for the context of analyzing

C source code. First of all, the information-flow is variable because of two CPP directives:

VPAES_CAPABLE (V) and BSAES_CAPABLE (B). Both directives are set by the configura-

tion options VPAES_ASM or BSAES_ASM respectively, and enable or disable accelerations

mechanism of the AES computation task, namely vector permutations (VPAES) and bit
slicing (BSAES). In Listing 6.1 the corresponding source code fragment extracted from

the file e_aes.c of OPENSSL is shown. As we can see, there are CPP directives nested in

various C control statements as undisciplined annotations. Further, the used #ifdef argu-

ments, VPAES_CAPABLE and BSAES_CAPABLE, which control wether the annotated source

code fragments are included into the product source code or not, are function-like macros.

These macros are used during run-time as condition of the control statement if, to check

whether the underlying hardware platform fulfills the requirements of these acceleration
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mechanism or not. Consequently, these CPP directives alter the program execution path

during compilation-time as well as during run-time.

Despite the fact, that this source code fragment easily fulfills the definition of a code
smell and the undisciplined annotations nested in control instructions are non-trivial, our

analysis correctly reports the flow of information of the tainted AES key through these

statements with the corresponding configuration options for the individual execution paths

in different products. In order to analyze the present source code fragment, our analysis is

forced to duplicate the fragment into four different variants, because of the undisciplined

annotations within control-flow instructions.

At first sight one might be wondering about the missing outgoing edge from the node

vpaes_set_decrypt_key in the presented information-flow graph. This caused by the fact,

that the function call of vpaes_set_decrypt_key does not call a function written in C code

but in assembler code. We are not able to parse nor analyze assembler code. For such

function calls, our analysis strategy ignores the call destination and reports as potential

sink all information-flows to the function call parameters. As for the presented example,

if configuration option V is enabled, there exists an CFG path for the AES key, that will

reach this instruction. This a conservative fallback mechanism for incompatible program

instructions for our analysis tool. But as explained, the feature constraint V is used to

control the execution path during run-time as well. So, if V is enabled, there also exists

a potential execution path that reaches the function call to the plain C implementation

of the AES-cipher aes_set_decrypt_key in Line 21 of the displayed source code listing. A

call to aes_set_decrypt_key exists in two distinct locations within the initialization source

code of the AES-cipher. Both individual calls are reached under different execution paths

and conditions. The call in Line 21 of our source code listing is always reached: in case

neither V nor B are activated, this is the only statement which is included into the output

source code fragment. If at least one of the feature constraints is activated, the result-

ing fall-through path for the variational if control statements leads to this function call

instruction too. So consequently, our information-flow graph reports validly that this in-

struction may be reached in every configuration and consequently propagates information

about the tainted key further down the execution path. On the other hand, in Line 13 of

the source code listing, another call to aes_set_decrypt_key is present. This time however,

our analysis reports that a flow of the key to this instruction can only exist if B is enabled.

Note: to interpret the graph correctly, if B and V are both enabled, all three key set calls

can be reached7.

In contrast to the complex AES cipher initialization process of OPENSSL, we did not

observe a similar initialization of the AES key in MBEDTLS. First of all, the implementa-

tion of MBEDTLS for a minimal usage of the AES cipher is very light-weighted compared

to OPENSSL: only three files are linked together for such a program, whereas OPENSSL

requires a total of 22 different source code files. Likewise to OPENSSL, our information-
7In the original graph generated by our information-flow analysis strategy, these call nodes are reported

individually since for that kind of variability code duplication is performed.
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flow analysis successfully traces the tainted key variable until its expansion into a number

of separate round keys in the implementation of the AES algorithm within MBEDTLS.

This time however, the reported flow is completely variational. However, this variational

information-flow is mostly caused by a design pattern applied in MBEDTLS. As previously

outlined, in case the overall configuration of the MBEDTLS cryptography library is not

sufficient enough for a given program of the library, the program is executed with a de-

fault main method, which only prints out to the console, that at least one required fea-

ture is missing. Consequently, a minimum of two different execution paths through the

program exists, since there are two separate entry points based on the selected config-

uration options. But still, the information-flow of the tainted key remains variational if

we ignore the condition of the starting point. The MBEDTLS cryptography library can be

configured for minimal memory footprint. As consequence, if the configuration option

MBEDTLS_AES_ROM_TABLES is enabled, some static values of the AES algorithm, such

as lookup tables, are stored in ROM instead of normally in RAM. This fact results in two

different execution paths for the key expansion process.

