
Detecting Control-Flow and
Performance Interactions in
Highly-Configurable Systems

A Case Study

Master’s Thesis

Department of Informatics and Mathematics

Chair of Software Engineering

Author: Alexander Denk

1st Corrector: Prof. Dr. Sven Apel

2nd Corrector: Prof. Christian Lengauer, Ph.D.

Advisor: Sergiy Kolesnikov, M.Sc.

Date: 31.03.2017

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

Abstract

In the context of highly configurable software system we use the term feature for a config-
uration option that configures, enables or disables a certain functionality of the system. A
selection of features that is used to build or run a system we call variant. Feature interac-
tions characterize the influence of the presence of one feature on another feature. Acquiring
knowledge about feature interactions creates the ability to make predictions on the perfor-
mance behaviour of software variants based on the set of features that is selected for the
variant.

Internal feature interactions, such as control-flow, and data-flow interactions, are relatively
easy to find using available static-analysis techniques. On the contrary, external feature
interactions, such as performance interactions, are hard to find because the corresponding
supervised machine learning techniques require expensive benchmarks and good sampling
techniques. This process can become computationally infeasible very fast with an increasing
number of features being present. Future work is set to investigate relations among internal
and external feature interactions and how these relations can be used to predict external
interactions based on the internal ones. This Thesis is the base for the first step towards
performance predictions based on internal feature interactions.

For these purposes we selected two real-world highly configurable systems from different
domains. We built feature models and a benchmarking framework and collected a large set
of measurements of non-functional properties, such as compilation times, execution times,
binary and main-memory footprints and energy consumption. Using the static analysis tool
TypeChef, we prepared feature models and the source code in order to build a variability-
aware call graph that can be utilized to detect control flow feature interactions. We used
the data of the performance analysis and prediction tool SPLConqueror to identify per-
formance feature interactions.

Finally, we analysed the collected data sets and removed unreliable measurements to provide
a solid and reliable platform for further work.

2

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

Contents

Contents

1 Introduction 1
1.1 Highly Configurable Systems . 1
1.2 Types of Feature Interactions . 3
1.3 Motivation, Workflow and Goal of the Thesis 4
1.4 Case Studies . 6
1.5 Structure of the Thesis . 7

2 Related Work 9
2.1 Feature Model Generation . 9
2.2 Highly Configurable Subject Systems . 9
2.3 Detecting Internal Interactions . 10
2.4 Detecting External Feature Interactions . 10

3 Preliminary Study 11
3.1 Selection of Software Domains . 11
3.2 Requirements for Subject Systems . 12
3.3 Setup and Execution of the Evaluation . 12
3.4 Evaluation Results . 14

4 Generation of Feature Models 16
4.1 Requirements for Feature Models . 16
4.2 Representation Formats of Feature Models . 17
4.3 Reverse Engineering Feature Models from Source Codes and Documentation . 21

5 Detecting Internal Feature Interactions 24
5.1 Internal Feature Interactions Analysis Methods 24
5.2 TypeChef Analysis . 24

6 Detecting External Feature Interactions 27
6.1 Types of Non-Functional Properties . 27
6.2 Role of Unused Code . 28
6.3 Compiler Influence . 28
6.4 Network and IO Influences . 30
6.5 Testing System . 30
6.6 Statistical Variables . 31
6.7 Benchmark Execution and Reporting Framework 33

7 mbedTLS 35
7.1 Description of mbedTLS . 35
7.2 Software Architecture . 35

I

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

Contents

7.3 Cipher Suites . 37
7.4 Feature Model . 39
7.5 Shared Code . 41
7.6 Internal Feature Interactions . 43
7.7 External Feature Interactions . 43
7.8 Measurements Conclusion . 47
7.9 Summary . 47

8 SQLite 48
8.1 Description of SQLite . 48
8.2 Feature Model . 48
8.3 Internal Feature Interactions . 52
8.4 External Feature Interactions . 52
8.5 Measurements Conclusion . 58
8.6 Summary . 59

9 Validity and Threats to Validity 60
9.1 Types of Validity . 60
9.2 Preliminary Study and Selection of Subject Systems 60
9.3 Generation of Feature Models . 61
9.4 Detecting Internal Feature Interactions . 62
9.5 Detecting External Feature Interactions . 62
9.6 Subject System: mbedTLS . 63
9.7 Subject System: SQLite . 63
9.8 Overall Case Study . 63

10 Conclusion 65
10.1 Challenges . 65
10.2 Summary of our Work . 66
10.3 Conclusion, Contribution and Future Work 67

11 Acknowledgements 68
11.1 Credits . 68
11.2 Case Study and Tool Availability . 68

Nomenclature 69

List of Figures 70

List of Listings 71

Bibliography 72

Eidesstattliche Erklärung 77

II

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

1 Introduction

1 Introduction

In this chapter we introduce the basic notions of highly configurable systems and give an
introduction into feature interactions. We state the goals of our work and we give an overview
of the structure of the thesis.

1.1 Highly Configurable Systems

1.1.1 General Terms

Although we found the term widely used among different publications in computer science
most of them do neither provide a formal nor an informal definition of highly configurable
(software) systems. Cohen, Dwyer and Shi used the following description in their paper
“Interaction testing of highly-configurable systems in the presence of constraints”:

The concept of a highly-configurable software system arises in many different
settings differentiated by the point in the development process when feature
binding occurs, i.e., the binding time [1].

This description is very general as it does not limit the type of the software architecture, the
times of the bindings or any other characteristic. The core of the description is that a highly
configurable software system has many different settings. For our work this description can
be used as definition of a highly configurable system, but we will add more restrictions to it
in the following chapters.

Highly configurable systems have a great value to their customers, as they can be configured
for their needs. A user interface for example only display the functions that are relevant for
the use case of the customer, or a security critical software can be reduced to the essential
parts in order to mitigate the attack surface to components that are really required.

In older publications the term product line was often used synonymous to highly configurable
system. Newer publications distinguish between product lines and highly configurable system
because not every highly configurable system is designed as real product line, which uses
dedicated and feature-orientated approach for their implementation.

In the context of highly configurable software system we use the term feature for a config-
uration option that configures, enables or disables a certain functionality of the system. A
selection of features that is used to build or run a system we call variant.

“Modeling variability is a crucial step in product-line development. [...] A common approach
is to express variability in terms of common and optional features, a process called appro-
priately enough feature modeling. We use feature models and their graphical representation

1

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

1 Introduction

as feature diagrams, because they are currently the most popular form of variability models.
[...] A feature model documents the features of a product line and their relationships” [2].

“A presence condition is an expression over a set of configuration options. The condition
represents a subset of configurations in which a certain implementation artifact, such as
a code fragment, is included in the corresponding system variants or in which a certain
behavior can be observed” [3].

“Besides functional requirements, different application scenarios raise the need for optimizing
non-functional properties of a variant. The diversity of application scenarios leads to hetero-
geneous optimization goals with respect to non-functional properties (e.g., performance vs.
footprint vs. energy optimized variants). Hence, an SPL has to satisfy different and some-
times contradicting requirements regarding non-functional properties. Usually, the actually
required non-functional properties are not known before product derivation and can vary
for each application scenario and customer” [4].

1.1.2 Types of Variability and Implementation Concepts

The description of highly-configurable software system leaves the architectural style of the
implementation completely open. Cohen, Dwyer and Shi give software product lines (SPL)
as “an example of very early feature binding” [1]. “At the other end of the spectrum” they see
“dynamically reconfigurable systems, where feature binding happens at runtime and may,
in fact, happen repeatedly” [1].

For our work we do not use real software product lines, as they are related to a feature orien-
tated programming approach, instead we focus on highly-configurable systems implemented
using pre-processor directives of the C programming language (#ifdef -variability).

In this software projects we distinguish between two different types of variability:

Compile time variability: As compile time variability we understand configuration options,
that have to be configured ahead of the compilation process and which will affect the
resulting output of the compiler. The configuration options cannot be changed after
the compilation happened any more for the resulting variant. For example #ifdef -
variability using C pre-processor directives are evaluated by the C pre-processor. List-
ing 1 shows an example, where the feature for logging is only enabled, if the pre-
processor macro FEATUR_LOGGING has been defined. The feature needs not be
implemented in a single place, there can be many different places in the source code
where parts of the feature are defined. Code which does not fulfil the condition of the
#ifdef -expression will be removed by the C pre-processor and will not be passed to
the C compiler.

Runtime variability: As runtime variability we understand all configuration options that do
not depend on the compiled variant, but we have the prerequisite that the configuration
option is part of the software variant. For example, if a variant of a program supports
the adjustment of the cache size as configuration option, one kind of runtime variability

2

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

1 Introduction

is to configure the size statically before the program start-up in a configuration file, so
called load-time variability. An alternative kind of runtime variability is to configure
the option dynamically while the program is executed.

1 #ifdef FEATURE_LOGGING
2 /* Logging Code... */
3 #endif

Listing 1: Example for a feature that can be enabled using C pre-processor directives.

The two types of variability neither exclude nor require each other. A highly configurable
system can only use compile time variability, only use runtime variability or it can use both
in combination.

A common way in real-world systems written in C is to use compile time variability as de-
scribed above. This causes a lot of problems in the context of software verification. A type
error for example can be produced easily as shown in listing 2. The variable x is defined as
int in the context of FEATURE_A and as pointer on float in the context of FEATURE_B.
Depending on the usage of x the program may cause unpredictable behaviour or crashes in
certain configurations. In the worst case the number of variants is exponentially to the num-
ber of features. This makes it computationally infeasible to test and benchmark all possible
variants using standard techniques to get information about validity and performance.

1 #ifdef FEATURE_A
2 int x = 3;
3 #endif
4 #ifdef FEATURE_B
5 float* x;
6 #endif

Listing 2: Example for a possible type error using C pre-processor directives.

We use the tool TypeChef1 which is supporting the analysis of #ifdef -variability. In the
following work we will focus on compile time variability using #ifdef -expressions, but we
have to be aware that the runtime configuration of a variant may affect our work.

1.2 Types of Feature Interactions

In this section we give a working definition of internal and external feature interactions and
provide an overview of the different observable or analysable occurrences of each type. Apel
et al. define internal and external interactions as follows:

The visibility of a feature interaction denotes the context in which a feature in-
teraction appears. Feature interactions may appear at the level of the externally

1https://github.com/ckaestne/TypeChef

3

https://github.com/ckaestne/TypeChef

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

1 Introduction

observable behavior of a program, including functional behavior (e.g., segmen-
tation faults and all kinds of other bugs) and non-functional behavior (e.g., per-
formance anomalies and memory leaks). Feature interactions may also appear
internally in a system, at the level of code that gives rise to an interaction or at
the level of control and data flow of a system (e.g., data-flows that occur only
when two or more features are present). We believe that there may be systematic
correlations between externally-visible and internally-visible interactions, which
is a major motivation for our endeavor to explore and understand the nature of
feature interactions [5].

In our focus are non-functional properties that can be measured in order to detect external
feature interactions that are affecting the performance in any way, but do not threaten the
validity of the program itself. For example we try to exclude variants of a program that
produce segmentation faults already within the feature model as they are not part of our
research. Non-functional properties that are in the point of interest include: Time to compile,
memory consumption, energy consumption, runtime performance, binary footprints. We will
discuss what interactions we try to measure and what data we will use for further processing
later on.

For internal feature interactions we will give a more detailed insight in advanced analysis
techniques in the chapter 2 “Related Work”. The discussion which of the available anal-
ysis method we will use for our work is in chapter 5 “Measurements of Internal Feature
Interactions”. As the extend of our work is limited, we will select one analysis method.

1.3 Motivation, Workflow and Goal of the Thesis

In this section we will explain the motivation behind the Thesis, define the goals and the
research questions of our work.

1.3.1 Motivation

One of the topics in research of highly configurable systems is the prediction of the perfor-
mance behaviour of certain variants. One would like to know the expected performance of a
variant before it is built and rolled out without executing measurements and running com-
plex benchmark scenarios for the variant. Holding benchmarked values available for every
possible variant is impossible because there may be exponentially many, in the number of
features, variants.

The current state of the art are supervised machine learning techniques [6]. As input for the
algorithms a large number of performance measurements is required to get reliable results.
Providing these measurements get computationally infeasible fast with a growing number of
features and therefore growing number of possible variants.

4

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

1 Introduction

By providing information about feature interactions for the machine learning system we
try to reduce the number of required measurements to a computationally feasible amount.
For the analysis of internal feature interactions static analysis tools are available that are
working in almost linear time depending on the source code size. To provide useful internal
feature interactions the overall goal of the chair’s work is to find relations between the two
data sets, or to disprove this assumption.

This thesis should be the the base for the first step towards finding these relations. For this
we provide feature models and variability-aware call graph data as well as measurements of
non-functional properties for the same subject systems.

1.3.2 Workflow

The first step of our work is to conduct a preliminary study. In this study we want to
identify real-world software domains that are applicable for highly configurable software
and performance benchmarking. After identifying the domains we want to find candidate
subject systems fitting in these domains. To increase the external validity of the case study
we aim to pick subject systems from different domains. At least we want to cover two domains
with two subject systems.

As second step we want to explore methods to reverse-engineer for highly configurable sys-
tems and to find a feature model representation format which can be used for TypeChef
and SPLConqueror as input model.

The third step is to setup an infrastructure for measurements of internal and external fea-
ture interactions. As far as achievable, the infrastructure should be usable for all subject
systems.

The last step is to prepare two subject systems for the measurements and to use the infras-
tructure that we set up to execute the measurements. The validity and quality of the results
should be discussed.

1.3.3 Goal

The main goal of the thesis is to execute the four steps described in section 1.3.2 in order
to get feature models, prepare these models and the source code of our subject systems for
the analysis of variability-aware control flow graph data and reliable measurement data of
non-functional properties, especially focused on performance, for the same subject systems
to provide a solid and reliable base for further analysis of internal and external feature
interaction and relations between them.

5

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

1 Introduction

1.3.4 Limitation

Our work aims for creating the prerequisites for the detection and further analysis of the
feature interactions. We prepare the TypeChef control flow analysis and test that the
detection of internal feature interactions works, but it was not part of our work to process
the results further. We used SPLConqueror to test that our measurements are suitable
for the detection of external feature interactions, but we did not analyse the the findings of
SPLConqueror.

1.4 Case Studies

In the domain of highly configurable systems and software product lines case studies have
frequently been used to explore the relatively new field in research. Kastner and Apel used
for example a case study for converting the C code base of BerleyDB into a AspectJ
project as proof of concept for a real world application of AspectJ. The lessons learned,
including that case studies are an appropriate method for exploring new research fields, have
been published in the paper “A Case Study Implementing Features Using AspectJ” [7].
Kolesnikov and Roth “On the Relation Between Internal and External Feature Interactions
in Feature-oriented Product Lines: A Case Study” [8]. Another example for a case study
is “Feature-oriented Language Families: A Case Study” of Liebig, Daniel and Apel which
proposes “language families, a feature-oriented approach to language engineering inspired by
product lines and program families” with the goal to “systematically manage the develop-
ment and evolution of variants and versions of a software language in terms of the language
features it provides” [9].

Nevertheless are case studies are a controversial topic in research. There are several critical
responses on case studies in general, where the critics mostly aim not at the method itself
but at the bad understanding of the method. For example Gerring criticises in his paper
“What Is a Case Study and What Is It Good for?” that case studies are widely used in
political science, but the conductors of the studies do not often understand the method
correctly. He criticises furthermore the vague definition of the methodology case study at all
[10]. This problem is not limited to political science, it can be seen as general problem in
science. Bennett also sees that the researcher have to be aware of how case studies can be
used to avoid misleading outcomings: “On the methodological level, however, what is useful
or necessary for one method, such as random selection of cases in a statistical study, may
be unnecessary or even counterproductive in another, such as case studies. This creates an
obligation for understand their respective strengths and limitations[11]”. The journal article
of Flyvbjerg “Five misunderstandings about case-study research” tries to overcome concerns
on case studies as they are often misunderstood [12].

Flyvbjerg sees for example the following three misunderstandings and tries to clarify them:

• General, theoretical (context-independent) knowledge is more valuable than concrete,
practical (context-dependent) knowledge.

6

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

1 Introduction

• One cannot generalize on the basis of an individual case; therefore, the case study
cannot contribute to scientific development.

• The case study contains a bias toward verification, that is, a tendency to confirm the
researcher’s preconceived notions [12].

For our work we think that a case study is an appropriate research method, as we are aware
of the concerns against case studies and the misunderstandings. Contrary, we see the benefits
for our research goal. Case studies are good for pilot-experiments, early project states and
to explore new theories that can later be refined and validated or rejected with quantitative
methods. This matches our work as this thesis should provide first data to explore the
hypothesis that we can find relations between internal and external feature interactions,
that are usable for performance predictions.

1.5 Structure of the Thesis

In the first chapter, we provide an introduction to highly configurable systems and to the
two different types of feature interactions in these systems. We show why it is important
for our research to find relations between these types. Furthermore, we define the goals of
the thesis and the research questions and explain why we have chosen a case study as our
research method.

The second chapter gives an overview of the related work in this field of research.

We describe the preliminary study for selecting appropriate domains, the general require-
ments for subjects systems and how we found subject systems for these domains in the third
chapter. We show the results of the evaluation and discuss the decision for mbedTLS and
SQLite as the systems we selected for our case study.

In the fourth chapter we describe the process we used to generate feature models from
the documentation and the source code the subject systems. We introduce a meta model
format to keep the different feature model formats of TypeChef and SPLConqueror in
synchronization.

The fifth chapter contains an overview of the process of detection of internal feature inter-
actions.

