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A B S T R A C T

Model Transformations are a primary artifact in Model Driven Engineering that ensure the
consistency between models by automating model changes. But their usage is not limited to
model evolution. They further can be used for model creation, model merging, model repair,
semantic lifting and auto-completion. Previously, several methods have been suggested
for automating the specification of model transformations, for example, from meta-models
or labeled examples. These approaches are limited to rather simple transformations or
require time consuming pre- or post-processing steps. We would like to overcome these
limitations by proposing a different, unsupervised machine learning approach that learns
model transformations from model histories, which can be derived from repositories. We
propose to use a Graph Variational Autoencoder (GVAE), which combines graph theory and
variational inference to generate new graph structures that should be preferably similar
to the input data. We provide a simplified version of model differences as input to this
framework, aiming to generate new realistic edit operations. To the best of our knowledge,
this work is the first of its kind and serves as a proof of concept. The thesis conducts an
initial investigation into whether GVAE can be applied to the specialized task of discovering
new/unseen edit operations. We evaluate the method across various experiments targeting
specific architectural decisions in machine learning. Our findings confirm that basic language
concepts can indeed be learned realistically. Additionally, there are indications that the
GVAE can identify previously applied edit operations. In summary, our preliminary results
suggest that using GVAE for deriving model transformations is worth further investigation.
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1
I N T R O D U C T I O N

1.1 goal of this thesis

In recent years, software and software development has become increasingly complex. Often
so-called Model-Driven Engineering (MDE) is therefore used to efficiently create software
products [18]. MDE utilizes models as key documentation artifacts, which should provide
a common understanding of the architecture and the design of the software system, such
that certain design choices can be discussed more easily [18]. This not only increases the
efficiency and success of the software development process but can also help in achieving
certain non-functional requirements, for example, maintainability and traceability [14].
In addition, it also opens the possibility to automatically create or execute the software
systems based on these models, which is known as Model-Driven Architecture (MDA) [18,
46]. This approach can also be used to overcome limitations of the underlying programming
languages, which, for example, lack features like classes and inheritance, making the code
quickly become unmaintainable. Partial code generation improves the maintainability of
such systems [12]. During the life cycle of the software systems, these models need to
be modified regularly. Main ingredients in MDE are therefore model transformations [10],
specifically, in our case, edit operations, which ensure the consistency between models and
the software product by automating model changes and updates [56]. But the usage of
edit operations is not only limited to the evolution of models but they can also be used for
model repair [62], semantic lifting [26, 42] and auto-completion [47].
However, the creation of these edit operations is a non-trivial task. Meta models usually do
not contain all domain-specific knowledge needed to construct these model transformations,
such that often understanding of implicit concepts and the semantics are required. Thus,
expert knowledge or even some kind of tacit knowledge of the language’s meta model
and the underlying paradigm of the transformation language is needed to construct model
transformations [7, 16, 73]. As a consequence, crafting these model transformations, particu-
larly in non-trivial scenarios and when domain-specific languages come into play, becomes
a challenging and error-prone task, contributing to significant overhead for numerous
projects [16, 41, 57, 73].
To extend the generation of model transformations to more complex and domain-specific
tasks, several approaches have been proposed [16, 41]. However, the vast majority of studies
concentrate on supervised approaches. These often necessitate manual pre-processing steps
where experts are required to provide transformation examples, which is error-susceptible
and labor-intensive, resulting in a limited amount of available data [73]. This restriction
notably undermines the practical use of supervised machine learning techniques. As a
consequence, supervised approaches are mostly restricted to mining edit operations that
were seen in the labeled data and are limited to rather simple cases. Unsupervised methods
do not require any special labeling. Edit operations are extracted out of a given meta
model [43] or extracted from model histories [73]. While meta models do not contain
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2 introduction

enough information to extract more sophisticated edit operations, meanwhile, other strate-
gies excel on smaller graphs but face scalability challenges on larger ones, making them
suboptimal [73]. In general, these methods struggle with achieving generalizability, their
limitations becoming even more pronounced when domain-specific languages are used [7,
16, 57, 73]. As far as our knowledge extends, the academic literature has yet to present a
comprehensive and universally effective solution. This highlights the ongoing disconnect
between academic research and practical needs, as no approach has yet proven to be highly
effective in real-world applications.

Intending to surmount these limitations, we propose a new approach. Instead, this mas-
ter thesis utilizes a machine learning model as a step towards mining edit operations in
an unsupervised manner. We investigate to what extend GVAE are in general suitable to
detect edit operations and discover yet unseen, new edit operations which can be useful
to domain experts [73]. This approach focuses on edit operations as an important class of
model transformations and is inspired by the fact that models can ideally be visualized
and mathematically formulated by graphs. As we will see, edit operations can be seen as
recurring patterns between two different model versions [73]. Our work is also inspired by
the recent progress in learning and generating graph structures, for example molecules,
and by the fact that Variational Autoencoders are well known for their ideal abstraction
and compression capabilities [32], which we hope we can benefit from. Further, using this
approach circumvents the need for data labeling and extensive pre-processing, such that
more data can be made available, for example, by crawling data from software repositories.

1.2 overview

Starting with Chapter 2, the thesis offers essential background information, crucial for
understanding the subsequent chapters. The chapter delves into the process of how edit
operations can be modeled as graphs in general and how the differences between subsequent
models are fed into the GVAE. A foundational overview of the machine learning context
is also provided, with a particular focus on GVAEs. Moving on, Chapter 3 delves into the
current state of research concerning mining model transformations and their limitations.
Further, it provides a review of related works on GVAE, which assisted us in determining an
appropriate framework for our application. The rationale and reasoning behind our choice
of GVAE is elaborated in Chapter 4. Further, Chapter 4 provides detailed information on
our implementation. In Chapter 5, our primary research questions are introduced, followed
by a description of the datasets employed for both training and the subsequent evaluation
of our approach. Detailed insights into the specific experiments conducted to answer the
research questions are provided, further specifying our exact implementation. Chapter 5 also
introduces our choice of metrics. Chapter 6 culminates with an analysis and interpretation of
our experimental results. Limitations along with our future research directions are outlined
in Chapter 7. Lastly, Chapter 8 serves as the capstone of this thesis, providing a concise
summary of our findings and reflections on the research journey.



2
B A C K G R O U N D

In the context of this thesis, which both addresses machine learning and software engineer-
ing, we encounter two distinct usages of the term "model". To ensure clarity and readability
throughout this document, we adopt the following convention. When referring to machine
learning models, we will explicitly state so. This disambiguation aims to facilitate a clearer
understanding of the respective domains and their overlap within the scope of this thesis.

Definition 1 Software Models are abstractions of a software system and its environment. Software
models are ways of expressing a software design, including, for example, Entities, Attributes, and
Interfaces.

Definition 2 Machine learning models are programs that learn from data to make predictions or
decisions for previously unseen data [58].

2.1 model transformations

During the lifecycle of a software system, software models need to be adjusted on a regular
basis. Model transformations are fundamental to this process, serving as an automated
means to construct and transform models. They address key tasks including model creation,
co-evolution management, and model merging within the realm of model-driven software
development [66].

Definition 3 Model transformations automate changes between models, which take one or more
source models as input and produce one or more target models as output, following a set of transfor-
mation rules [66].

As previously mentioned, the process of crafting these model transformations is not a
straightforward task. To shed a light on the intricacies involved in creating such model
transformations, one can refer to the illustrative example provided by Mokaddem et al. to
get the basic concept [57]. Model transformations can either be endogenous or exogenous.
Endogenous transformations are transformations between models expressed in the same
language and exogenous transformations are transformations between models expressed
using different languages and different meta models [56]. In literature, edit operations are
specified as endogenous, in-place model transformations [56, 73]. Edit operations include
model refactorings, recurring bug fixes, and evolutionary changes [73]. They can include
very large model changes, for example, setting up the entire model architecture and very
small ones where only one item is changed. We are not interested in either of these cases,
but rather interested in the most useful ones (Definition 14).

3



4 background

Package: Drive Brake Control

 Requirement: Haul
 Drive Mode can be  switched
on via  operating   switch in
 the cab.

Railcar

Cab

Coach
Status Haul Drive 

Status Haul Drive 

Component

Package

ComponentComponent
Requirement

Port Port

Connector

Figure 2.1: Example of deriving an Abstract Syntax Graph from a concrete model, example is
from Learning Domain-Specific Edit Operations from Model Repositories with Frequent
Subgraph Mining by Tinnes et al. [73]

2.1.1 Modelling of Edit Operations and Model States as Graphs

Models can be ideally represented by graphs [10, 25]. In the first step, Abstract Syntax
Graphs are created according to the types given in its meta model. A meta model M defines
the abstract syntax and static semantics of the language in use. A model is, therefore, an
instance of its meta model. In this thesis, we assume that the models are already correctly
typed.

Definition 4 An Abstract Syntax Graph of a model m is a typed attributed graph, typed over an
attributed type graph that is given by the meta model M.

An example of transforming a model to an Abstract Syntax Graph according to a given
meta model is given in Figure 2.1. The according meta model is given in Figure 5.1. We
continue to use a more simplified graph representation of the models. In this representation,
the Abstract Syntax Graph is simply portrayed as a labeled directed graph. The labels for
the nodes correspond to the node type names, while the edge labels represent the edge type
names within the Abstract Syntax Graph [73].

Definition 5 A labeled directed graph G is a tuple (V , E , l), where V is a finite set of nodes, E
is a subset of V ⇥ V , called the edge set, and l : V [ E ! L is the labeling function, which assigns
a label to nodes and edges according to the label alphabet L [73].

To further process these models represented as graphs, model differences between successive
model mn, mn+1 versions are computed. Therefore, first, deleted elements and newly
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Figure 2.2: Example of deriving the difference graph Gdi f f = Gn,n+1 from two model versions mn,
mn+1, example is taken from Learning Domain-Specific Edit Operations from Model
Repositories with Frequent Subgraph Mining by Tinnes et al. [73]

created ones are marked with a prefix as such in the corresponding model version, all
elements that were not changed are marked as preserved. After merging these models by
matching corresponding elements these adjustions lead to so called difference graphs, here
Gdi f f = Gn,n+1, an example can be found in Figure 2.2 [73].

Definition 6 A difference graph Gdi f f is a labeled directed graph where a prefix is added to each
individual node and label element, indicating whether the component was newly created, deleted, or
preserved.

Usually, only a small amount of model elements are subject to change within a single
evolution step. That is why these difference graphs are reduced to Simple Change Graphs
, which only include elements that are newly created, deleted, or nodes that are directly
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Figure 2.3: Example of deriving the Simple Change Graph Graph SCGGn,n+1 from a difference
graph Gdi f f = Gn,n+1. The SCGGn,n+1 includes all elements that were newly created
(prefix "Add") or deleted and all elements that are directly connected to such elements.
The example is taken from Learning Domain-Specific Edit Operations from Model
Repositories with Frequent Subgraph Mining by Tinnes et al. [73]

connected to such an element. An example is again provided in Figure 2.3. An edit operation
can be seen as a collection of model transformations that correspond to the same Simple
Change Graph.

Definition 7 A subgraph of a graph G = (V, E) is another graph G0 = (V 0, E0) such that
V 0 ✓ V and E0 ✓ E. A subgraph is formed by selecting a subset of vertices and a subset of edges
from the original graph. Each edge in the subgraph (with possibly a specific type) links two nodes
(with possibly also having specific types). Such an edge (with this specific type) connecting nodes (of
the defined types) must also exist in the original graph with the correct direction [22].

Definition 8 The subgraph, Simple Change Graph ( SCGGn,n+1) is derived from Gn,n+1 by select-
ing all the elements in Gn,n+1 representing a change (added, removed nodes and edges) and adding
preserved nodes that are adjacent to a changed edge.

2.2 machine learning

The thesis utilizes machine learning , specifically a GVAE to mine edit operations. That is why
we will continue with a short, informal summary of the basic machine learning concepts.



2.2 machine learning 7

Machine learning, in general, is the development and use of computer systems that are able
to recognize various patterns or regularities from large data sets or their experience [1]. The
collected information is then used to solve specific tasks [1]. Machine Learning is divided
into supervised, unsupervised, and reinforcement learning. In supervised learning the
training data needs to be labeled, meaning that each data point is mapped to its belonging
group. Later on, the machine learning tool should be able to map yet unseen data points
to their belonging group [1]. In contrast to supervised learning, unsupervised learning
does not require annotated data [1]. In this case, the algorithm learns the underlying
characteristics and connections of the data without them being labeled beforehand [1].
Another way to learn regularities is reinforcement learning. In this case, the learning pro-
cess is based on a reward function, where the agent being trained tries to maximize its
reward [1]. Consequently, it only learns from its experience, so no input data is necessary [1].

The creation of a machine learning model requires careful consideration of several im-
portant aspects.
Developing robust machine learning models requires appropriate validation strategies
to assess their generalizability. A common practice is to divide the dataset into training,
validation, and testing subsets. The machine learning model is trained on the training
set, the hyperparameter tuned on the validation set, and finally evaluated on the test set,
which consists of previously unseen data. The selection of evaluation metrics is another
crucial aspect that hinges on the nature of the task. For instance, regression tasks may
call for metrics such as Mean Squared Error or R-squared, while classification tasks could
require measuring Accuracy, Precision, and Recall. Each of these metrics provides a different
perspective on the machine learning model’s performance, making the choice dependent on
the specific objectives and constraints of the problem at hand [63].
It is crucial to pay attention to the optimization of hyperparameters, which can be a time-
consuming and complex process. This is primarily done to avoid pitfalls such as overfitting
(see Definition 9) [32, 79]. Hyperparameters, unlike other machine learning parameters such
as node weights, are not adjusted during the training process but rather prior to it [79].
Therefore, they must be optimally determined, often posing a significant challenge, given
that even minor adjustments can drastically affect the learning behavior [79].

Definition 9 Overfitting is a term in statistics that describes a function that is too closely aligned
with the training dataset. As a result, the machine learning model is only useful for this training
data, generalizes poorly, and therefore provides poor predictions on other, unknown data [72].

Choosing the right loss function to optimize is a key factor in machine learning model
training. A loss function quantifies how well the machine learning model’s predictions
align with the true values, and the goal during training is to minimize this discrepancy.
Depending on the task and method selected, different loss functions such as mean squared
error, and cross-entropy loss can be selected [11].
Further, one must ensure that the datasets used are representative, preventing any potential
bias or systematic errors relating to certain data groups.
The decision about the learning paradigm and the algorithm or machine learning model to
use should be guided by the end goal of the task. To name some examples of supervised
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approaches, if the aim is to assign each input to one of a finite number of categories, we
are talking about classification problems [11]. In classification, the goal is to predict the
categorical class Ck, where k = [1, ..., K] of an input element x, for example, an image or
graph [11]. This decision is based on past observations, which contain for each element a
certain label. If K = 2 we are talking about a binary classification. Unlike other classification
problems where an instance is tied to a single class, in the multi-label problem, the classes
are nonexclusive, meaning that an instance can be assigned to several classes without
any restrictions [54]. In the most common scenario, the classes are taken to be disjoint,
so that each input is assigned to one and only one class. If the task involves predicting
continuous outcomes instead, regression machine learning models might be the right choice.
Example algorithms for both include Support Vector Machines, Decision Trees, and Random
Forest [11].
In unsupervised learning tasks, one possible aim could be to uncover clusters of analogous
instances within the dataset (clustering). K-Means or Hierarchical Clustering are possible
approaches for this [11]. If the task involves reducing the dimensionality of data for
visualization or feature selection, techniques such as Principal Component Analysis (PCA)
can be used [11]. For tasks like teaching an agent to win a game by learning from its actions
and their consequences, reinforcement learning methods might be the best fit, including, for
example, Q-Learning or Actor-Critic algorithms [71].

2.2.1 Graph Neural Networks

In our exploration of machine learning techniques, we now turn our attention towards neural
networks, specifically graph neural networks. This choice is motivated by the particular
needs of this thesis, as we employ a Graph Variational Autoencoder, for mining edit
operations. Neural networks are machine learning models, which are able to capture non-
linear, complex relationships between data elements. They are widely used in many different
domains, such as image recognition, natural language processing, and predictive modeling,
to only name a few [32]. Neural networks are composed of several layers of interconnected
neurons that process data [60]. Often, one visualizes the layers of a network as listed from
left to right, where the input x is introduced on the left and the output y emerges from the
right (see Figure Figure 2.4). The leftmost layer in the network is called the input layer and
the rightmost is called the output layer. The middle layers are called hidden layers [60].