6.5 Limitations

In this thesis we did successfully adopted the concept of SPLLIFT to be working on

configurable software systems written in the programming language C. To lex and parse

such software systems, the parsing infrastructure TYPECHEF is used. While both tools

target the analyzation of configurable software systems, they both differ in the way they

encode and handle variability. In order to analyze all variants of a configurable software

systems simultaneously with an variability-unaware data-flow analysis strategy one limit-

ing assumption must be made: type uniformity.

Real-life C configurable software systems often induce different data-types for numeric

values. From our own experience, we can report, that for example the LINUX KERNEL uses

this concept to support different hardware architectures and word-length. This kind of

variability is not directly expressed in the used AST abstraction in TYPECHEF, but detected

by the built-in type-check system of TYPECHEF. This system reports the correct type de-

pending on the configuration. Because of the fact, that this variability is independent

from the execution path within the program, one can not relay on type-information in a

naive, variability-unaware way. But this can be easily resolved, by treating such problems

variability-aware in the formulated IFDS data-flow problem, such as data-flow fact dupli-

cation. We see this limitation only as minor limitation, since to our knowledge, despite

our very own analysis, no further, fully working IFDS data-flow analysis problem for the C

programming language exist. Existing IFDS data-flow problems are tailored to be working

with other parsing tools, such as for example SOOT for software systems written in Java.

There are numerous case-studies existing for TYPECHEF, but setting up a new case-

study to be analyzed with the parsing infrastructure TYPECHEF is a non-trivial task. Cur-

rently, the possibly complex setup of a software system (e.g., configuration scripts, library
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dependencies, and the build-system setup) must converted per hand for TYPECHEF. We

think, that the TYPECHEF infrastructure would benefit massively from a more simplified

setup strategy which does not require special domain knowledge.



7. Related Work

In this thesis, we combined several research fields in order to enable the support of

interprocedural data-flow analysis for configurable software systems written in the pro-

gramming language C. Each individual field is still in focus by academia.

First of all, the problem statement itself has been investigated by researchers. Ferreira

et al. did use the TYPECHEF infrastructure, along with the same function pointer anal-

ysis strategy like we did, to investigate the influence of preprocessor variability on the

occurrence of vulnerabilities in the source code of the LINUX Kernel [FMK+16]. Its key

finding, that vulnerable functions have, on average, three times more #ifdef directives

than non-vulnerable ones, supports our problem statement for the requirement of inter-

procedural variability-aware code analysis strategies. A similar investigation on the LINUX

Kernel conducted Abel et al. [ABW14]. They mined the GIT repository of the LINUX Kernel

for real-life software defects. During their mining process, they found 42 defects which

are linked to variability. These defects have been categorized into different categories.

As a result, they made the observation that all kinds of defects are affected by variability

and variability leads to an increases of the complexity of the found defects. Finally, in

the scope of this research field Medeiros et al. conducted an interview study on how de-

velopers perceive the CPP in real-life [MKR+15]. Based on these interviews, the authors

found that developers are aware of the shortcomings of the usage of the preprocessor in

order to express variability. Nevertheless, developers avoid concepts outside of the C lan-

guage scope to express variability. Consequently, CPP directives remain in practical use

for real-life software systems.

As for the research field of static code analysis of configurable systems, Liebig et

al. were the first ones to implement variability-aware data-flow analysis in the presence of

conditional compilation directives [Lie15, LvRK+13]. Liebig’s implementation of the varia-

tional control-flow graph made it possible in the first place, to enable the tool combination

of TYPECHEF and SPLLIFT for interprocedural data-flow analysis on configurable systems.

Likewise to our approach, the intraprocedural data-flow analysis techniques by Liebig

et al. lack of support for pointer aliasing. In the same scope, Braband et al. [BRT+13] and

Bodden et al. [BTR+13] developed analysis strategies for configurable software systems

expressed in the programming language JAVA. Most notably Bodden et al. for their ap-

proach of lifting interprocedural IFDS based data-flow problems on configurable software

systems in JAVA. This concept we did migrate in this thesis for variable C source code.
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In general, Bodden and his research team are heavily providing mature data-flow anal-

ysis strategies expressed within the IFDS-framework. Their contributions to the research

community varies from providing a solver-framework for IDE/IFDS-problems [Bod12], to

taint analysis strategies for the mobile operating system ANDROID [ARF+14] and the pro-

gramming language JAVA [LHBM14]. Most recently, Späth et al. did proposed a solution

for the missing support of pointer aliasing in IFDS problems [SNAB16]. They presented

a flow-, field-, and context-sensitive pointer analysis strategy that is more precise than

other analysis strategies for JAVA programs. Further, this approach enabled the speed up

of other data-flow analysis tools, such as their own tool FLOWDROID, which are using the

IFDS-framework as well. However, to reach this result they did modify the used IFDS

solver. But we are confident, that this pointer analysis strategy might be applicable on top

of the parsing infrastructure TYPECHEF as well.