We focus on the main work of this thesis in the sixth chapter. The chapter describes the
existing types of external feature interactions and which of them we are capable to mea-
sure. We create a generic system setup that is capable of executing the measurements and
describe the hardware we used for the measurements. Additionally, we identify the general
independent and observed variables and discuss sources for measurement bias and show how
we handled them.

mbedTLS is presented as first subjects system of the case study in the seventh chapter. We
give an introduction to the architecture of the software, the role of cipher suites and the

7

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

1 Introduction

problems resulting from having compile time and runtime configuration options combined
in one software. Next, we discuss the feature model we use for our measurements. Shortly,
we show the results on the internal feature interactions. We cover the setup and execution of
the performance benchmark and therefore present the results and give an interpretation.

The SQLite chapter follows a similar structure as the mbedTLS chapter. After an intro-
duction to SQLite we discuss the architecture that led to the feature model we use for
our measurements, followed by the presentation of the results of the analysis of the internal
feature interactions. We describe the creation of a performance benchmark for SQLite and
the execution of the benchmark in detail. We present the data of the measurements and give
an interpretation.

The chapter Validity and Threats to Validity discusses the internal and external validity, as
well as threats to both, of every part of the case study.

In the last chapter we summarize the work and its results and give an outline to future
work.

8

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

2 Related Work

2 Related Work

We discuss in the following chapter related work. In the last years multiple publications
have been released that try to detect feature interactions in highly configurable systems.
We present work that aims to detect these interactions, as well as we present work, that is
related to the workflow we used for reverse-engineering feature models, measuring the data
of non-functional properties and for creating the control flow graphs.

We do not know work that aimed for both, detecting internal and external feature interac-
tions for the same subject system.

2.1 Feature Model Generation

She and Lotufo present in their work “Reverse Engineering Feature Models” procedures for
reverse engineering feature models based on a crucial heuristic for identifying parents, where
thy see the major challenge of their work. They tried to automatically recover constructs
such as feature groups, mandatory features, and implies/excludes edges and evaluated their
method on thee subject systems, such as the Linux kernel [13].

2.2 Highly Configurable Subject Systems

Highly configurable systems have been investigated across different publications in the con-
text of feature interactions. SQLite for example has been discussed as subject system for
internal feature interactions, as well as for external feature interactions. Liebig used SQLite
in his dissertation “Analysis and Transformation of Configurable Systems” for TypeChef
analysis, while Siegmund et. al. used SQLite for “Predicting Performance via Automated
Feature-interaction Detection” by using SPLConqueror [14, 15]. Both works where inde-
pendent from each other and they did not use the same version of SQLite nor the same
feature model.

Janker used mbedTLS as subject system for evaluating his method of inter-procedural
variability-aware data flow analysis by using a combination of TypeChef and SPLLIFT

[16]. His work was not finished when we finished working on detecting internal feature
interactions in mbedTLS. Therefore, we focused on detecting variability-aware control flow
interactions.

9

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

2 Related Work

2.3 Detecting Internal Interactions

Janker’s work on mbedTLS was also related in the context of detecting internal feature
interactions, as he used a variability-aware analysis of data flows. For the same reason as in
2.2 we could not use his analysis for our work.

Other work on detecting internal feature interactions involved trying to minimize the test-
effort for highly configurable systems, published by Nguyen et al. (“iGen: dynamic inter-
action inference for configurable software”), Reisner et al. (“Using Symbolic Evaluation to
Understand Behavior in Configurable Software Systems”) and Tartler et al. (“Configuration
Coverage in the Analysis of Large-scale System Software”) [17, 18, 19]. Garvin et al. examine
constitutions of faults at the code level and their connection to feature interaction faults in
their work “Feature Interaction Faults Revisited: An Exploratory Study” [20].

2.4 Detecting External Feature Interactions

The state of the art of detecting external feature interactions builds on machine learning tech-
niques to predict performance based on samples of measurements. All of them use black box
approaches without using knowledge of the internal structure of interactions, such as control
flows or data flows. As various machine learning techniques the use for example multivariate
regression and Fourier learning. The work on this topic this was published by Sarkar et al.
(“Cost-Efficient Sampling for Performance Prediction of Configurable Systems (T)”), Guo
et al. (“Variability-aware performance prediction: A statistical learning approach”), West-
ermann et al. (“Automated Inference of Goal-oriented Performance Prediction Functions”),
Zhang et al. (“Performance Prediction of Configurable Software Systems by Fourier Learn-
ing (T)”), and Siegmund et al. (“Predicting Performance via Automated Feature-interaction
Detection”), [21, 22, 23, 24, 15].

10

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

3 Preliminary Study

3 Preliminary Study

For a case study, the selection of subject systems is a critical point as not every subject
system is representative for other systems. Our main goal is to select a system that ex-
hibits the phenomena we want to study. A bad selection can implicate the false rejection
or false reassurance of a hypothesis. This chapter presents the setup and the results of the
preliminary study we have conducted to find appropriate subject systems.

3.1 Selection of Software Domains

The internal and external validity of the case study should be maximized wherever possible.
Therefore we need real-world subject systems that are not of the same application domain.
On the other hand, we need subject systems where we are able to measure the performance.
Software domains that are generally unsuitable for this, such as programs that focus on the
graphical user interface or command line tool collections, have been excluded prior to.

We grouped the candidates for subject systems in the following domains2, based on the
experience from previous studies, but left open to extend the list when we find suitable
subject systems that cannot be categorized in one of these domains [25, 15, 26]:

Domain Examples
Databases PostgreSQL, MySQL

Embedded Databases BerkleyDB, SQLite
In-Memory Databases WhiteDB

Webservers Apache HTTP Server, nginx, Lighttpd
TLS-Libraries OpenSSL, axTLS, PolarSSL, LibreSSL, mbedTLS
VPN-Libraries OpenVPN

Encoding-Libraries libJPEG, mozjpeg, libPNG, libXSLT, libXML x264 Codec
Compression-Libraries 7-Zip, gnu gzip

Interpreter Zend PHP
Compiler GNU Compiler Collection (GCC), Tiny C Compiler (TCC)

Listing 3: Example domains we used to group candidates for subject systems.

Benchmarking client-server scenarios, for example, usually requires much more hardware
resources for benchmark execution compared to single application benchmarks. Domains
such as webservers have been given a lower priority to avoid time consuming benchmark
setups in a single domain that are blocking subject systems from other domains.

2The examples are not restricted to software using #ifdef -variability

11

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

3 Preliminary Study

3.2 Requirements for Subject Systems

The general requirement is that we need to be allowed to use the software system for research
purposes. We only use software that is available under open source or comparable licence
models and we ignore proprietary software with publicly available source code because we
cannot afford to analyse if our research may violate the concrete license terms.

Another requirement is that we only take highly configurable systems into consideration. As
highly configurable we decided to require a minimum of ten configuration options. With no
other restrictions in the feature models this would allow in theory 1,024 possible variants.
For the statistical evaluation of the data we do not want a lower number of variants.

For static analysis we will use the tool TypeChef which is capable of analysing code writ-
ten in the C programming language [27]. Moreover, TypeChef focuses on analyzing vari-
ability of configuration options that are realized using C pre-processor directives (#ifdef -
variability). Consequently, we are limited to analyse software that is written in C and is
using this type of configuration options. We have the ability to integrate TypeChef into
a make build process chain and we can work with file lists. However, Janker found build
systems in the context of his Master’s Thesis that need to be aware of the variability in the
build process [16].

The other tool we use, SPLConqueror, does not have requirements on the subject sys-
tems programming language and source code structure because it does not use the source
code. SPLConqueror takes feature model information and measurement data as input,
for example the binary file sizes of the programs or performance measurements. Our work
is focused on performance and for that we need the ability to provide measurements for
SPLConqueror. To get this measurements we are bound to software that can be bench-
marked using existing benchmarks targeting performance, or the use case and domain of
the software should allow the creation of a performance benchmark in a feasible amount of
time.

3.3 Setup and Execution of the Evaluation

The terms highly configurable software and #ifdef -variability are not widely used under
software developers which makes it hard to identify potential subject systems. Even if a
software uses this variability model, it mostly does not provide a formal feature model. We
found different projects documenting the configuration options in completely different ways
and different granularity.

In the first stage of our preliminary study we collected a list of software projects that are
written in C and that use an open source license. We used the software lists available at
Wikipedia3 for this and used additional sources covering specific application domains like
NoSQL databases. Additionally, we considered all GNU and GNOME tools to be able to

3https://en.wikipedia.org/wiki/Category:Lists_of_software

12

https://en.wikipedia.org/wiki/Category:Lists_of_software

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

3 Preliminary Study

provide candidates as well as software that has been used in other research projects at the
chair. All in all, we listed 252 software projects. We removed all software that is definitely
not written in C or did not satisfy our license requirement. The remaining list contains 117
projects.

For these projects we needed to check if they are using #ifdef -variability and if this vari-
ability can be freely configured or is only used as platform abstraction layer. Listing 4 shows
such an example where code targets a special platform but cannot be freely configured on
this platform.

1 #ifdef WIN32

2 #ifdef HAVE_INT8

3 /* Win32 Code for 8-bit integer. */

4 #endif

5 #ifdef HAVE_INT16

6 /* Win32 Code for 16-bit integer. */

7 #endif

8 #endif

Listing 4: Example for an #ifdef -expressions that is used for platform abstraction.

Contrary to that listing 5 shows a feature PREFIX_ALGORITHM that has a common
prefix PREFIX_, this is what we have often seen as an indicator for being a configuration
option that can be changed for the demands of the use case of the software. The naming
conventions differ from project to project, so we cannot generalize if a macro is used as
feature, for platform abstraction or as code macro.

1 #ifdef PREFIX_ALGORITHM

2 #ifdef PREFIX_LOGGING

3 /* Logging code for feature PREFIX_ALGORITHM */

4 #endif

5 /* Code of feature PREFIX_ALGORITHM. */

6 #endif

Listing 5: Example for an #ifdef -expressions that are likely to represent a feature.

To support our filter process we wrote a tool that processes C code without the need of a
compiler or lexer. We decided to use this approach to avoid parsing and compiling errors
caused by C++ code and non standard C dialects, which where often used only for small
code parts. This is working as heuristic and will not cover all edge cases, but for the masses
of source code we processed it worked well. The tool collected statistics over lines of source
code, lines of comments and number of macros. Additionally, it collected all macros and the
context the macros are used and provided a grouping on the longest common prefixes of the
macros.

13

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

3 Preliminary Study

We downloaded the source codes of all candidates of the list and used the tool for an analysis.
Software that was not using macros or using macros in the context of platform abstraction
and to replace parts of the C code was excluded immediately. For the remaining projects we
read the documentation, ensured the project is written in C and does not contain C++ code
that can be excluded from the source. Moreover, we tried to put the macros in the context
of a feature model.

Some projects turned out to be unmanageable because of the hardly understandable project
and configuration option structure, for example GCC. Making useful changes in the config-
uration options require in-depth knowledge of the project. We dropped these projects from
our list.

For the remaining projects we tried to find benchmarks that are publicly available or al-
ternatively investigated if it is possible to create a benchmark. We estimated the effort to
create benchmarks.

3.4 Evaluation Results

A result of the described evaluation progress we extracted a list of 32 projects, categorized in
domains and containing information about the feasibility of benchmarks, code metrics and
the estimated number of features. It would be infeasible to determine the actual number of

Table 3.1: 16 candidates for subject systems grouped by domain.

14

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

3 Preliminary Study

features, because it requires to check the definition and the corresponding documentation of
thousands of macros manually.

Table 3.1 shows an extract of this list containing the favoured 16 subject systems with the
domain they belong to, the estimated count of the lines of code as well as the lower bound
of the number of features. The last column states a benchmark strategy or if available a
concrete benchmark. We grouped the entries by domain and ordered the domains by our
estimated benchmark with the lowest effort being on top. We decided for mbedTLS as our
first subject system. mbedTLS offers a very extensive architecture and configuration option
documentation and allows the construction of a structured feature model. Benchmarks are
achievable by rewriting the integrated compatibility test server and client programs into
performance benchmarks. The project does not require additional libraries and is written in
ANSI C. When we started mbedTLS has not been used in this research field, so we had to
begin from scratch.

As second subject system we chose SQLite as it offers a well documented and clear con-
figuration model and allows benchmarking by using SQL-queries. Moreover, SQLite has
the advantage to be combinable into a single source code file, is independent of vendor li-
braries and written in ANSI C. SQLitewas used for previous research topics in the context
of highly configurable systems, for example in Liebig’s work that is presented in the paper
“Morpheus: Variability-aware Refactoring in the Wild” [28].

15

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

4 Generation of Feature Models

4 Generation of Feature Models

In this chapter we discuss the requirements for feature models of the subject systems, we
introduce a meta model format to generate feature models for TypeChef and SPLCon-
queror from the same source model and describe how we reverse-engineered the models
from the source code and the documentation.

4.1 Requirements for Feature Models

For our purpose to compare internal and external feature interactions we have different
requirements for feature models that have to be fulfilled.

In our preliminary study we came across many different systems using #ifdef -variability,
but most of them are not intended to be designed like a software product line. For some cases
the variability was not even documented outside of the source code. Consequently, none of
the candidates for subject systems had a formal feature model available. For some systems,
such as BerkeleyDB, a feature model has been constructed in other research projects.
BerkeleyDB was refactored to FAME-DBMS and therefore a feature model was needed
[29]. However, these are not models that have been created by the developers of the systems,
either, and have not been the concept for the implementation.

As a consequence, we have to design feature models for our subject systems from scratch, or
we have to use previous work from other authors. This gives us on the one hand the ability
to design the model for our needs, but is on the other hand a threat to validity because the
model can be designed too specific and not represent the software at all.

On the one hand, we have the demand to represent the real-world system as precisely as
possible to increase the internal validity of the case study. Therefore, we want to construct
feature models containing all features that can be configured and model all constraints
between this features.

On the other hand, we need models that are usable for benchmarking. For example the
modularity concept of the subject system mbedTLS allows single modules, such as the
cipher or hash module, to be used standalone. The benchmark for mbedTLS measures
the throughput of connections and for that it needs all modules that are required for a
connection to be set up. We cannot avoid to add these restrictions to the feature model,
even the original intention of the software allows more flexibility at this point.

Moreover, we want to exclude variants that produce feature interactions in the context
of unexpected failures. If a variant, for example, leads to a type error, we exclude the
variant from the model as the variant has no value for our later research task. TypeChefś
variability-aware analysis for type errors can be used to identify such variants.

16

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

4 Generation of Feature Models

Another requirement we need to fulfil is that the model’s number of valid variants it can
produce is feasible. This requires us to reduce the number of features as long as we get
a number of variants we can handle. This number depends on the estimated benchmark
runtimes and must be estimated for each subject system. Removing features must keep the
model valid.

The last requirement we have to respect is that we want to ensure that features being present
are actually called while running the benchmark. For example, if a variant of mbedTLS
contains two ciphers and only one can be benchmarked, the presence of the second cipher
has no value for our measurements. However, there may be an influence of the presence of
the unused code we discuss in section 6.2. We decided to restrict the model to variants where
we can be sure that a feature is used if it is present.

4.2 Representation Formats of Feature Models

This section describes the common methods to represent feature models and introduces a
meta format that we used to generate these models.

4.2.1 Representation Methods

There are different methods available to represent feature models. We give an introduction
to the common different methods in the following:

Visual representations: A common way to represent feature models is to visualize them in
diagrams using different notations. We can compare this method to drawing UML
diagrams. There are multiple notation techniques that can be grouped into basic fea-
ture models, cardinality-based feature models and extended feature models. In the
following we stick to the notation used by Thüm and Kästner which is supported by
FeatureIDE [30].

SPLConqueror XML format: SPLConqueror defines an XML schema for feature mod-
els. The schema supports the common elements of feature models, such as mandatory
and optional features, parent-child relations, alternative groups, inclusion and exclu-
sion constraints and offers the ability to define additional boolean constraints in a
conjunctive normal form. XML is used to load models into SPLConqueror.

FeatureIDE XML format: Like SPLConqueror defines FeatureIDE an XML schema
for feature models. Both schemas are different. One main use case for the schema is
the persistent storage of visual feature models.

Feature Expression format: The Feature Expression format defines the feature model in
a conjunctive normal form of boolean terms. A term, for example, looks like defined(A)
=> defined(B), which states that the feature A implicates the presence of feature B.
A line in the text-file contains one term, a comment or a blank line. The text based

17

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

4 Generation of Feature Models

representation is human readable. TypeChef requires all features that are used in
terms, as well as features that are completely optional and have no relations to other
features and are therefore not used in terms, to be declared. Usually this is done in a
file named open-features which contains a newline separated list of all feature names.

The list covers representations we needed for our work. There are other common represen-
tation techniques for feature models available, such as the DIMACS standard format.

4.2.2 A Meta-Model for Generation of Feature Expression and
SPLConqueror Models

In our case study we have, all in all, three software components demanding feature models
as inputs: TypeChef, SPLConqueror and FeatureIDE.

TypeChef accepts a CNF DIMACS feature model or a Feature Expression model as
input format, while SPLConqueror only accepts its own XML format as input. For Type-
Chef we prefer using the human-readable Feature Expression model to avoid the need
for additional tool support. Neither TypeChef nor SPLConqueroroffer a good visual
representation of the input models. SPLConqueror’s graphical user interface is capable
of rendering the feature model by using a standard Windows Forms tree component and
different colours. However, this only gives a very weak impression of the model, because
SPLConqueror cannot render the model very well, for example without scrolling and
by using common visual elements for feature model representation. There is not any other
known application that offers a visual representation for one of the three models. As a result,
we used FeatureIDE as additional application for creating the visual representations. Fea-
tureIDE uses XML to store the model but the XML schema definition is not compatible
with SPLConqueror’s XML schema definition.