Graph neural networks are a specific form of neural networks, that accept and process
graph-structured data as their input. Since graphs in general are usually built very differently,
for example, have different sizes and structures with regard to their edges, they somehow
need to be transformed to a comparable representation that can be understood by neural
networks. Therefore different approaches were introduced in the past, Probably the most
commonly used is to present graphs through their adjacency matrix, feature matrix, and
edge feature matrix [76]. Let G = (V , E , l) be a directed, labeled graph with n nodes and e
edges (Definition 5) and l a labeling function l : V [ E ! L. We further define a sentence
encoding function:

Definition 10 A sentence encoding function maps the node and edge labels or labels in general to
an integer value. x : L ! X, where X ✓ R
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Input Layer ∈ ℝ¹⁴ Hidden Layer ∈ ℝ⁶ Hidden Layer ∈ ℝ¹⁰ Output Layer ∈ ℝ⁴

Figure 2.4: Introductory example of a neural network architecture

The adjacency matrix A of G is an n ⇥ n matrix defined as follows:

Ai,j =

8
<

:
1, if (i, j) 2 E

0, otherwise

where Ai,j is the (i, j) entry of the matrix A.

The feature matrix V of G, with dn features is defined as follows. Note that in our case
dn = 1 because we currently consider only a single node feature, therefore j = 0. This
feature encapsulates both the node type, as defined by the meta model, and an additional
prefix. Each node i therefore has its feature fi, such that each row i represents the feature
vector of node i. In our specific case fi 2 X.

Vi,j =

8
<

:
fi,j=0 if i 2 V

0, otherwise

where Vi,j is the (i, j) th entry of the matrix V and j = 0 since we currently consider only a
single node feature.

The edge feature matrix E of G of size n ⇤ n ⇥ de is defined as follows. Again, we only have
one label per edge, so de = 1, therefore j = 0 and hi 2 X. .

Ei,j =

8
<

:
hi,j=0 if i 2 Eindex

0, otherwise
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where Ei,j is the (i,j) th entry of the matrix E, and hi,j is the j-th feature of edge i.

The edges in the matrix are sorted according to an additional edge index matrix Eindex,
mapping an edge with source s and destination p to the corresponding edge index i of the
matrix.

2.2.2 Graph Variational Autoencoders

To further dive into the Definition of Graph Variational Autoencoders, it is necessary to un-
derstand the basic concept of Autoencoders and Variational Autoencoders. An Autoencoder
is a neural network framework that is used for dimensionality reduction and representation
learning in an unsupervised manner [32]. It consists of an encoder and a decoder [32]. The
encoder maps an input data point, represented by a vector x, to a lower-dimensional latent
representation encoding z. The decoder then maps the latent representation back, trying to
reconstruct the original input data [32]. So the goal is to learn to minimize the difference
between the input data x and the reconstructed data x0, which is measured through the loss
function [32, 77]. Since the latent vector z has a restricted, smaller size than the input and
output vector, the autoencoder usually needs to prioritize which aspects of the input are
of most importance to minimize the loss between input and output data [32]. This has the
consequence that often useful properties of the input data are derived [32].
Variational Autoencoder (VAE) are similarly built but extend Autoencoders with an ad-

ditional probabilistic element [45]. Instead of solely learning a representation, Variational
Autoencoders are generative models, where the main difference lies in the latent space.
During the following, we will solely focus on Graph Variational Autoencoders, which learn
representations of graph-structured data and are devoted to generating similar graphs to
the input graphs.
In Variational Autoencoders, the encoder qj(z | x) maps the input data to a latent space
parameterized as a multivariate Gaussian distribution. The encoder is essentially learning
to approximate the posterior distribution of the latent variables given the input data. This
multivariate Gaussian is characterized by its mean and covariance, both of which are outputs
of the encoder. To simplify the calculations, often the assumption is made that the latent
variables are independent, such that only the variances for each dimension in the latent
space are required [23, 45]. The encoder takes a data point x, in our case a graph, and
predicts for each latent variable the mean and variance of a distribution [49, 77]. This is
in contrast to traditional autoencoders, which map inputs to a fixed point in the latent
space [77]. To dive deeper into understanding GVAE, we will compare the latent space of
GVAE with the one of a basic autoencoder. Figure 2.6 and Figure 2.7 and shows how different
data points (in our case, graphs) are mapped to a 2D embedding space.

In Figure 2.6 we see that similar graphs do not necessarily need to be mapped closely to
each other, such if sampling from the latent space can result in unrealistic graphs that do
not look similar to any of the input graphs used for training. While in Figure 2.7, points
that are close in the latent space are also similar graphs when decoded. This opens the
possibility to sample new, realistic graphs.
After the input data points are mapped to the latent space distribution, the decoder then
generates new graphs by sampling random points from the distribution, the parameters of



2.2 machine learning 11

Figure 2.5: Basic concept of a Variational Autoencoder

Embedding space Autoencoder  

Figure 2.6: Latent space of an autoencoder with its arbitrary structure
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Embedding space Variational Autoencoder 

Figure 2.7: Latent space of an GVAE, where graphs are not arbitrarily spread over the latent space
due to the regularization term of the loss function

which were calculated by the encoder. However, the process of sampling from a distribution
that is parameterized by our machine learning model is not differentiable, which is a
problem for gradient-based approaches [45]. As a solution to this problem, the reparameter-
ization trick was introduced. The reparameterization trick is a technique used in variational
inference to allow gradient-based optimization of stochastic variables by transforming them
into a different form that is differentiable with respect to the machine learning model
parameters [45].

The reparameterization trick involves representing the sampling process as noise, specif-
ically in this case as a standard normal distribution (i.e., µ = 0 and s = 1) [45]. This
noise term is independent of the machine learning model [45]. From this standard normal
distribution, a sample is randomly taken [45]. Then the scaling and shifting properties of
the Gaussian distribution are used, which includes changing the mean and variance of a
sample by simply adding the mean and multiplying by the variance [45]. So the sample
can consequently be scaled by the predicted mean and variance. So overall, for the decoder
input, random points z are sampled via z = zµ + zs ⇤ e from the encoder distribution, where
e ⇠ N(0, 1) is a sample from the standard normal distribution [45].
In the simple case of using autoencoders, usually, loss functions such as the mean squared
error or binary cross-entropy are usually used. As a consequence, the data points are
arbitrarily spread over the latent space, sometimes leading to discontinuities or gaps in the
latent space [28]. Thus if the decoder samples new objects from these regions, the output
can be unrealistic [28, 45]. That is why the loss function of VAE consists of two main parts,
the reconstruction loss, and regularization loss [49]. The reconstruction loss measures how
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well the network reconstructs the data. Often, mean squared error or binary cross-entropy
are used, for example, for image data. One main problem of using Graph Variational Au-
toencoders arises in the reconstruction loss, which necessitates a graph matching procedure
to compare the input graph and its probabilistic reconstruction. Unlike sequence generation
graphs can have arbitrary connectivity and there is no clear best way how to linearize their
construction in a sequence of steps [68]. Checking whether two graphs are isomorphic
is in general is NP, but it is not yet clear whether it belongs to either P or NP-complete.
Its generalization, the subgraph isomorphism problem, is known to be NP-complete and
therefore tied to high computational costs [6, 29]. Therefore, in practice, approximations
depending on the task at hand need to be specified.
Since there are not yet any constraints on µ and s the encoder can learn to generate very
different µ for different graphs, clustering them apart and also minimizing s such that the
new graphs do not vary much from the input graphs. To avoid this, the loss function does
not only include the reconstruction loss but also a regularization term. The Kullback–Leibler
divergence( KL divergence) provides a measure of how much one probability distribution
differs from another [28, 45]. In the case of Variational Autoencoders, we aim to assess the
difference between our learned normal distribution, parameterized by µ and s, and the
standard normal distribution.

Definition 11 KL Divergence Variational Autoencoder.

DKL [N(µ, skN(0, 1)] =
1
2 Â

�
1 + log

�
s2�� µ2 � s2� [3, 28] (2.1)

Ultimately, the KL divergence serves to harmonize the latent space, encouraging an even
distribution around the center of the latent space [28, 45]. It also encourages a smooth and
continuous mapping in the latent space, where similar data points are mapped more closely
together and not arbitrarily spread over the latent space. To conclude the loss function of a
GVAE is defined as follows. In the specific case of using a GVAE, x are graphs, specified via
their adjacency matrix A, and feature matrices V and E.

Definition 12 Loss Function Graph Variational Autoencoder [3, 32].

L(q, f) = � Ez⇠qq(z|x)
⇥
log pf (x | z)

⇤
| {z }

Reconstruction Error

+ DKL (qq (z | x) ||p(z))| {z }
KL Divergence

(2.2)

A rigorous mathematical foundation for VAEs is presented in the original work [45]. This
approach demonstrates that, under certain assumptions, the network can accurately learn
the original distribution [45]. However, the numerous assumptions and approximations
involved when dealing with graphs may compromise its accuracy in real-world scenarios.

2.2.3 Probing

In the context of machine learning probing refers to the examination of machine learning
models to understand what kind of information they have captured [8]. Specifically focusing
on GVAE, we can analyze and examine the latent representation of the GVAE to find out how
different graph structures, properties, and features are embedded in the latent space.





3
R E L AT E D W O R K

This study resides at the intersection of machine learning and software engineering, focusing
particularly on model transformations and the automation of specifying edit operations
with the help of GVAEs. Given this interdisciplinary approach, the related work is organized
into two main sections, discussing related work on model transformations and approaches
from the VAE and GVAE domain.

3.1 mining model transformations

Several approaches for mining model transformations have been proposed in the last few
years. Recent work varies in focus, with some studies concentrating exclusively on exoge-
nous model transformations [7, 9, 65], and others, including this Master thesis, focusing on
endogenous model transformations [73]. There are many different approaches including,
for example, syntax-based support [5] [38] approaches and Model Transformation by Exam-
ple (MTBE) approaches [44].
MTBE simplifies the creation of exogenous model transformations by making use of the
knowledge embedded in practical examples, allowing users to design more complex,
domain-specific model transformations with standard model editors [16]. In MTBE ap-
proaches usually one or more examples of model transformations are provided [2] [44]. For
example, in the form of a concrete example [15], a pre-model and post-model [16] [44] or a
set of positive and negative examples is given [30]. Then either edit operations should be
derived from these examples, or it should be learned how one model is transformed into
another [15][16][44].
To name a concrete example, Saada et al. propose an approach that is supposed to assist in
writing declarative exogenous model transformations [65]. In the approach, models are also
represented by labeled graphs and both the fragmented source models and target models
are given to their system as input [65]. Furthermore matching links between fragments
established by experts or by an automatic matching technique are given to the system. These
links show which fragments of the source are mapped to which target fragments and are
often a combination of some simple transformations [65]. These are then classified using
the so-called GRAAL approach, which is a graph mining approach, to get useful common
subgraphs. Afterward, new transformation patterns are then found from the classification
of the matching links [65].
In opposite to several MTBE methods that haven’t yet incorporated machine learning in their
frameworks [15] [70] [57] [41], the following approaches utilize machine learning to infer
model transformations bypassing the extremely long runtime. They introduce a supervised
learning approach that automatically infers heterogeneous model transformations from
sets of input-output model pairs with the help of Long Short-Term Memory (LSTM) neural
networks [16, 17]. The authors state, that differing from previous works, their method learns
purely from input/output model pairs without needing any user-provided correspondence
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or traceing information. Making the method also usable for non-experts. As an overall
goal, the system should be able to transform input models into their corresponding output
models. They combine two LSTMs to an Encoder-Decoder architecture and choose a tree-like
structure as an input that represents the models [16]. The tree representation also introduces
a problem similar to the isomorphism problem with graphs [16]. Different ordering of the
model elements in the tree would be considered as different input models [16]. Burgueno et
al. address this problem by sorting the elements in alphabetical order [16]. Before their input
trees are given to the first LSTM, they map variable names and attribute names to a closed
set of words [16]. This additional step needs to be done since these variable and attribute
names can be arbitrarily, so no finite dictionary of words would be given [16]. This would
lead to the problem that only names that are used in the train set could be recognized by
the Encoder-Decoder framework. When predicting new models, the inverse operation is
performed as a postprocessing step [16]. In our first step of using graph neural networks,
i.e. in this Master thesis, we similarly limit the dictionary of available words. The authors
evaluate their approach to model-to-model transformations, for example, Class-to-Relational
and code generation where they limited the size of the input model to 30 model elements
[16]. The accuracy of their approach is tested by comparing the output model by the network
with the corresponding expected output model [16]. In their second study, the network was
trained to use a UML class model as an input and generate its corresponding structural Java
code [16]. One problem stated in the paper is that for this supervised learning approach
enough data is required to have adequate results [16]. Further, the authors state that the
quality of the training depends a lot on the diversity of the dataset and state that the network
is limited to only predicting models according to a pattern is has seen before [16], so the
approach does not perform well in generalizing [16]. One main problem is that they do not
consider mapping isomorphic AST-trees to the same representation. We first, address their
problems by using graphs instead of AST representations. Further, our work stands out
against the work of Burgueno et al., which focuses on exogenous model transformations
and provides only a supervised setting.
To conclude, typically, these approaches also require some manual processing steps, for
example, the user might need to provide a set of examples, which then need further
manual adjustments to be turned into general specifications [73]. This process is not only
time-consuming but also limits the data quality and quantity, affecting the overall quality,
especially if machine learning is used [73]. For general-purpose languages like UML, there’s
a large user and researcher base to create, test, and validate refactoring rules. However,
this isn’t the case for Domain-Specific Languages (DSLs) [57]. The lack of a substantial
user base and the need for specific expertise make defining edit rules for DSLs challenging
[57] [73] [41]. Consequently, performance is often suboptimal, as most methods are only
able to handle patterns seen during training and fail to generalize well [7, 16]. Especially if
domain-specific languages are used.

Unsupervised methods don’t require any special labeling and include creating model
transformations out of a given meta model [43]. Meta models, beyond basic consistency and
well-formulated rules, don’t always incorporate domain-specific concepts and semantics.
Consequently, generating model transformation from a meta model is usually limited to
primitive tasks [73].
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Tinnes et al. propose an unsupervised approach, called OCKHAM, which can learn useful
edit operations from model histories in model repositories. Of course, which edit operation
can be considered to be useful is highly task dependent. Due to the fact that the paper
focuses on the evolution of models, in this context useful edit operations could be the
ones helping to understand the model evolution [73]. Their work follows the idea of the
Occam’s Razor principle, which can also be applied to several topics in the field of software
engineering [73].

Definition 13 The Occam’s Razor principle states that entities should not be multiplied unnec-
essarily which is interpreted as requiring that the simplest of competing theories be preferred to
the more complex or that explanations of unknown phenomena be sought first in terms of known
quantities [27].

In the specific context of model transformations, this implies that the most important and
therefore useful edit operations are the ones that compress the model differences [73].

Definition 14 In the context of this paper, drawing upon the work of Tinnes et al., useful edit

operations to domain experts are defined as those that facilitate an understanding of model evolution
and most effectively compress the modeling history [73].

As an illustration, a singular modification might recur numerous times, however, it is
typically not interesting [73]. On the contrary, the total transformation in a model might
involve a multitude of changes, yet with a frequency of just one occurrence, it is typically
also not an interesting edit operation [73]. This idea of simplicity is also applied in this
thesis with the help of Graph Variational Autoencoders, which, by design, reduce the input
graph to its most important features [73]. The paper focuses on in-place edit operations
and uses labeled graphs instead of typed graphs [73]. OCKHAM consists of several steps,
starting with computing the difference graphs between subsequent models. Afterward, these
difference graphs are reduced to Simple Change Graph (SCG) (more in Definition 8)[73].
Afterward, recurring change patterns are discovered using frequent subgraph mining
[73]. Frequent subgraph mining takes a threshold t as an input and a set of graphs. Its
output consists of all the subgraphs with, at least, t occurrences in the graph set [21]. This
hyperparameter, t, needs to be carefully chosen [73]. A small support threshold might lead
to a huge number of frequent subgraphs and computational effort and would it make
difficult to find relevant subgraphs. As a tool for this process, they use the GASTON miner
[73][61]. Their idea by Nijssen et al. is based on an iterative approach where the complexity
of the graphs increases step by step. First, their approach finds frequent paths, then frequent
free trees, and finally, cyclic graphs, which should make frequent subgraph mining more
efficient[61]. Afterward, these frequent subgraphs are ranged according to their usefulness
defined earlier.
One of the significant challenges that this Master thesis aims to tackle is the substantial
computational effort required by this approach. Moreover, the method fails to consider
important attribute information such as component names and generally does not account
for inheritance. As a consequence, the approach by Tinnes et al. lacks abstraction capabilities.
For instance, it perceives two edit operations that are identical except for one type, even
if they share a parent type in the meta model, as different operations. This limitation can
potentially lead to some operations being overlooked. These deficiencies could potentially
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be addressed using a Graph Variational Autoencoder with the help of feature vectors. There
are also minor issues that need attention. The first is the dataset’s high variance, while some
difference graphs are quite small, others are significantly larger. The second problem is that
the method can only identify edit operations if all components are linked by one hop in the
model graph, a limitation that usually poses a challenge in subgraph mining. The so-called
"locality relaxation" problem limits the discovery of patterns that spread across multiple
connected components of the SCG. By using Graph Variational Autoencoders we circumvent
this issue. Still, this thesis integrates several aspects of the work by Tinnes et al. [73], for
instance, using the dataset and computing the SCG and is, to our knowledge the only work
mining endogenous model transformations in an unsupervised way [73].