Medeiros et al. did compare ten different sampling algorithms for configurable sys-

tems [MKR+16]. In their study, they found that with an increasing number of sampling

configurations, the fault-detection rate increases and at some point detects all faults. In

contrast, simpler sampling sets, such as a configuration with most features enabled, are

significant more efficient in a timely manner while being more imprecise in detecting

faults.

The work of Nadi et al. addresses the remaining initial burden for setting up a new

software system as case study for the TYPECHEF infrastructure [NH13, NBKC14]. They

developed a static code analysis strategy which extracts configuration knowledge from a

configurable software system. Their implemented heuristic is able to extract a very high

percentage (> 90 %) of configuration constraints from the source code. Unfortunately,

not all configuration constraints are located in the source code. Configuration constraints,

which are caused by external dependencies, are only covered by a low percentage. Never-

theless, it is a step towards reducing the very high upfront investment using TYPECHEF.



8. Conclusion

In this thesis, we evaluated the potential of lifting variability-unaware interprocedural

data-flow analysis formulated in the IFDS-framework on configurable software systems

in C. To do so, we did successfully combine the parsing infrastructure TYPECHEF with the

IFDS solver for configurable software systems SPLLIFT. We learned, that the concept of

the variational control-flow graph provided by the TYPECHEF infrastructure is a sophis-

ticated and mature concept, which helped us to simplify the general lifting process of

SPLLIFT while improving its precision and eliminating existing limitations.

We were not the first ones in the attempt of combining both tools, TYPECHEF and

SPLLIFT, together. To our knowledge, both previous attempts did not succeed. Most

likely due to the fact, that they were unaware of the major difference in the concept

of the underlying control-flow graphs and the technical challenges (such as the distinct

identification between equal instances of nodes within the AST for different source code

statements) in the combination process of two independent academic-based static code

analysis tools.

To show the efficiency and correctness of this approach, we developed an assignment-

based information-flow analysis problem for the data-flow framework IFDS. This proof-
of-concept analysis we did apply as taint checking approach on the implementation of the

AES-cipher in two real-world cryptography libraries: MBEDTLS and OPENSSL. While our

analysis was not able to detect any information leaks, we were able to show the correctness

and efficiency of the adapted lifting technique of Bodden for configurable software systems

written in the programming language of C.

Although some minor conceptual limitations remain, we did contribute an feasible and

scaleable interproducural data-flow analysis framework for configurable software systems

in the C programming language.
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9.1 Tool Availability

The presented tool combination of TYPECHEF with SPLLIFT is available as a subproject

of TYPECHEF, called CSPLLIFT, and can be retrieved at:

https://github.com/aJanker/CSPLlift

During the development process we had to modify the parsing infrastructure TYPECHEF in

a custom fork. We are planning to integrate these changes back into the original TYPE-

CHEF project as these modifications address some general issues. This fork can be found

at:

https://github.com/aJanker/TypeChef

We included a convenient build script into the project of CSPLLIFT for an easy setup

along with all required dependencies. Both case studies and the used evaluation setup for

reproducibility can be downloaded here:

MBEDTLS: https://github.com/aJanker/CSPLlift-mbedTLS-Analysis

OPENSSL: https://github.com/aJanker/CSPLlift-OpenSSL-Analysis

Finally, since the C STANDARD LIBRARY is compiler- and platform-specific, the concrete

version used in our experiments is documented here:

https://github.com/aJanker/TypeChef-GNUCHeader

All mentioned tools, case studies and raw results of the experiments are provided on

the disc attached with this thesis.

https://github.com/aJanker/CSPLlift
https://github.com/aJanker/TypeChef
https://github.com/aJanker/CSPLlift-mbedTLS-Analysis
https://github.com/aJanker/CSPLlift-OpenSSL-Analysis
https://github.com/aJanker/TypeChef-GNUCHeader
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