Overall, there is a minimum of three separate representation formats that have to be used
for our case study. The need for three different formats makes it problematic to keep all
three models consistent as the model evolves, for example because of bugfixes, extensions or
reductions. Moreover, none of the models or their implementations offers an optimal platform
for creating new models from scratch and convert them to the other two formats:

• The Feature Expression format supports a wide range of boolean expressions which
makes it possible to represent an arbitrary model. Feature Expression models
can be converted into SPLConqueror models by using SPLConqueror’s boolean
constraints. The disadvantage is that these SPLConqueror models do not represent
the high level semantics of the model and for that cannot be visualized. Although
the model is basically human-readable, bigger models cannot be managed very well.
The Feature Expression model parser of TypeChef lacks support of implicated
alternative groups.

• SPLConqueror’s XML format is not human-readable and therefore needs tools
support for generation. Like the Feature Expression model, bigger models with

18

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

4 Generation of Feature Models

hundreds of features cannot be managed very well without being liable to lose the
overview of the model. This can easily cause errors in the model that result in bugs
and the generation of unwanted variants.

• FeatureIDE’s XML has the same disadvantages as SPLConqueror’s XML format.
Moreover, we use FeatureIDE only for visualizing the model and therefore it is not in
the focus of our research.

Thus, we decided to create a new source format that satisfies our needs.

For a custom meta model format that can be used for generating all three models in our
case study, we have the following requirements that had to be satisfied:

• The model should be human-readable to ensure that the model can be handled without
additional tool support.

• The creation of the model should not require a graphical user interface.

• The memory consumption for parsing should be low as thousands of variants may
be excluded. Using a DOM-based parser for XML for example consumes too much
memory.

• The semantic structure of the model should be maintained. For example a group of
alternatives should not be represented as boolean formulae.

• The model should be transformable into other target models, such as the XML for-
mats of SPLConquerorand FeatureIDE or the Feature Expression used by
TypeChef.

The following meta model format addresses all these challenges.

In order to avoid a complex notation we preferred using a simple text format to XML or
JSON4. Blank lines will be ignored and can be used to separate statement blocks for a better
structure of the model. Lines starting with %% are threaded as comments. The current ref-
erence implementation of the parser ignores the content of the comments. Basically, it makes
sense for future implementations to transform the comments into target model comments
if the target model supports comments. Every other line contains the actual directives that
are used to construct the target models. A directive starts with the name of the directive
followed by a whitespace and - depending on the type of the directive - a single feature, a
list of features or a boolean expression.

The following directives with the described semantics are currently supported:

mandatory <feature>: Declares a mandatory feature. In SPLConqueror’s model these
features will be represented as direct non-optional children of the root feature. In
the Feature Expression model it will result in a simple defined(< feature >)-
expression and in an entry in the open-features file.

4JavaScript Object Notation

19

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

4 Generation of Feature Models

optional <feature>: Declares an optional feature. In SPLConqueror’s model these fea-
tures will be represented as direct optional children of the root feature. In the Feature
Expression model it will result in an entry in the open-features file. The Feature
Expression model itself does not need any modification here.

declared <feature>: Declares a feature that is not fully optional or mandatory but used
in expressions. We use this to enable a better error reporting as we want to avoid the
introduction of new features. This can be compared to the declaration of a variable. In
SPLConqueror’s model these features will be represented as direct optional children
of the root feature. In the Feature Expression model it will result in an entry in
the open-features file. The Feature Expression model itself does not need any
modification here.

constraint <expression>: Creates a boolean expression that may use a common set of
boolean operators, for example conjunction (&), disjunction (|) , implication (=>)
and equality (<=>). We transform the expression into a conjunctive normal form. For
SPLConqueror we extend the constraints section and add each term of the normal
form as constraint. In the Feature Expression we simply add each converted term
of the normal form.

alternative <parent> <feature>+: Declares an alternative group, where at least one
child has to be selected. In SPLConqueror’s model we add the child features as
children of the parent feature. In the Feature Expression we convert this into a
boolean expression.

route <parent> <feature>+: Declares an alternative group, where exactly one feature
can be selected. In SPLConqueror’s model we add the child features as children of
the parent feature and define for each children the excludes of all other features of
the group. In the Feature Expression we convert this into a boolean expression
in conjunctive normal form. We do not use the oneOf(< feature > +) expression
here because it offers no support for implications, so the alternative children cannot
be implicated by the parent feature.

excluded <feature>+: Declares an excluded variant. We transform the excluded into a
constraint.

20

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

4 Generation of Feature Models

1 %% This is a comment.
2 mandatory PRE_BASE
3 mandatory PRE_ALGORITHMS
4 optional PRE_LOGGING
5 declared PRE_ALGORITHM_1
6 declared PRE_ALGORITHM_2
7 declared PRE_HELPER_1
8 route PRE_ALGORITHMS PRE_ALGORITHM_1 PRE_ALGORITHM_2
9 constraint PRE_ALGORITHM_1 => PRE_HELPER_1

10 excluded PRE_BASE PRE_LOGGING PRE_ALGORITHMS PRE_ALGORITHM_2

Listing 6: Example for a feature model using different directives.

The listing 6 shows an application example of the meta feature model format using most of
the directives presented above. Figure 4.1 shows the corresponding diagram to the model
without the boolean constraints.

Figure 4.1: Visualization of the model of the example in listing 6.

The reference implementation is based on the .net Framework 4.6 and is written in C#
with smaller parts in F# and Iron Python. For converting boolean expressions into a
conjunctive normal form we use the PBL library of the University of Utha [31].

4.3 Reverse Engineering Feature Models from Source
Codes and Documentation

In this chapter we present our method to reverse engineer feature models from the source
code and documentation.

4.3.1 Manual Pre-Processing

The first step of creating a feature model is to acquire as much information as possible
to design a model that is close to the system. To get a first impression of each subject
system we read the documentation of the system architecture and the configuration options.
We used the architecture information to get the structure of the model, for example if the
architecture suggested a cipher package we noted that the cipher algorithms can be placed in

21

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

4 Generation of Feature Models

a cipher group. From the documentation of the configuration options we extracted additional
dependencies between different options.

In the next step we inspected the source code and extracted all configuration options and
the code snippets where they are used. We decided for every option if it represents a feature
according to documentation and the usage in the source code. In many cases we found
several options forming a single feature. For code generation we needed to define a wrapping
parent feature, if none of the options had already presented one, and to define the multiple
configuration options as mandatory children. Most of the systems provide a configuration
utility, a configuration source file or a source code file to check the variability constraints. For
example mbedTLS uses a config.h that contains a list of nearly all configuration options5

and a check_config.h that contains many, but not all, dependencies. Additionally, the source
code documentation contains information for every option; how the option is called and in
some cases also dependencies were listed. We process all these information and write it down
for all features.

4.3.2 Generation using a Reduction Method

Our first approach was to create a model by reducing a model representing the whole system,
meaning we started with a structured model that contained all features and all constraints
we had found out in the previous phase. We added all constraints for the benchmark and
made sure that the features are used by the benchmark.

This led to the problem that it is unknown for most subject systems how many variants
we are dealing with because it is computationally infeasible to calculate all variants. For
mbedTLS for example we had a feature model initially represented as graph containing
over 220 nodes and over 430 edges. Without the additional constraints we are talking of
2220 variants.

In the next step we would have to remove features as long as we get a number of variants
we can deal with. This approach is error-prone and the black box model for the number of
variants does not scale.

We decided to discard this approach for our use cases. This approach provided the advantage
to start with a model that is very close to the source code and is likely to meet the intention
of the developers, but is we found out that it is not suitable for models containing tens or
hundreds of features.

4.3.3 Generation using a Construction Method

Our second approach starts with an empty model. We add all mandatory features to the
model that are required to get a working build that can be benchmarked. Not every subject
system may have mandatory features as the core of the software may not be configurable at

5We detected some configuration options that can be modified but are not present in this file.

22

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

4 Generation of Feature Models

all. In the next step we add all optional features that have no dependencies to other features,
for example such features as Logging. Then we add features with dependencies on other
features, for example exchangeable algorithms often belong to a group of alternatives. In
this step we only add as many features as we need to get enough variants, and we try to add
features that are present in real-world use cases. For example, it makes no sense to add seven
hash algorithms in an encryption product, but only one cipher if the real world use case is
an equal distribute of the usage of the available ciphers. The last step is, of course, highly
dependent on the structure of the feature model and requires in-depth domain knowledge
to get it semantically correct.

4.3.4 Refinement

After constructing a model and generating all variants refinements have to be made.

The variants can be compiled and benchmarked with a low number of iterations to find
variants producing compile-time and runtime errors. Runtime errors can, for example, be
a result of unexpected combinations of algorithms. Such configurations reveal errors in the
model or may be caused by missing dependencies. As not every error can be analysed in-
depth we exclude such variants and define them as not valid.

Moreover, we used TypeChef to analyse the source code and find type errors that are
present in some variants. This errors have to be analysed in detail because they may be a hint
for missing constraints in the model, for example because of undocumented dependencies.

23

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

5 Detecting Internal Feature Interactions

5 Detecting Internal Feature
Interactions

In this chapter we present the types of internal feature interactions we detected.

5.1 Internal Feature Interactions Analysis Methods

To detect internal feature interactions we know different types of analysis methods. For
understanding the different methods it is necessary to understand how interactions can
be characterized: “To let features interact, we need corresponding coordination code. For
example, if we want to coordinate the fire-alarm and floodcontrol features of the alarm-and-
emergency system example, we have to add additional code for this task (e.g., to deactivate
flood control in the case of fire)” [8].

Common methods to analyse aim to get information about this coordination code, for ex-
ample the presence conditions for certain data flows or control flows, such as method calls.

A call graph, which is a control flow graph that represents method calls, can be extended
to be aware of this variability by using presence conditions for edges that represent method
calls. The next section will focus on this type of analysis.

Beside control flows are data flows analysis a method to detect interactions of features. A
more advanced example for this is Janker’s inter-procedural data flow analysis combining
the tools TypeChef and SPLLIFT enabling a variability-aware analysis of even large scale
C projects [16]. Less advanced analysis methods are capable of analysing data flow only
intra-procedural.

5.2 TypeChef Analysis

TypeChef is a “a research project with the goal of analyzing ifdef variability in C code
with the goal of finding variability-induced bugs in large-scale real-world systems, such as the
Linux kernel with several thousand features (or configuration options). [...] TypeChef was
started with the goal of building a type system for C code with compile-time configurations.
TypeChef was originally short for Type Checking Ifdef Variability. Over time it has grown
into an infrastructure of all kinds of analyses” [27].

As said in the description TypeChef has constantly evolved over the years and has been
used in different publications in different areas of software research. Therefore TypeChef
covers “a call graph analysis with a corresponding pointer analysis is currently developed in

24

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

5 Detecting Internal Feature Interactions

a fork” and “a variability-aware control-flow and data-flow analysis (subproject CRewrite)”
[27].

As input, beside the source code, TypeChef can use “a variability model [that] describes
the intended variability of the program” [32]. We favour the ability of TypeChef to process
variability models in the feature expression format that are covering dependencies between
features. All available configuration options of the variability model must be declared in a
file that contains a newline separated list of these options. Additionally, we use a C-header
file that contains all mandatory features as static configuration parameters. To generate
these required files programmatic we use the conversion utility which is processing our meta
model format.

For our main goal to find internal feature interactions we focus on the support of TypeChef
to build variability-aware call graphs. In our work we are restricted to get one call graph
per C source code file which was presented in chapter 4.

The purpose of the call graph data we generate for single C source code files is to aggregate
them to a call graph for the whole subject system in the next step and to use the aggregated
data for finding relations between internal and external interactions. This process exceeds
the extent of this Thesis as well as contributing other analysis types would be beyond the
scope as they are still in an early development stage. Moreover, we are currently not able to
find indirect control flow interactions, such as calls using function pointers instead of direct
calls, due to technical limitations of the current TypeChef implementation.

1 void f1 (int argc, char *argv[]) {
2 #ifdef A
3 #ifdef B
4 f2();
5 #enfif
6 #ifndef B
7 f3();
8 #endif
9 #endif

10 }
11 #ifdef B
12 void f2 () {
13 wait(10);
14 f3();
15 }
16 #endif
17 #ifdef A
18 void f3 () {
19 printf("Task complete.");
20 }
21 #endif

Listing 7: A configurable program using C pre-processor directives.

Listing 7 illustrates source code using C pre-processor directives to implement variability.
The function f1 is always compiled, function f2 is compiled if feature B has been enabled and

25

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

5 Detecting Internal Feature Interactions

function f3 is compiled if feature A has been enabled. If a feature is not enabled, meaning
the pro-processor directive has not been defined, the corresponding function will be removed
by the pre-processor and therefore not be compiled.

If both features A and B are enabled function f2 is called, if feature A is enabled but not
feature B then function f3 is called.

In other words, we have the presence condition for the call f1 → f2 of A & B. For the call
f2 → f3 we have the presence condition A & !B.

Figure 5.1 shows the corresponding call graph. In this case we have a feature interaction of
the features A and B that affects the overall performance.

Figure 5.1: Minimal example of a variability-aware call graph.

In general the function f2 can do optimizations before function f3 is called. This would result
in an overall speed-up. On the other hand it can contain for example logging functionality,
which would result in a decrease of the overall performance. The example shown in figure 5.1
contains a wait(10) call, that causes the program to wait 10 seconds. This feature interaction
is visible in the call graph, but we do not know the effect on performance.

26

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

6 Detecting External Feature Interactions

6 Detecting External Feature
Interactions

In this chapter we discuss the measurements of non-functional properties we use to detect
external feature interactions and present our testing-framework.

6.1 Types of Non-Functional Properties

We are able to measure different types of non-functional properties we can use to detect
external feature interactions. Most of them can be seen in the context of performance. For
our work the following types of non-functional properties are evaluated:

Binary Footprint: The file size of the compiler output library or program. This non-functional
property has often been a part of the research of highly configurable systems, for exam-
ple used Siegmund the property in his work on “Measuring Non-Functional Properties
in Software Product Line for Product Derivation” [33]. The size does not change over
time and is easy to measure. We will collect the information, but we will not focus on
the property, as it has no main impact on the runtime performance. We decided to
collect the property to allow further usage in future work.

Memory Footprint: The amount of memory that is consumed while the program is running.
The value may change over time, so we can record for example the peek value or
the average or median values for a program execution. Measuring the real memory
consumption is not trivial if we do not use a memory profiler such as Valgrind6.
The Unix tool time for example measures the memory consumption only at certain
intervals. This can lead to unreliable and unreproducible results.

Energy Consumption: Using power distribution units (PDU) that are capable of measuring
the energy consumption per node enable us to measure the energy consumption while
a benchmark is running. We should be aware of the accuracy of the measurements, as
many other factors may have an influence, such as the temperature of the environment.

Execution Time: The execution time can basically be defined as the time the program needs
to complete a certain task. An important decision is, if the startup and shutdown times
of the program are included in the measurements or not. Depending on the use case
this may have a significant impact on performance. If a real-world use case includes
the startup time it should be considered to be part of the measurement, it it does not
include the startup time should be considered not to be part of the measurement [34].

6http://valgrind.org/

27

http://valgrind.org/

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

6 Detecting External Feature Interactions

Throughput of Connections: The property is related to the execution time, but can be
refined, as the actual throughput of a connection between two endpoints may not be
constant over the time. For example we can measure the peek throughput, the median
or average throughput. The average throughput is the amount of data that is processed
divided by the execution time if we assume the data is not compressed. For example
we can measure the throughput of a network connection or in memory.

6.2 Role of Unused Code

One of our goals is to avoid unused code as far as possible, in order to get all code, that
is present in a build benchmarked. This means we want a one-to-one mapping between the
compile-time and the runtime configurations of the variants. Therefore, we executed a pre-
experiment to find out, if we have a significant performance difference between a variant
that contains features that need an explicit enabling, but are not used, and variants that
are using all features present.

We took a variant of mbedTLS that only contained the algorithms that are actually used,
and we took a variant that contained all algorithms, even the ones that are not used in
the benchmark. We did this for 32 randomly picked variants. None of the variants showed
a significant performance difference, to the variant containing all the features using the
same runtime configuration. Figure 6.1 shows typical violin plots for the measurements for
the same runtime configuration with 30 iterations. As we can see are the median and the
interquartile ranges for both measurements equal, and the violins are identical within the
tolerance of our measurements.

For our use case this indicates that features not only have to be present to be relevant for
performance, they actually have to be used. This fact cannot be generalized. For example
on an embedded platform with much more limited resources the presence of unused code
may have an effect on the overall performance, as the idling program consumes a significant
amount of the main memory, compared to our use case where the idling program itself
consumed under 0.1% of the total available main memory.

6.3 Compiler Influence

Different compilers can produce different measurement results, especially the filesize of the
binary is clearly affected. Moreover, the optimization level of the compiler changes the re-
sults. For example when we tested building the library module libmbedtls.a of our subject
system mbedTLS with different compilers and optimization settings, we get slightly dif-
ferent results. For gcc 4.9.3 on a 64 bit Windows machine we get the following filesizes:
These results have been expected because the different optimization levels perform differ-
ent transformations like inlining of methods. O0 does not perform any optimizations and
therefore generates the biggest file. The optimization levels O1 and O2 produce a significant

28

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

6 Detecting External Feature Interactions

smaller binary. Different optimizations like the removing of unreachable code take effect. O3
is the highest optimization level and produces a bigger binary than O1 and O2. This is not
surprising as O3 inlines functions even if they are not declared as inline functions7. TCC8

0.9.26 produces a binary with 221 KB using the default settings.