Comparatively, the volume of academic papers focusing on models is notably less than
those zeroing in on code patterns and completion [55, 59]. These fields are closely related,
which suggests that some ideas from the realm of code patterns and completion could also
be insightful for our purposes. To give a small illustration of some work, Nguyen et al.
propose CPATMINER, which does not work on models but on code [59]. Their proposed
approach detects previously unknown repetitive changes from a large set of code repos-
itories [59]. Nguyen et al. also model code changes as graphs to better capture program
dependencies. These change graphs are then given to their mining algorithm, which pro-
duces frequent subgraphs [59]. They made some adjustments to their recursive mining
algorithm, which first constructs small subgraphs, expanding them in the course of the algo-
rithm [59]. These adjustments include clustering isomorphic graph extensions into groups
of isomorphic graphs using a heuristic. Further, not all possible extensions of a frequent
subgraph are taken into account, but only the most frequent ones [59]. Their approach seems
to be promising with regard to effectiveness performing better than AST-based techniques,
supporting our assumption that graphs are in general better suitable for mining model
transformations [59]. Revisar is a technique aimed at discovering quick fixes in large code
repositories without explicit suggestions from users. Further, they are prioritizing them
based on actual usage patterns [64]. It leverages collective programmer wisdom, learning
from revision histories to detect frequently applied modifications. The process involves the
use of Abstract Syntax Trees (AST) edits and d-caps to mine edit patterns [64]. Further, Yu
et al. present a technique to automatically detect only those changes in software programs
that are relevant to a specific development task, addressing the problem of traditional tools
that often notify developers of more changes than necessary [81].

Overall, methods for model transformation either have the drawback of being computation-
ally expensive due to the subgraph isomorphism problem [6, 73] or utilize (semi-)supervised
machine learning algorithms that often need manual processing [73]. In conclusion, the
current state of model transformation methodologies faces significant challenges, calling for
further innovation and advancements in this field. In our work with the Graph Variational
Autoencoder, we encounter a similar challenge, dealing with the graph isomorphism prob-
lem. In recent years, various neural network architectures have been developed to efficiently
represent graphs. The goal is to accurately capture graph similarities while maintaining
reasonable processing times.

We will have a closer look at these methods in the following chapter.
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3.2 deep learning approaches for graph-like structures

Several related works provide insight into how GVAEs can be effectively utilized and tai-
lored to our setting. Graph Variational Autoencoders are used in several research fields for
different purposes, including Malware detection [34], identifying of graph diffusion sources
which find applications in the identification of rumor propagation, computer viruses, or
smart grid failures [51] and in the generation of Dynamic Topic Models for text corpora [33].
The most significant success of GVAE was achieved in the application field of molecule
generation. While most work concerning GVAE focuses on molecule generation, only a small
amount of research in the field of software engineering utilizes GVAE or similar concepts
like Variational autoencoders [36] or graph autoencoders.

In an approach by Sfax et al., a semantic-based approach using a Variational autoen-
coder is used to detect code smells. Instead of using graphs as input, they transform the
code to an Abstract Syntax tree, which is transformed into a vector representation before
being given to the autoencoder [36]. Once this step is completed, the Variational autoen-
coder will be used to construct representations that ideally embed the required semantic
features. Afterward, these learned semantic features will be fed into a Logistic Regression
to determine whether something is a code smell or not [36]. Their method focuses only on
detecting the code smells Blob, which are large classes that implement most and therefore
too many functionalities, Feature Envy and Long Method [36]. Feature Envy is a method
that is more interested in using the data in classes other than its own [36].
Further, Sukur et al. present a proof-of-concept system for automatic program optimiza-
tion [69]. They use Abstract Syntax Trees to represent the programs, Graph Autoencoders to
embed the programs, and a Deep Reinforcement Learning Agent to learn which program
transformations are to be applied to various types of programs in order to improve it with
respect to the McCabe Complexity Metric [69]. They compare their approach with FermaT
which relies on exhaustive search algorithms [69]. The system was found to significantly
outperform the traditional FermaT method, reducing program complexity by an additional
15% on average, while requiring fewer transformations [69]. A notable drawback of the
proposed system is its runtime, attributable to the computational complexity of running a
deep learning machine learning model [69]. However, once trained, the embedding machine
learning model and Reinforcement Learning agent can be used to transform new, previ-
ously unseen programs, demonstrating its efficacy over exhaustive search methods [69]. In
conclusion, this approach offers a promising advancement in program optimization, with
the potential for broad real-world applicability and performance improvement in software
engineering. [69].

Paper focusing on molecule generation appear to hold considerable potential. There is
a broad spectrum of research concentrating on Graph Variational Autoencoders, with many
of them geared toward highly specific properties. A comprehensive review of all these
works would be beyond the scope of this thesis. Below, we selected a few that guided us in
our decision-making process.
Research can be divided based on numerous distinguishing factors. One of these factors
is how the input graphs are being processed. Liu et al. introduce a constrained Graph
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Variational Autoencoder (CGVAE) to generate molecules [52]. In the paper, they address
the problem of huge graphs being intractable by regarding graphs sequentially. Meaning
that their decoder extends a certain graph step by step. One downside of this approach is
that arbitrary graph linearizations have to be considered, immensely increasing the amount
of training data needed [52]. Moreover, by adopting such an approach, we risk losing
the inherent advantages of possessing graph structures. We aim to effectively utilize and
preserve the properties these structures offer, hence, linearization strategies do not present
a viable solution for our requirements.
Liu et al. address this linearization problem by designing the learning objective in a way,
that it only depends on the current state of generation and not on the arbitrarily chosen
path to that state [52]. Their generative process interleaves between selecting a new node,
edge selection, edge labeling, and node updates [52]. Even though their decoder has a com-
pletely different structure than ours, especially interesting is that they also optimize their
CGVAE by exploiting hard domain-specific constraints, like molecule stability and enforce
these constraints by masking out graphs that do not correspond to these constraints [52].
Further, such a sequential graph generation could become handy when dealing with model
completion.
Simonovsky et al. further present a non-autoregressive VAE that generates molecular graphs,
named GraphVAE [68]. Instead of generating output graphs step by step, the GraphVAE
approach outputs graphs at once with a predefined maximum size. Considering that the
objective of this study is to conduct an initial exploration into the applicability of Graph
Variational Autoencoders, we have opted for the simpler approach of One-shot Graph
Generation. This decision allows us to maintain a clear focus on assessing the general utility
of GVAEs in a straightforward context.
Addressing isomorphism is a significant challenge when working with graph data due
to its computational expensiveness [6, 29, 68]. Moreover, dealing with isomorphism can
be particularly challenging. Overall, isomorphism presents both theoretical and practical
challenges in the generation of graph data and is a critical issue to address when designing
algorithms [6, 29]. An approximate graph matching strategy should be chosen carefully
and aligned with the desired objectives. Simonovsky et al. address the problem of graph
isomorphism, meaning that isomorphic graphs may have completely different matrix repre-
sentations by using an approximate graph matching algorithm, which is tied to expensive
computation [49, 68].
Winter et al. address the problem of graph isomorphism with respect to Graph Variational
Autoencoders differently [75]. Alongside the GVAE, they train a permuter machine learning
model that assigns to each input graph a permutation matrix to align the input graph
node order with the node order of the constructed graph. Their approach does not impose
particular node order nor is expensive graph matching needed [75].
Xu et al. present a theoretical framework to analyze different graph neural networks with
regard to the success in capturing and differentiating different graph structures [78]. Further,
they introduce a new neural network architecture, Graph Isomorphism Network (GIN),
which they state outperforms other known architectures with regard to how well graph
isomorphisms can be detected [78]. GINs follow the idea of the Weisfeiler-Lehman graph
isomorphism test, which is an effective and computationally efficient test that distinguishes
a broad class of graphs [78].
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Overall recent work showed us, that one of the main bottlenecks for performance is the
computation of mapping isomorphic graphs to the same matrix representation [75].
This work is partly based on the work of Kwon et al. [49]. In their work, they utilize a Graph
Variational Autoencoder in a non-autoregressive manner to generate new molecules [49].
They further improved their approach by adding three additional learning objectives. Ap-
proximate graph matching, reinforcement learning, and auxiliary property prediction. They
utilize reinforcement learning to improve the generation performance [49]. The reward for
the action is the chemical validity of the probabilistic graph, which returns 1 if the graph can
be decoded into a chemically valid molecule and 0 otherwise [49]. Concerning the machine
learning architecture, they use a message-passing neural network (MPNN) as an encoder,
which is able to work on graphs of different sizes and is invariant to graph isomorphism. For
the decoder, a fully connected neural network is used. The problem of graph isomorphism
is addressed by approximate graph matching to make training more efficient [49]. We use
their implementation as a base for ours, which also includes their graph matching objective.
Still, their formula seems to be a bit arbitrary and may be too simple. Anyway, we use it as
a starting point for further improvement. While their approach performs well in generating
smaller molecular graphs, nonetheless it still has some difficulties in machine learning
model training and thus in generating larger graphs (low validity) [49]. Kwon et al. state
that one downside of their approach still is the high complexity with regard to space and
time [49].
Liu et al. also propose a learning framework that compares different approaches of rep-
resentations and networks with regard to how they are performing in the approximation
of the subgraph isomorphism counting problem [53]. Given a pattern and a graph, the
method aims to determine how often the pattern occurs in the given graph [53]. While these
methods may be inexact, Liu et al. introduce a method that generalizes well such that errors
are kept at an acceptable low amount while the computational performance is tremendously
increased (linear time instead of exponential) [53]. Regarding the representation of graphs
and patterns, the authors compare sequence inputs and graph inputs. For sequence inputs,
they use CNNs, RNNs such as LSTM, or Transformer-XL to extract high-level features. For
machine learning models which use adjacent matrices and node features, they test RGCN
and GIN [53]. The authors conclude that graph representations in general perform better in
capturing isomorphism and counting patterns. Also, the authors support the claim by Xu
et al. that GINs perform considerably well with regard to capturing homogeneous graph
structures and therefore outperform other existing approaches [53]. The work by Xu et al.
and Liu et al. gives valuable insides into the performance of graph neural networks, which
will also help in the remainder of this thesis in the architectural decision process.
Liu et al. additionally provide an algorithm to generate training data since not enough
data is provided by existing datasets to train graph neural networks [53]. The algorithm
generates graphs, and patterns and at the same time calculates the ground truth of how
often the pattern is contained in the graph [53].
Unlike recent studies, we focus on edit operations instead of molecules. While molecular
studies often rely on undirected graphs, dictated by the inherent nature of molecular struc-
tures, our work necessitates the use of directed multigraphs.

In our case of generating edit operations, these newly generated objects should be valid
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according to our meta model. Even with an excessive amount of training data, the validity
can not always be guaranteed, leading to the need to filter out such invalid edit operations
afterward. This problem also occurs in other research fields, since many structures have
domain-specific constraints [19].
To address this problem Kusner et al. propose a Grammar Variational Autoencoder, which
directly incorporates a check for syntactic validity of graph-like structures. In their work,
they use the SMILES notation and its grammar to test their approach on molecules [48].
Although Kusner et al. propose a method for generating syntactic valid molecules, it still
does not consider semantic validity [48].
Dai et al. extend their work, which embeds also the generation of only semantically valid
objects in their Variational Autoencoder framework [19]. We propose guaranteeing the
validity of the generated SCG as future work.

De Cao et al. propose MolGAN, which instead of Graph Variational Autocoders, uses
a generative adversarial network (GANs) to generate molecules [20]. A GAN consists of
two neural networks contesting with each other [20]. While the generative model learns to
sample new data, the discriminative model tries to classify whether samples came from the
original data or from the data generated by the generative model [20]. The approach should
circumvent the need for expensive graph matching procedures or node ordering heuris-
tics [20]. De Cao et al. also add a Reinforcement learning objective using a simplified version
of DDPG to their GAN to support the generation of special desired molecule properties [20].
DDPG is an off-policy actor-critic algorithm that uses a deterministic policy to maximize
an approximation of the expected future reward [20]. Additionally using Reinforcement
Learning could also improve our results of generating valid edit operations according to the
meta model. Therefore the GAN approach gives us a great inside on the performance of the
interplay between this additional Reinforcement Learning factor and their main contribution,
which could be beneficial in the future to decide which Reinforcement Learning approach
should be used and gives us a starting point for hyperparameter tuning. On the other hand,
GANs have a reputation for being difficult to train [4]. The interaction between the generator
and the discriminator can often lead to non-convergence, due to players competing with
each other [31]. Secondly, GANs can suffer from a problem known as mode collapse. The
generator can discover a particular type of data that is exceptionally effective at deceiving
the discriminator [31]. Once this happens, the generator starts producing limited or even
identical outputs over time, resulting in a lack of diversity and uniqueness in the gener-
ated samples [31]. Conversely, Graph Variational Autoencoders present a more favorable
approach for our work. GVAEs are generally easier to train allowing easier and more stable
optimization [20]. GVAEs are less prone to mode collapse, thereby offering greater diversity
and uniqueness in the generated molecules [20]. While I have elected to use GVAEs in our
study, inspired by De Cao et al., I propose a comparison of GAN-generated results to ours
in future work.
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4.1 problem statement and the motivation behind using graph varia-
tional autoencoders

Creating edit operations is far from simple. Meta models lack the specific domain knowl-
edge needed to define these transformations. Further, understanding of implicit concepts
and semantics are often required [7, 16, 73]. The complexity rises when dealing with
domain-specific languages, adding significant overhead to many projects [16, 41, 57, 73].
Various methods have been proposed to tackle more complex and domain-specific tasks
(see Section 3.1). Shortly summarizing, traditional methods often require laborious, error-
prone manual pre-processing, indirectly also limiting the training data available [37]. As a
consequence, they are limited in their ability to generalize [7, 16, 37]. Most methods can
only identify edit operations present in the training data and/or are limited to simpler cases.
We address these issues with an unsupervised approach aimed at automatically extracting
model transformations from model histories. Unsupervised methods have the advantage of
not needing any labeled data, model transformation could, for example, be derived from
meta models only. Anyway, beyond ensuring basic consistency and well-defined rules, meta
models often lack the inclusion of domain-specific knowledge and semantics. As a result,
creating model transformations based on these meta models is generally restricted to simpler
tasks [73]. Instead, we propose to mine model transformation from model histories making
it directly possible to extract more data, for example, from online repositories. There is only
limited existing work in this unsupervised setting, our method tackles their shortcomings,
namely generalizability issues and ideally scalability in the future [73] through machine
learning, hopefully benefiting from recent advancements in the field. Using machine learn-
ing opens a wide range of new possibilities, probably many of them suitable for our use case.
For example, our chair is also currently working with language models. Still, using GVAE
seems to be one of the most promising ways to go due to its many different advantages.
First, models inherently exhibit a graph-like structure, and we aim to preserve this crucial
information throughout our processing. Conversely, language models require serialization,
which could account for their comparatively sub-optimal performance. Second, Variational
Autoencoders are well known for their ideal abstraction and compression capabilities [32].
We hope that this factor can help us in finding the most relevant edit operations for domain
experts [73].
By employing a GVAE, we directly have a generative model that can be directly applied
to tasks such as completion and fuzzing, for example, in the context of tools like GitHub
CoPilot. This setup allows us to, given a model, automatically suggest edit operations or
generate new models. A minor advantage is that we can include additional information
in the form of extra nodes and edge features. This could, for example, be used to include
inheritance information, which was not yet possible in other approaches. While the former
approach by Tinnes et al. is limited to recognizing edit operations that are connected, GVAE

23



24 approach

open the possibility to extract edit operations spread over several non-connected compo-
nents [73].
Specifically focusing on graph neural networks, one alternative could be Graph Generative
Adversarial Networks (GANs). A GAN consists of two neural networks contesting with
each other [20]. While the generative model learns to sample new data, the discriminative
model tries to classify whether samples came from the original data or the data generated
by the generative model [20]. Recent work stated that these methods often suffer from
mode collapse problems (Section 3.2), are rather difficult to train, and tend to generate
non-divers, non-unique graphs [4, 31]. Graph Variational Autoencoders seem to allow
easier and more stable optimization, also stated by several papers, such that, as a first step
we decided against using GANs [31]. While we focused on GVAE, it’s worth noting that
alternative approaches like diffusion models or GNNs with a reinforcement learning setting
may also be viable but were not closely examined. Though GVAE appears to be a suitable
choice, future research may reveal other effective methods. Though we utilized GVAE for
this study, it shouldn’t be interpreted as asserting it’s the ultimate or only solution for this
problem. Other methods could prove equally or more effective in future research. Still, to
our knowledge, it is the first of its kind, so using GNNs for mining model transformations.
Later on, we would like to compare the presented approach to other methods, for example,
Kernel methods and language models.
The use of Graph Variational Autoencoders is a relatively new area. Its theory is still devel-
oping, making it hard to find straightforward solutions. There are many ideas and methods
in this field, but most are designed for very specific situations, adding complexity to the
exploration of this new area (Section 3.2). Navigating the landscape of existing systems, it
quickly becomes apparent that a straightforward adoption of a pre-existing GVAE is unfortu-
nately not possible. Significant modifications and adjustments are required to adapt a GVAE
to our unique needs, particularly in our pursuit of mining edit operations. A broad survey of
readily available implementations showed that none of these implementations could directly
be adapted to our setting. These include a lack of clarity in their design, the presence of bugs,
or the absence of essential elements crucial for optimal performance. Furthermore, nearly
all of the existing work focuses on the generation of molecules, leading to the necessity
to modify the given implementation to our setting of generating edit operations. A key
distinction in our study involves the usage of labeled edges and nodes in directed graphs,
setting it apart from other studies that primarily focus on undirected graphs, such as those
related to molecules. To formally specify, we have the following problem.

Graph Characteristics In the domain of model transformations, we have directed
graphs with (possibly multiple) node and edge labels, where the labels can be arbitrary.
The labels can range from basic natural language to domain-specific extensions, which
may only be understood by domain experts. The graph sizes can vary significantly and
graphs may be extremely large.

In this thesis, our primary aim is to create a pipeline that can be potentially expanded later
on. Initially, we will concentrate on handling directed graphs with node and edge labels
from a restricted dictionary.
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4.2 realization

4.2.1 Specific Technologies

As a starting point for the GVAE implementation, we used an implementation based on
the work of Kwon et al. [49]1. We chose that implementation due to its rather simple
nature, which does not require complex, additional features such as an auxiliary network
for mapping similar adjacency matrices to each other. For the purpose of our study, we have
chosen to implement our machine learning model using PyTorch rather than TensorFlow.
Our decision was driven by a few key considerations. PyTorch, known for its straightfor-
ward and user-friendly nature, allows for intuitive programming, both of which are highly
advantageous in our context. With PyTorch, we can focus more on the implementation
of our machine learning model and less on managing the intricacies of the library itself.
This leads to an efficient and more streamlined development process, helping us to remain
focused on the core of our research. Our study serves as existence proof, a solid foundation
justifying further investigation into the usage of Graph Variational Autoencoders for mining
edit operations. We further use the torch-geometric extension for graph-based layers and
architectures. For the graph representations the NetworkX, library is used. Additionally,
Optuna is used for hyperparameter optimization and matplotlib for data visualization.

4.2.2 Conceptual Approaches

Graph-based representations provide an ideal framework for capturing edit operations,
serving as the foundation for our approach. Starting from model histories, we convert these
into Abstract Syntax Graphs based on their meta model types (Definition 4). These are
then represented as labeled directed graphs, laying the groundwork for further analysis
(Definition 5). Building upon these graph representations, we move on to identifying changes
between successive model versions. In this phase, elements that are newly created or deleted
are marked with specific prefixes, while unchanged elements are labeled as preserved. This
results in the generation of difference graphs, which map identical elements between model
versions. Since only a small subset of elements typically changes a single evolution step, we
simplify these difference graphs into Simple Change Graphs (Definition 8). These specifically
include only newly created, deleted elements, or nodes directly connected to such elements.
These Simple Change Graphs then serve as the inputs to the Graph Variational Autoencoder.
In essence, an edit operation can be viewed as a recurring pattern in Simple Change Graphs.
These graphs were then saved in files, see Figure 4.1 on the very left-hand side.
During the actual process, we parse these files to construct Digraphs for the respective
dataset (Section 5.2.1). Each dataset is partitioned into training, testing, and validation sets
using a specified seed for shuffling. Node and edge labels are then converted to integers
based on a sentence encoding function (Equation 15), which we specifically define in this
thesis as follows.

1 https://github.com/deepfindr/gvae
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Figure 4.1: Overview of our pipeline, 1) specifically focuses on RQ1, while 2) demonstrate our setting
for answering RQ2, parsing the files is similar to 1), we train our encoder on the train set
without the target values (Yes/No), afterward the the classifier is trained on this specific
set, only getting the latent representation of graphs and patterns as input.

Definition 15 Sentence Encoding Function xGVAE.

xGVAE : L ! {0, 1, . . . , |L|} (4.1)
xGVAE(x) = i (4.2)

x�1
GVAE(i) = x (4.3)

x is a bijection between L and {0, 1, . . . , |L|}.

As a consequence, we have Digraphs with integer labels. The layers from the torch_geometric.nn
library are directly able to process these Digraphs, each one having their own specific inter-
nal representation2. Afterward, the information is given in the adjacency matrix A, feature
matrix V, and edge feature matrix E (Definition 2.2.1). The whole process is again depicted
in Figure 4.1.
In our study, we have kept certain variables constant, despite their impact on performance.
These include factors such as the aggregation function and readout function. While we
recognize the necessity of a thorough exploration of these variables for a more detailed
understanding, we take into account existing studies that provide a general direction on
how these factors influence performance. Despite the importance of these variables, an
in-depth study of them exceeds the boundaries of our current work.

2 for a closer look at the exact implementation details, have a look at https://pytorch-
geometric.readthedocs.io/en/latest/modules/nn.html
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The aggregation function combines the information from a node’s neighbors in order to
compute the node’s representation. Some common aggregation functions include simple
averaging, weighted averaging, and taking the maximum or sum. There is some evidence
that sum aggregation is performing best in most cases [35, 78]. In our case, the used aggre-
gation function is already defined by the layers we selected. For the convolutional layer, we
use TransformerConv that includes weighted sum aggregation [67]. GINEConv is based on
Graph Isomorphism (GIN) but extends its implementation by incorporating edge features,
and also uses sum aggregation [39]. GATConv uses an attention-weighted sum [74]. We use
the torch_geometric.nn library for all layer implementations.
While the aggregation function is responsible for summarizing the local neighborhood
information around each node, pooling is used to compute a representation of an entire
graph that can then be obtained through pooling, for example, by summing the represen-
tation vectors of all nodes in the graph [78]. One requirement is here that the function
used should be permutation-independent with regard to the node order. This is essential
because otherwise, similar graphs with different node orderings would yield different
representations, undermining the consistency of the model. Alternatives include mean,
maximum, or even combinations of these. For global pooling, we use a function that returns
graph-level-outputs by adding node features across the node dimension, so that for a single
graph g its output is computed by

Definition 16 The pooling layer computation for graph g is defined as:

rg = Â xn, (4.4)

where xn is the result of each node n.

So the edge features are only indirectly cooperated in the global representation of the graph
via the pooling layers input, which is equivalent to the encoder’s output. We leverage not
only the output of the last layer but also the outputs from all encoder layers. By concate-
nating these layer-wise graph representations, our graph neural network can benefit from
the multilevel information, while early layers tend to focus on local features, later layers
capture more abstract, global information [35, 40, 80].
For training, we opt for the Adam optimizer. As a starting point for further research we
started by using an adjusted form of the loss by Kwon et al [49]. To avoid expensive compu-
tation, we propose to use approximate graph matching to be able to further focus on the
question of whether GVAE can be used for mining edit operations.
Let G = (V , E) be the original graph and eG = (eV , eE) its probabilistic reconstruction.

The paper’s main idea is to approximate the distance between G and eG by comparing
the numbers of node types, edge types, node-edge pair types, and node-edge-node pair
types. We define the reconstruction loss as, where vi are the one hot encoded feature vectors
of node i, in our case each node has only one feature fi, which has a maximum value in can
reach fmax, such that so vi = (vi,1, ..., vi, fmax). Similarly, the edge vector ei,j = (ei,j,1, ..., vi,j,dmax)
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Definition 17 Reconstruction Loss of the GVAE.
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ẽi,j,bevi

!�����

2

+

�����

 

Â
i,j

ej,i,bvi

!
�
 

Â
i,j
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As a reminder, edit operations can be seen as reoccurring patterns in the Simple Change
Graphs. One aim is to determine if the GVAE can recognize these pre-existing previously
applied edit operations (Section 5.1). As a starting point, our primary focus is therefore to
explore whether the GVAE is capable of retaining information about frequently occurring
subgraphs or patterns within these Simple Change Graphs. Meaning, that we would like
to find out whether information about these edit operation patterns or patterns is already
present in the latent space. The additional regularization term in the loss function of
Variational Autoencoders should encourage a smooth and continuous mapping in the latent
space, where similar data points are mapped close together. This enables interpolation
between different data points in the latent space. Anyway, the question remains, whether
this only includes rather primitive features like graph size or also advanced features like
different patterns. In the thesis, we introduced an additional classifier for this probing task.
We trained the classifier in a supervised manner, to analyze the latent space of the GVAE to
predict the presence and frequency of specific patterns within an input graph (Figure 4.1,
Part 2). Alternatively, we could have also used Visualization Techniques such as t-SNE, PCA,
but since representations are high-dimensional we postponed that idea, especially with
respect to the pattern inclusion task. Anyway, we used it shortly to analyze rather trivial
features, such as whether graphs with, for example, the same sizes are closely mapped
together or not. An alternative choice that came to our mind was the use of a regressor.
Anyway since we have clear categorical true values, namely whether a pattern is in a graph
or not, a classifier seems to be a natural fit for a first investigation. Notably, the GVAE is
not provided with the true values indicating the presence or frequency of patterns in the
input graphs. It solely receives the graphs themselves as input data. After training the GVAE,
we leveraged the latent space obtained from the GVAE to further train the classifier. To be
precise, the classifier, which is a neural network, is fed only the latent representations of
each graph during the training process to predict how often a certain pattern is contained
in the given graph. In order to ensure a more robust training process for the classifier, we
addressed the issue of having imbalanced datasets, by using oversampling. In the course of
our research, we evaluated a range of alternative strategies, including undersampling, which
proved infeasible due to the exceedingly low frequencies of certain classes. Additionally,
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we considered the creation of synthetic instances of the minority class. However, each
of these techniques comes with its own set of limitations such that we first employ the
more straightforward method. Additionally, to mitigate the impact of the imbalanced data
distribution, we explored the implementation of a cost-sensitive learning approach. This
method assigns greater significance to classes with fewer occurrences, empowering the
classifier to make more accurate predictions and effectively handle the challenges posed
by the imbalanced dataset. Anyway, in the specific case of our initial study, we already
balanced the data, making the cost-sensitive learning redundant. During implementation,
we decided on Cross Entropy Loss as a loss function.

Definition 18 Undersampling removes samples from the majority classes to balance them with the
minority classes.

Definition 19 Oversampling adds samples to the minority classes to balance it with the majority
classes by randomly copying samples from the minority classes.
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E VA L UAT I O N

5.1 research questions

To address the overall problem of mining edit operations with the help of Graph Variational
Autoencoders, this work is divided into several research questions, which will be addressed
in the remainder of this thesis.

We are first interested if the basic concepts of the input data can be learned.

RQ 1: Can realistic SCG be generated via a GVAE? When we say "realistic" graphs, we
are referring to graphs that adhere closely to the structural information found in real-world
scenarios, in our case, given in the form of the input data. Due to the fact that graph
matching is tied to high computation costs and therefore infeasible in our case, we restrict
our Definition of "realistic" graphs to two points [6, 29]. First, "realistic" graphs should
follow the meta model’s rules, so be correct according to the meta model. Second, the graphs
should replicate the structural intricacies of real-world data. One assumption we take here
is that the input dataset is sufficiently large facilitating a higher occurrence of frequently
used snippets over those that are less common. For example, in the context of code, realistic
code would not only use the correct syntax but also follow common coding conventions,
like a higher frequency of variable assignments compared to class definitions. It means
that the distributions of attributes such as node types and edge types in the generated
graphs should mirror those in the original data. For example, indicating that the network
can learn the most often used element. Coming back to the code example, we hope that the
GVAE would produce "realistic" code, including lots of variable assignments and fewer class
definitions and not just defining class after class.
RQ 1.1: What influence do certain factors have on the generation of realistic SCG? We want
to identify the factors that influence the performance of our GVAE in generating realistic
SCG. We specifically test three different commonly known graph neural network layers as
encoder layers.

In the second part, we extend our inquiry to assess the ability of the GVAE from RQ1
to identify previously applied edit operations.

RQ 2: Can the GVAE from RQ1 recognize previously applied edit operations? As a quick
reminder, the edit operations can be seen as reoccurring patterns between model changes,
given in the form of SCG. As part of our exploration into mining edit operations with the
help of GVAE, our initial focus is to determine if, given an edit operation and a SCG, we can
identify whether and to what extent this edit operation has been applied. This crucial step
will set the foundation for more sophisticated analyses. Drawing inspiration from the work
presented by Liu et al., we aim to investigate whether it can be identified if a certain pattern
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is included in a given graph or not [53]. It’s worth noting that while Liu et al. focused on
Graph neural networks, they did not incorporate dimensionality reduction, which sets our
work apart [53]. This exploratory step is critical as it lays the foundation for the subsequent
generation of edit operations and gives us valuable insights.
RQ 2.1: Does the latent space of the GVAE capture information on whether or not a certain

pattern is present within a given graph? (Binary Pattern Inclusion Task) Our method
should be able to generally identify a specific pattern whether it is included in a certain
graph, given its latent representation only. We utilize an additional classifier to answer this
question.
RQ 2.2: What are the main factors that influence the performance of the Binary Pattern

Inclusion Task? We investigate the impact of certain elements (neural network architecture
of GVAE, neural network architecture of classifier, Hyperparameters).
RQ 2.3: Does the latent space of the GVAE contain information regarding the frequency of a

specific graph pattern within a given graph? We are further interested if the compressed
representation retains any information about how many times a particular graph pattern
appears in the graph.
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5.2 available data

For our experiments, we have two available datasets. One is provided by related work from
Liu et al. [53], and the other by Tinnes et al. [73].

5.2.1 Learning Domain-Specific Edit Operations from Model Repositories with Frequent Subgraph
Mining [73]

Tinnes et al. provide a synthetic dataset, representing model instances, differences, and
edit operations as graphs [73]. The dataset is based on the component meta model given
in Figure 5.1. Each dataset contains model differences in the form of a chain/history of
model instances reaching from m0, m1..., md�1. They conduct model histories, with either 10
or 20 model instances [73]. In each instance, mi, a certain edit operation is randomly applied
e 2 {1, ..., 100} times to the model, leading to the next version mi + 1 [73]. Additionally, a
specific probability p 2 {0.1, 0.2, ..., 1.0} of applying a second edit operation is given [73].

Package

id: Int

name: String

[0..*] package

[0..*] swimplemantion

Swimplementation

id: Int

Component

id: Int

name: String

[0..1] component

[0..*] component

[0..*] connector

Connector

id: Int

[1..1] src Port

id: Int[1..1] tgt

Requirement

id: Int

[1..1] requirement

[0..*] port

[1..1] requirement

[0..*] requirement

[0..1] swimplemenation

Figure 5.1: Meta Model: Learning Domain-Specific Edit Operations from Model Repositories with
Frequent Subgraph Mining [73]
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If applied, the second edit operation should overlap with the first one. Overall, the data
provided by Tinnes et al. includes 2000 (= 2 ⇥ 100 ⇥ 10) datasets [73]. For the purpose of
this master thesis, we divided the data into several sub-datasets given in Table 5.1.