The results are deterministic in all four cases and fully reproduceable. For example there is
no time based sampling in the C compilers present like Java’s JIT compiler implementation
uses. However, the content hashes of the binaries are not reproduceable because the binaries
contain timestamps with a fixed size.

The common real world use case is that O0 won’t be used because it does not perform
secure and trivial optimizations. O3 won’t be used for deployment because it performs
optimizations that may cause bugs. As O1 and O2 produce nearly the same results we use
the default setting of the mbedTLS build system that referrers to O2. We should keep in
mind that the hypothesis may not hold for all optimization settings in general and different
compilers may not reflect the settings of gcc.

7https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
8http://bellard.org/tcc/

18
.1

5
18

.2
0

18
.2

5
18

.3
0

Essential Features All Features

Figure 6.1: Violin plots for measurements of the same runtime configuration. The left plot it
for variants containing only features actually used, the right plot is for variants
containing unused code. The y-axis represents the duration of a connection in
seconds.

29

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://bellard.org/tcc/

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

6 Detecting External Feature Interactions

Figure 6.2: Output file sizes in KB using optimization settings between O0 and O3.

6.4 Network and IO Influences

The network and the disc IO can cause unpredictable and heavy delays and both can be a
bottleneck and limiting factor for our measurements. To get the non-functional properties we
need to avoid as many limiting factors as possible. Such limitations can cause variants that
have actually a different performance behaviour to show the same behaviour. For example
if the network bandwidth limits the throughput, two variants may need the same time to
transfer the same amount of data because the faster variant cannot send faster than the
network allows. Therefore no clear results can be expected if the maximum performance is
limited by the network or disc performance.

We avoid disk access completely on the test systems by using RAM discs instead of the
much more slower NFS mounted network file system, and we try to avoid network delays as
far as possible. Network delays can for example be avoided if we use the same machine for
hosting the server and the client in a client-server scenario. However, this is not a solution
that can be applied for all possible subject systems, for example web servers need multiple
clients for the simulation of a real-world use case.

6.5 Testing System

We use a cluster of 14 machines with identical hardware and software configurations for our
measurements. Every machine has a Intel i5-4590 processor with four cores, four threads
and 6 MB first level cache. They use 16 GB RAM and 256 GB solid state disks. Half of
the RAM is used as RAM disk. As compiler we use GCC 4.9 on a Ubuntu Linux in version
16.04.

30

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

6 Detecting External Feature Interactions

The cluster uses a power distribution unit (PDU) which can record the energy consumption
per node. The power distribution units offer a XML-based API to retrieve the current
consumption values. We store this data, but we have to be aware of inaccuracies caused by
network delays.

We are able to execute the benchmarks in parallel.

6.6 Statistical Variables

In this section we discuss the independent variables and dependent variables, as well as the
confounding variables, that are present in our test system.

6.6.1 Independent Variables

As dependent variables for all subject systems and all external feature interactions we want
to record we define the configuration that forms a variant as independent variable. A con-
figuration is a set of features that is present in the variant.

6.6.2 Dependent Variables

We have multiple variables we want to observe and that are supposed to be depending on
the configuration of the variant.

Binary Footprint: Using #ifdef -variability changes the source code that is actually com-
piled. We expect significant changes in the binary sizes. The recording of the variable
is trivial.

Memory Footprint: The presence of different features can affect the memory consumption.
For example the size of the program itself changes, and moreover, features can consume
memory if they are used. The recording of the variably is not trivial and needs a
memory profiler to ensure accuracy. In the following we will record the data using the
command line utility time, as memory measurements are not our primary goal. We
will be aware that we have to drop the data if the accuracy is too bad.

Energy Consumption at Runtime: If a feature is active we suppose that a feature either will
consume CPU time or perform optimizations that changes the CPU time consumption
of other features. Concluding we expect a change in the overall energy consumption
of the program. The basic measurement is possible as we can collect data from the
API of the power distribution units, but we expect a low accuracy caused by network
delays and other sources for measurement bias. We collect the data but will not further
evaluate the data if the quality does not fit our requirements.

31

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

6 Detecting External Feature Interactions

Performance at Runtime: Performance can be characterized in different ways, for example
we can measure throughputs and queries per second. We decided to use a simple
measurement that can be used for all subject systems: The execution time of the
program to complete a certain resource intensive task. The execution time can be
measured very accurately. Performance interactions are our main interest, so we will
focus on them in the following chapters.

6.6.3 Confounding variables

We identified the following confounding factors and tried to mitigate them using different
techniques, such as keeping the value of the variable constant or using randomization as far
as possible.

Compiler and software environment: We described in section 6.3 the effect of compiler
optimizations on the size of the binary. The same optimizations can affect performance
or course. We use always O2 settings for optimization and keep a constant software
environment. For example we avoid updates and used the same software versions on
all nodes.

Runtime configuration: Subject systems may offer methods to change configuration options
at runtime. We use fixed runtime configuration parameters or use a one-to-one mapping
to the compile time configuration.

Latencies: Energy measurements require a communication with an API which has a certain
response time. Additionally, we have to deal with latencies between the client of the
measurement and the provider of the API. Our possibilities to mitigate this effect are
very limited with the current benchmark setup.

Network and IO overhead: To avoid overhead caused by the network and the IO of the
nodes we will use RAM disks to mitigate this effect.

Environment effects and random effects: For the mitigation of random effects, such as
unavoidable operating system background tasks, and environmental effects, such as
an increasing system temperature we use randomization of the variants and multiple
executions of our measurements. Moreover, we use a high number of iterations.

Utilization of processor and basic workload: Every operating system and the active back-
ground tasks cause a base load on the hardware we are not able to control. With our
measurements we found out that we can utilize between 98 % and 100 % of the pro-
cessor if a benchmark is limited by the processor. We have to keep this fact in mind
when we analyse the standard derivation and the variance. This may be a cause for
significant differences for both values of different measurement series.

Subject system related variables: For each subject system we will discuss additional con-
founding variables that are depending on the investigated system.

32

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

6 Detecting External Feature Interactions

Figure 6.3: UML model of the reporting database.

6.7 Benchmark Execution and Reporting Framework

We implemented the benchmarking infrastructure using Python. A wrapper script gener-
ates the compilation, benchmark and measurement workflow jobs that can be executed on a
node of the cluster. Every job is a python script that manages the RAM disk, triggers com-
pilation process and executes the benchmark. The script implements a detailed logging and
measures the time of each sub-task, such as the compilation, the whole benchmark duration
or a single iteration of the benchmark. The implementation is designed to generate as little
overhead as possible.

For getting the filesize of the compiled binaries we use Python’s os.path.getsize(file) func-
tion. The time and memory recordings are done by using time9. Energy measurements use
the XML-based API of the power distribution units, where we store the snapshots of the
raw data.

We write every measurement data point and every log entry in log-files on the network
file system. To enable a faster reporting while the subject system is benchmarked and to
provide a better exporting functionality for the data we use an additional SQLite database.
Figure 6.3 shows the UML class digram of the database structure we use for storing the
measurements and logs. The database is located on a remote server and uses a JSON-

9On the Windows reference environment this is done via Cygwin.

33

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

6 Detecting External Feature Interactions

Figure 6.4: UML model of the standard workflow of the benchmark.

based10 REST11-API. We send the data to the API using cURL at the end of every job
execution, to avoid any effect on the benchmarks.

Figure 6.4 illustrates the workflow of the whole benchmark process as UML activity diagram.
The term benchmark refers to the performance benchmark we use. We implemented this part
very generically, for example we can use a complex client-server model for benchmarking or
a simple program execution. The workflow can be executed as single job.

10JavaScript Object Notation
11Representational State Transfer

34

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

7 mbedTLS

7 mbedTLS

This chapter describes the experimental setup and execution to create variability-aware
call graphs and to measure non-functional properties in order to find internal and external
feature relations in the subject system mbedTLS.

7.1 Description of mbedTLS

mbedTLS is a lightweight open source library for transport layer security designed for
embedded platforms. It offers support for the SSL/TLS protocol versions SSLv3, TLS v1.0,
TLS v1.1 and TLS v1.2.

The main use case for mbedTLS is - according to ARM - an embedded environment. Being
available on most platforms and for most operating systems mbedTLS is also used in non-
embedded software like OpenVPN. Therefore, it can be considered as alternative to the
widely-used OpenSSL library whose code quality was the subject of relentless criticism
after the heartbleed attack.

mbedTLS has a very modular and well designed and documented software architecture.
Compile-time configuration options can easily be identified because they are prefixed with
MBEDTLS_.

mbedTLS uses make as build system and includes a range of demo applications and test
cases. The compatibility test application is re-used for the benchmarks of the case study.

7.2 Software Architecture

Next we provide a more detailed overview of the software architecture of mbedTLS, cipher-
suites in common, the feature model design and finally, the setup, execution and results
of the benchmark. The case study uses the mbedTLS version 2.2.1 which was released in
January 2016. For prior experiments and evaluation PolarSSL12 1.3.9 was used.

mbedTLS is generally designed to be a library for multiple cryptographic purposes related to
the context of Transport Layer Security. Basically, single modules of the library can be used
completely independent without providing the whole SSL/TLS functionality. For example,
it is possible to use only the hash module in a third-party application for hashing data.
The other modules are not needed to be compiled in this case. For our case study we use
mbedTLS as a SSL/TLS library, that is all modules in combination. Partial variants that
are not supporting a full SSL/TLS communication will be ignored because we are interested

12PolarSSL was renamed to mbedTLSin 2016

35

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

7 mbedTLS

in detecting feature interactions and the SSL/TLS module contains most of the coordination
code that is in the focus of our interest.

Figure 7.1 illustrates the high-level architecture of mbedTLS. The follwing modules form
the library:

Figure 7.1: mbedTLS high-level architecture overview [35].

Cipher: The cipher module contains all supported symmetric cipher-algorithms such as AES,
DES, and ARC4. They implement the cipher-interface and can be used exchangeable.
Every cipher needs to implement minimum one cipher operation mode. The operation
mode defines how data amounts larger than the block size can be encrypted with or
without generating patterns in the encrypted data. Patterns in the encrypted data
can be used to break the encryption. Beside the different block modes also a stream
mode can be implemented. Most algorithms only implement a sub-set of the available
modes.

Public Key: The public key module contains the public key infrastructure for handling
secure key exchanges between server and client. This involves the usage of asymmetric
encryption algorithms such as RSA and key exchange protocols like Diffie-Hellman.
Every key-exchange protocol implements the public key interface and is exchangeable.
The module makes heavy use of the random number generator.

Hashing: The hashing module wraps the hash-algorithms such as RipeMD 160, MD5, and
the algorithms of the SHA family. To be exchangeable they implement the hashing
interface. Hash functions are mainly used by the SSL/TLS module for message au-
thentication and by block ciphers for chaining blocks.

RNG: The RNG module handles the random number generation. The public key exchanges
depend on this module. One particularity of this module is that it can use the AES

36

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

7 mbedTLS

cipher as core of a random number generator (RNG). In this case the AES cipher
cannot be excluded from the source code, even if another cipher, for example DES,
is used for encryption. This poses certain problems for the feature model that are
discussed in section 7.5. Implementing the random number generator (RNG) interface
makes the default algorithm exchangeable.

SSL/TLS: This module is the core module of the library that puts all other modules together
in order to provide a SSL/TLS interface that enables the creation of encrypted secure
connections. Figure 7.2 shows the usage hierarchy of the modules.

TCP/IP: mbedTLS does not rely on any platform dependent C library function other than
the functions provided by libc. The TCP/IP module offers an interface and an imple-
mentation for a complete TCP/IP protocol stack.

X.509: The X.509 module contains the X.509 certificate infrastructure for parsing, gener-
ating and validating certificates according to the X.509 standard. Although there is
only a single implementation in mbedTLS the module implements a X.509 interface
that makes the implementation exchangeable with other implementations.

Figure 7.2: mbedTLS hierarchy and usage of modules [35].

7.3 Cipher Suites

mbedTLS supports different types of variability. On the one hand, we have the compile time
options that define what parts of the source code are compiled and how they are compiled,
on the other hand, there is runtime variability which can be redefined for every connection.
The specification of a connection is called cipher suite and is shown in listing 7.1. It defines
what algorithms and protocols are used by a TLS connection and is therefore represents
runtime variability in mbedTLS. Attention has to be paid that TLS 1.313 uses a different

13Currently TLS 1.3 has the status "draft", see: https://tools.ietf.org/html/draft-ietf-tls-tls13-11.

37

https://tools.ietf.org/html/draft-ietf-tls-tls13-11

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

7 mbedTLS

format and cannot use the format below. Therefore, upgrading the subject system to use
TLS 1.3 will require adjustments.

TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256 (7.1)

Protocol: The first part of the cipher suite defines the protocol that is used for the connec-
tion, but does not include any version information. Our subject system does not use
the outdated SSL protocol any more, so the protocol is always TLS.

Key-exchange: For setting up a secure connection between client and server the key that is
used for the encryption algorithm has to be exchanged. The key exchange part of the
cipher suite defines which mechanism or which protocol is used for this. Ecdhe_Psk
states that the elliptic curve Diffie-Hellman protocol is used in combination with a
pre-shared key.

Cipher algorithm and mode of operation: Within the cipher suite specification the token
With is used as separator between the key-exchange and the cipher information. After
these token the cipher algorithm is specified and optionally it contains information
about the mode of operation, if more than one mode is supported by the cipher. The
example uses AES_128_CBC which states that the algorithm AES should be used
with 128 bit key size14. As mode of operation CBC is used.

Figure 7.3 illustrates which cipher algorithms can be combined with which modes,
because a cipher does not necessarily implement all modes. Using ARC4 or no cipher
implicates the stream mode, all other ciphers implicate at least one of the block cipher
modes.

Hash algorithm: The last part of the cipher suite defines the hash function that is used for
the message authentication code. In the example Sha256 defines that SHA 2 algorithm
is used with a 256 bit output. It is important to keep in mind that the connection setup
of TLS requires other hash functions for different purposes such as key derivation. The
specification of Sha256 in the cipher suite does not affect these functions, because
they are defined by the protocol itself and cannot be configured.

Figure 7.3: mbedTLS compatibility between cipher algorithm and cipher modes.

14AES has a fixed block size of 128 bit.

38

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

7 mbedTLS

The negotiation of the cipher suite is done between the sever and the client in the setup
phase of a connection. For this case study we will always support a single cipher suite
only for specifying explicitly which cipher suite is used. Basically the protocol supports
a re-negotiation for an active connection, but we do not use this feature to ensure the
transparency of the process. Enabling the feature would create for example the problem,
that the cipher suite used at the end of the connection need not be the same cipher suite
that was used initially.

7.4 Feature Model

The Config.h, which contains the configuration options that define the variant, of mbedTLS
contains 247 macro definitions that we can consider to represent a feature. Most of the
macros are prefixed with Mbedtls_, but we have found some exceptions. Some macros
for example only use the cipher mode as prefix. Beside the Config.h mbedTLS has a
Check_config.h that defines constraints for features and generates compilation errors if
this constraints are violated. After reading the high level documentation of mbedTLS we
processed the documentation of the files Config.h and Check_config.h. We found out
that often multiple macros form a single feature.

The overall structure of the feature model follows the packages shown in figure 7.2. We had
to acquire deep domain knowledge as we needed to build the model from scratch.

In our first approach we extracted all features from the Config.h and added the depen-
dencies described in the Check_config.h. After that we grouped the features into the
packages of the architecture diagram and added calling dependencies for each feature to
avoid unused code. This approach lead to a feature model that represents the real soft-
ware architecture but is not suitable for benchmarks as it allows millions of variants to be
generated.

For getting a computational feasible model we use a new approach that only uses the essential
parts for mbedTLS. Moreover, we try to avoid unused code to be present in the build. The
construction of the model follows the following steps:

Mandatory Features: In the first step we determined the mandatory features for a minimal
product supporting the SSL/TLS protocol module. For this case study we use the TLS
version 1.2 as only supported protocol. We used the documentation and test builds
for this. We found out that some of features of other modules, such as the cipher
AES or the hash MD5 are part of the mandatory features. The use of AES is not
exclusively bound to the cipher suite, but it is also used for the mandatory random
number generator. The problem details and the solution for the case study is described
in section 7.5.

39

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

7 mbedTLS

Cipher Suites: Next we chose features to build cipher suites that are constructed by a hash
function15, a cipher algorithm16, a mode of operation for the the cipher algorithm17and
a method for the exchange of keys18. As described in the cipher suites section 7.3 we
are only able to combine cipher algorithms with compatible operation modes. Basically
it is possible to combine every hash function with every cipher and every key exchange
mechanism. Most key exchange methods require multiple other macros to be turned on
in order to work as intended. To limit the dependencies to a minimum we only used the
simple PSK methods. Other methods require more advanced features like a certificate
infrastructure. This is error-prone to emulate for benchmarks and not required to get
enough working variants.

Optional Features: After adding cipher suites, we add features that are fully optional, which
means the features can be turned off and on without any other implications. Moreover,
these features do not require a runtime configuration, they will be active if they are
present. For example, if AESNI_C is present the AES implementation will switch
automatically to the native instructions (NI) variant.

Benchmark Features: For being able to create a executable benchmark binary the essential
features of the benchmark wrapper are added, for example the IO functions to read
the contents of the payload require the feature MBEDTLS_FS_IO.

Constraints: After the first benchmark execution we detected that many configurations are
not working because of compile time or runtime errors. The errors occur for example
because of type errors or undocumented dependencies. We added these variants as
excluded configurations to the model. These variants will not be part of the analysis.

The figure 7.4 shows the feature model that was created with this process. We removed the
mandatory features from the graphics as they cannot be configured and are therefore always
present. At the top level, there are four modules of the cipher suite that are only containing
alternative groups and we can see the group of optional features at the bottom.