Table 5.1: Details of the used datasets from Learning Domain-Specific Edit Operations from Model
Repositories with Frequent Subgraph Mining

Dataset name Max size Description # Graphs Pattern Characteristics

Dataset Small 1 10 Random selection of
graphs

780 832

Dataset Small 2 10 Random selection of
graphs

1583 1991

Dataset Small 3 10 Random selection of
graphs

2048 2353

Dataset Small Small-E-
values

10 Focus on model histories
with small e values (e 2
{1, 11})

952 1140

Dataset Small Small-P-
values

10 Focus on histories with
small e values (p = 0.0)

2451 2609

Dataset Small Large-E-
values

10 Focus on histories with
large e values (e = 81)

4807 5897

Dataset Small Large-P-
values

10 Focus on histories with
large p values (p = 1.0)

3918 5385

Dataset Large 10 Large data amount (e 2
{21, 31, 41, 51, 61, 71})

7801 9427

5.2.2 Neural Subgraph Isomorphism Counting [53]

Besides investigating how different approaches perform in approximating the subgraph
isomorphism counting problem, Liu et al. also introduce an algorithm for creating graph
datasets [53]. The resulting datasets consist of graphs and patterns and the algorithm
directly tracks how often a certain pattern is contained in a certain graph while generating
the dataset [53]. Liu et al. additionally provide an algorithm to generate training data
since not enough data is provided by existing datasets to train graph neural networks [53].
The algorithm generates graphs, and patterns and at the same time calculates the ground
truth of how often the pattern is contained in the graph [53]. The generator is divided into
different components. The pattern generator produces any connected multigraph without
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identical edges. The number of subgraph isomorphisms instead needs to be tractable. The
graph generator first generates multiple disconnected components, which can contain
some subgraph isomorphisms [53]. Then the generator merges these components into a
larger graph and ensures that there is no more subgraph isomorphism created during the
merging process [53]. Although their work broadly focuses on graphs, their approach proves
extremely beneficial for our purposes. This is because various parameters and constraints
can be individually tailored for each dataset generation [53]. For example, one can control
the density of subisomorphisms, the number of graph edges and pattern edges, and several
other characteristics [53]. So overall, we can add edit operation-specific constraints to
the dataset and at the same time have control over how often and which patterns are
contained in the datasets. The work by Tinnes et al., in contrast, provides only datasets
where each model graph nearly always includes a certain pattern [73], which could hinder
the performance and the evaluation of the Graph Variational Autoencoder. Additionally,
no extra implementation is needed to count the true values of the subgraph isomorphisms
contained in a certain model graph. For our project, we have generated graphs mimicking
the characteristics of the synthetic dataset by Tinnes et al., including patterns having similar
characteristics to the edit operation patterns. When we say "similar," we refer to aspects
such as the patterns possessing an approximately equal number of nodes and edges, with
+/� 1-2 elements, and matching the average count of incoming and outgoing edges. The
main difference lies in the labels for nodes and edges, which are integers rather than
attribute names. Despite this difference, the number of potential labels remains comparable.
Furthermore, we have adhered to similar restrictions on the size of graphs as outlined in the
dataset by Tinnes et al. Although we can control several factors, there are still uncontrollable
elements such as the distribution of graph sizes. The generated datasets and their main
characteristics are given in Table 5.1.

Table 5.2: Details of the used datasets from Learning Domain-Specific Edit Operations from model
repositories with Frequent Subgraph Mining

Dataset name Max size Description # Graphs <= 10 # Graphs

Dataset Subgraphcount
filtered 1

10 Dataset created by
the graph generator
from Liu et al. [53].
Generator parame-
ters are aligned with
Tinnes et al.’s synthetic
dataset [73] (see Ta-
ble A.3). These datasets
focus on one pattern
only.

2000 ⇠ 50% do not include
the pattern, 35% in-
clude the pattern once

Dataset Subgraphcount
filtered 2-4

10 Same as above 2000 > 90% of graphs don’t
include the pattern

Dataset Subgraphcount
more frequent 5-8

10 Same as above 2000 > ⇠ 48% of graphs
don’t include the pat-
tern, ⇠ 35 � 38% in-
clude the pattern once
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5.3 operationalization

5.3.1 Experiment 1—Pilot Study

As an initial stage of our research, we conducted a pilot study, which served multiple
purposes, including debugging code, adjusting to our domain, and to overall get a basic
idea and tendency of what was working well and what was not. During the initial ex-
periment, we also did a small manual examination of the generated graphs to see if they
seemed realistic at first sight. In the initial investigation, the primary objective was to get
a basic understanding of the impacts of various components with respect to the learning
process in general and also the generation of SCG (dataset by Tinnes et al. Section 5.2.1).
This experiment focuses on answering RQ1. We, for example, changed the implementation’s
readout function to Softmax.
Readout layers produce the final output of the neural network from the internal represen-
tation of the previous layers. There are different types to choose from, for example, linear
layers pass through the values unchanged, which was used in the implementation we based
our implementation on. We exchanged the readout layer with softmax, which is a general-
ization of the sigmoid activation function and well known to be appropriate for categorical
outcomes. As a result, the softmax, in our case, returns the probability distribution of the
edge types and the node types. Softmax further guarantees that these probabilities sum to
one. Then, to produce the final graph, for each edge and node, the class with the highest
probability is selected. Other functions, like ReLU, sigmoid, and tanh are not considered
since these do not seem suitable in our case. The ReLU activates a node only if the input
is above a certain quantity. When the input is below zero, the output is zero, but when
the input rises above a certain threshold, it has a linear relationship with the dependent
variable [32]. The sigmoid activation function converts variables into probabilities between
0 and 1, most of its output will be very close to 0 or 1 [32]. It can reduce extreme values
in data, but it may get "stuck" with outputs close to 0 or 1, hindering the learning process.
The tanh function maps inputs to [-1, 1], similar to sigmoid. It’s used in hidden layers and
less prone to getting "stuck" as its outputs are between -1 and 1 [32]. We also changed the
machine learning architecture of the system (replaced encoder layers). Further, we shortly
compared the performance we regard to the number of epochs, and the size of the datasets
and tried out different hyperparameters. However, these results may not be generalizable,
due to the specificity of the chosen hyperparameters, the initial seed, and the dataset chosen.
Still, this was a necessary step to help reduce the search space for further investigations and
consequently necessary to answer both RQ1 and RQ2.

5.3.2 Experiment 2

To answer research question RQ1, in this experiment, we study the influence of certain
factors of the system with regard to the GVAE’s ability to reconstruct valid SCG. We compare
three different layer architectures Graph Attention (GAT), Transformer (TRF), and GIN,
optimize them with regard to their number of layers and hyperparameters, and try out
different graph formats. These factors are further explained in paragraph Section 5.3.2.2. For
evaluation purposes, we use the synthetic data generated by Tinnes et al. [73]. We assume
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that the data mirrors a real-world dataset. For each of the three layers, GAT, TRF, and GIN
in combination with each graph format (further explained in Section 5.3.2.2), we perform
hyperparameter optimization, resulting in six combinations. We conduct hyperparameter
tuning with the help of Optuna on a small dataset (Dataset Small 1, Table 5.1). We perform
50 trials with a maximum number of epochs of 1000 (in each epoch the complete train
dataset is included). We implemented an early stopping mechanism, which prunes a trial if
its performance does not seem promising with regard to its validation loss. For pruning
purposes, we use the Median Pruner that stops a trial at a certain step if the trial’s best
intermediate result is worse than the median of intermediate results of previous trials at the
same step. The scope of hyperparameters we tested is given in Table 5.3.

Table 5.3: Preselection of Hyperparameters and their suggested values

Hyperparameter Suggested Values

Learning Rate 1e-5, 5e-4, 1e-4, 5e-3, 1e-3

Batch Size 32, 64, 128

KL Beta 0.2, 0.3, 0.4, 0.5, 0.6

Encoder Size 64, 128, 256, 512

Latent Size 64, 128, 256, 512

Decoder Size 32, 64, 128, 256

Number of Layers 1, 2, 3

Dropout 0.0, 0.2, 0.4, 0.6

Regularization 0.0, 0.2, 0.4, 0.6

Subsequently, employing the optimal hyperparameters identified for each combination,
we assessed the methods across various datasets (refer to Table 5.1). The evaluations were
conducted using random seeds s 2 {0, 1, 42} to enhance internal validity and also ensure
reproducibility of our experiments. We fixed the random seed for the PyTorch, NumPy, and
PyTorch Geometric libraries. By setting the seed, we made sure that any stochastic operations
or random choices made by these libraries would be the same across different runs of the
experiments. This includes the initialization of neural network weights, the shuffling of
datasets, the random partitioning of data into batches, and any other operations that rely
on random number generation Each dataset was partitioned into train, test, and validation
sets, maintaining a ratio of 75%-12.5%-12.5%, achieved by shuffling the graphs using the
specified seed. We investigate the system’s performance after 100 train epochs by generating
new graphs (sampling 100 graphs each time). We compare the system performance with
respect to the following metrics.

5.3.2.1 Metrics

To address question RQ 1, we compare the number of correct edges in the generated graphs.
In general, meta models can also include additional constraints besides having correct edges,
like quantifiers, that we will not consider yet.
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Definition 20 Meta Model Valid Edge. An edge is defined as being correct according to the meta
model if the edge is also present in the meta model. This includes that there is an edge with the same
label in the meta model and source node label and the target node label of the corresponding meta
model edge agrees with the labels of the source and target node.

To better account for a different number of edges in different graphs, we consider the
portion of correctly identified edges. If there are no edges, the validity is zero.
Further, we will have a look at the overall distribution of the node types, edge types, graph
size, and number of incoming/outgoing edges. Those distributions are then compared to the
distribution of the original and test dataset, the closer these are to each other, the better. First,
we will have a look at visual representations of the generated graphs and distributions of the
factors named above, and then we will continue comparing the distributions’ total variation
distance. Total variation distance is a measure of the difference between two probability
distributions. The value ranges from 0 to 1, a value of 0 means that the distributions are
identical.

Definition 21 Total Variation Distance [50].

d(P, Q) =
1
2 Â |P(x)� Q(x)| (5.1)

Low values indicate a stronger resemblance between the original distribution and the
distribution with respect to a graph invariant. Therefore, lower values are considered
preferable.

5.3.2.2 Independent Variable

To address RQ1, we had a closer look at several factors and their influence on the overall
performance. We investigate the performance with regard to different layers. Similar to
other work using convolutional layers [68], we investigate their performance in our work.
Since many related papers suggested the usage of Graph Isomorphism Networks (GIN),
we also replace the encoder layers with GIN convolutional layers [35, 53, 78]. GIN layers
were introduced by Xu et al. [78] and are based on the Weisfeiler Leman test. The Weisfeiler
Leman test is a graph isomorphism test that compares the structural similarities between
graphs [24]. It iteratively refines the label of the nodes based on their current label, the
labels of their neighbors, and the labels of the edges connected to this node [24]. The test
terminates either at a fixed point or after a certain number of iterations [24]. Following the
relabeling process, a frequency count of the node labels for each graph is generated. The
Weisfeiler-Lehman test determines the isomorphism of the two graphs by comparing these
histograms. If the histograms are identical, the graphs might be isomorphic. Conversely,
if the histograms differ, it indicates that the graphs are not isomorphic. The Weisfeiler-
Lehman test is not infallible and may sometimes fail to accurately differentiate between all
non-isomorphic graphs falsely labeling them as isomorphic. Theoretically, GIN layers can
differentiate various graph structures as effectively as the Weisfeiler-Lehman test, making
them ideal for tasks sensitive to minor structural variations in graphs [78]. We further
investigate Graph Attention Networks, which were introduced by Veličković et al. [74]. To
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summarize, using GAT layers has the key advantage of using attention mechanisms, allowing
for weighted node influence during neighborhood information aggregation. This enhances
performance on tasks involving complex graph structures or tasks where certain nodes bear
greater relevance [74]. Finally, we also use transformer convolutional layers, which similar
to GAT utilize self-attention to prioritize different sections of the input during individual
element processing. The transformer convolutional layer for graph data is a combination
using the principle of Graph neural network (GNN)s for feature propagation and LPA for
label propagation. In summary, while both use attention mechanisms, GAT focuses on local
neighborhood attention. Transformer convolutional layers are more complex architecture
aiming to capture more complex relationships in graph data [67]. We use TransformerConv,
GINEConv, and GATConv implementation from the torch_geometric.nn library fromt the
corresponding papers [39, 67, 74]. In all settings, we specifically used implementations that
incorporated edge features.
Due to the fact that each graph has a variable size of unordered nodes and each node in a
graph has a different number of neighbors, a consistent way to provide these graphs as input
to the GVAE needs to be given. Existing research has indeed proposed a variety of innovative
solutions to accommodate varying graph sizes and structures [68, 75]. Regrettably, it is not
within our means to overcome this particular constraint. The necessity for the adjacency
matrix to have a fixed size is well-documented in the literature [20, 68, 75]. To the best of our
knowledge, adhering to this requirement is indispensable, especially if our objective is to
make one-shot predictions of graphs. In this part of research question RQ1, we investigate
whether the format of the input graphs has a significant impact on the overall performance.
Therefore we consider several formats and limit the size of the considered graphs up to a
certain value nmax 2 {10}.

Definition 22 Complete Graph Format. Each input graph with n < nmax is filled up such that
n = nmax, where the node labels are defined with an additional type "None". Further, the graph is
filled up with edges such that each pair of graph vertices is connected by an edge of type "None".

Later, after the generation of new graphs, this step is reversed. Using the complete-graph
format is compared to just giving the graphs as input to the GVAE. In the experiments,
we often abbreviate using the complete-graph format with "A" (Augmented) and the non
filled up graphs with "U" (Unchanged). By "unchanged," we refer to Digraphs that are not
modified, thereby representing labeled graphs that align with the original Simple Change
Graphs. For both formats, we then apply the Sentence Encoding Function for the GVAE,
as detailed in Equation 15. These Digraphs are then given to the GVAE as input (more in
Equation 4.2.2). Finally, for the loss function, both formats are transformed into the matrices
A, V, and E in accordance with the guidelines specified in Definition 2.2.1.

5.3.2.3 Baselines for RQ1

We define the baseline RandomGraphBaseline as follows. We create random graphs by
selecting their size randomly and selecting for each node a label from all valid node types
randomly. Then for each pair of nodes, it is randomly decided whether to add a directed
edge from the first node to the second node. If so the edge type is randomly chosen from
all available edge types. The exact code for the baseline is given in Listing A.1.
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Further, we also specify ValidGraphBaseline, which only includes valid graphs accord-
ing to the meta model. This baseline differs from the first one in the creation of edges. For
each possible valid edge of a certain type between two nodes, it is randomly decided if the
edge should be added or not. More detail on this baseline can be found in Listing A.2.

5.3.3 Experiment 3, 4, 5

To answer RQ2.1, RQ2.2, and RQ2.3, we solely focus on the latent space of the GVAE. We
train a classifier in a supervised manner, that given the latent space, predicts whether/ how
often a certain pattern is present in an input graph. One disadvantage of the dataset by
Tinnes et al. is the over-application of the edit operation in model differences, such that in
nearly every model change every edit operation is applied, making the dataset unsuitable
for RQ2 [73]. Considering the challenge of accessing the true values of how frequently an
edit operation is applied in a model change in general, which is also present in the work
by Tinnes et al. [73] our focus shifts to a dataset derived from Graph Theory, specifically
counting subgraph isomorphisms [53]. As a training set for the GVAE, we use a dataset that
we create by the graph generator provided by the work of Liu et al. [53] (Section 5.2.2).
The dataset already includes the true values, so whether and how often a certain pattern
is contained in a graph. We opted for this particular setting because it allows us to better
observe the structure of the dataset. For example, it ensures the presence of multiple graphs
that do not contain a specific pattern, thereby enhancing our ability to train the classifier
more effectively. Further, the generator by Liu et al. can be used to adjust the training dataset
such that the distributions like edge and node number per graph are similar to the dataset
of the SCG. It should be highlighted that our work sets itself apart from Liu et al. who
focused on Graph Neural Networks but did not incorporate dimensionality reduction [53].
We use the best performing machine learning architectures from RQ1 with their fixed
hyperparameters and train the GVAE on the dataset explained above.
For Experiment 3, we use a binary classifier that should tell whether or not a certain pattern
is included in a given graph. We choose the three best performing approaches from RQ1
and compare them with regard to their RQ2 performance. We consider not only the best
approach but also two additional approaches to check whether they may perform better with
regard to the RQ2 even though the results of RQ1 were less promising. For each approach,
we tune the classifiers using a selection of hyperparameters on a randomly selected dataset
for simplicity, specifically, Dataset Subgraphcount filtered 1 from Section 5.2.2. The scope
of hyperparameters we tested is given in Table 5.4. We test the classifier on 3 seeds again
and 4 datasets from the generator of Section 5.2.2, leading to a total number of 12 runs per
approach. We specifically chose the setting of performing hyperparameter tuning first to
save computational resources and better generalisation across different seeds and therefore
initializations. The goal of this experiment is to find out whether in general RQ2.1 can be
answered with "yes". Further, with this experiment, we also want to answer part of RQ2.2,
specifically what impact the encoder layers of the Graph Variational Autoencoder have on
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the performance of the classifier.
For Experiment 4, we fixed the approach used (best performing of Experiment 3) and
investigated how different factors influence the performance of the classifier with respect to
the specified metrics (Section 5.3.2.1). In the Experiment, we extended the dataset collection
with Dataset Subgaphcount morefrequent 5-8 ( Section 5.2.2) (E4.1). We further choose other
datasets for the initial hyperparameter tuning (E4.2). For Experiment 3 and Experiment
E4.1 and E4.2, we added the pattern latent representation to the input of the classifier,
hoping to improve its performance with the additional information. In E4.3, we explore the
significance of this factor in determining the classifiers’ high performance. With Experiment
4 we would like to mainly answer RQ2.2. But this experiment gives also more specific
insight into answering RQ.2.1. In Experiment 5, we investigate if we can extract how often
a pattern is included in a graph. We fixed the output of the classifier to a maximum of
five classes, since the true values for all other classes are too low. With this experiment,
we would like to answer RQ2.3. Again we tune the non-binary classifiers with respect to a
selection of (hyper-) parameters on a randomly selected dataset. Afterward, we check the
performance with respect to certain metrics.