The figure only illustrates the semantic features but does not represent the model we used
for the code generation. To create a working build of the mbedTLS library we need to enable
several additional macros that are implicated by single features. Because of the implications
by single features and because this macros cannot be defined stand-alone we assume this to
be a part of the feature.

As the feature model of mbedTLS is very complex19 and auto generated from a meta model,
we want to ensure that the variants calculated by SPLConqueror are correct. Therefore
we wrote a Haskell program that generates all variants and we matched the output of the
Haskell program with the output of SPLConqueror. Both outputs contain the same 19,200
variants so we assume the the input model of SPLConqueror was correct. The documented
source code of the program is show in listing 8. We removed all Mbedtls_ prefixes in macro

15RipeMD160, SHA1, MD5, SHA256 or SHA512
16AES, ARC4, Blowfish, Camellia, DES or none
17CBC, CCM, CFB, CTR, ECB, GCM or stream
18PSK, DHE-PSK or ECDHE-PSK
19The SPLConqueror model contains all mandatory and all implicated macro definitions.

40

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

7 mbedTLS

Figure 7.4: Feature model of mbedTLS used for performance benchmarks.

names and do not show the external dependencies for brevity. External dependencies are
for example mandatory features that are required by the benchmark implementation itself,
such as the TCP/IP or file IO implementation. The original version is available online20.

7.5 Shared Code

A problem we had to solve is that some features are shared across different modules and
used in different contexts. For example AES is used by the random number generator, which
is mandatory, and is also used as cryptographic block cipher algorithm. Another example is
the implementation of the hash algorithm MD5 that can be used in the context of the cipher
suite for generating the MAC, and it is also required by the TLS module for the connection
setup.

This creates the problem that we cannot use an exact one-to-one mapping between compile-
time and runtime configuration, because some modules are mandatory in the code base
for all variants, but are not actually used as they are intended to be used. We need a

20https://github.com/DE120/mbedtls/blob/master/feature-models/variants.hs

41

https://github.com/DE120/mbedtls/blob/master/feature-models/variants.hs

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

7 mbedTLS

1 module Variants where
2

3 -- NOTE: A function to calculate the power set of an list was taken from
4 -- https://mail.haskell.org/pipermail/haskell-cafe/2003-June/004484.html.
5 -- Signature: powerset :: [a] -> [[a]]
6

7 -- The list of all optional features that can be off and on without other dependencies (5).
8 optionalFeatures = ["HAVE_SSE2", "AES_ROM_TABLES", "SHA256_SMALLER", "ZLIB_SUPPORT", "AESNI_C"]
9

10 -- The list of hashing algorithms (5).
11 hashes = ["RIPEMD160_C", "SHA1_C", "MD5_C", "SHA256_C", "SHA512_C"]
12

13 -- The ECDHE-PSK key exchange requires one elliptic curve.
14 -- Additionally an optional optimization feature that can be activated (4).
15 ecdhepsk = [["KEY_EXCHANGE_ECDHE_PSK_ENABLED", curve, optimization] |
16 curve <- ["ECP_DP_SECP192R1_ENABLED", "ECP_DP_SECP224R1_ENABLED"],
17 optimization <- ["ECP_NIST_OPTIM", []]]
18

19 -- Combine the two simple key exchanges with the more complex ECDHE-PSK key exchange (6).
20 keyExchanges = [["KEY_EXCHANGE_PSK_ENABLED"], ["KEY_EXCHANGE_DHE_PSK_ENABLED"]] ++ ecdhepsk
21

22 -- Create all possible combinations for cipher modes and the supported cipher algorithms (20).
23 ciphers = [["CIPHER_MODE_STREAM", c] | c<-["ARC4_C", "CIPHER_NULL_CIPHER"]]
24 ++ [["CIPHER_MODE_CBC", c] | c<-["AES_C", "BLOWFISH_C", "CAMELLIA_C", "DES_C"]]
25 ++ [["CIPHER_MODE_CFB", c] | c<-["AES_C", "BLOWFISH_C", "CAMELLIA_C"]]
26 ++ [["CIPHER_MODE_CTR", c] | c<-["AES_C", "BLOWFISH_C", "CAMELLIA_C"]]
27 ++ [["CIPHER_MODE_ECB", c] | c<-["AES_C", "BLOWFISH_C", "CAMELLIA_C", "DES_C"]]
28 ++ [["CCM_C", c] | c<-["AES_C", "CAMELLIA_C"]]
29 ++ [["GCM_C", c] | c<-["AES_C", "CAMELLIA_C"]]
30

31 -- Now combine the power set of the optional features with the cipher suite information.
32 -- The cipher suite contains one hash, one cipher operating in a cipher mode and a key exchange.
33 -- Total we get 2^5 x 5 x 20 x 6 = 19,200 possibilities.
34 variants = [optionals ++ [hash] ++ cipher ++ keyExchange |
35 optionals <- powerset optionalFeatures,
36 hash <- hashes,
37 cipher <- ciphers,
38 keyExchange <- keyExchanges]
39

40 -- Print all possible combinations.
41 main = print variants

Listing 8: A Haskell program for generating a list of all possible variants according to the
feature model for verifying the SPLConqueror output.

one-on-one mapping, because otherwise the benchmark is not able to decide which variant
should actually be benchmarked. For example if AES and DES are present, we want to
benchmark the DES cipher because AES is only needed for the random number generator.
Programmaticly this is hard to decide as we do not know the context of AES and DES.
Additionally, AES used as cipher has a significantly different impact on performance than
AES used as part of the random number generator which is used only a few milliseconds for
connection setup.

To solve this problem we introduce an extra feature for every context, that refers to the imple-
mentation of the feature. For example we split up MBEDTLS_AES_C into MBEDTLS_
AES_C and MBEDTLS_AES_C_CIPHER_USAGE. This allows SPLConqueror dif-
ferentiate between AES feature being used as a cipher and as part of the random number
generator, but still including all mandatory code, and allows the benchmark a one-to-one

42

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

7 mbedTLS

mapping between the cipher suite that is used and the cipher algorithm that is present in
the binary.

The data can be evaluated after merging MBEDTLS_AES_C and MBEDTLS_AES_C_
CIPHER_USAGE back into a single feature. If the features are not merged, we will not be
able to analyse relations to the control flow graphs.

7.6 Internal Feature Interactions

To detect the internal feature interactions we converted the feature model from the meta
format, described in 4.2.2, to a Feature Expression model suitable for TypeChef. Be-
side the Feature Expression model we created an open-features.txt file that contains all
configuration options. We prepared the source code of mbedTLS to work with TypeChef,
for example we needed to removed the content of the file config.h. If a configuration is de-
fined in the header config.h, TypeChefwill use this configuration instead of the variability
expressed by the feature model.

To test if the preparations of the feature model and source code are working for TypeChef
we generated variability-aware control flow graphs for all source code files that contain the
presence conditions for all calls. These can be used to detect feature interactions, as described
in 5.2. The analysis of variability-aware control flow graphs and the extraction of the feature
interactions is part of further work.

7.7 External Feature Interactions

This section describes the creation of a performance benchmark for mbedTLS. We present
the execution of the measurements, the measured data, discuss the results and show examples
for external feature interactions.

7.7.1 Benchmark Description

We found no publicly available benchmark that is capable of performance benchmarking
the library itself. Therefore, we used as base for the custom benchmark of the connection
performance the compatibility test of mbedTLS that has on the one hand a server wrapper
application and on the other hand a client wrapper for application for the library. The
compatibility test is shipped with the original source code.

We evaluate the connection performance by measuring the time that is needed to transfer a
fixed amount of data from the benchmark server application to the benchmark client appli-
cation. We chose to measure this property of TLS connections because it is the value that is
interesting for most real-world applications using secure connections, such as a browser that

43

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

7 mbedTLS

receives data from a web-server, a mobile or an embedded device that queries data from an
API.

We compile the server and the client with the same library, so both contain the same features.
The server is an application, that starts up and loads a payload file in the memory and starts
waiting for a client. If a client connects the TLS connection between both is established and
the server starts transmitting the payload to the client. The cipher suite is that is used for
the transmission is explicitly defined by the wrapper script that started the performance
benchmark. The server is terminated by the wrapper script if all client benchmarks are
done.

The server has a high startup time to load the file into the memory, so we decided to focus
our benchmark iterations on the client and keep the server alive for all iterations. We have
to consider this while processing the benchmark data, because either the decryption or the
encryption process may be the limiting factor, although they share most of the code.

We had to modify the code of the original server in order to add support for payload data
to transmit to the client that is read from instead of being defined in the source code as
constant of characters. The original payload data had a size less than 1 KB. Moreover, we
had to add support for multiple clients, as the original compatibility test quit after serving
a single client.

The client is a minimal wrapper around the library which can establish a connection to a
server, receive data and quit after the connection is closed by the server. It has no measurable
startup and shutdown time.

As payload we use a 2 GB file that is based on a base64-encoded image embedded in HTML.
Smaller payloads have shown unstable measurement results in pre-tests. The payload can
be compressed to around 90 % of the original file size using gzip with default settings.
We tested this, because some of the variants we test use a compression feature. This can
either improve the performance, if the time to compress and decompress is lower than the
time that can be saved by sending only around 90 % of the data packages, or this can lead
to a decrease of the performance, if the additional time needed for the compression and
decompression overhead is higher than the time that is saved. A real-world use case that
could be compared to this scenario is the download of a large file from a server using a secure
connection. However, usually the network is the factor in such scenarios that slows down the
transmission, so we have to assume a use case where the network capacity is high enough
to transmit all data a server can provide and a client can receive the data fast enough.

Using in-memory benchmarks for cryptographic purposes is quite common, for example
TrueCrypt uses in-memory benchmarks to compare the performance of encryption al-
gorithms without paying attention to bottlenecks caused by hard disk or solid state drive
performance.

44

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

7 mbedTLS

7.7.2 Confounding Variables

Additionally, to the confounding variables we have already defined for the general bench-
mark setup in 6.6.3, mbedTLS needs to use a client server setup, which introduces a new
confounding variable: The server-client scenario. We compile the server and the client with
the same library, so both are based on the same variant and use the same set of features.
Server and client are running on the same processor, but the trade-off that remains is that
we do not know if the server or the client is the slower part.

Another confounding variable is cryptography itself. Many parts of the connection hand-
shake are using random numbers and the derived keys are unpredictable. These may have
influences on the performance of the connection. In asymmetric cryptography, which is used
for exchanging the symmetric keys between server and client, for example the calculation
time depends on the value of the key. For generating the key the random number genera-
tor is involved. Although we do not expect a measurable performance decrease, we use 30
iterations of the performance benchmark for each variant to mitigate these effects.

7.7.3 Benchmark Execution

The estimation (7.2) shows the expected maximum run-time of the benchmarks. The calcu-
lation is based on the maximum measured times of 32 single variants that have been chosen
randomly. As the measurements are executed parallel on the cluster. Not all variants are
expected to compile properly, for that the real execution time is considered to be below the
time per node tnode.

Estimation of the measurements execution time:

cnodes = 14 (7.2a)

citerations = 30 (7.2b)

cvariants = 19200 (7.2c)

titerations = citerations ∗ 60s = 1800s (7.2d)

tcompile = 120s (7.2e)

tcomplete = cvariants ∗ (tcompile + titerations) ≈ 34, 560, 120s (7.2f)

tnode = tcomplete/cnodes ≈ 2, 468, 580s ≈ 4.1w (7.2g)

(7.2h)

To produce stable and reliable results we use 30 iterations for the performance benchmark.

The execution of all measurements took about three days and 1,921 of 19,200 variants
produced measurements, the other variants produced compilation or runtime errors. In con-
clusion of the result we refined the feature model by excluding these variants that produced
no measurements. The main reason for compilation errors where type errors resulting from
configurations that seem not to be testes by the developers of mbedTLS. Beside compilation

45

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

7 mbedTLS

errors we had uncommon21 cipher suites that produced runtime errors, such as segmentation
faults and TLS errors caused by invalid decrypted data blocks.

7.7.4 Measurements Data

We collected for all 1,931 working variants measurement data of compilation times, binary
footprints of the executable, energy consumption while compiling and energy consumption
while running the performance benchmark, the overall execution time of the performance
benchmark and the execution times of every iteration of the performance benchmark. Fur-
thermore, we collected the maximum main memory consumption in an extra execution of
the benchmark.

7.7.5 Measurements Data Analysis Results

The measurements of the properties main memory consumption and energy consumption
were not reliable and not reproduceable. The measurements of the energy consumption had
a measurement bias caused by various network latencies we could not control. We found out
that the main memory measurements suffer from time that is only sampling the maximum
memory consumption. We tested this using 30 iterations for memory measurements for a
single variant. Therefore, we did not further evaluate the data.

We did not further analyse the collected compilation times.

The measurements of the binary file sizes are fully reproduceable and deterministic.

In the performance benchmark fastest iteration of the fastest variant needed 6.72 s to com-
plete, the slowest iteration of the slowest variant took 73.45 s.

We calculated the descriptive standard derivations and variances for all variants using the
programming language R. The median standard derivation over all variants was 0.094 s and
the median variance 0.008 s2. Compared to the measurement differences between different
variants this value is very low.

Figure 7.5 shows the violin plots of two randomly picked variants v1 and v2. We found out,
that the violins of the many variants showed outliers on the top, the lower performance. We
took this as reason to investigate the cause of this outliers and used our reporting database
to join the data of the measurement values with the data from the logs. Measurement values
in interquartile ranges had a CPU utilization of 100 %. Outliers were strongly related to a
utilization of 99 %. This is an indicator that the CPU utilization may be the cause of the
outliers. For a further analysis detailed measurements of the CPU utilization with a higher
accuracy would be needed.

21A list of common used cipher suites, for example defined by RFCs, can be found on the page: http:
//www.thesprawl.org/research/tls-and-ssl-cipher-suites/.

46

http://www.thesprawl.org/research/tls-and-ssl-cipher-suites/
http://www.thesprawl.org/research/tls-and-ssl-cipher-suites/

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

7 mbedTLS
21

.2
2

21
.2

4
21

.2
6

21
.2

8
21

.3
0

v1

62
.0

0
62

.0
2

62
.0

4
62

.0
6

v2

Figure 7.5: Violin plots for measurements of two different variants of mbedTLS. The y-axis
represents the execution time of a iteration of the performance benchmark in
seconds.

7.8 Measurements Conclusion

The measurements of the main memory usage and consumption have been unreliable and
non-deterministic and are not usable for further evaluations.

The measurements of the binary file sizes and the measurements of the performance bench-
mark have been produced stable results that can be further processed. We imported the data
successfully in SPLConqueror and started an analyses to detected feature interactions,
to test if our measurement data is suitable for detecting interactions. We found out that
the results of mbedTLS can be used to detect external feature interactions, but we did not
further evaluate the results of the analysis as this is not part of the thesis. We provide our
measurement data in files using the comma separated value format.

7.9 Summary

For mbedTLS we were able to construct a modular and extensible feature model based on
the different groups of algorithms. Extensions beside these groups, for example including the
X.509 certification infrastructure, would introduce much more dependencies and complexity.
We prepared the source code and feature model for analysis by TypeChef that can be
used to extract all feature interactions. For the measurement of external feature interactions
focused on performance interactions, we have created a client server benchmark and executed
the performance measurements and presented the results.

47

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

8 SQLite

8 SQLite

This chapter describes the experimental setup and execution to create variability-aware
call graphs and to measure non-functional properties in order to find internal and external
feature relations in the subject system SQLite.

8.1 Description of SQLite

SQLite is “an in-process library that implements a self-contained, serverless, zero-configuration,
transactional SQL database engine.”[36]. Being an embedded database library SQLite cov-
ers another application domain which is a real-life use case. It has been analysed using
TypeChef, in the dissertation of Liebig “Analysis and Transformation of Configurable Sys-
tems” [14], and in the context of SPLConqueror in the paper of Siegmund et. al “Predict-
ing Performance via Automated Feature-interaction Detection” [15]. Contrary to our work
Siegmund used a sample of 100 variants, while we aim to benchmark all variants that can
be generated by a feature model. Moreover, we use the same feature model for TypeChef
and SPLConquerorand a newer version of SQLite, so we could not re-use their work.
Like mbedTLS SQLite is not only limited to the embedded sector it is widely used by
applications of multiple domains, for example for it is used by Skype as internal database.
The reporting module of the thesis uses SQLite as data storage.

Compared to other common database management systems there are no performance bench-
marks publicly available that satisfy the requirements of this study. With the shell interface
of SQLite it is possible to generate a performance benchmark using publicly available data
sets.

8.2 Feature Model

This section describes the configuration options of the SQLite library, the selection of a
sub set of configuration options and how these options where combined to form a feature
model suitable for the measurements of external feature interactions.

8.2.1 SQLite Configuration Options

SQLite has a well documented list of compile time configuration options22. Currently there
are about 165 macro definitions that can be considered to represent a feature. Nearly all

22https://www.sqlite.org/compile.html

48

https://www.sqlite.org/compile.html

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

8 SQLite

macros that can be used for configuring SQLite are prefixed with SQLITE_ while platform
dependent macros are prefixed with HAVE_.

As the documentation states the development team of SQLite spends a lot of effort that
every configuration option should lead to a working variant of the library. Moreover, it is
clearly said that they cannot guarantee or test every possible combination and only a listed
set of configuration options is fully tested to be compatible in every combination [37].

According to the documentation we classify the features into binary features which are
enabling or disabling a part of the source code and numeric features. In contrast to mbedTLS
most of the features do not depend on the presence or absence of other features. In general
this makes the feature model simpler and much easier to handle.

Most of the features do not need an additional runtime configuration in order to be called
while the binary is executed. They will be used if they are present or their usage de-
pends on the executed queries. For example if SQLITE_DEBUG is enabled the debug
code will be called without the need for any additional configuration at runtime or if
SQLITE_LIKE_DOESNT_MATCH_BLOBS is enabled queries using a LIKE expression
in a SQL statement will be threaded differently.

SQLite uses macro definitions as negative feature expressions, using the prefix SQLITE_
OMIT_*, to omit parts of the source code. For example the presence of the macro SQLITE_
OMIT_SHARED_CACHE causes the shared cache feature to be omitted. For the case study
all features that can be omitted are assumed to belong to the core functionality and will
not be omitted by default. The decision was made because the benchmark should basically
be able to execute an arbitrary SQL query that is supported by the language specification
of SQLite23. In all real-world use cases of SQLite we came across we saw always the full
SQLite language standard to be supported.

For embedded systems there would be the possibility to minimize the binary and memory
footprint by omitting features that are not relevant for the use case. For example if there
is no usage for the CAST operator in the wrapping software the library does not need to
support the operator and SQLITE_OMIT_CAST can be enabled. Configuration options
that are not prefixed with SQLITE_OMIT_ can affect the size of the binary.

8.2.2 Handling Numeric Configuration Options

Beside the macros that are using #ifdef -variability some configuration options of SQLite
use numeric options. Numeric options currently cannot be analysed by TypeChef. A nu-
meric option does not disable parts of the code, it is evaluated at runtime by the code. This
can be used as boolean flags, for implementing different operation modes of a feature or for
configuring numeric properties, such as cache sizes. For example SQLITE_THREADSAFE
supports the values 0 for no thread safety, 1 for the highest level of thread safety (serializing)
and 2 for multi-threading support with restrictions. This can be modified to a binary feature

23https://www.sqlite.org/lang.html

49

https://www.sqlite.org/lang.html

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

8 SQLite

if level 2 is omitted. Other numeric options define limits, sizes or other enumerations. We
used the default values for these options as they were not part of our feature model.

However, there are also numeric options that are only supporting 0 and 1 as valid values, e.g.
SQLITE_DEFAULT_MEMSTATUS. This kind of configuration option is likely to produce
another call graph but has no effect on the size of the binary. They are implemented as
numeric options because they are passed directly to C-structs and used as booleans as shown
in listing 9. We can replace it by an #ifdef -macro and #ifndef -macro that are wrapping the
actual value to use as boolean like demonstrated in listing 10. The default value from listing
11 has to be removed from the source code as the option may be undefined if the feature is
disabled.

1 /*

2 ** The following singleton contains the global configuration for

3 ** the SQLite library.

4 */

5 SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config = {
6 SQLITE_DEFAULT_MEMSTATUS, /* bMemstat */

7 // [...]

8 };

Listing 9: Original code using the configuration option in the C-struct as boolean.

1 SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config = {
2 #ifdef SQLITE_DEFAULT_MEMSTATUS

3 1
4 #endif

5 #ifndef SQLITE_DEFAULT_MEMSTATUS

6 0
7 #endif

8 , /* bMemstat */

9 // ...

10 };

Listing 10: Rewritten code using #ifdef -variability to switch the boolean values.

1 #if !defined(SQLITE_DEFAULT_MEMSTATUS)

2 # define SQLITE_DEFAULT_MEMSTATUS 1

3 #endif

Listing 11: Definition of default value for undefined configuration option.

50

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

8 SQLite

8.2.3 Selection of Features and Creation of a Feature Model

It is infeasible to benchmark all feature combinations, so we focused on those features that
may have an influence on performance and may have performance interactions. Compared
to mbedTLS SQLite does not offer a wide range of algorithms with different performance
characteristic that can be varied. Also there is no wrapper concept like a cipher suite that
requires minimum one feature of a feature category to be present in order to form a valid
suite. Basically a free selection of options in the list of available configuration options can
be performed to get enough features for a suitable number of variants.

We studied the documentation of SQLite to as features that could have a measurable impact
on the performance according to the documentation have been flagged. The development
team lists configuration options to be tested in order to be combinable with each other.
These options have been given a higher priority in order to avoid compile time or run time
errors as far as possible. Also it has been taken into account that a feature should be called
in the benchmark suite.

In order to allow the benchmarks to run with multiple iteration with a suitable runtime in
combination and a practicable amount of time we limited the number of variants to 5,000.
On the other hand minimum 1,000 variants are wanted for later evaluations of the gener-
ated data. Both numbers have been estimated by performing test measurements. Twelve
configuration options have been identified to be enough to generate these variants.

For the feature model there are twelve independent and optional binary features, which
results in 212 = 4096 variants.

Figure 8.1: SQLite Feature Model.

Figure 8.1 shows the features in a visualized feature model. To increase the readability of the
model and to clarify the semantics the features are grouped in the model and the SQLITE_
prefixes of the features are removed. The parent features are not part of the code and only
for structuring purposes.

51

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

8 SQLite

This model is used as input for SPLConqueror which is able to generate all possible vari-
ants that are valid for the model presented above. The output variants of SPLConqueror
are used to generate the C code that is combined with the template of SQLite’s config.h in
order to generate the input configuration for the compiler.

8.3 Internal Feature Interactions

To detect the internal feature interactions we converted the feature model from the meta
format, described in 4.2.2, to a Feature Expression model suitable for TypeChef. Be-
side the Feature Expression model we created an open-features.txt file that contains all
configuration options. We executed the build process using the tool make that creates the
two agglomeration24 source code files sqlite3.h and sqlite3.c from the original source code.
These files can compiled to the library. For all features that are part of the feature model,
we removed the default values of the configuration options, otherwise TypeChef would use
this values instead of performing a variability-aware analysis of the configuration option.
Moreover, we modified the source code by rewriting the numeric configuration options to
use #ifdef -variability, as described in 8.2.2.

Using this setup TypeChef can be used to generate variability-aware call graphs to detect
internal feature interactions, as described in 5.2. We tested the generation of these graphs,
but the actual analysis of the graphs and the extraction of the feature interactions is part
of further work.

8.4 External Feature Interactions

This section discusses the benchmarks for SQLite. We present the execution of the measure-
ments, the measured data, discuss the quality of the results and show examples for external
feature interactions.

8.4.1 Availability of Benchmarks for SQLite

There are multiple de facto standard benchmark suites available for databases for example
TPC-C [38] using a client-server paradigm. These benchmarks cannot be used for SQLite
because SQLite is a in-process library and therefore linked against the using software. In
order to setup a performance benchmark for this scenario the library has to be part of the
benchmark software. Contrary to mbedTLS the library can be benchmarked without the
use of a client server paradigm. Beside using a universal database benchmark specialized
benchmarks for SQLite are available. The SQLite team itself offers a documented per-
formance benchmark that is outdated and not usable with SQLite 3 [39]. Specialized or
not publicly available papers and articles describing benchmarks are excluded, for example

24https://sqlite.org/howtocompile.html

52

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

8 SQLite

Moriki Yamamoto’s and Hisao Koizumi’s artcile "An Experimental Evaluation using SQLite
for Real-Time Stream Processing" only covers the field of stream processing [40]. After work-
ing through 30 articles, papers and performance benchmark setups no benchmark was found
that is compatible with the current SQLite version and is suitable for the use case of the
case study.

8.4.2 Performance Benchmark Design

As none of the available benchmark is suitable for the currently used SQLite version a basic
benchmark suite has been created with keeping in mind that benchmarking a database is
not trivial. SQLite includes a command line interface (CLI) [41] which is capable of accessing
database files and performing various operations on the database. The CLI offers the ability
to execute queries stored in files and use this to process large amounts of data. This makes it
possible to use the CLI for executing a benchmark consisting of arbitrary queries. Basically
most benchmark suites are made up of a set of queries that are executed on the database.

The SQLite Project page itself lists a wide range of different use cases covering small
embedded databases as well as websites with up to 100,000 hits a day [42]. So this can not
be considered a typical use case for SQLite and no representative benchmark for all use
cases. As the main goal of the Thesis is to acquire data to find correlations between internal
and external interactions of features the benchmark should provide data that may show the
impact of the presence of different features. The outdated benchmark of the SQLite team
gives an impression how a benchmark setup can be structured [39]. In the following not all
parts of the benchmark are reproduced, but the basic kinds of queries are included.

As data source, we do not use random generated data for the current benchmark, because
there is no benefit over using a real world data set and furthermore the seeding of realistic
data is not trivial. To get measurements with a low standard derivation and a small variance
the benchmark should run for multiple seconds. An embedded use case is not suitable for
this because the small amounts of data implicate shorter run times even for thousands of
queries to be executed. This favours a larger data set of some hundred MB.

One large data set that is available under public domain and used science is the database
of the Internet Move Database (IMDB)25. The set is used in publications like “Predicting
IMDB Movie Ratings Using Social Media” [43] and "A Dataset Search Engine for the Re-
search Document Corpus" [44], but not in the context of benchmarking. The missing schema
information and the undocumented text format of the files make the set hard to convert into
database inserts.

Another large data set that can be used for research under creative commons license is
provided by Stack Exchange, Inc. The data set covers “an anonymized dump of all user-
contributed content on the Stack Exchange network” [45]. It is stored in well defined XML
and therefore good to process, filter and transform into SQL insert statements. The set has
been used in other scientific publications across different contexts, for example in Anderson’s

25http://www.imdb.com/interfaces

53

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

8 SQLite

case study on knowledge discovery "Discovering value from community activity on focused
question answering sites"[46], and in Kartik’s data mining paper "Mining Questions Asked
by Web Developers"[47].

The data set of Stack Exchange of the English26 Exchange is used. The XML has been
processed in order to create a schema and Insert-statements. Statistics about the processed
data set are shown in the table listing 12. The foreign key relations have been created by
using the semantics of the field names defined in the XML files, for example an attribute
UserID was interpreted as foreign key relation referencing the primary key of the table
Users.

table data rows insert query size insert query files indexes keys

badges 301,676 22.3 MB 1 2 1
comments 569,222 145.0 MB 12 1 2
posthistory 663,503 403.1 MB 15 0 2
postlinks 37,906 2.3 MB 1 2 2
posts 271,229 240.7 MB 6 1 0
tags 922 0.0 MB 1 0 1
users 138,924 7.6 MB 1 1 0
votes 1,400,067 77.4 MB 3 0 2
sum 3,383,449 898.4 MB 40 7 10

Listing 12: Stack Exchange data set statistics.

The UML diagram in figure 8.2 shows the table structure of the benchmark data. The
schema is reconstructed from XML files provided by Stack Exchange without any changes
to the semantics of the schema, but columns have been removed to reduce the overall size
of the data. No aggregation, composition and multiplicities are used in the diagram, only
the foreign key constraints are expressed. The data types are very generic, for example
creationDate columns are stored as Text. SQLite only supports a limited set of five
data types (Null, Integer, Real, Text, Blob) for storage [48].

The CLI for SQLite produced on buffer overflows both test platforms (Windows and Linux)
and encoding errors if the filesize exceeded around 64 MB or contained Unicode characters.
To work around both issues the files containing the inserts for the data we have decided to
split the files into chunks smaller than 64 MB. Moreover, all Unicode characters have been
replaced by underscores as their presence is not essential for the benchmark.

The benchmark was made up of six phases and covers the most common use cases. We used
the outdated SQLite benchmarks as orientation.

CREATE In the first phase we run queries that are creating all tables. For the overall bench-
mark the process has no performance relevance as it happens almost instantly, but
the step is needed to create the schema for the inserts.

26https://english.stackexchange.com

54

https://english.stackexchange.com

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

8 SQLite

Figure 8.2: UML model of the benchmark’s table structure.

INSERT In the second phase data will be inserted using inserts with multiple values. Every
file exactly contains one insert statement. Using more inserts per file causes frequent
index updates and frequent writes to the database file which result in a decrease in
performance. As the insert phase should not dominate the overall benchmark and
also a great amount of data is required to measure the performance of the reading
queries, we decided to reduce the inserts by using multiple values for each insert.

SELECT The third phase runs a set of eleven different non trivial reading query types
on the database. Each query type is executed once. The queries cover the most
present language features as joins, projections, aggregation, sorting, numeric range
selections, grouping, wildcard searches using a Like clause and correlating inner
queries. Four sample queries are shown and described in listing 13.

UPDATE Update queries are executed with Where clauses on multiple rows and different
tables. One Update query uses an inner query for selecting the new value from
the row before.

DELETE After updating the data Delete queries are executed and all tables will be empty
after the execution of the queries. This has the same effect as a Truncate query,
but the Delete queries also include Where clauses with conditions of different
complexity.

55

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

8 SQLite

DROP Finally a drop statement that resets the schema is executed for all empty tables.

As the benchmark is very structured and does not simulate the behaviour of most real world
examples where Insert, Select, Update and Delete statements are in no particular order
and their shares are heavily depending on the purpose of the software that uses SQLite.
Nevertheless, the suite ensures that most features that are present in the build are covered by
the benchmark, but we do not expect every code path to be covered. For example the feature
SQLITE_LIKE_DOESNT_MATCH_BLOBS is not present in half of the generated
variants and the benchmark includes a query with a Like clause that consumes a measurable
amount of time. We expect these variants to show different performance characteristics as
the option should improve the performance according to the documentation [37].

1 -- q1: projection of u.id
2 -- aggregation of u.id using the count function
3 -- full joins between users, posts and posthistory on primaries
4 -- selection by u.id and grouping by u.id
5 SELECT u.id, COUNT(u.id)
6 FROM users u, posts p, posthistory ph
7 WHERE ph.postID = p.id AND ph.userID = u.id
8 AND u.id < 1000
9 GROUP BY u.id;

10

11 -- q2: projection of c.score
12 -- aggregation of c.id using the count function
13 -- grouping by c.score
14 -- selection with an inner query with and aggregation function
15 SELECT c.score, COUNT(c.id)
16 FROM comments c
17 GROUP BY c.score
18 HAVING c.score = (SELECT MAX(c.score) FROM comments c);
19

20 -- q3: projection of pl.id and pl.creationDate
21 -- selection by date comparison and ordering by date
22 SELECT pl.id, pl.creationDate
23 FROM postlinks pl
24 WHERE pl.creationDate < '2016-06-01'
25 ORDER BY pl.creationDate ASC;
26

27 -- q4: selection with a like clause and a wildcard expression on c.text
28 SELECT * FROM comments c WHERE c.text LIKE '%english%';

Listing 13: Example for four reading queries of the benchmark.

The performance impact on queries that are passed directly to the SQLite CLI, resulting by
the limitations of the Standard-IO, caused us to store the queries in files. We use the ability
of the CLI to pass references to SQL files that are read by using the file IO subsystem. To
eliminate this biasing influence on the measurements makes sense as in real-world systems
the standard IO is not used by SQLite and queries are usually passed directly from the
host application to the library.

56

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

8 SQLite

8.4.3 Confounding Variables

An additional confounding variable in the context of SQLite is non-deterministic behaviour
in the benchmark. We can take the following query as example for an unreproducible per-
formance “Select * From table Order By Random() Limit 1”. The “Order By
Random()” clause of the query makes it unreliable how long the query needs to termi-
nate. We decided to avoid all constructs in our queries that cause unreproducible query
executions.

8.4.4 Benchmark Execution

The estimation (8.1) showed the expected maximum run-time of the benchmarks. The calcu-
lation is based on the maximum measured times of 32 single variants that have been chosen
randomly. As the measurements are executed parallel on the cluster. Not all variants are
expected to compile properly, for that the real execution time is considered to be below the
time per node tnode.

Estimation of the measurements execution time:

cnodes = 14 (8.1a)

citerations = 50 (8.1b)

cvariants = 4096 (8.1c)

titerations = citerations ∗ 40s = 2000s (8.1d)

tcompile = 50s (8.1e)

tcomplete = cvariants ∗ (tcompile + titerations) ≈ 8, 400, 000s (8.1f)

tnode = tcomplete/cnodes ≈ 600, 000s ≈ 6.9d (8.1g)

(8.1h)

To produce stable and reliable results we decided to use a high number of 50 iterations for
the performance benchmark.

The execution of all measurements took about three days and 1,538 of 4,096 variants pro-
duced measurements, the others did not compile successfully. In conclusion of the resulted
we refined the feature model by removing one feature and excluded the variants not com-
piling because of type errors from the feature model. One reason for the failure of 2,048
variants was a feature that was working well in our testing environments, but broke on the
productive run because of an incompatibility between our SQLite version and the compiler
version.

57

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

8 SQLite

8.4.5 Measurements Data

We collected for all 1,538 working variants measurement data of compilation times, binary
footprints of the executable, energy consumption while compiling and energy consumption
while running the performance benchmark, the overall execution time of the performance
benchmark and the execution times of every iteration of the performance benchmark. Fur-
thermore, we collected the maximum main memory consumption in an extra execution of
the benchmark.

8.4.6 Measurements Data Analysis Results

The measurements of the properties main memory consumption and energy consumption
are not usable for the same reasons described in 7.7.5.

We did not further analyse the collected compilation times.

The measurements of the binary file sizes are fully reproduceable and deterministic.

In the performance benchmark fastest iteration of the fastest variant needed 26.65 s to
complete, the slowest iteration of the slowest variant took 44.77 s.

We calculated the descriptive standard derivations and variances for all variants using the
programming language R. The median standard derivation over all variants was 0.093 s and
the median variance 0.010 s2. Compared to the measurement differences between different
variants this value is very low.

Figure 8.3 shows the violin plots of two randomly picked variants v1 and v2. We suggest the
same reason for outliers as described in 7.7.5.

8.5 Measurements Conclusion

The measurements of the main memory usage and consumption have been unreliable and
non-deterministic and are not usable for further evaluations.