Table 5.4: Hyperparameters and their suggested values for classification

Hyperparameter Suggested Values

learning_rate 1e-5, 5e-4, 1e-4, 5e-3, 1e-3

batch_size [1, 2, 4, 8, 16,] 32, 64, 128, 256

hidden_size [2, 4, 8, 32,] 64, 128, 256, 512

dropout 0.0, 0.2, 0.4, 0.6

probe_type linear, mlp1, mlp2

regularization 0, 1e-5, 1e-4, 1e-3, 1e-2

5.3.3.1 Metrics

For classification, we take the following metrics into account.

Definition 23 Accuracy measures the proportion of correct predictions over the total number of
predictions [82].

Accuracy =
number of correct predictions
total number of predictions

(5.2)

Accuracy only gives a limited view of the performance of the machine learning model,
especially in the case of an imbalanced dataset, a high accuracy may falsely indicate a good
performance. Further, it does not differentiate between false positives and false negatives.
To further specify the metrics Precision and Recall, the following Definitions are required.

Definition 24 True Positives (TP) for a given class, refers to the number of samples where the
classifier correctly predicts this specific class [82].

Definition 25 False Positives (FP) for a given class, refers to the number of samples incorrectly
classified as being of this class [82].
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Definition 26 True Negatives (TN) refers to the number of samples correctly classified as being
not of this class [82].

Definition 27 False Negatives (FN) for a given class, refers to the number of samples incorrectly
classified as not being of this class. So the samples were actually of the given class but were not
predicted as such [82].

Definition 28 Precision or Specificity measures the proportion of true positives among all positive
predictions.

Precision =
TP

(TP + FP)
(5.3)

Definition 29 Recall, Sensitivity or True Positive Rate measures the proportion of actual
positive instances that the classifier correctly predicts as positive

Recall =
TP

(TP + FN)
(5.4)

Due to the fact that a non-binary classifier is used in RQ 2.2, the values per class are averaged
to receive one final value. The F1-score is a combination of Precision and Recall ranging
from 0 to 1. Higher values indicate better machine learning model performance. F1-score is
usually better suitable than accuracy especially if classes are unevenly distributed.

Definition 30 F1-score.

F1 = 2 · Precision ⇥ Recall
Precision + Recall

(5.5)

[82]

The Receiver Operating Characteristic (ROC) is a visual representation of the tradeoff
between sensitivity and specificity. The ROC curve starts at (0,0) and ends at (1,1). The better
the curve passes the top left corner, the better the classifier performs. The AUROC metric is
based on the ROC curve, measuring the area under the curve. It ranges from 0 to 1, where
higher values indicate better classification performance [82], a closer definition is given in
the work by Bardley et al. [13].

Definition 31 Matthews Correlation.

MCC =
(TP ⇥ TN � FP ⇥ FN)p

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5.6)

It has the advantage that all four categories of the confusion matrix are taken into account
and can also deal with imbalanced datasets.

For RQ 2.3, we again use the same metrics as in RQ 2.1 and RQ 2.2. Still, using these
metrics is not sufficient due to the fact that firstly, our dataset is imbalanced and secondly,
we only consider a limited amount of data in the form of some samples for evaluation.
Consequently, it can not be guaranteed that our samples are sufficiently representative to
infer general results about our method. We address these problems in Definition 19 and
Section 5.4.
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5.3.3.2 Baselines for RQ2

As a first baseline, we choose GraphSizeBaseline, as a baseline that given the graph size
and pattern size should determine whether/ how often a pattern is included in the graph.
Hewitt et al. [37] further provides great insights on the shortcomings of pruning tasks,
for example, that classifiers tend to memorize the task at hand. Therefore they introduce
Selectivity as the difference between the control task accuracy and the task accuracy. As a
control task, they randomly assign classes of the test set such that only memorization could
perform above random guessing. With this information, we introduce MemoryBaseline,
which given the test and validation set, randomly shuffles the true values.
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5.4 results

5.4.1 Experiment 1

As discussed in Section 5.3.2.1, we will investigate the distribution of node types, edge
types, incoming/outgoing edges, and graph size. To compare these distributions, the total
variation distance of probability measures is used [50]. Low values suggest a closer match
between the original distribution and the distribution relating to a graph invariant. Hence,
smaller values are more desirable.
Comparing Graph Isomorphism Encoder Layer combined with Augmented Input Graph
Setting (GIN-A) and Graph Isomorphism Encoder Layer combined with Unchanged Input
Graph Setting (GIN-U) (Table 5.5), the total variation distance between the original graph
sizes and generated graph sizes for GIN-A was significantly lower, along with slightly re-
duced values for the edge type invariant. However, GIN-U performed better in terms of node
types, while GIN-A slightly outperformed GIN-U in incoming/outgoing metrics. A similar
pattern was observed when comparing the softmax counterparts with regard to the graph
layout used. In the softmax setting, TRF-U were better in each category than the Transformer
Layer Combined with Augmented Input Graph Setting (TRF-A). With the linear setup, TRF-U
were only better with regard to node types, incoming and outgoing edge distribution.
Moreover, the use of GIN-U, GIN-A, TRF-U, and TRF-A with a linear readout layer performed
remarkably worse than softmax with regard to nearly all invariants. Moreover, the use of
GIN-U, GIN-A, TRF-U, and TRF-A with a linear readout layer performed remarkably worse
than softmax with regard to nearly all invariants. Upon examining Table 5.6, it becomes
evident that methods employing the linear setup do not necessarily exhibit consistent learn-
ing behavior. While some values slightly improve, others deteriorate. In contrast, methods
utilizing softmax consistently show better values after 1000 epochs.
When comparing Table 5.5 and Table 5.6, we see that GIN initially learns faster and out-
performs TRF. However, TRF eventually overtakes GIN, performing slightly better as more
epochs pass. Additionally, when increasing the dataset size, we see that the learning pro-
cess significantly improves, demonstrating the positive effect of a larger dataset on model
learning and performance (Table 5.7).
In general, the graph size invariant emerged as the most challenging measure to optimize.
This first investigation helped us fix bugs, which are not explicitly mentioned here and
has helped us narrow down the search space. Due to the fact the methods using softmax
performed much better, we focused on using it as a readout function.

5.4.2 Experiment 2

For each remaining combination from Section 5.4.1 of the network architecture and the
graph format, we perform the evaluation on 3 seeds and 8 datasets, leading to a total
number of 24 runs per approach.
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Table 5.5: Results of the initial experiment after 100 epochs and with a small dataset (⇠ 800 graphs),
we used the total variation distance (Definition 21) as a metric

Method/Invariant graph size node types edge types incoming edges outgoing edges

GIN-U L. 0.87 0.45726 0.64107 0.68745 0.66411

GIN-A L. 0.59513 0.61569 0.5 0.69118 0.67157

TRF-U L. 0.99880 0.37815 0.65177 0.48487 0.36892

TRF-A L. 0.95513 0.65490 0.5 0.69118 0.671569

GIN-U S. 0.85513 0.13781 0.09593 0.23448 0.15468
GIN-A S. 0.63513 0.12127 0.03696 0.30601 0.17250

TRF-U S. 0.89513 0.20162 0.18935 0.27713 0.16608

TRF-A S. 0.95513 0.44412 0.64107 0.35784 0.33578

Table 5.6: Results of the initial experiment after 1000 epochs and with a small dataset (⇠800 graphs),
, we used the total variation distance (Definition 21)

Method/Invariant graph size node types edge types incoming edges outgoing edges

GIN-U L. 0.51513 0.58642 0.89983 0.48333 0.51693

GIN-A L. 0.63 0.68021 0.80467 0.48333 0.38585

TRF-U L. 0.7 0.57148 0.89983 0.48333 0.35339

TRF-A L. 0.92 0.64333 0.5 0.69118 0.67157

GIN-U S. 0.19949 0.06201 0.05442 0.06595 0.16833

GIN-A S. 0.48000 0.05782 0.03270 0.16562 0.11838

TRF-U S. 0.10513 0.04162 0.03306 0.16268 0.02609
TRF-A S. 0.32513 0.05108 0.026482 0.20006 0.09883

Table 5.7: Results of the initial experiment after 100 epochs and a larger dataset than the initial one
(⇠ 2000 graphs), we used the total variation distance (Definition 21)

Method/Invariant graph size node types edge types incoming edges outgoing edges

GIN-U S. 0.36371 0.07429 0.07849 0.14464 0.07512

GIN-A S. 0.64277 0.11085 0.06434 0.18915 0.08644

TRF-U S. 0.29628 0.10311 0.10610 0.18731 0.05713
TRF-A S. 0.55679 0.08178 0.08570 0.21505 0.10795
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5.4.2.1 Generalizability with Respect to Seeds and Datasets

We investigate first, whether the approaches with fixed hyperparameters are able to run
across different seeds and datasets. The unsuccessful runs yielded NaN values either in the
initial stages or after a few epochs. Potential issues leading to this phenomenon include
overly high learning rates leading to exploding gradients, or an unsuitable batch size
contributing to model instability.

Table 5.8: Generalizability with respect to seeds and datasets (Figure 2.2.1)

Method Number of failed runs

TRF-U 0

TRF-A 8 (+3 early termination)

GIN-U 0

GIN-A 4

GAT-U 1

GAT-A 0 (+1 early termination)

Approaches that are mainly stable across different datasets and seeds are TRF-U, GIN-U
and Graph Attention Layer combined with Augmented Input Graph Setting (GAT-A), and
Graph Attention Layer combined with Unchanged Input Graph Setting (GAT-U). Upon closer
analysis of the failed runs, no patterns have emerged regarding the seed and dataset.

5.4.2.2 Meta Model Validity

The average meta model validity overall seeds and datasets for each approach is depicted in
Table 5.9. For each run, we consider the best performing epoch as the final result. We again,
for each approach have 24 (3 seeds x 8 datasets) runs. Due to the failed runs ( runvalidity = 0),
the overall validity of these approaches is lower. To check independently of the approaches’
generalizability whether the basic meta model concepts were learned, the meta model
validity without these failed runs are added in brackets.

Table 5.9: Meta Model Validity of generated graphs, the meta model validity without failed runs are
added in brackets

Method Meta Model Validity mean Meta Model Validity standard deviation

TRF-U 0.9982 0.0025

TRF-A 0.6560 (0.9840) 0.4648 (0.0358)

GIN-U 0.9971 0.0038

GIN-A 0.8261 (1.0) 0.3790 (0.0)

GAT-U 0.9560 (0.9995) 0.2038 (0.0014)

GAT-A 0.9932 0.0172 (0.0172)

RandomGraph Baseline 0.0468 0.0021

We see that overall, all approaches perform very well in producing valid graphs only. For
each approach a, we consider the following Null hypothesis.
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Null hypothesis for approach a: H0
The generated graphs by the approach a do not demonstrate a greater meta model validity
than randomly generating graphs (RandomGraphBaseline from Section 5.3.2.3) on average.

We set the significance level in all tests a = 0.01 and perform a right tailed t-test. We
can see that the mean meta model validity for all approaches a is significantly higher than
the mean of our baseline (for t-statistic and p-values see Table A.1) and therefore can reject
the Null hypotheses for a 2 {TRF-U, TRF-A, GIN-U, GIN-A, GAT-U, GAT-A}.
Due to the fact that nearly all approaches had a meta model validity of 1.0, we did a
closer manual analysis of the graphs that did not have a validity of 1.0, to possibly check
for patterns and the reason behind this. Through the analysis, we found out that indeed
sometimes edges were not correct according to the meta model, but the exact combination
of labels seems random.

5.4.2.3 Distributions

We compare the mean values of the total variation distance of each graph invariant and
approach (Table 5.10, Table 5.11). As discussed in Section 5.3.2.1, we will investigate the
distribution of node types, edge types, incoming and outgoing edges, and graph size. To
compare these distributions, the total variation distance is used. The lowest values per
invariant are highlighted.

When examining the results based purely on performance, excluding the failed runs
referenced in Section 5.4.2.1, it’s evident that TRF-U exhibits relatively strong performance.
It ranks as the best with respect to edge types, node types, and graph size, and secures the
second-best position for incoming and outgoing edges. While GAT-U underperforms in com-
parison, all other approaches still manage to deliver commendable performance. To conclude
the overall performance of each method, we also included the failed runs in the calculation
(Table 5.10), highlighting that TRF-U achieves the best overall performance (see also Table 5.9).
Followed by GIN-U and GAT-A. TRF and GIN perform better with the "unchanged" graphs
setting, while GAT performs better with the "augmented" setting with respect to the overall
performance, if including their generalizability. With regard to the invariants, the edge type
distribution (mean value: 0.102464), node type distribution (0.095145), and number of outgo-
ing edges (0.118611) are better learned, followed by the number of incoming edges (0.169378).
The graph size distribution exhibits the least similarity to the original distribution (0.363405).

The box plots in Figure 5.7 offer a nuanced view of the total variation distance values.
Wider sections indicate a range of values, while narrower sections suggest less variability.
TRF-U, GIN-U, GIN-A, and GAT-A exhibit small values with a dense distribution, especially for
edge types, where values are mainly below 0.1. In contrast, GAT-U and TRF-A display rather
skewed distributions. For the graph size invariant, the best methods are TRF-U and GIN-A.
All approaches show suboptimal results for the graph size distribution. The incoming edge
invariant box plots are more on the left compared to the outgoing edge invariant. The
whiskers in the box plots indicate the range where most values fall. The caps at the ends
signify the minimum and maximum data values.
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Null hypothesis for approach a, invariant i and baseline b: Ha,i,b
0

The total variation distance with regard to the graph invariant distribution i of approach a
is not significantly less than the total variation distance of the baseline b.

We formulate the Alternative hypothesis Ha,i,b
1 for approach a and invariant i as the total

variation distance of the graph invariant distribution i for approach a is significantly less
than that of the baseline b.

We set the significance level in all tests a = 0.01 and perform left-tailed (one-sided) t-
test. For invariant i = edge_types, we can reject the Null hypothesis for all approaches
and both baselines. For the number of outgoing edges and b = RandomGraphBaseline, all
Ha,outgoing_edges,RandomGraphBaseline

0 are rejected. For b = ValidGraphBaseline, the Null hypothe-
sis was not rejected for GAT-U, TRF-A, and GIN-A. For the number of incoming edges, all Null
hypotheses Ha,ingoing_edges,RandomGraphBaseline

0 could be rejected. For b = ValidGraphBaseline
all Null hypotheses but TRF-A could be rejected.

Table 5.10: Mean value of total variation distance per graph invariant and approach, lowest values
are highlighted. The last row is the mean of all approaches with respect to a certain
category (baselines are excluded)

Method/Invariant edge types node types graph size incoming edges outgoing edges

TRF-U 0.027917 0.036250 0.189583 0.102500 0.052083

TRF-A 0.197500 0.200000 0.480833 0.255417 0.212917

GIN-U 0.053750 0.073333 0.433333 0.167500 0.098750

GIN-A 0.106957 0.108261 0.267391 0.157826 0.123913

GAT-U 0.187826 0.112609 0.583043 0.202609 0.176087

GAT-A 0.040833 0.040417 0.226250 0.130417 0.047917
RandomGraph Baseline 0.401304 0.212609 0.560435 0.786522 0.647826

ValidGraph Baseline 0.481739 0.208261 0.533043 0.281739 0.166522

mean of approaches 0.102464 0.095145 0.363405 0.169378 0.118611
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Table 5.11: Mean value of total variation distance per graph invariant and approach, lowest values
are highlighted. The last row is the mean of all approaches with respect to a certain
category (baselines are excluded)

Method/Invariant edge types node types graph size incoming edges outgoing edges

TRF-U 0.027917 0.03625 0.189583 0.1025 0.052083

TRF-A 0.04625 0.1 0.480833 0.133125 0.117222

GIN-U 0.05375 0.073333 0.433333 0.1675 0.09875

GIN-A 0.069524 0.070952 0.267391 0.085789 0.106818

GAT-U 0.173636 0.095 0.583043 0.189091 0.161364

GAT-A 0.040833 0.040417 0.22625 0.130417 0.047917
ValidGraph Baseline 0.482917 0.208333 0.53625 0.282083 0.16625

RandomGraph Baseline 0.400833 0.2125 0.559167 0.786667 0.647917

5.4.3 Experiment 3

For RQ 2, we only consider the 3 best performing approaches from RQ1 (GIN-U, GAT-A,
TRF-U). The best performance was achieved by approach TRF-U. We test the classifier on 3
seeds again and 4 datasets from the generator of Section 5.2.2, leading to a total number
of 12 runs per approach. We balanced the dataset equally among the two different classes,
such that the accuracy metric is a good first indicator for the performance of the classifier.
The performance of the binary classifier is given in Table 5.12. The highest accuracy is again
achieved by the TRF-U approach (91,2 % on the validation set and 85,7 % on the test set).
Also Precision, Recall, and F1 (harmonic mean between these two values) are similarly high.
The corresponding baselines are shown in Table 5.13.

We formulate the following Null hypotheses.
HGIN-U

0 : The classifier that is based on the GIN-U Graph Variational Autoencoder does not
demonstrate a greater accuracy than the GraphSize Baseline on average.
HGAT-A

0 : The classifier that is based on the GAT-A Graph Variational Autoencoder does not
perform better than the GraphSize Baseline with respect to its accuracy.
HTRF-U

0 : The classifier that is based on the TRF-U Graph Variational Autoencoder does not
perform better than the GraphSize Baseline with respect to its accuracy.
We have chosen accuracy here as an indicator since we have a balanced dataset and again
performed one-sided t-test.
We choose a = 0.01. We can reject all Ha

0 , where a 2 {TRF-U, GAT-A, GIN-U} such that
they are significantly better than the baseline with respect to its accuracy.

We further formulate HTRF-U, GAT-A
0 as there is no significant difference in the accuracy

between the two approaches TRF-U and GAT-A. Specifically, TRF-U is not significantly better
than GAT-A.

We further formulate HTRF-U, GIN-U
0 as there is no significant difference in the accuracy

between the two approaches TRF-U and GIN-U. Specifically, TRF-U is not significantly better



50 evaluation

than GIN-U.

When using a = 0.01, we can reject HTRF-U, GAT-A
0 but not HTRF-U, GIN-U

0 . But by changing
a = 0.05, both hypotheses can be rejected.

Table 5.12: Performance of the different approaches with regard to different architectures (using
CrossEntropyLoss with ReLU and including the pattern as input)

Method Data Accuracy Precision Recall F1 MCC AUROC

TRF-U test 0.857400 0.861558 0.864575 0.855108 0.726058 0.935550
val 0.911992 0.910108 0.913217 0.909467 0.823250 0.955600

GAT-A test 0.768567 0.774350 0.765842 0.761175 0.539808 0.842342

val 0.793125 0.799625 0.785892 0.784500 0.584842 0.859850

GIN-U test 0.775592 0.804008 0.775817 0.764608 0.576358 0.865525

val 0.852392 0.867225 0.852342 0.848725 0.718533 0.902558

Table 5.13: Performance of the different approaches on the GraphSizeBaseline (using CrossEntropy-
Loss with ReLU and including the pattern as input)

Method Data Accuracy Precision Recall F1 MCC AUROC

TRF-U test 0.549850 0.566300 0.549850 0.519600 0.114950 0.560350

val 0.643310 0.677320 0.643310 0.628460 0.315690 0.659630

GAT-A test 0.584467 0.598600 0.584467 0.562600 0.182233 0.579000

val 0.647522 0.665978 0.647522 0.639111 0.312633 0.670033

GIN-U test 0.594700 0.605900 0.594700 0.575700 0.200050 0.582650

val 0.620000 0.664930 0.620000 0.598070 0.277500 0.658010

5.4.4 Experiment 4

For the second experiment of RQ2, we fixed the approach used and investigated, how
different factors influence the performance of the classifier with respect to the Accuracy and
other metrics.

5.4.4.1 Experiment E4.1-E.4.2 Dataset and Hyperparametertuning

In the second step of this research question, we further investigated the performance of
our model on different data. Due to the evidence that the TRF-U approach seemed to
perform best, we focused on this approach in the remainder of RQ2.1 and RQ2 in general.
We extended the number of datasets to eight (Table 5.15). In these datasets, the test and
validation accuracy were much lower. Due to the acquisition of further knowledge, we
further extended the choice of hyperparameters to the ones given in Table 5.4 in brackets [37]
and did the hyperparametertuning again. The chosen model was a linear classifier instead
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of an MLP1 classifier. The resulting latent space was also much smaller and reduced from
64 to 4 (Table 5.14).

Table 5.14: Comparison of Hyperparameters (linear classifier and MLP1 classifier)

Hyperparameter Linear classifier MLP1 classifier

learning_rate 0.0005 0.001

batch_size_new 1 4

hidden_size 4 64

dropout 0.4 0.4

probe_type linear mlp1

regular 0 0.01

Table 5.15: Performance of TRF-U approach on Dataset Subgraphcount more frequent 5-8 (using
CrossEntropyLoss with ReLU and including the pattern as input)

Method Data Accuracy Precision Recall F1 MCC AUROC

TRF-U val 0.805725 0.800900 0.791250 0.795000 0.592025 0.887650

test 0.780400 0.776312 0.760775 0.765625 0.536763 0.839087

Table 5.16 shows the metric values of the new classifier with its new hyperparameters on all
datasets.

We formulate HTRF-U,linear
0 as the TRF-U approach does not perform significantly better

than its corresponding baseline (Table 5.16 ) and see that this selection of hyperparameters
also performs significantly better than the baseline (a = 0.01).
By comparing Table 5.16, Table 5.15 and Table 5.12, we can already see this new selection of
hyperparameters (linear classifier) in general performs better than the previous selection
(MPL1 classifier).
Still, we formulate Hlinear, MLP1

0 as the linear classifier is not significantly better than the
MLP1 on average. We choose a = 0.01 for the right-tailored t-test and can reject the Null
hypothesis Hlinear, MLP1

0 .

Table 5.16: Performance of TRF-U approach on all datasets using a linear classifier and a smaller
hidden size (CrossEntropyLoss with ReLU and including the pattern as input).

Method Data Accuracy Precision Recall F1 MCC AUROC

TRF-U val 0.918232 0.891195 0.893711 0.89090 0.784374 0.958526

test 0.902480 0.874540 0.865740 0.86942 0.740020 0.950900

GraphSize Baseline val 0.600000 0.618181 0.600000 0.583419 0.217148 0.605529

test 0.584467 0.598600 0.584467 0.562600 0.182233 0.579000
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5.4.4.2 Experiment E4.3 Pattern inclusion

In Experiment E4.3, we check whether or not including the pattern latent presentation in
the input data has a significant impact on performance. In Table 5.17, the pattern latent
representation is not given to the classifier. We can see that the performance is less good
than the implementation that includes the pattern (Table 5.16).
We formulate the Null hypothesis as including the pattern as an input to the classifier has
no significant effect on the classifier’s performance. We choose a = 0.01 and can reject the
Null hypothesis. Not including the pattern performs significantly worse than including it.

Table 5.17: Performance of TRF-U approach on all datasets using linear classifier but the pattern is
not included in the input(CrossEntropyLoss with ReLU)

Method Data Accuracy Precision Recall F1 MCC AUROC

TRF-U val 0.772767 0.805783 0.797200 0.753367 0.602717 0.895650

test 0.689861 0.739561 0.741800 0.675783 0.481033 0.791350

5.4.5 Experiment 5

We investigate if we can extract how often a pattern is included in a given graph. Therefore
we performed hyperparameter tuning again and evaluated our approach on different
datasets. The results are given in Table 5.18. We see that the accuracy dropped to 69.57% in
the test set. The average precision and recall are 36.91% and 39.39% respectively. Our results
of Experiment 5 showed values for Precision and Recall under 50% indicating that the
classifier may be having difficulty distinguishing between some of the five classes. The F1
score, which balances precision and recall, is approximately 37.02 %, further reinforcing the
previous point. The AUROC is 74.85%, suggesting a reasonably good ability to differentiate
between classes. Comparing the values indicates potential difficulties in distinguishing
among some of the five classes.

Table 5.18: Performance of TRF-U approach on all datasets using a non-binary linear classifier with a
maximum of 5 classes

Method Data Accuracy Precision Recall F1 MCC AUROC

TRF test 0.695738 0.369137 0.393858 0.370229 0.462825 0.748513

val 0.728950 0.433342 0.453725 0.429767 0.531067 0.781821

GraphSize Baseline test 0.192788 0.104667 0.163163 0.119654 0.003962 0.431250

val 0.257013 0.184675 0.229050 0.174638 0.114742 0.499062

We formulate HTRF�U,linear,non�binary as the TRF-U method using a linear classifier performs worse
on average than its GraphSize Baseline. With a = 0.01, we can reject the Null hypothesis,
TRF is significantly better than the baseline.
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Figure 5.2: Box plot of Edge type total variation
distance

Figure 5.3: Box plot of node type total variation
distance

Figure 5.4: Box plot of graph size total variation
distance

Figure 5.5: Box plot of total variation distance of
outgoing edge distribution

Figure 5.6: Box plot of total variation distance of
incoming edge distribution

Figure 5.7: Box plots of different methods with regard to different graph invariants, failed runs are
not included
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D I S C U S S I O N

6.1 rq 1 : can realistic simple change graphs be generated via a graph
variational autoencoder?

Our results indicate that it is indeed possible to generate realistic SCG using a Graph
Variational Autoencoder. Our evaluation across multiple seeds and datasets showed robust
performance for several approaches (TRF-U, GIN-U). Additionally, the approaches were
successful in producing graphs that are correct according to the meta model, with GIN-A
achieving the highest average meta model validity of 100%. Furthermore, it was observed
that these approaches are capable of generating graphs whose node types, edge types,
and other graph invariants showed similar distributions to the original input graphs.
Interestingly the graph size invariant showed the least promising results, which is not
directly a bad sign indicating that the graph size was not learned. Instead, our input data
had very discrete values with respect to the graph size, namely n 2 {4, 7, 10}. Such that due
to the smoothing properties of the GVAE the total variation distance values were rather high.
Instead when comparing the mean values, we can see that they are very alike (Table 6.1).

Table 6.1: Mean values of the graph size

Method Mean values original dataset Mean value generated graphs

TRF-U 5.277784 5.440722

TRF-A 5.262864 4.839896

GIN-U 5.273744 5.774000

GIN-A 5.299557 5.084841

GAT-U 5.277105 6.141190

GAT-A 5.271678 5.643011

Relating back to the definition of RQ1, these findings support the potential of GVAEs in
generating SCG that are "realistic". This implies that the networks have indeed learned to
replicate commonly used elements in coherence with the implicit rules given by the meta
model.

Answer to RQ1: Yes, our findings confirm the viability of using a Graph Variational
Autoencoder for generating realistic Simple Change Graphs. The robust performance
observed across various seeds and datasets underscores the generalisability of our
approaches in generating type correct graphs with similar properties like the edit
operation dataset.

55
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6.1.1 RQ 1.1: How does the neural networks architecture and input format affect the generation of
SimpelChangeGraphs?

The results of RQ1 indicate that the architecture of the neural network impacts the generation
of SCG, but also depends highly on the graph input format chosen. By comparing different
architectures, including TRF layers, GIN layers, and GAT layers in the encoder, we found
out that the machine learning model’s performance varies across these different setups. For
instance, the TRF-U and GIN-A were particularly stable across different seeds and datasets.
This suggests that these architectures generalize better across different datasets and random
initializations. While the GIN-A method is effective at learning the meta model validity, it,
unfortunately, has the downside of being somewhat unstable with respect to the dataset and
initialization of the seeds. Regarding meta model validity, all approaches perform very well.
Regarding the sampled graphs and their invariant distributions, the overall performance of
the different approaches is also noteworthy. None of these perform much worse than all
others. To conclude, all approaches perform comparably. The main difference, therefore,
lies in their generalisability with respect to the input data. For a clearer overview of which
approaches perform well overall, we set the meta model validity of the failed runs to zero.
Also, we included the failed runs in the distributions. So, looking at everything TRF-U
performs best. Anyway while TRF-U seems to work best, it could be also the case that the
pre-selection of possible hyperparameters and the tuning itself was not that suitable for the
GIN and GAT layers, such that we can not conclude that is definitely is better than the others,
especially because they perform very similar with respect to validity and the total variation
distance. We can only talk about a tendency here (more in Section 6.3).

Answer to RQ1.1 In summary, all approaches show comparable performance in
generating Simple Change Graphs, with TRF-U slightly outperforming others. Especially
in the stability across different datasets and seeds, we see noteworthy differences.
However, this may be due to suboptimal hyperparameter tuning for GIN and GAT
layers. We can see trends on which factors lead to better performance, however further
investigation for a final statement would be required.

6.2 rq2 : can the gvae from rq1 recognize previously applied edit opera-
tions?

6.2.1 RQ2.1: Does the latent space of the GVAE capture information on whether or not a certain
pattern is present within a given graph? (Binary Pattern Inclusion Task)

In addressing RQ2, the three best-performing approaches from RQ1 were selected, namely
GIN-U, GAT-A, and TRF-U. A series of experiments were then conducted under RQ2, where
the impact of varying factors on classifier performance was investigated. The TRF method
seemed to be the most effective, further reinforcing the initial findings. Table 5.16 shows an
accuracy of over 91 % strongly indicating that this research question can also be answered
with yes. Initially, we had a bigger hidden size in combination with an MP1 classifier being
more prone to overfitting and memorization of the data. Especially the lower accuracy
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values for the Dataset "Subgraphcount more frequent 5-8" (Table 5.15) support this claim.
Later on, we found a more suitable combination, namely a linear classifier with a hidden
size of four. We hope that this machine learning model is less prone to overfitting and
memorization due to its less capacity to memorize. We have implemented a method to
assess potential memorization, which is closely inspired by the work of Hewitt et al. [37].
Further evaluation of this would exceed the scope of the thesis though.

Answer to RQ2 and RQ2.1 Yes, our results compellingly suggest that the GVAE’s
latent space effectively captures the presence of specific patterns within a given graph.
This capability suggests that the GVAE from RQ1 includes information about previously
applied edit operations.

6.2.2 RQ2.2: What are the main factors that influence the performance of the Binary Pattern
Inclusion Task?

Additionally, the experiments delved into dataset and hyperparameter tuning, which
showed that the dataset chosen for hyperparameter tuning had an impact on the overall
generalisability of the classifier on different datasets. This suggests that the machine learning
model’s chosen hyperparameters may be overfitting to the specific dataset they were tuned
on. Later on, we found a more generalizable combination of hyperparameters performing
well on all datasets. We also observe that adding the pattern’s latent representation to the
input of the classifier had a positive effect on the average accuracy.

Answer to RQ2.2 In summary, for RQ2.2, the key determinants affecting the Binary
Pattern Inclusion Task’s performance include the classifier’s hyperparameter tuning, its
hidden size, and the type of classifier used. Incorporating the pattern’s latent represen-
tation into the classifier’s input has been observed to enhance average accuracy.

6.2.3 RQ 2.3: Does the latent space of the GVAE contain information regarding the frequency of a
specific graph pattern within a given graph?