The measurements of the binary file sizes and the measurements of the performance bench-
mark have been produced stable results that can be further processed. We imported the data
successfully in SPLConqueror and started an analyses to detected feature interactions,
to test if our measurement data is suitable for detecting interactions. We found out that
the results of SQLite can be used to detect external feature interactions, but we did not
further evaluate the results of the analysis as this is not part of the thesis. We provide our
measurement data in files using the comma separated value format.

58

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

8 SQLite
27

.6
27

.7
27

.8
27

.9
28

.0
28

.1
28

.2

v1

40
.1

40
.2

40
.3

40
.4

v2

Figure 8.3: Violin plots for measurements of two different variants of SQLite. The y-axis
represents the execution time of a iteration of the performance benchmark in
seconds.

8.6 Summary

For SQLite we were able to construct a very modular and extensible feature model be-
cause of the low number of dependencies. Based on this feature model we have set up a
TypeChef project and prepared the generation of the variability-aware call graphs. For the
measurement of external feature interactions focused on performance interactions, we have
created an extensible benchmark and executed the performance measurements. We showed
that the results of the measurements allows a further processing of the data. Due to time
constraints we have not finished the analysis of the analysis of SPLConqueror, yet.

59

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

9 Validity and Threats to Validity

9 Validity and Threats to Validity

In this chapter we discuss the validity and the threats to the validity of the case study.
The awareness of the threats to validity is one of the most important topics in empirical
science according to Siegmund et. al.: “Reviewing papers that were recently published in
major software-engineering venues, we found that 91 % presented an empirical study, but
only 54 % discussed threats to validity, and only 23 % differentiated between different kinds
of validity. Given that we include EMSE as major empirical software-engineering journal,
this is an alarmingly high number of authors who do not seem to be aware of the threats to
validity to their study” [49].

9.1 Types of Validity

There are multiple types of validity that can be discussed, such as construct validity or
statistical conclusion validity. In the following we will focus on external validity and internal
validity, because they are an important aspect for our case study.

According to Carter and Porter “internal validity relates to the extent to which the design of
a research study is a good test of the hypothesis or is appropriate for the research question”
[50]. This means observable changes in dependent variables should be caused by changes in
the independent variables. Therefore confounding variables and measurement bias are the
biggest threats.

Caleder et. al. define that “external validity examines whether or not an observed causal
relationship should be generalized to and across different measures: persons, settings and
times” [51]. In our case this means that external validity is a factor of representativeness
we need to archive in order to be able to transfer our results to other highly configurable
subject systems. Moreover, it is generally assumed that a high external validity is a crucial
factor in empirical research: “Research that is weak in external validity is not considered to
provide an adequate test of theory” [52, 51].

9.2 Preliminary Study and Selection of Subject Systems

Internal Validity The internal validity of the evaluation of subject systems is threatened
by the fact that we have no approved state of the art technology available that enables us
to find out if a software system is a highly configurable systems which satisfies the needs
of our analysis methods. We had to use a heuristic in combination with a manual selection
process as described in chapter 3. The heuristic may have overseen a system, as well as we

60

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

9 Validity and Threats to Validity

could make errors during the manual selection process. Still, we selected far more candidate
systems as we could process. All selected systems fitted our requirements.

External Validity The preliminary study evaluated over 250 candidate subject systems.
The candidates come from various common application domains to increase the external
validity. However, our capacity for subject systems we could analyse in-depth was very
limited through the complex process for the measurements of external feature interactions.
This caused us to select two subject systems of two different domains and with different
feature model characteristic, as we discussed in 8.2 and 7.4. The validity of the selection is
threatened by the fact that both systems can be seen in a similar domain, namely in the
domain of embedded software. Both systems are optimized to run in environments with very
limited resources and may not be representative for systems that have no optimizations of
this kind.

9.3 Generation of Feature Models

Internal Validity A threat to the internal validity are errors in the model that result from
undocumented constraints and errors in the documentation or source code that result in
invalid variants.

The internal validity of the generation of the feature models was increased by using a strict
validation of the generated variants. For example, we conduct a extra test using a functional
program to verify if the variants generated by the program match the variants generated by
SPLConqueror, as described in 7.4.

External Validity The external validity is threatened by feature models that are not rep-
resentative for highly configurable system. We found out that the feature models we can
construct are very dependent on the point of view. For example mbedTLS can be seen as
library for TLS-communication or as modular set of packages for cryptographic purposes.
The structure of the code enables both kinds of usages. We decided to see it as library for
TLS-communication and built the feature model for that purpose. This should not harm
the external validity in this case as this is the most common real-world application scenario
we found for mbedTLS. Another threat are the restrictions we had to add for enabling
useful benchmarks. These restrictions are not present in most real-world use cases. They
increase the internal validity of the experiment, but limit the external validity because it is
not possible to generalize our models for arbitrary use cases of our subject systems.

61

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

9 Validity and Threats to Validity

9.4 Detecting Internal Feature Interactions

For our analysis of internal feature interactions we used state of the art analysis techniques
implemented in TypeChef. We did not need to modify the original TypeChef analysis.
Therefore we can assume that the internal validity of our results is very high.

The internal validity can be threatened as we only used variability-aware control flow graphs
as analysis method. Features can interact on data flow level, too, but we did not consider
this kinds of interactions. We found out that mbedTLS uses function pointers to implement
a kind of module interfaces, as we described in section 7.2. Calls using this function pointers
cannot be detected by TypeChefusing the control flow analysis techniques.

9.5 Detecting External Feature Interactions

Undiscovered sources for measurement bias threaten the internal validity of measuring non-
functional properties and therefore, detecting external feature interactions. We used random-
ization and a high number of iterations, as well as logging as many environment parameters
as possible to control measurement bias. The analysis of the results revealed no evidence for
unwanted measurement bias so far. For example, we had stable and reproduceable measure-
ments for performance benchmarks.

We defined the dependent, independent and confounding variables carefully and mitigated
the effect of the confounding variables or controlled them. We discussed this in 6.6.3 in
detail.

Another general threat is the accuracy and the precision of the measurements. The evaluation
of the results of both subject systems have proven a good quality of the measurements of
performance. Energy and memory consumptions have not been used as we found out that
the measurements are not reliable enough.

The internal validity is threatened by the assumptions we have made and the limitations
of the measurements. Because of the many parameters that are present in the setup it is
not feasible to measure all variants. We had to stick, for example, to the compiler’s default
optimization levels for the subject systems and we only had two test clusters available for
our measurements using the same operating system. To mitigate the threat, we used real-
world parameters or validated single parameters against other test environments as far as
possible. For example, we benchmarked randomly picked variants on a Windows operating
system and validated that the sample showed the same measurement characteristics as on
the main benchmark system running Linux.

We used only two subject systems and can therefore not generalize.

62

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

9 Validity and Threats to Validity

9.6 Subject System: mbedTLS

The internal validity of the measurements is considered to be very high as we used a careful
and long-term engineered benchmark setup and have been aware of many common sources of
measurement bias. The measurement results have been reasonable and stable showing a low
standard derivation and variance. There is a remaining risk that we have still undiscovered
sources of measurement bias in our measurements.

The client server paradigm, that has to be used, is difficult to benchmark in general. We
had identical variants of server and clients, assuming that we do not care which of the two
is the limiting factor, as both are using identical feature sets. This could be a threat to the
internal validity.

The external validity in the context of mbedTLS is threatened by the benchmark that
cannot be generalized to represent an arbitrary use case of mbedTLSẆe see no danger in
the general setup to benchmark connections as it reflects the common real-world use case of
mbedTLS, but because of the long runtimes we had to decide for a single size and type of
the payload we used to benchmark the connection. This is the biggest drawback as there are
many other scenarios mbedTLS can be used for, for example a high number of connections
transferring only a small amount of data.

9.7 Subject System: SQLite

We consider the internal validity of the measurements as very high as we used a solid
benchmark setup and have been aware of many sources of measurement bias. This produced
stable and reasonable measurement results. There is a remaining risk that we have still
undiscovered sources of measurement bias in our measurements.

The biggest threat to the external validity of the analysis of SQLite is the representativeness
of the benchmark we have built. SQLite can be used in various use cases starting with a
small embedded database on a mobile phone for managing a contacts database with only few
entries up to the backend of a website with millions of entries and far more transactions. This
makes it hard to represent all use cases in a benchmark; this made us focus on the quality of
the measurements. To increase the external validity in the context of SQLite use cases we
used a publicly available and commonly used data set that can represent a real-world use
case, and we orientated our benchmark on the queries of older SQLite benchmarks used
by the development team. However, we cannot generalize our benchmark to represent other
use cases.

9.8 Overall Case Study

We tried to mitigate all threats to the internal validity by using either approved analysis
techniques or using various validation methods for our measurements. The remaining risk,

63

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

9 Validity and Threats to Validity

we cannot exclude completely, is the presence of measurement bias in the external feature in-
teractions measurements. As we found external feature interactions using SPLConqueror
and we were able to find them in the source code and in the variability-aware call graphs,
too, we assume both measurements to be reasonable.

The external validity of the overall case study we conducted is very limit because the external
validity of case studies is limited in general. Two subject systems are not enough to generalize
findings.

All in all, we think that we have reached a level of internal validity that enables our work
to continue with finding relations between internal and external feature interactions. We
strongly encourage future work to refine our work with other subject systems and to target
the limitations of our measurements.

64

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

10 Conclusion

10 Conclusion

This chapter discusses the challenges of working on the case study, we summarize our work,
and we draw a conclusion from the results.

10.1 Challenges

The field of highly configurable software and feature orientated software is a relatively new
field in research. Therefore we expect to face new and unforeseen problems which cannot
be solved by applying well known best practices. Moreover, we came in touch with many
different computer science disciplines, each requiring a deeper knowledge, some of them even
requiring an in-depth domain knowledge.

For example, we needed awareness in empirical methods of computer science to design proper
benchmarks and to avoid common mistakes and measurement bias in our benchmarks. We
needed domain specific knowledge in transport layer security and cryptography to create
working builds of mbedTLS and to face compiler time and runtime errors; we had to
manually inspect and to debug the C code and build scripts and we had to create working
SQL benchmarks.

Especially in our benchmarks we had to deal with long execution times required to find
errors that have been affecting only some variants. We had to analyse the C code to find
the real source of an error as we often had the problem of avalanche of errors.

In total, all of these factors could be solved but they led to an extensive amount of time
that had to be spent on. This should be kept in mind while conducting further case studies
of this kind.

Initially we thought of our subjects systems as being black boxes we can handle with exis-
tent benchmarks and analysis software so that we could focus on finding relations between
the data sets. Actually the real-world systems showed up to be more complex to analyse
than expected. Problems we came across have been errors in the documentation, missing
constraints of features, poorly up-to-date documentations, outdated benchmarks, bugs in
the source code resulting in not working variants. Most of these problems, such as outdated
documentation files, could be classified as classical software engineering problems that have
been a research topic for more than forty years. We faced this problems mainly by analysing
the source code manually and adding the undocumented constraints to the feature mod-
els. If we could not detect additional constraints we excluded the variants from the feature
model, but we did not edit the original source code of our subject systems to fix bugs or

65

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

10 Conclusion

misbehaviour. These problems led to acquire in-depth domain specific knowledge of the sub-
ject system to understand the whole system and to adjust the benchmarks. The originally
intended black box approach became a white box approach.

We learned that the availability of approved analysis tools and a documentation software
project are not enough to run out of the box. A highly configurable and modular system
still may suffer from unexpected feature interactions if it was not developed and tested
excessively in respect of this development approach. Most software project use static test
cases that cover the common and expected use cases, but none of the projects we came
across used static variability-aware analysis tools or generic test cases to analyse or test
uncommon variants. Both subject systems of our case study showed different characteristics
in the aspects which needed manual reworking. mbedTLS for example had undocumented
constraints we needed to find by processing the source code manually. SQLite offered a
command line interface that was not capable of processing queries that contained unicode
characters forcing us to develop a work-around. Such unforeseeable challenges lead to a
lengthy and partially manual analysis process.

10.2 Summary of our Work

In the preliminary study we identified a list of open source software projects written in
C using pre-processor directives for implementing variability as potential subject systems.
We classified the projects in different domains and ran a heuristic to find subject systems
that fulfil our requirements on the configuration options. In the next step we studied the
documentation of the projects and analysed the source code and the configuration options
manually. We selected two subject systems for an analysis in TypeChef and for measure-
ments of external feature interactions.

We developed a text-based description format for feature models in order to create a main-
tainable source model for generating the target models of TypeChef and SPLConqueror.
We explored different approaches to reverse-engineering of feature models for mbedTLS and
SQLite using the source code and the documentation, finally creating feature models that
are suitable for measurements of external feature interactions, such as performance interac-
tions.

For our analysis of internal feature interactions we used TypeChef to generate call graphs
per source code file and to find type errors, based on the feature models of our subject
systems.

mbedTLS and SQLitehad both no suitable performance benchmarks, so we used the com-
patibility test suite of mbedTLS as base for a throughput benchmark, and for SQLite we
used the integrated CLI tool to execute queries on a large data set. In the next step we set
up measurements for external feature interactions focusing on benchmarks for measuring
performance interactions. Moreover we collected data about binary footprints and energy
consumption. We provided an overview of the measured data and we discussed the internal

66

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

10 Conclusion

and external validity of the measurements. Based on that analysis data we used SPLCon-
queror to identify the influence on performance of features interactions. For mbedTLS we
verified the presence of these interactions by analysing the source code.

10.3 Conclusion, Contribution and Future Work

Our preliminary study produced a list of over 100 software projects that contains around
ten potential subjects systems for future analysis. The heuristic tools can be reused for the
analysis of other software projects.

We created a description format for feature models that can be used to maintain a single
model and to keep the TypeChef and SPLConqueror models in synchronization. The
software for the generation is available online.

For mbedTLS we reverse-engineered two feature models. The first model contains all config-
uration options we considered to be usable as freely configurable feature. This model can be
used for further analysis that is not linked to performance measurements and therefore have
no need to limit the size of the model. The second model follows a minimalistic and modular
approach for modifying the number of variants that can be generated and is optimized for
benchmarking TLS connections.

We created an execution and reporting framework for our subjects systems that is capable
of executing performance benchmarks on a remote server infrastructure and can collect the
data in the file system as well as in a remote database using an Rest API. The framework
can be used for other subject systems with minor modifications.

As mbedTLS had no real publicly available performance benchmark for the measurement
of connection throughput under controlled conditions we created a custom client-server
benchmark that can be used for arbitrary feature models that produce valid variants. The
payload can be modified and reused for analysing the impact of different payload sizes.

SQLite had, like mbedTLS no benchmark that fitted our requirements; this made us
engineer a benchmark based on stack-exchange data. The benchmark can be used as base
for further measurements and can be refined to cover different use cases of SQLite.

Finally we collected large data sets of internal and external feature interactions. We found
internal feature interactions in variability-aware call graphs that can be post processed in
future work and we found external feature interactions by analysing the measurement results
with SPLConquerorẆe showed that the measurements of the variants show significant
performance differences and we stated the quality of the data. The data sets will be used in
future work to study a possible relation between internal and external interactions.

67

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

11 Acknowledgements

11 Acknowledgements

11.1 Credits

I want to thank Prof. Dr. Sven Apel and Prof. Christian Lengauer, Ph.D. for supervising
this thesis and I wand to thank the whole Chair of Software Engineering at the University
of Passau letting me be part of their research projects. Especially I want to thank Sergiy
Kolesnikov for his substantial support and constant guidance.

Furthermore I want to thank all current and former staff members who helped me with
their suggestions and time, especially Alexander Grebhahn, Jörg Liebig, Janet Siegmund
and Norbert Siegmund.

Finally I want to thank my wife Claudia for reading the whole Thesis and for her patience.

11.2 Case Study and Tool Availability

The project repositories of the subject systems are available online and hosted at GitHub.
A request for reading permissions is currently required, as some papers build on top of the
studies are not released, yet.

The repository of the mbedTLS subject system is available at:

https://github.com/DE120/mbedtls

The repository of the SQLite subject system is available at:

https://github.com/DE120/sqlite

Additional tools will be made available at:

https://github.com/DE120/ma-toolchain

68

https://github.com/DE120/mbedtls
https://github.com/DE120/sqlite
https://github.com/DE120/ma-toolchain

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

Nomenclature

Nomenclature

AES Advanced Encryption Standard, a block cipher algorithm.

ARC4 Alleged RC4, a cryptographic stream cipher algorithm.

CBC Cipher block chaining, a mode of operation for block ciphers.

CCM Counter mode with CBC-MAC, a mode of operation for block ciphers.

CFB Cipher feedback, a mode of operation for block ciphers.

CLI Command Line Interface.

CTR Counter mode, a mode of operation for block ciphers.

DES Application Programming Interface, a block cipher algorithm.

DHE-PSK Diffie–Hellman with pre-shared key, a key exchange protocol.

ECB Electronic codebook, a mode of operation for block ciphers.

ECDHE-PSK Elliptic curve Diffie–Hellman with pre-shared key exchange protocol.

GCM Galois/Counter Mode, a mode of operation for block ciphers.

MAC Message authentication code, a method to authenticate a message.

MD5 Message Digest 5, a hash function.

PSK Pre-shared key, a key exchange mechanism.

SHA1 Secure Hash Algorithm, a hash function.

SHA256 Secure Hash Algorithm 2 with 256 bit output, a hash function.

SHA512 Secure Hash Algorithm 2 with 515 bit output, a hash function.

SPL Software Product Line.

SSL Secure Socket Layer, an encrypted network protocol.

TLS Transport Layer Security, a newer version of SSL.

TPC-C A database benchmark suite.

69

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

List of Figures

List of Figures

4.1 Visualization of the model of the example in listing 6. 21

5.1 Minimal example of a variability-aware call graph. 26

6.1 Violin plots for measurements of the same runtime configuration. The left
plot it for variants containing only features actually used, the right plot is
for variants containing unused code. The y-axis represents the duration of a
connection in seconds. 29

6.2 Output file sizes in KB using optimization settings between O0 and O3. . . . 30
6.3 UML model of the reporting database. 33
6.4 UML model of the standard workflow of the benchmark. 34

7.1 mbedTLS high-level architecture overview [35]. 36
7.2 mbedTLS hierarchy and usage of modules [35]. 37
7.3 mbedTLS compatibility between cipher algorithm and cipher modes. 38
7.4 Feature model of mbedTLS used for performance benchmarks. 41
7.5 Violin plots for measurements of two different variants of mbedTLS. The y-

axis represents the execution time of a iteration of the performance benchmark
in seconds. 47

8.1 SQLite Feature Model. 51
8.2 UML model of the benchmark’s table structure. 55
8.3 Violin plots for measurements of two different variants of SQLite. The y-axis

represents the execution time of a iteration of the performance benchmark in
seconds. 59

70

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

List of Listings

List of Listings

1 Example for a feature that can be enabled using C pre-processor directives. . 3
2 Example for a possible type error using C pre-processor directives. 3

3 Example domains we used to group candidates for subject systems. 11
4 Example for an #ifdef -expressions that is used for platform abstraction. . . . 13
5 Example for an #ifdef -expressions that are likely to represent a feature. . . . 13

6 Example for a feature model using different directives. 21

7 A configurable program using C pre-processor directives. 25

8 A Haskell program for generating a list of all possible variants according to
the feature model for verifying the SPLConqueror output. 42

9 Original code using the configuration option in the C-struct as boolean. . . . 50
10 Rewritten code using #ifdef -variability to switch the boolean values. 50
11 Definition of default value for undefined configuration option. 50
12 Stack Exchange data set statistics. 54
13 Example for four reading queries of the benchmark. 56

71

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

Bibliography

Bibliography

[1] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Interaction testing of highly-
configurable systems in the presence of constraints. In Proceedings of the 2007
International Symposium on Software Testing and Analysis, ISSTA ’07, pages 129–139,
New York, NY, USA, 2007. ACM. 1.1.1, 1.1.2

[2] Sven Apel, Don Batory, Christian Kstner, and Gunter Saake. Feature-Oriented Software
Product Lines: Concepts and Implementation. Springer Publishing Company, Incorpo-
rated, 2013. 1.1.1

[3] Alexander von Rhein, Alexander Grebhahn, Sven Apel, Norbert Siegmund, Dirk Beyer,
and Thorsten Berger. Presence-condition simplification in highly configurable systems.
In Proceedings of the 37th International Conference on Software Engineering - Volume
1, ICSE ’15, pages 178–188, Piscataway, NJ, USA, 2015. IEEE Press. 1.1.1

[4] Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Christian Kästner, Sven
Apel, and Gunter Saake. Spl conqueror: Toward optimization of non-functional prop-
erties in software product lines. Software Quality Journal, 20(3-4):487–517, September
2012. 1.1.1

[5] Sven Apel, Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, and Brady
Garvin. Exploring feature interactions in the wild: The new feature-interaction chal-
lenge. In Proceedings of the 5th International Workshop on Feature-Oriented Software
Development, FOSD ’13, pages 1–8, New York, NY, USA, 2013. ACM. 1.2

[6] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner.
Performance-influence models for highly configurable systems. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
pages 284–294, New York, NY, USA, 2015. ACM. 1.3.1

[7] Christian Kastner, Sven Apel, and Don Batory. A case study implementing features us-
ing aspectj. In Proceedings of the 11th International Software Product Line Conference,
SPLC ’07, pages 223–232, Washington, DC, USA, 2007. IEEE Computer Society. 1.4

[8] Sergiy Kolesnikov, Judith Roth, and Sven Apel. On the relation between inter-
nal and external feature interactions in feature-oriented product lines: A case study.
In Proceedings of the 6th International Workshop on Feature-Oriented Software
Development, FOSD ’14, pages 1–8, New York, NY, USA, 2014. ACM. 1.4, 5.1

[9] Jörg Liebig, Rolf Daniel, and Sven Apel. Feature-oriented language families: A case
study. In Proceedings of the Seventh International Workshop on Variability Modelling
of Software-intensive Systems, VaMoS ’13, pages 11:1–11:8, New York, NY, USA, 2013.
ACM. 1.4

72

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

Bibliography

[10] John Gerring. What is a case study and what is it good for? The American Political
Science Review, 98(2):341–354, 5 2004. http://www.jstor.org/stable/4145316. 1.4

[11] Andrew Bennett. Models, Numbers, and Cases. Methods for Studying International
Relations. University of Michigan Press, Michigan, 2004. DOI: 10.3998/mpub.11742.
1.4

[12] Bent Flyvbjerg. Five misunderstandings about case-study research. Qualitative Inquiry,
pages 219–245, 2006. 1.4

[13] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wąsowski, and Krzysztof Czar-
necki. Reverse engineering feature models. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 461–470, New York, NY, USA,
2011. ACM. 2.1

[14] Jörg Liebig. Analysis and Transformation of Configurable Systems. PhD thesis, Uni-
versität Passau, 2015. 2.2, 8.1

[15] Norbert Siegmund, Sergiy S. Kolesnikov, Christian Kästner, Sven Apel, Don Batory,
Marko Rosenmüller, and Gunter Saake. Predicting performance via automated feature-
interaction detection. In Proceedings of the 34th International Conference on Software
Engineering, ICSE ’12, pages 167–177, Piscataway, NJ, USA, 2012. IEEE Press. 2.2,
2.4, 3.1, 8.1

[16] Andreas Janaker. TypeChef meets SPLLIFT interprocedural data-flow analysis of
configurable software systems. Master’s thesis, University of Passau, December 2016.
2.2, 3.2, 5.1

[17] ThanhVu Nguyen, Ugur Koc, Javran Cheng, Jeffrey S. Foster, and Adam A. Porter.
igen: Dynamic interaction inference for configurable software. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, pages 655–665, New York, NY, USA, 2016. ACM. 2.3

[18] Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S. Foster, and Adam Porter.
Using symbolic evaluation to understand behavior in configurable software systems. In
Proceedings of the 32Nd ACM/IEEE International Conference on Software Engineering
- Volume 1, ICSE ’10, pages 445–454, New York, NY, USA, 2010. ACM. 2.3

[19] Reinhard Tartler, Daniel Lohmann, Christian Dietrich, Christoph Egger, and Julio
Sincero. Configuration coverage in the analysis of large-scale system software. In
Proceedings of the 6th Workshop on Programming Languages and Operating Systems,
PLOS ’11, pages 2:1–2:5, New York, NY, USA, 2011. ACM. 2.3

[20] Brady J. Garvin and Myra B. Cohen. Feature interaction faults revisited: An ex-
ploratory study. In Proceedings of the 2011 IEEE 22Nd International Symposium on
Software Reliability Engineering, ISSRE ’11, pages 90–99, Washington, DC, USA, 2011.
IEEE Computer Society. 2.3

73

http://www.jstor.org/stable/4145316

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

Bibliography

[21] Atri Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel, and Krzysztof Czarnecki.
Cost-efficient sampling for performance prediction of configurable systems (t). In
Proceedings of the 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), ASE ’15, pages 342–352, Washington, DC, USA, 2015.
IEEE Computer Society. 2.4

[22] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, and A. Wąsowski. Variability-aware
performance prediction: A statistical learning approach. In 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 301–311,
Nov 2013. 2.4

[23] Dennis Westermann, Jens Happe, Rouven Krebs, and Roozbeh Farahbod. Automated
inference of goal-oriented performance prediction functions. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2012,
pages 190–199, New York, NY, USA, 2012. ACM. 2.4

[24] Yi Zhang, Jianmei Guo, Eric Blais, and Krzysztof Czarnecki. Performance prediction
of configurable software systems by fourier learning (t). In Proceedings of the 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE), ASE
’15, pages 365–373, Washington, DC, USA, 2015. IEEE Computer Society. 2.4

[25] Norbert Siegmund, Marko RosenmüLler, Christian KäStner, Paolo G. Giarrusso, Sven
Apel, and Sergiy S. Kolesnikov. Scalable prediction of non-functional properties in soft-
ware product lines: Footprint and memory consumption. Inf. Softw. Technol., 55(3):491–
507, March 2013. 3.1

[26] Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Christian Kästner, Sven
Apel, and Gunter Saake. Spl conqueror: Toward optimization of non-functional prop-
erties in software product lines. Software Quality Journal, 20(3-4):487–517, September
2012. 3.1

[27] Christian Kaestner. TypeChef project repository at GitHub., 2017. https://github.
com/ckaestne/TypeChef. [Online; Accessed: 2017-02-28]. 3.2, 5.2

[28] Jörg Liebig, Andreas Janker, Florian Garbe, Sven Apel, and Christian Lengauer. Mor-
pheus: Variability-aware refactoring in the wild. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1, ICSE ’15, pages 380–391, Piscataway,
NJ, USA, 2015. IEEE Press. 3.4

[29] Department of Computer Science, Embedded System Software Group at TU Dort-
mund et. al. Project Prototypes, 2017. https://ess.cs.uni-dortmund.de/Research/
Projects/FAME/prototype.shtml. [Online; Accessed: 2017-02-28]. 4.1

[30] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and Thomas Leich. Featureide: An extensible framework for feature-oriented software
development. Sci. Comput. Program., 79:70–85, January 2014. 4.2.1

[31] Tyler Sorensen. ABOUT PBL, 2017. http://formal.cs.utah.edu:8080/pbl/index.
php. [Online; Accessed: 2017-02-28]. 4.2.2

74

https://github.com/ckaestne/TypeChef
https://github.com/ckaestne/TypeChef
https://ess.cs.uni-dortmund.de/Research/Projects/FAME/prototype.shtml
https://ess.cs.uni-dortmund.de/Research/Projects/FAME/prototype.shtml
http://formal.cs.utah.edu:8080/pbl/index.php
http://formal.cs.utah.edu:8080/pbl/index.php

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

Bibliography

[32] Andy Kenner, Christian Kästner, Steffen Haase, and Thomas Leich. Typechef: Toward
type checking #ifdef variability in c. In Proceedings of the 2Nd International Workshop
on Feature-Oriented Software Development, FOSD ’10, pages 25–32, New York, NY,
USA, 2010. ACM. 5.2

[33] Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Christian Kästner, and
Gunter Saake. Measuring non-functional properties in software product line for product
derivation. In 15th Asia-Pacific Software Engineering Conference (APSEC 2008), 3-5
December 2008, Beijing, China, pages 187–194, 2008. 6.1

[34] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous java per-
formance evaluation. SIGPLAN Not., 42(10):57–76, October 2007. 6.1

[35] ARM Limited. High Level Design., 2017. https://tls.mbed.org/high-level-
design. [Online; Accessed: 2017-02-28]. 7.1, 7.2, 11.2

[36] The SQLite Development Team. About SQLite, 2017. https://sqlite.org/about.
html. [Online; Accessed: 2017-02-28]. 8.1

[37] The SQLite Development Team. Compile-time Options, 2017. https://www.sqlite.
org/compile.html. [Online; Accessed: 2017-02-28]. 8.2.1, 8.4.2

[38] TPC. TPC-C, 2017. https://www.tpc.org/tpcc/. [Online; Accessed: 2017-02-28].
8.4.1

[39] The SQLite Development Team. Database Speed Comparison, 2017. https://www.
sqlite.org/speed.html. [Online; Accessed: 2017-02-28]. 8.4.1, 8.4.2

[40] Moriki Yamamoto and Hisao Koizumi. An experimental evaluation using sqlite for
real-time stream processing. Journal of International Council on Electrical Engineering,
1(68):68–72, 3 2013. DOI: 10.5370/JICEE.2013.3.1.068. 8.4.1

[41] The SQLite Development Team. Command Line Shell For SQLite, 2017. https:
//www.sqlite.org/cli.html. [Online; Accessed: 2017-02-28]. 8.4.2

[42] The SQLite Development Team. Appropriate Uses For SQLite, 2017. https://www.
sqlite.org/whentouse.html. [Online; Accessed: 2017-02-28]. 8.4.2

[43] Andrei Oghina, Mathias Breuss, Manos Tsagkias, and Maarten de Rijke. Predicting
imdb movie ratings using social media. In Proceedings of the 34th European Conference
on Advances in Information Retrieval, ECIR’12, pages 503–507, Berlin, Heidelberg,
2012. Springer-Verlag. 8.4.2

[44] Meiyu Lu, Srinivas Bangalore, Graham Cormode, Marios Hadjieleftheriou, and Divesh
Srivastava. A dataset search engine for the research document corpus. In Proceedings
of the 2012 IEEE 28th International Conference on Data Engineering, ICDE ’12, pages
1237–1240, Washington, DC, USA, 2012. IEEE Computer Society. 8.4.2

[45] Stack Exchange, Inc. Stack Exchange Data Dump., 2017. https://archive.org/
details/stackexchange. [Online; Accessed: 2017-02-28]. 8.4.2

75

https://tls.mbed.org/high-level-design
https://tls.mbed.org/high-level-design
https://sqlite.org/about.html
https://sqlite.org/about.html
https://www.sqlite.org/compile.html
https://www.sqlite.org/compile.html
https://www.tpc.org/tpcc/
https://www.sqlite.org/speed.html
https://www.sqlite.org/speed.html
https://www.sqlite.org/cli.html
https://www.sqlite.org/cli.html
https://www.sqlite.org/whentouse.html
https://www.sqlite.org/whentouse.html
https://archive.org/details/stackexchange
https://archive.org/details/stackexchange

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

Bibliography

[46] Ashton Anderson, Daniel P. Huttenlocher, Jon M. Kleinberg, and Jure Leskovec. Dis-
covering value from community activity on focused question answering sites: a case
study of stack overflow. In The 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’12, Beijing, China, August 12-16, 2012,
pages 850–858, 2012. 8.4.2

[47] Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. Mining questions asked by web
developers. In Proceedings of the Working Conference on Mining Software Repositories
(MSR), pages 112–121. ACM, 2014. 8.4.2

[48] The SQLite Development Team. Datatypes In SQLite Version 3, 2017. https://www.
sqlite.org/datatype3.html. [Online; Accessed: 2017-02-28]. 8.4.2

[49] Janet Siegmund, Norbert Siegmund, and Sven Apel. Views on internal and external
validity in empirical software engineering. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1, ICSE ’15, pages 9–19, Piscataway, NJ,
USA, 2015. IEEE Press. 9

[50] Samuel Porter and Diana Carter. Validity and reliability. Wiley-Blackwell, 4th edition,
2000. Cited x8. 9.1

[51] John G. Lynch, Jr. On the external validity of experiments in consumer research.
Journal of Consumer Research, 9(3):225, 1982. 9.1

[52] John G. Lynch. Theory and external validity. Journal of the Academy of Marketing
Science, 27(3):367–376, 1999. 9.1

76

https://www.sqlite.org/datatype3.html
https://www.sqlite.org/datatype3.html

Detecting Control-Flow and Performance Interactions in
Highly-Configurable Systems
A Case Study

Eidesstattliche Erklärung

Eidesstattliche Erklärung

Ich, Alexander Denk, versichere hiermit, dass ich meine Masterarbeit mit dem Thema

Detecting Control-Flow and Performance Interactions in Highly-
Configurable Systems - A Case Study

selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt
habe, wobei ich alle wörtlichen und sinngemäßen Zitate als solche gekennzeichnet habe. Die
Arbeit wurde bisher keiner anderen Prüfungsbehörde vorgelegt und auch nicht veröffentlicht.

Passau, 31. März 2017

Alexander Denk

77

	Introduction
	Highly Configurable Systems
	Types of Feature Interactions
	Motivation, Workflow and Goal of the Thesis
	Case Studies
	Structure of the Thesis

	Related Work
	Feature Model Generation
	Highly Configurable Subject Systems
	Detecting Internal Interactions
	Detecting External Feature Interactions

	Preliminary Study
	Selection of Software Domains
	Requirements for Subject Systems
	Setup and Execution of the Evaluation
	Evaluation Results

	Generation of Feature Models
	Requirements for Feature Models
	Representation Formats of Feature Models
	Reverse Engineering Feature Models from Source Codes and Documentation

	Detecting Internal Feature Interactions
	Internal Feature Interactions Analysis Methods
	TypeChef Analysis

	Detecting External Feature Interactions
	Types of Non-Functional Properties
	Role of Unused Code
	Compiler Influence
	Network and IO Influences
	Testing System
	Statistical Variables
	Benchmark Execution and Reporting Framework

	mbedTLS
	Description of mbedTLS
	Software Architecture
	Cipher Suites
	Feature Model
	Shared Code
	Internal Feature Interactions
	External Feature Interactions
	Measurements Conclusion
	Summary

	SQLite
	Description of SQLite
	Feature Model
	Internal Feature Interactions
	External Feature Interactions
	Measurements Conclusion
	Summary

	Validity and Threats to Validity
	Types of Validity
	Preliminary Study and Selection of Subject Systems
	Generation of Feature Models
	Detecting Internal Feature Interactions
	Detecting External Feature Interactions
	Subject System: mbedTLS
	Subject System: SQLite
	Overall Case Study

	Conclusion
	Challenges
	Summary of our Work
	Conclusion, Contribution and Future Work

	Acknowledgements
	Credits
	Case Study and Tool Availability

	Nomenclature
	List of Figures
	List of Listings
	Bibliography
	Eidesstattliche Erklärung