Unfortunately, even though our approach performs significantly better than the baseline,
we can not directly answer this question with yes. The findings from Experiment 5 revealed
suboptimal scores for both Precision and Recall, suggesting challenges in the classifier’s
ability to differentiate among the five distinct classes. The AUROC instead is comparably
high. In a multi-class setting, AUROC is the macro-average of the one-vs-all binary classi-
fication tasks for each class. There could be scenarios where the machine learning model
is excellent at distinguishing some classes (leading to high AUROC) but poor for others,
resulting in low average precision and recall. Given the characteristics of our dataset, there’s
a potential risk of memorization. While we were able for RQ 2.1 and RQ 2.2 to construct a
very balanced dataset, where approximately the same number of graphs included and did
not include the pattern, this was not possible for the non-binary tasks. It was much more
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difficult to construct a dataset of graphs where a pattern occurred exactly x times in the
graph.

Answer to RQ2.3 In response to whether the GVAE’s latent space contains information
on the frequency of specific graph patterns, our findings are inconclusive. The subop-
timal Precision and Recall scores indicate the classifier’s difficulty in distinguishing
different classes. Further research is needed.

Given the affirmative response to RQ1 and RQ2 partly, we have successfully laid the
groundwork for employing GVAE in mining edit operations and utilizing them for model
completion. This work demonstrates that the usage of GVAE for mining edit operations is
worth further investigation and exploration. It is also, as far as we know, the first of its kind.

6.3 threats to validity

Even though Experiment 2 gives us valuable insights into which factors affect the perfor-
mance of GVAE as a starting point, one has to consider some potential threats to validity.
Due to limited computational resources, hyperparameter tuning was performed only on
one dataset. This may have led to an overfitting scenario, where the machine learning
models are excessively tailored to the specific characteristics of the tuning dataset, thus
compromising their ability to generalize well to other datasets. Interestingly, despite these
constraints, no significant difference was observed between the accuracies achieved on the
dataset used for hyperparameter tuning and those achieved on the other datasets. This
suggests that the tuned machine learning models, while potentially overfitting, are still
managing to provide reasonably generalized performance across multiple datasets. Further
studies would be required to explore the generalizability of these machine learning models
in a more comprehensive manner.

The potential suboptimal performance of the Graph Isomorphism Network (GIN) and
Graph Attention Network (GAT) could be attributed to the non-ideal selection of hyper-
parameters. Perhaps the scope of chosen hyperparameters was not expansive enough to
encapsulate the best values for these machine learning models. Anyway, Shi et al. support
our finding by directly comparing the transformer convolutional layer with GAT [67]. Still,
further research needs to be done to understand under which conditions these architectures
perform optimally.
Concerning the classifier task, varying latent sizes used as input pose a threat to validity.
Larger latent sizes may capture more information, potentially explaining better performance.
Relying on synthetic data by Tinnes et al. as a real-world representation poses a threat to
validity. We had a limited dictionary, which could be problematic in real-world scenarios.
If the data does not accurately reflect real-world conditions, the study’s results may have
limited generalizability. However, conducting experiments in a controlled setting, such as
using a restricted label alphabet, was essential.



6.3 threats to validity 59

Probing by adding a classifier to the GVAE opens the problem that the classifier rather
memorizes the input data points and their corresponding true values than truly learning
to correctly extract whether/how often a pattern is given in a graph. Due to final linear
classifier chosen, which has a small hidden size given in Section 5.4.4.1, we hope to have
obtained preliminary evidence that suggests against the occurrence of memorization. Still,
we will also investigate this point in the near future.
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As we reflect on the outcomes of our research, it is clear that the utilization of GVAEs
for mining edit operations and model completion shows promise. We affirm the overall
response to RQ1 and RQ2, suggesting using GVAE for mining edit operations warrants
further investigation. Nevertheless, we also recognize several limitations in our current
research that provide potential directions for future work.

A key constraint of our work is the lack of real-world datasets. Given that our data may not
fully capture the complexities of real-world environments, for example, arbitrary natural
language labels, the generalizability is limited.

The results of RQ1 of our study provide an indication that the architecture of the neural
network impacts the generalization of the generation of SCG. By comparing different ar-
chitectures, we conclude that the machine learning model’s generalizability varies across
these different setups. In future research, a more detailed investigation into the elements of
each machine learning architecture that contribute to their performance could be beneficial.
Understanding what makes certain machine learning architectures more stable or better
at producing meta model adhering graphs could guide the design of even more effective
architectures for this task. Moreover, further studies could explore additional network
architectures that were not included in this study. Testing a wider range of architectures
might reveal others that perform even better on these metrics.

A similar limitation occurs in the research question RQ2, where the performance of the
classifier depends on the selection of hyperparameters and the dataset they were tuned on.
In the future, one could extend the work and increase generalizability by using, for example,
methods like Cross-dataset validation (Chapter "Hyperparameters and Validation Sets" [32]),
considering other hyperparameter optimization methods or Transfer Learning (Chapter
"Transfer Learning and Domain Adaptation" [32]). Cross-dataset validation involves split-
ting multiple datasets into training and validation sets and tuning the hyperparameters
based on performance across all validation sets [32]. In future work, we aim to investigate
alternative algorithms for hyperparameter tuning beyond Optuna and use visual tools for a
more insightful view of the exploration of the search space. Despite the promising findings,
several aspects need to be further explored. For instance, if the Transformer approach further
outperforms the other methods in different settings, for example, in larger datasets. More
so, the accuracy of the Transformer method is dependent on various factors, and additional
research could help identify these dependencies and examine how they influence the final
results. In the future trying Multilabel classification or regression could be more suitable
for a more comprehensive investigation of RQ2.3. As for the topic of machine learning
mentioned in the paragraph above, while further research remains captivating, I would like
to emphasize that our aim was to provide proof of concept. We showed that it is indeed
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interesting to further investigate the usage of Graph Variational Autoencoders for mining
edit operations and model completion in general. Therefore, for our specific application and
future research, the subsequent points appear to be of higher priority first.
Our study was restricted by the maximum graph size of 10. This size is not representative
of typical difference graphs of model changes. In realistic scenarios, these graphs can be
much larger. Further research could address this by adapting the approach to accommodate
larger graphs, possibly by developing more efficient methods. Related to this issue is the
variability in the sizes of the graphs we encounter. These range from small model changes,
such as moving a single method, to larger refactorings all done in one step.
Secondly, we had a limited dictionary, which could be problematic in real-world scenarios.
Real-world models and meta models could include arbitrary labels of natural language.
Going forward, addressing this challenge requires the development of an effective repre-
sentation for node and edge labels, so a suitable Sentence Encoding (GPT, Bert, Word2Vec).
Finally, we used synthetic data in our experiment, which might not represent real-world
scenarios fully. It would be a valuable step forward to conduct similar experiments using
real-world data in future research. After these points, it would be appropriate to perform a
real-world study, asking domain experts whether the edit operations produced by GVAE are
useful to them and represent typical edit scenarios [73].
An alternative approach for evaluation could involve the use of a surrogate task. Specif-
ically, we could generate edit operations and then employ them in a model completion
procedure to assess their usefulness. Also, a rather smaller problem is that the Graph
Variational Autoencoder cannot guarantee the generation of valid graphs according to the
meta model. This problem is commonly known in the research field of GVAE, several related
works, therefore, include mechanisms to check for the validity of graphs according to some
domain-specific constraints. Some of these approaches include Reinforcement Learning to
improve these results, which we would also try in the future. Inspired by this adjustment, I
also propose the usage of reinforcement learning as an additional validity check for edit
operations [49]. Similar to the limitations of the work of Tinnes et al., we do not yet consider
transient effects, which means that one applied edit operation can invalidate the pre- or
post-conditions of another edit operation [73]. This will remain future work. Further, even
though not considered yet, we can easily extend our dataset and therefore also our approach
to edit operation patterns scattered across more than one connected component.
One of the main motivations for using Graph Variational Autoencoders is the lack of an
efficient way to find edit operations. That is why, in the future, we should also check the
performance of our approach and compare it to recent work, for example, LLMs. We further
could shift our focus to other, different GNN approaches, for example, diffusion models.
To further proceed with research in the field of mining edit operations, one needs to explore
how to specifically extract edit operations from the Graph Variational Autoencoder. We hope
that the GVAE can already generate edit operations that could be useful to domain experts
(Definition 14). In the future, one could therefore focus on metrics like Uniqueness, Novelty,
and Diversity commonly used in previous work on Graph Variational Autoencoders to
generate relevant graphs [49, 68].

During the thesis, our goal shifted from mining edit operations to model completions.
Our initial approach will involve smaller code adjustments to adapt it for model completion
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tasks. While much of the subsequent work remains consistent, one potential avenue is to
incrementally generate graphs, rather than creating them in a singular step. This iterative
method may be more intuitive, allowing for selective expansion of models or modifications
to smaller model components, ultimately enhancing user experience. Such an approach is so-
phisticated and may yield more complex graph structures. However, a thorough exploration
of this methodology remains a topic for future research [52].





8
C O N C L U S I O N

In conclusion, our research provides substantial evidence supporting the use of GVAEs for
generating realistic SCG, particularly in maintaining the distributional characteristics of
the original graphs such as nearly generating type correct graphs all the time. Further, we
provided a step towards answering whether GVAE can recognize previously applied edit
operations, which can be seen as reoccurring patterns in SCG. We found out that indeed
the latent space of the GVAE is sorted in such a way, that it also includes information
about patterns contained in graphs and not only encodes high level features like graph
sizes and node types. Looking ahead, we believe that the embeddings generated by the
GVAE could have broader applications, serving as a versatile tool for various future tasks.
The effectiveness of GVAE in automatically generating new edit operations is a matter
of keen interest. If successful, we could provide a robust and adaptive mechanism for
automatically extracting edit operations from model histories or even find new similar ideas
for a specification of an edit operation. Further, we could apply complicated transformations
within models, possibly tailored to specific domain languages. At this early stage of research,
numerous challenges and open problems persist. Not only from a software engineering
standpoint but also from a machine learning point of view. To the best of our knowledge,
this is the only application where very large graphs, featuring both node and edge labels,
which originate from natural language, are required. However, it’s worth noting that
Knowledge Graphs could be similar in scope. While they also handle large, labeled graphs,
they generally do not focus on graph evolution.
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Listing A.1: RandomGraphBaseline: Create random graphs by selecting its size randomly, selecting
a label from node_types for each node. Node_types includes all types that are found in
the dataset by Tinnes et al. (Section 5.2.1). Randomly decides whether to add a directed
edge from the first node to the second node. Whether an edge of type x should be
created between node i and j is decided randomly. If the edge should be created, a label
for the edge is randomly selected from edge labels. Edge_labels are again all edge types
that are found in the dataset by Tinnes et al. (Section 5.2.1).

def baseline_randomgraphs(number_of_graphs_to_generate, s):
random.seed(s)
graphs = []

for _ in range(number_of_graphs_to_generate):
# define graph size
n = randint(4, 10)
G = nx.DiGraph()

# Add nodes
for i in range(0, n ):

node_label = choice(node_types)
G.add_node(i, label=node_label)

# add edges with labels to graph
for i in range(0, n):

for j in range(0 , n ):
#direction ->
if choice([True, False]):

edge_label = choice(edge_types)
G.add_edge(i, j, label=edge_label)

graphs.append(G)
return graphs

Here, I’ve structured the parameters as rows in a table, with the parameter name in the
left column and its value in the right column.
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Table A.1: p-values and t-statistics from RQ1: Meta Model Validity

Method t-statistics p-value

GAT-U 1763.1646 6.2320 ⇥ 10�109

GAT-A 262.2689 2.7585 ⇥ 10�75

TRF-A 124.8288 6.9736 ⇥ 10�52

GIN-A 1964.5509 3.3808 ⇥ 10�104

GIN-U 1054.7638 4.4058 ⇥ 10�103

TRF-U 1414.2263 6.1021 ⇥ 10�109

Table A.2: Summary of the best combination of hyperparameters for each approach

Method lr batch size kl beta encoder latent decoder layers dropout regularization

TRF-A 0.001 32 0.2 256 128 64 1 0.0 0.0

TRF-U 0.0005 32 0.2 128 128 64 2 0.0 0.0

GAT-A 0.0005 32 0.3 512 64 64 3 0.0 0.0

GAT-U 0.005 32 0.3 128 512 32 2 0.0 0.0

GIN-A 0.0005 32 0.3 128 64 256 3 0.2 0.0

GIN-U 0.001 64 0.3 512 64 128 2 0.2 0.2

Table A.3: Parameters chosen for the generator by Liu et al. [53]

Parameter Value

max_subgraph 512

alphas [0.1, 0.3, 0.5, 0.7]

number_of_patterns 1

number_of_pattern_vertices [4]

number_of_pattern_edges [5]

number_of_pattern_vertex_labels [2, 3, 4]

number_of_pattern_edge_labels [2, 3, 4]

number_of_graphs 10

number_of_graph_vertices [10, 7, 4]

number_of_graph_edges [6, 8, 12, 15, 17, 20, 25, 30]

number_of_graph_vertex_labels [4, 8]

number_of_graph_edge_labels [4, 8]

max_ratio_of_edges_vertices 5

max_pattern_counts 512
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Listing A.2: ValidGraphBaseline: Create random graphs by selecting its size randomly, selecting a
label from node_types for each node. Node_types includes all types that are found in
the dataset by Section 5.2.1. For each possible valid edge of type x between node i and j
it is randomly decided if that edge should be added or not.

def baseline_validgraphs(number_of_graphs_to_generate, seed):
random.seed(seed)
graphs = []
for _ in range(number_of_graphs_to_generate):

# define graph size
n = randint(4, 10)
G = nx.DiGraph()

# Add nodes
for i in range(0, n):

#node_types: includes all possilbe node types
node_label = choice(node_types)
G.add_node(i, label=node_label)

# add edges with labels to graph
for i in range(0, n):

for j in range(0, n):
# Get the types of nodes i and j
i_type_ori = G.nodes[i][ ’ label ’]
j_type_ori = G.nodes[j][ ’ label ’]

# Ignore prefixes
for prefix in ignore:

if i_type_ori.startswith(prefix):
i_type = i_type_ori[len(prefix):]

if j_type_ori.startswith(prefix):
j_type = j_type_ori[len(prefix):]

#valid edges includes only correct edges
valid_edges_dir_left_right = [edge[1] for edge in valid_edges if edge

[0] == i_type and edge[2] == j_type]

for e in valid_edges_dir_left_right:
for pre in ignore:

label = pre + e
if ((label in edge_types) and (random.choice([True, False]))):

G.add_edge(i, j , label= label)
graphs.append(G)

return graphs
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Listing A.3: __init__ function of the GVAE using the transformer convolutional layers as encoder
layers

class GVAE(nn.Module):
def __init__(self, feature_size, encoder_size, latent_size, decoder_size,

num_layers, dropout):
super(GVAE, self).__init__()

self.encoder_embedding_size = encoder_size
self.edge_dim = 1
self.latent_embedding_size = latent_size
self.num_edge_types = config.SUPPORTED_EDGES
self.num_node_types = config.SUPPORTED_NODES
self.max_num_nodes = config.MAX_GRAPH_SIZE
self.decoder_hidden_neurons = decoder_size
self.dropout=dropout
self.num_layers = num_layers
self.convs = nn.ModuleList()
self.bns = nn.ModuleList()

for i in range(self.num_layers):
conv = TransformerConv(self.encoder_embedding_size if i > 0 else

feature_size, self.encoder_embedding_size, heads=4, concat=False,beta=
True, edge_dim=self.edge_dim)

bn = BatchNorm(self.encoder_embedding_size)

self.convs.append(conv)
self.bns.append(bn)

# Latent transform layers
self.lin1 = Linear(self.encoder_embedding_size * (num_layers),

self.encoder_embedding_size * (num_layers))

self.mu_transform = Linear(self.encoder_embedding_size * (num_layers ),
self.latent_embedding_size)

self.logvar_transform = Linear(self.encoder_embedding_size * (num_layers ),
self.latent_embedding_size)

# Decoder layers
self.linear_1 = Linear(self.latent_embedding_size, self.decoder_hidden_neurons

)
self.linear_2 = Linear(self.decoder_hidden_neurons, self.

decoder_hidden_neurons)

node_output_dim = self.max_num_nodes * (self.num_node_types + 1)
self.node_decode = Linear(self.decoder_hidden_neurons, node_output_dim)

edge_output_dim = int((self.max_num_nodes * self.max_num_nodes) * (self.
num_edge_types + 1))

self.edge_decode = Linear(self.decoder_hidden_neurons, edge_output_dim)
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